scikit-learn-intelex 2024.3.0__py38-none-win_amd64.whl → 2024.5.0__py38-none-win_amd64.whl

This diff represents the content of publicly available package versions that have been released to one of the supported registries. The information contained in this diff is provided for informational purposes only and reflects changes between package versions as they appear in their respective public registries.

Potentially problematic release.


This version of scikit-learn-intelex might be problematic. Click here for more details.

Files changed (107) hide show
  1. {scikit_learn_intelex-2024.3.0.data → scikit_learn_intelex-2024.5.0.data}/data/Lib/site-packages/sklearnex/_device_offload.py +39 -5
  2. {scikit_learn_intelex-2024.3.0.data/data/Lib/site-packages/sklearnex/spmd → scikit_learn_intelex-2024.5.0.data/data/Lib/site-packages/sklearnex}/basic_statistics/__init__.py +2 -1
  3. scikit_learn_intelex-2024.5.0.data/data/Lib/site-packages/sklearnex/basic_statistics/incremental_basic_statistics.py +288 -0
  4. scikit_learn_intelex-2024.5.0.data/data/Lib/site-packages/sklearnex/basic_statistics/tests/test_incremental_basic_statistics.py +384 -0
  5. scikit_learn_intelex-2024.5.0.data/data/Lib/site-packages/sklearnex/covariance/incremental_covariance.py +317 -0
  6. {scikit_learn_intelex-2024.3.0.data → scikit_learn_intelex-2024.5.0.data}/data/Lib/site-packages/sklearnex/covariance/tests/test_incremental_covariance.py +54 -17
  7. {scikit_learn_intelex-2024.3.0.data → scikit_learn_intelex-2024.5.0.data}/data/Lib/site-packages/sklearnex/decomposition/pca.py +71 -19
  8. {scikit_learn_intelex-2024.3.0.data → scikit_learn_intelex-2024.5.0.data}/data/Lib/site-packages/sklearnex/decomposition/tests/test_pca.py +2 -2
  9. {scikit_learn_intelex-2024.3.0.data → scikit_learn_intelex-2024.5.0.data}/data/Lib/site-packages/sklearnex/dispatcher.py +33 -2
  10. {scikit_learn_intelex-2024.3.0.data → scikit_learn_intelex-2024.5.0.data}/data/Lib/site-packages/sklearnex/ensemble/_forest.py +73 -79
  11. {scikit_learn_intelex-2024.3.0.data → scikit_learn_intelex-2024.5.0.data}/data/Lib/site-packages/sklearnex/linear_model/__init__.py +5 -3
  12. scikit_learn_intelex-2024.5.0.data/data/Lib/site-packages/sklearnex/linear_model/incremental_linear.py +387 -0
  13. scikit_learn_intelex-2024.5.0.data/data/Lib/site-packages/sklearnex/linear_model/linear.py +316 -0
  14. {scikit_learn_intelex-2024.3.0.data → scikit_learn_intelex-2024.5.0.data}/data/Lib/site-packages/sklearnex/linear_model/logistic_regression.py +50 -9
  15. scikit_learn_intelex-2024.5.0.data/data/Lib/site-packages/sklearnex/linear_model/tests/test_incremental_linear.py +200 -0
  16. {scikit_learn_intelex-2024.3.0.data → scikit_learn_intelex-2024.5.0.data}/data/Lib/site-packages/sklearnex/linear_model/tests/test_linear.py +40 -5
  17. {scikit_learn_intelex-2024.3.0.data → scikit_learn_intelex-2024.5.0.data}/data/Lib/site-packages/sklearnex/neighbors/_lof.py +53 -36
  18. {scikit_learn_intelex-2024.3.0.data → scikit_learn_intelex-2024.5.0.data}/data/Lib/site-packages/sklearnex/neighbors/common.py +4 -1
  19. {scikit_learn_intelex-2024.3.0.data → scikit_learn_intelex-2024.5.0.data}/data/Lib/site-packages/sklearnex/neighbors/knn_classification.py +37 -122
  20. {scikit_learn_intelex-2024.3.0.data → scikit_learn_intelex-2024.5.0.data}/data/Lib/site-packages/sklearnex/neighbors/knn_regression.py +10 -117
  21. {scikit_learn_intelex-2024.3.0.data → scikit_learn_intelex-2024.5.0.data}/data/Lib/site-packages/sklearnex/neighbors/knn_unsupervised.py +6 -78
  22. {scikit_learn_intelex-2024.3.0.data → scikit_learn_intelex-2024.5.0.data}/data/Lib/site-packages/sklearnex/neighbors/tests/test_neighbors.py +2 -2
  23. {scikit_learn_intelex-2024.3.0.data → scikit_learn_intelex-2024.5.0.data}/data/Lib/site-packages/sklearnex/preview/cluster/k_means.py +5 -73
  24. {scikit_learn_intelex-2024.3.0.data → scikit_learn_intelex-2024.5.0.data}/data/Lib/site-packages/sklearnex/preview/covariance/covariance.py +6 -5
  25. {scikit_learn_intelex-2024.3.0.data → scikit_learn_intelex-2024.5.0.data}/data/Lib/site-packages/sklearnex/preview/covariance/tests/test_covariance.py +18 -5
  26. {scikit_learn_intelex-2024.3.0.data → scikit_learn_intelex-2024.5.0.data}/data/Lib/site-packages/sklearnex/svm/_common.py +4 -7
  27. {scikit_learn_intelex-2024.3.0.data → scikit_learn_intelex-2024.5.0.data}/data/Lib/site-packages/sklearnex/svm/nusvc.py +66 -50
  28. {scikit_learn_intelex-2024.3.0.data → scikit_learