scikit-learn-intelex 2024.4.0__py310-none-manylinux1_x86_64.whl → 2024.6.0__py310-none-manylinux1_x86_64.whl
This diff represents the content of publicly available package versions that have been released to one of the supported registries. The information contained in this diff is provided for informational purposes only and reflects changes between package versions as they appear in their respective public registries.
Potentially problematic release.
This version of scikit-learn-intelex might be problematic. Click here for more details.
- {scikit_learn_intelex-2024.4.0.dist-info → scikit_learn_intelex-2024.6.0.dist-info}/METADATA +2 -2
- {scikit_learn_intelex-2024.4.0.dist-info → scikit_learn_intelex-2024.6.0.dist-info}/RECORD +43 -36
- sklearnex/_device_offload.py +8 -1
- sklearnex/basic_statistics/tests/test_incremental_basic_statistics.py +2 -4
- sklearnex/cluster/dbscan.py +3 -0
- sklearnex/cluster/tests/test_dbscan.py +8 -6
- sklearnex/conftest.py +11 -1
- sklearnex/covariance/incremental_covariance.py +217 -30
- sklearnex/covariance/tests/test_incremental_covariance.py +54 -17
- sklearnex/decomposition/pca.py +68 -13
- sklearnex/decomposition/tests/test_pca.py +6 -4
- sklearnex/dispatcher.py +46 -1
- sklearnex/ensemble/_forest.py +114 -22
- sklearnex/ensemble/tests/test_forest.py +13 -3
- sklearnex/glob/dispatcher.py +16 -2
- sklearnex/linear_model/__init__.py +5 -3
- sklearnex/linear_model/incremental_linear.py +464 -0
- sklearnex/linear_model/linear.py +27 -9
- sklearnex/linear_model/logistic_regression.py +13 -15
- sklearnex/linear_model/tests/test_incremental_linear.py +200 -0
- sklearnex/linear_model/tests/test_linear.py +2 -2
- sklearnex/neighbors/knn_regression.py +24 -0
- sklearnex/neighbors/tests/test_neighbors.py +2 -2
- sklearnex/preview/__init__.py +1 -1
- sklearnex/preview/decomposition/__init__.py +19 -0
- sklearnex/preview/decomposition/incremental_pca.py +228 -0
- sklearnex/preview/decomposition/tests/test_incremental_pca.py +266 -0
- sklearnex/svm/_common.py +165 -20
- sklearnex/svm/nusvc.py +40 -4
- sklearnex/svm/nusvr.py +31 -2
- sklearnex/svm/svc.py +40 -4
- sklearnex/svm/svr.py +31 -2
- sklearnex/tests/_utils.py +70 -29
- sklearnex/tests/test_common.py +54 -0
- sklearnex/tests/test_memory_usage.py +195 -132
- sklearnex/tests/test_n_jobs_support.py +4 -0
- sklearnex/tests/test_patching.py +22 -10
- sklearnex/tests/test_run_to_run_stability.py +283 -0
- sklearnex/utils/_namespace.py +1 -1
- sklearnex/utils/tests/test_finite.py +89 -0
- sklearnex/tests/test_run_to_run_stability_tests.py +0 -428
- {scikit_learn_intelex-2024.4.0.dist-info → scikit_learn_intelex-2024.6.0.dist-info}/LICENSE.txt +0 -0
- {scikit_learn_intelex-2024.4.0.dist-info → scikit_learn_intelex-2024.6.0.dist-info}/WHEEL +0 -0
- {scikit_learn_intelex-2024.4.0.dist-info → scikit_learn_intelex-2024.6.0.dist-info}/top_level.txt +0 -0
|
@@ -0,0 +1,266 @@
|
|
|
1
|
+
# ===============================================================================
|
|
2
|
+
# Copyright 2024 Intel Corporation
|
|
3
|
+
#
|
|
4
|
+
# Licensed under the Apache License, Version 2.0 (the "License");
|
|
5
|
+
# you may not use this file except in compliance with the License.
|
|
6
|
+
# You may obtain a copy of the License at
|
|
7
|
+
#
|
|
8
|
+
# http://www.apache.org/licenses/LICENSE-2.0
|
|
9
|
+
#
|
|
10
|
+
# Unless required by applicable law or agreed to in writing, software
|
|
11
|
+
# distributed under the License is distributed on an "AS IS" BASIS,
|
|
12
|
+
# WITHOUT WARRANTIES OR CONDITIONS OF ANY KIND, either express or implied.
|
|
13
|
+
# See the License for the specific language governing permissions and
|
|
14
|
+
# limitations under the License.
|
|
15
|
+
# ===============================================================================
|
|
16
|
+
|
|
17
|
+
import numpy as np
|
|
18
|
+
import pytest
|
|
19
|
+
from numpy.testing import assert_allclose
|
|
20
|
+
|
|
21
|
+
from daal4py.sklearn._utils import daal_check_version
|
|
22
|
+
from onedal.tests.utils._dataframes_support import (
|
|
23
|
+
_as_numpy,
|
|
24
|
+
_convert_to_dataframe,
|
|
25
|
+
get_dataframes_and_queues,
|
|
26
|
+
)
|
|
27
|
+
from sklearnex.preview.decomposition import IncrementalPCA
|
|
28
|
+
|
|
29
|
+
|
|
30
|
+
@pytest.mark.parametrize("dataframe,queue", get_dataframes_and_queues())
|
|
31
|
+
def test_sklearnex_import(dataframe, queue):
|
|
32
|
+
X = [[-1, -1], [-2, -1], [-3, -2], [1, 1], [2, 1], [3, 2]]
|
|
33
|
+
X = _convert_to_dataframe(X, sycl_queue=queue, target_df=dataframe)
|
|
34
|
+
incpca = IncrementalPCA(n_components=2)
|
|
35
|
+
result = incpca.fit(X)
|
|
36
|
+
assert "sklearnex" in incpca.__module__
|
|
37
|
+
assert hasattr(incpca, "_onedal_estimator")
|
|
38
|
+
assert_allclose(_as_numpy(result.singular_values_), [6.30061232, 0.54980396])
|
|
39
|
+
|
|
40
|
+
|
|
41
|
+
def check_pca_on_gold_data(incpca, dtype, whiten, transformed_data):
|
|
42
|
+
expected_n_samples_seen_ = 6
|
|
43
|
+
expected_n_features_in_ = 2
|
|
44
|
+
expected_n_components_ = 2
|
|
45
|
+
expected_components_ = np.array([[0.83849224, 0.54491354], [-0.54491354, 0.83849224]])
|
|
46
|
+
expected_singular_values_ = np.array([6.30061232, 0.54980396])
|
|
47
|
+
expected_mean_ = np.array([0, 0])
|
|
48
|
+
expected_var_ = np.array([5.6, 2.4])
|
|
49
|
+
expected_explained_variance_ = np.array([7.93954312, 0.06045688])
|
|
50
|
+
expected_explained_variance_ratio_ = np.array([0.99244289, 0.00755711])
|
|
51
|
+
expected_noise_variance_ = 0.0
|
|
52
|
+
expected_transformed_data = (
|
|
53
|
+
np.array(
|
|
54
|
+
[
|
|
55
|
+
[-0.49096647, -1.19399271],
|
|
56
|
+
[-0.78854479, 1.02218579],
|
|
57
|
+
[-1.27951125, -0.17180692],
|
|
58
|
+
[0.49096647, 1.19399271],
|
|
59
|
+
[0.78854479, -1.02218579],
|
|
60
|
+
[1.27951125, 0.17180692],
|
|
61
|
+
]
|
|
62
|
+
)
|
|
63
|
+
if whiten
|
|
64
|
+
else np.array(
|
|
65
|
+
[
|
|
66
|
+
[-1.38340578, -0.2935787],
|
|
67
|
+
[-2.22189802, 0.25133484],
|
|
68
|
+
[-3.6053038, -0.04224385],
|
|
69
|
+
[1.38340578, 0.2935787],
|
|
70
|
+
[2.22189802, -0.25133484],
|
|
71
|
+
[3.6053038, 0.04224385],
|
|
72
|
+
]
|
|
73
|
+
)
|
|
74
|
+
)
|
|
75
|
+
|
|
76
|
+
tol = 1e-7
|
|
77
|
+
if transformed_data.dtype == np.float32:
|
|
78
|
+
tol = 7e-6 if whiten else 1e-6
|
|
79
|
+
|
|
80
|
+
assert incpca.n_samples_seen_ == expected_n_samples_seen_
|
|
81
|
+
assert incpca.n_features_in_ == expected_n_features_in_
|
|
82
|
+
assert incpca.n_components_ == expected_n_components_
|
|
83
|
+
|
|
84
|
+
assert_allclose(incpca.singular_values_, expected_singular_values_, atol=tol)
|
|
85
|
+
assert_allclose(incpca.mean_, expected_mean_, atol=tol)
|
|
86
|
+
assert_allclose(incpca.var_, expected_var_, atol=tol)
|
|
87
|
+
assert_allclose(incpca.explained_variance_, expected_explained_variance_, atol=tol)
|
|
88
|
+
assert_allclose(
|
|
89
|
+
incpca.explained_variance_ratio_, expected_explained_variance_ratio_, atol=tol
|
|
90
|
+
)
|
|
91
|
+
assert np.abs(incpca.noise_variance_ - expected_noise_variance_) < tol
|
|
92
|
+
if daal_check_version((2024, "P", 500)):
|
|
93
|
+
assert_allclose(incpca.components_, expected_components_, atol=tol)
|
|
94
|
+
assert_allclose(_as_numpy(transformed_data), expected_transformed_data, atol=tol)
|
|
95
|
+
else:
|
|
96
|
+
for i in range(incpca.n_components_):
|
|
97
|
+
abs_dot_product = np.abs(
|
|
98
|
+
np.dot(incpca.components_[i], expected_components_[i])
|
|
99
|
+
)
|
|
100
|
+
assert np.abs(abs_dot_product - 1.0) < tol
|
|
101
|
+
|
|
102
|
+
if np.dot(incpca.components_[i], expected_components_[i]) < 0:
|
|
103
|
+
assert_allclose(
|
|
104
|
+
_as_numpy(-transformed_data[i]),
|
|
105
|
+
expected_transformed_data[i],
|
|
106
|
+
atol=tol,
|
|
107
|
+
)
|
|
108
|
+
else:
|
|
109
|
+
assert_allclose(
|
|
110
|
+
_as_numpy(transformed_data[i]), expected_transformed_data[i], atol=tol
|
|
111
|
+
)
|
|
112
|
+
|
|
113
|
+
|
|
114
|
+
def check_pca(incpca, dtype, whiten, data, transformed_data):
|
|
115
|
+
tol = 3e-3 if transformed_data.dtype == np.float32 else 2e-6
|
|
116
|
+
|
|
117
|
+
n_components = incpca.n_components_
|
|
118
|
+
|
|
119
|
+
expected_n_samples_seen = data.shape[0]
|
|
120
|
+
expected_n_features_in = data.shape[1]
|
|
121
|
+
n_samples_seen = incpca.n_samples_seen_
|
|
122
|
+
n_features_in = incpca.n_features_in_
|
|
123
|
+
assert n_samples_seen == expected_n_samples_seen
|
|
124
|
+
assert n_features_in == expected_n_features_in
|
|
125
|
+
|
|
126
|
+
components = incpca.components_
|
|
127
|
+
singular_values = incpca.singular_values_
|
|
128
|
+
centered_data = data - np.mean(data, axis=0)
|
|
129
|
+
cov_eigenvalues, cov_eigenvectors = np.linalg.eig(
|
|
130
|
+
centered_data.T @ centered_data / (n_samples_seen - 1)
|
|
131
|
+
)
|
|
132
|
+
cov_eigenvalues = np.nan_to_num(cov_eigenvalues)
|
|
133
|
+
cov_eigenvalues[cov_eigenvalues < 0] = 0
|
|
134
|
+
eigenvalues_order = np.argsort(cov_eigenvalues)[::-1]
|
|
135
|
+
sorted_eigenvalues = cov_eigenvalues[eigenvalues_order]
|
|
136
|
+
sorted_eigenvectors = cov_eigenvectors[:, eigenvalues_order]
|
|
137
|
+
expected_singular_values = np.sqrt(sorted_eigenvalues * (n_samples_seen - 1))[
|
|
138
|
+
:n_components
|
|
139
|
+
]
|
|
140
|
+
expected_components = sorted_eigenvectors.T[:n_components]
|
|
141
|
+
|
|
142
|
+
assert_allclose(singular_values, expected_singular_values, atol=tol)
|
|
143
|
+
for i in range(n_components):
|
|
144
|
+
component_length = np.dot(components[i], components[i])
|
|
145
|
+
assert np.abs(component_length - 1.0) < tol
|
|
146
|
+
abs_dot_product = np.abs(np.dot(components[i], expected_components[i]))
|
|
147
|
+
assert np.abs(abs_dot_product - 1.0) < tol
|
|
148
|
+
|
|
149
|
+
expected_mean = np.mean(data, axis=0)
|
|
150
|
+
assert_allclose(incpca.mean_, expected_mean, atol=tol)
|
|
151
|
+
|
|
152
|
+
expected_var = np.var(_as_numpy(data), ddof=1, axis=0)
|
|
153
|
+
assert_allclose(incpca.var_, expected_var, atol=tol)
|
|
154
|
+
|
|
155
|
+
expected_explained_variance = sorted_eigenvalues[:n_components]
|
|
156
|
+
assert_allclose(incpca.explained_variance_, expected_explained_variance, atol=tol)
|
|
157
|
+
|
|
158
|
+
expected_explained_variance_ratio = expected_explained_variance / np.sum(
|
|
159
|
+
sorted_eigenvalues
|
|
160
|
+
)
|
|
161
|
+
assert_allclose(
|
|
162
|
+
incpca.explained_variance_ratio_, expected_explained_variance_ratio, atol=tol
|
|
163
|
+
)
|
|
164
|
+
|
|
165
|
+
expected_noise_variance = (
|
|
166
|
+
np.mean(sorted_eigenvalues[n_components:])
|
|
167
|
+
if len(sorted_eigenvalues) > n_components
|
|
168
|
+
else 0.0
|
|
169
|
+
)
|
|
170
|
+
# TODO Fix noise variance computation (It is necessary to update C++ side)
|
|
171
|
+
# assert np.abs(incpca.noise_variance_ - expected_noise_variance) < tol
|
|
172
|
+
|
|
173
|
+
expected_transformed_data = centered_data @ components.T
|
|
174
|
+
if whiten:
|
|
175
|
+
scale = np.sqrt(incpca.explained_variance_)
|
|
176
|
+
min_scale = np.finfo(scale.dtype).eps
|
|
177
|
+
scale[scale < min_scale] = np.inf
|
|
178
|
+
expected_transformed_data /= scale
|
|
179
|
+
|
|
180
|
+
if not (whiten and n_components == n_samples_seen):
|
|
181
|
+
assert_allclose(_as_numpy(transformed_data), expected_transformed_data, atol=tol)
|
|
182
|
+
|
|
183
|
+
|
|
184
|
+
@pytest.mark.parametrize("dataframe,queue", get_dataframes_and_queues())
|
|
185
|
+
@pytest.mark.parametrize("whiten", [True, False])
|
|
186
|
+
@pytest.mark.parametrize("num_blocks", [1, 2, 3])
|
|
187
|
+
@pytest.mark.parametrize("dtype", [np.float32, np.float64])
|
|
188
|
+
def test_sklearnex_partial_fit_on_gold_data(dataframe, queue, whiten, num_blocks, dtype):
|
|
189
|
+
|
|
190
|
+
X = np.array([[-1, -1], [-2, -1], [-3, -2], [1, 1], [2, 1], [3, 2]])
|
|
191
|
+
X = X.astype(dtype=dtype)
|
|
192
|
+
X_split = np.array_split(X, num_blocks)
|
|
193
|
+
incpca = IncrementalPCA(whiten=whiten)
|
|
194
|
+
|
|
195
|
+
for i in range(num_blocks):
|
|
196
|
+
X_split_df = _convert_to_dataframe(
|
|
197
|
+
X_split[i], sycl_queue=queue, target_df=dataframe
|
|
198
|
+
)
|
|
199
|
+
incpca.partial_fit(X_split_df)
|
|
200
|
+
|
|
201
|
+
X_df = _convert_to_dataframe(X, sycl_queue=queue, target_df=dataframe)
|
|
202
|
+
transformed_data = incpca.transform(X_df)
|
|
203
|
+
check_pca_on_gold_data(incpca, dtype, whiten, transformed_data)
|
|
204
|
+
|
|
205
|
+
|
|
206
|
+
@pytest.mark.parametrize("dataframe,queue", get_dataframes_and_queues())
|
|
207
|
+
@pytest.mark.parametrize("whiten", [True, False])
|
|
208
|
+
@pytest.mark.parametrize("num_blocks", [1, 2, 3])
|
|
209
|
+
@pytest.mark.parametrize("dtype", [np.float32, np.float64])
|
|
210
|
+
def test_sklearnex_fit_on_gold_data(dataframe, queue, whiten, num_blocks, dtype):
|
|
211
|
+
|
|
212
|
+
X = np.array([[-1, -1], [-2, -1], [-3, -2], [1, 1], [2, 1], [3, 2]])
|
|
213
|
+
X = X.astype(dtype=dtype)
|
|
214
|
+
incpca = IncrementalPCA(whiten=whiten, batch_size=X.shape[0] // num_blocks)
|
|
215
|
+
|
|
216
|
+
X_df = _convert_to_dataframe(X, sycl_queue=queue, target_df=dataframe)
|
|
217
|
+
incpca.fit(X_df)
|
|
218
|
+
transformed_data = incpca.transform(X_df)
|
|
219
|
+
|
|
220
|
+
check_pca_on_gold_data(incpca, dtype, whiten, transformed_data)
|
|
221
|
+
|
|
222
|
+
|
|
223
|
+
@pytest.mark.parametrize("dataframe,queue", get_dataframes_and_queues())
|
|
224
|
+
@pytest.mark.parametrize("whiten", [True, False])
|
|
225
|
+
@pytest.mark.parametrize("num_blocks", [1, 2, 3])
|
|
226
|
+
@pytest.mark.parametrize("dtype", [np.float32, np.float64])
|
|
227
|
+
def test_sklearnex_fit_transform_on_gold_data(
|
|
228
|
+
dataframe, queue, whiten, num_blocks, dtype
|
|
229
|
+
):
|
|
230
|
+
|
|
231
|
+
X = np.array([[-1, -1], [-2, -1], [-3, -2], [1, 1], [2, 1], [3, 2]])
|
|
232
|
+
X = X.astype(dtype=dtype)
|
|
233
|
+
incpca = IncrementalPCA(whiten=whiten, batch_size=X.shape[0] // num_blocks)
|
|
234
|
+
|
|
235
|
+
X_df = _convert_to_dataframe(X, sycl_queue=queue, target_df=dataframe)
|
|
236
|
+
transformed_data = incpca.fit_transform(X_df)
|
|
237
|
+
|
|
238
|
+
check_pca_on_gold_data(incpca, dtype, whiten, transformed_data)
|
|
239
|
+
|
|
240
|
+
|
|
241
|
+
@pytest.mark.parametrize("dataframe,queue", get_dataframes_and_queues())
|
|
242
|
+
@pytest.mark.parametrize("n_components", [None, 1, 5])
|
|
243
|
+
@pytest.mark.parametrize("whiten", [True, False])
|
|
244
|
+
@pytest.mark.parametrize("num_blocks", [1, 10])
|
|
245
|
+
@pytest.mark.parametrize("row_count", [100, 1000])
|
|
246
|
+
@pytest.mark.parametrize("column_count", [10, 100])
|
|
247
|
+
@pytest.mark.parametrize("dtype", [np.float32, np.float64])
|
|
248
|
+
def test_sklearnex_partial_fit_on_random_data(
|
|
249
|
+
dataframe, queue, n_components, whiten, num_blocks, row_count, column_count, dtype
|
|
250
|
+
):
|
|
251
|
+
seed = 81
|
|
252
|
+
gen = np.random.default_rng(seed)
|
|
253
|
+
X = gen.uniform(low=-0.3, high=+0.7, size=(row_count, column_count))
|
|
254
|
+
X = X.astype(dtype=dtype)
|
|
255
|
+
X_split = np.array_split(X, num_blocks)
|
|
256
|
+
incpca = IncrementalPCA(n_components=n_components, whiten=whiten)
|
|
257
|
+
|
|
258
|
+
for i in range(num_blocks):
|
|
259
|
+
X_split_df = _convert_to_dataframe(
|
|
260
|
+
X_split[i], sycl_queue=queue, target_df=dataframe
|
|
261
|
+
)
|
|
262
|
+
incpca.partial_fit(X_split_df)
|
|
263
|
+
|
|
264
|
+
X_df = _convert_to_dataframe(X, sycl_queue=queue, target_df=dataframe)
|
|
265
|
+
transformed_data = incpca.transform(X_df)
|
|
266
|
+
check_pca(incpca, dtype, whiten, X, transformed_data)
|
sklearnex/svm/_common.py
CHANGED
|
@@ -15,15 +15,20 @@
|
|
|
15
15
|
# ==============================================================================
|
|
16
16
|
|
|
17
17
|
from abc import ABC
|
|
18
|
+
from numbers import Number, Real
|
|
18
19
|
|
|
19
20
|
import numpy as np
|
|
21
|
+
from scipy import sparse as sp
|
|
22
|
+
from sklearn.base import BaseEstimator, ClassifierMixin
|
|
20
23
|
from sklearn.calibration import CalibratedClassifierCV
|
|
24
|
+
from sklearn.metrics import r2_score
|
|
21
25
|
from sklearn.model_selection import StratifiedKFold
|
|
22
26
|
from sklearn.preprocessing import LabelEncoder
|
|
23
27
|
|
|
24
28
|
from daal4py.sklearn._utils import sklearn_check_version
|
|
25
|
-
from onedal.utils import _column_or_1d
|
|
29
|
+
from onedal.utils import _check_array, _check_X_y, _column_or_1d
|
|
26
30
|
|
|
31
|
+
from .._config import config_context, get_config
|
|
27
32
|
from .._utils import PatchingConditionsChain
|
|
28
33
|
|
|
29
34
|
|
|
@@ -51,7 +56,8 @@ def set_intercept(self, value):
|
|
|
51
56
|
del self._onedal_estimator._onedal_model
|
|
52
57
|
|
|
53
58
|
|
|
54
|
-
class BaseSVM(ABC):
|
|
59
|
+
class BaseSVM(BaseEstimator, ABC):
|
|
60
|
+
|
|
55
61
|
def _onedal_gpu_supported(self, method_name, *data):
|
|
56
62
|
patching_status = PatchingConditionsChain(f"sklearn.{method_name}")
|
|
57
63
|
patching_status.and_conditions([(False, "GPU offloading is not supported.")])
|
|
@@ -74,7 +80,7 @@ class BaseSVM(ABC):
|
|
|
74
80
|
)
|
|
75
81
|
return patching_status
|
|
76
82
|
inference_methods = (
|
|
77
|
-
["predict"]
|
|
83
|
+
["predict", "score"]
|
|
78
84
|
if class_name.endswith("R")
|
|
79
85
|
else ["predict", "predict_proba", "decision_function", "score"]
|
|
80
86
|
)
|
|
@@ -85,6 +91,130 @@ class BaseSVM(ABC):
|
|
|
85
91
|
return patching_status
|
|
86
92
|
raise RuntimeError(f"Unknown method {method_name} in {class_name}")
|
|
87
93
|
|
|
94
|
+
def _compute_gamma_sigma(self, X):
|
|
95
|
+
# only run extended conversion if kernel is not linear
|
|
96
|
+
# set to a value = 1.0, so gamma will always be passed to
|
|
97
|
+
# the onedal estimator as a float type
|
|
98
|
+
if self.kernel == "linear":
|
|
99
|
+
return 1.0
|
|
100
|
+
|
|
101
|
+
if isinstance(self.gamma, str):
|
|
102
|
+
if self.gamma == "scale":
|
|
103
|
+
if sp.issparse(X):
|
|
104
|
+
# var = E[X^2] - E[X]^2
|
|
105
|
+
X_sc = (X.multiply(X)).mean() - (X.mean()) ** 2
|
|
106
|
+
else:
|
|
107
|
+
X_sc = X.var()
|
|
108
|
+
_gamma = 1.0 / (X.shape[1] * X_sc) if X_sc != 0 else 1.0
|
|
109
|
+
elif self.gamma == "auto":
|
|
110
|
+
_gamma = 1.0 / X.shape[1]
|
|
111
|
+
else:
|
|
112
|
+
raise ValueError(
|
|
113
|
+
"When 'gamma' is a string, it should be either 'scale' or "
|
|
114
|
+
"'auto'. Got '{}' instead.".format(self.gamma)
|
|
115
|
+
)
|
|
116
|
+
else:
|
|
117
|
+
if sklearn_check_version("1.1") and not sklearn_check_version("1.2"):
|
|
118
|
+
if isinstance(self.gamma, Real):
|
|
119
|
+
if self.gamma <= 0:
|
|
120
|
+
msg = (
|
|
121
|
+
f"gamma value must be > 0; {self.gamma!r} is invalid. Use"
|
|
122
|
+
" a positive number or use 'auto' to set gamma to a"
|
|
123
|
+
" value of 1 / n_features."
|
|
124
|
+
)
|
|
125
|
+
raise ValueError(msg)
|
|
126
|
+
_gamma = self.gamma
|
|
127
|
+
else:
|
|
128
|
+
msg = (
|
|
129
|
+
"The gamma value should be set to 'scale', 'auto' or a"
|
|
130
|
+
f" positive float value. {self.gamma!r} is not a valid option"
|
|
131
|
+
)
|
|
132
|
+
raise ValueError(msg)
|
|
133
|
+
else:
|
|
134
|
+
_gamma = self.gamma
|
|
135
|
+
return _gamma
|
|
136
|
+
|
|
137
|
+
def _onedal_fit_checks(self, X, y, sample_weight=None):
|
|
138
|
+
if hasattr(self, "decision_function_shape"):
|
|
139
|
+
if self.decision_function_shape not in ("ovr", "ovo", None):
|
|
140
|
+
raise ValueError(
|
|
141
|
+
f"decision_function_shape must be either 'ovr' or 'ovo', "
|
|
142
|
+
f"got {self.decision_function_shape}."
|
|
143
|
+
)
|
|
144
|
+
|
|
145
|
+
if y is None:
|
|
146
|
+
if self._get_tags()["requires_y"]:
|
|
147
|
+
raise ValueError(
|
|
148
|
+
f"This {self.__class__.__name__} estimator "
|
|
149
|
+
f"requires y to be passed, but the target y is None."
|
|
150
|
+
)
|
|
151
|
+
# using onedal _check_X_y to insure X and y are contiguous
|
|
152
|
+
# finite check occurs in onedal estimator
|
|
153
|
+
X, y = _check_X_y(
|
|
154
|
+
X,
|
|
155
|
+
y,
|
|
156
|
+
dtype=[np.float64, np.float32],
|
|
157
|
+
force_all_finite=False,
|
|
158
|
+
accept_sparse="csr",
|
|
159
|
+
)
|
|
160
|
+
y = self._validate_targets(y)
|
|
161
|
+
sample_weight = self._get_sample_weight(X, y, sample_weight)
|
|
162
|
+
return X, y, sample_weight
|
|
163
|
+
|
|
164
|
+
def _get_sample_weight(self, X, y, sample_weight):
|
|
165
|
+
n_samples = X.shape[0]
|
|
166
|
+
dtype = X.dtype
|
|
167
|
+
if n_samples == 1:
|
|
168
|
+
raise ValueError("n_samples=1")
|
|
169
|
+
|
|
170
|
+
sample_weight = np.ascontiguousarray(
|
|
171
|
+
[] if sample_weight is None else sample_weight, dtype=np.float64
|
|
172
|
+
)
|
|
173
|
+
|
|
174
|
+
sample_weight_count = sample_weight.shape[0]
|
|
175
|
+
if sample_weight_count != 0 and sample_weight_count != n_samples:
|
|
176
|
+
raise ValueError(
|
|
177
|
+
"sample_weight and X have incompatible shapes: "
|
|
178
|
+
"%r vs %r\n"
|
|
179
|
+
"Note: Sparse matrices cannot be indexed w/"
|
|
180
|
+
"boolean masks (use `indices=True` in CV)."
|
|
181
|
+
% (len(sample_weight), X.shape)
|
|
182
|
+
)
|
|
183
|
+
|
|
184
|
+
if sample_weight_count == 0:
|
|
185
|
+
if not isinstance(self, ClassifierMixin) or self.class_weight_ is None:
|
|
186
|
+
return None
|
|
187
|
+
sample_weight = np.ones(n_samples, dtype=dtype)
|
|
188
|
+
elif isinstance(sample_weight, Number):
|
|
189
|
+
sample_weight = np.full(n_samples, sample_weight, dtype=dtype)
|
|
190
|
+
else:
|
|
191
|
+
sample_weight = _check_array(
|
|
192
|
+
sample_weight,
|
|
193
|
+
accept_sparse=False,
|
|
194
|
+
ensure_2d=False,
|
|
195
|
+
dtype=dtype,
|
|
196
|
+
order="C",
|
|
197
|
+
)
|
|
198
|
+
if sample_weight.ndim != 1:
|
|
199
|
+
raise ValueError("Sample weights must be 1D array or scalar")
|
|
200
|
+
|
|
201
|
+
if sample_weight.shape != (n_samples,):
|
|
202
|
+
raise ValueError(
|
|
203
|
+
"sample_weight.shape == {}, expected {}!".format(
|
|
204
|
+
sample_weight.shape, (n_samples,)
|
|
205
|
+
)
|
|
206
|
+
)
|
|
207
|
+
|
|
208
|
+
if np.all(sample_weight <= 0):
|
|
209
|
+
if "nusvc" in self.__module__:
|
|
210
|
+
raise ValueError("negative dimensions are not allowed")
|
|
211
|
+
else:
|
|
212
|
+
raise ValueError(
|
|
213
|
+
"Invalid input - all samples have zero or negative weights."
|
|
214
|
+
)
|
|
215
|
+
|
|
216
|
+
return sample_weight
|
|
217
|
+
|
|
88
218
|
|
|
89
219
|
class BaseSVC(BaseSVM):
|
|
90
220
|
def _compute_balanced_class_weight(self, y):
|
|
@@ -105,22 +235,31 @@ class BaseSVC(BaseSVM):
|
|
|
105
235
|
params["decision_function_shape"] = "ovr"
|
|
106
236
|
clf_base = self.__class__(**params)
|
|
107
237
|
|
|
108
|
-
|
|
109
|
-
|
|
110
|
-
|
|
111
|
-
|
|
112
|
-
|
|
113
|
-
|
|
114
|
-
|
|
115
|
-
|
|
116
|
-
|
|
117
|
-
|
|
118
|
-
|
|
119
|
-
|
|
120
|
-
|
|
121
|
-
|
|
122
|
-
|
|
123
|
-
|
|
238
|
+
# We use stock metaestimators below, so the only way
|
|
239
|
+
# to pass a queue is using config_context.
|
|
240
|
+
cfg = get_config()
|
|
241
|
+
cfg["target_offload"] = queue
|
|
242
|
+
with config_context(**cfg):
|
|
243
|
+
try:
|
|
244
|
+
n_splits = 5
|
|
245
|
+
n_jobs = n_splits if queue is None or queue.sycl_device.is_cpu else 1
|
|
246
|
+
cv = StratifiedKFold(
|
|
247
|
+
n_splits=n_splits, shuffle=True, random_state=self.random_state
|
|
248
|
+
)
|
|
249
|
+
self.clf_prob = CalibratedClassifierCV(
|
|
250
|
+
clf_base,
|
|
251
|
+
ensemble=False,
|
|
252
|
+
cv=cv,
|
|
253
|
+
method="sigmoid",
|
|
254
|
+
)
|
|
255
|
+
self.clf_prob.fit(X, y, sample_weight)
|
|
256
|
+
|
|
257
|
+
except ValueError:
|
|
258
|
+
clf_base = clf_base.fit(X, y, sample_weight)
|
|
259
|
+
self.clf_prob = CalibratedClassifierCV(
|
|
260
|
+
clf_base, cv="prefit", method="sigmoid"
|
|
261
|
+
)
|
|
262
|
+
self.clf_prob.fit(X, y, sample_weight)
|
|
124
263
|
|
|
125
264
|
def _save_attributes(self):
|
|
126
265
|
self.support_vectors_ = self._onedal_estimator.support_vectors_
|
|
@@ -129,7 +268,8 @@ class BaseSVC(BaseSVM):
|
|
|
129
268
|
self.dual_coef_ = self._onedal_estimator.dual_coef_
|
|
130
269
|
self.shape_fit_ = self._onedal_estimator.class_weight_
|
|
131
270
|
self.classes_ = self._onedal_estimator.classes_
|
|
132
|
-
self
|
|
271
|
+
if isinstance(self, ClassifierMixin) or not sklearn_check_version("1.2"):
|
|
272
|
+
self.class_weight_ = self._onedal_estimator.class_weight_
|
|
133
273
|
self.support_ = self._onedal_estimator.support_
|
|
134
274
|
|
|
135
275
|
self._intercept_ = self._onedal_estimator.intercept_
|
|
@@ -183,3 +323,8 @@ class BaseSVR(BaseSVM):
|
|
|
183
323
|
|
|
184
324
|
if sklearn_check_version("1.1"):
|
|
185
325
|
self.n_iter_ = self._onedal_estimator.n_iter_
|
|
326
|
+
|
|
327
|
+
def _onedal_score(self, X, y, sample_weight=None, queue=None):
|
|
328
|
+
return r2_score(
|
|
329
|
+
y, self._onedal_predict(X, queue=queue), sample_weight=sample_weight
|
|
330
|
+
)
|
sklearnex/svm/nusvc.py
CHANGED
|
@@ -83,6 +83,17 @@ class NuSVC(sklearn_NuSVC, BaseSVC):
|
|
|
83
83
|
def fit(self, X, y, sample_weight=None):
|
|
84
84
|
if sklearn_check_version("1.2"):
|
|
85
85
|
self._validate_params()
|
|
86
|
+
elif self.nu <= 0 or self.nu > 1:
|
|
87
|
+
# else if added to correct issues with
|
|
88
|
+
# sklearn tests:
|
|
89
|
+
# svm/tests/test_sparse.py::test_error
|
|
90
|
+
# svm/tests/test_svm.py::test_bad_input
|
|
91
|
+
# for sklearn versions < 1.2 (i.e. without
|
|
92
|
+
# validate_params parameter checking)
|
|
93
|
+
# Without this, a segmentation fault with
|
|
94
|
+
# Windows fatal exception: access violation
|
|
95
|
+
# occurs
|
|
96
|
+
raise ValueError("nu <= 0 or nu > 1")
|
|
86
97
|
if sklearn_check_version("1.0"):
|
|
87
98
|
self._check_feature_names(X, reset=True)
|
|
88
99
|
dispatch(
|
|
@@ -94,7 +105,7 @@ class NuSVC(sklearn_NuSVC, BaseSVC):
|
|
|
94
105
|
},
|
|
95
106
|
X,
|
|
96
107
|
y,
|
|
97
|
-
sample_weight,
|
|
108
|
+
sample_weight=sample_weight,
|
|
98
109
|
)
|
|
99
110
|
|
|
100
111
|
return self
|
|
@@ -242,12 +253,31 @@ class NuSVC(sklearn_NuSVC, BaseSVC):
|
|
|
242
253
|
|
|
243
254
|
decision_function.__doc__ = sklearn_NuSVC.decision_function.__doc__
|
|
244
255
|
|
|
256
|
+
def _get_sample_weight(self, X, y, sample_weight=None):
|
|
257
|
+
sample_weight = super()._get_sample_weight(X, y, sample_weight)
|
|
258
|
+
if sample_weight is None:
|
|
259
|
+
return sample_weight
|
|
260
|
+
|
|
261
|
+
weight_per_class = [
|
|
262
|
+
np.sum(sample_weight[y == class_label]) for class_label in np.unique(y)
|
|
263
|
+
]
|
|
264
|
+
|
|
265
|
+
for i in range(len(weight_per_class)):
|
|
266
|
+
for j in range(i + 1, len(weight_per_class)):
|
|
267
|
+
if self.nu * (weight_per_class[i] + weight_per_class[j]) / 2 > min(
|
|
268
|
+
weight_per_class[i], weight_per_class[j]
|
|
269
|
+
):
|
|
270
|
+
raise ValueError("specified nu is infeasible")
|
|
271
|
+
|
|
272
|
+
return sample_weight
|
|
273
|
+
|
|
245
274
|
def _onedal_fit(self, X, y, sample_weight=None, queue=None):
|
|
275
|
+
X, _, weights = self._onedal_fit_checks(X, y, sample_weight)
|
|
246
276
|
onedal_params = {
|
|
247
277
|
"nu": self.nu,
|
|
248
278
|
"kernel": self.kernel,
|
|
249
279
|
"degree": self.degree,
|
|
250
|
-
"gamma": self.
|
|
280
|
+
"gamma": self._compute_gamma_sigma(X),
|
|
251
281
|
"coef0": self.coef0,
|
|
252
282
|
"tol": self.tol,
|
|
253
283
|
"shrinking": self.shrinking,
|
|
@@ -259,10 +289,16 @@ class NuSVC(sklearn_NuSVC, BaseSVC):
|
|
|
259
289
|
}
|
|
260
290
|
|
|
261
291
|
self._onedal_estimator = onedal_NuSVC(**onedal_params)
|
|
262
|
-
self._onedal_estimator.fit(X, y,
|
|
292
|
+
self._onedal_estimator.fit(X, y, weights, queue=queue)
|
|
263
293
|
|
|
264
294
|
if self.probability:
|
|
265
|
-
self._fit_proba(
|
|
295
|
+
self._fit_proba(
|
|
296
|
+
X,
|
|
297
|
+
y,
|
|
298
|
+
sample_weight=sample_weight,
|
|
299
|
+
queue=queue,
|
|
300
|
+
)
|
|
301
|
+
|
|
266
302
|
self._save_attributes()
|
|
267
303
|
|
|
268
304
|
def _onedal_predict(self, X, queue=None):
|
sklearnex/svm/nusvr.py
CHANGED
|
@@ -65,6 +65,17 @@ class NuSVR(sklearn_NuSVR, BaseSVR):
|
|
|
65
65
|
def fit(self, X, y, sample_weight=None):
|
|
66
66
|
if sklearn_check_version("1.2"):
|
|
67
67
|
self._validate_params()
|
|
68
|
+
elif self.nu <= 0 or self.nu > 1:
|
|
69
|
+
# else if added to correct issues with
|
|
70
|
+
# sklearn tests:
|
|
71
|
+
# svm/tests/test_sparse.py::test_error
|
|
72
|
+
# svm/tests/test_svm.py::test_bad_input
|
|
73
|
+
# for sklearn versions < 1.2 (i.e. without
|
|
74
|
+
# validate_params parameter checking)
|
|
75
|
+
# Without this, a segmentation fault with
|
|
76
|
+
# Windows fatal exception: access violation
|
|
77
|
+
# occurs
|
|
78
|
+
raise ValueError("nu <= 0 or nu > 1")
|
|
68
79
|
if sklearn_check_version("1.0"):
|
|
69
80
|
self._check_feature_names(X, reset=True)
|
|
70
81
|
dispatch(
|
|
@@ -76,7 +87,7 @@ class NuSVR(sklearn_NuSVR, BaseSVR):
|
|
|
76
87
|
},
|
|
77
88
|
X,
|
|
78
89
|
y,
|
|
79
|
-
sample_weight,
|
|
90
|
+
sample_weight=sample_weight,
|
|
80
91
|
)
|
|
81
92
|
return self
|
|
82
93
|
|
|
@@ -94,13 +105,30 @@ class NuSVR(sklearn_NuSVR, BaseSVR):
|
|
|
94
105
|
X,
|
|
95
106
|
)
|
|
96
107
|
|
|
108
|
+
@wrap_output_data
|
|
109
|
+
def score(self, X, y, sample_weight=None):
|
|
110
|
+
if sklearn_check_version("1.0"):
|
|
111
|
+
self._check_feature_names(X, reset=False)
|
|
112
|
+
return dispatch(
|
|
113
|
+
self,
|
|
114
|
+
"score",
|
|
115
|
+
{
|
|
116
|
+
"onedal": self.__class__._onedal_score,
|
|
117
|
+
"sklearn": sklearn_NuSVR.score,
|
|
118
|
+
},
|
|
119
|
+
X,
|
|
120
|
+
y,
|
|
121
|
+
sample_weight=sample_weight,
|
|
122
|
+
)
|
|
123
|
+
|
|
97
124
|
def _onedal_fit(self, X, y, sample_weight=None, queue=None):
|
|
125
|
+
X, _, sample_weight = self._onedal_fit_checks(X, y, sample_weight)
|
|
98
126
|
onedal_params = {
|
|
99
127
|
"C": self.C,
|
|
100
128
|
"nu": self.nu,
|
|
101
129
|
"kernel": self.kernel,
|
|
102
130
|
"degree": self.degree,
|
|
103
|
-
"gamma": self.
|
|
131
|
+
"gamma": self._compute_gamma_sigma(X),
|
|
104
132
|
"coef0": self.coef0,
|
|
105
133
|
"tol": self.tol,
|
|
106
134
|
"shrinking": self.shrinking,
|
|
@@ -117,3 +145,4 @@ class NuSVR(sklearn_NuSVR, BaseSVR):
|
|
|
117
145
|
|
|
118
146
|
fit.__doc__ = sklearn_NuSVR.fit.__doc__
|
|
119
147
|
predict.__doc__ = sklearn_NuSVR.predict.__doc__
|
|
148
|
+
score.__doc__ = sklearn_NuSVR.score.__doc__
|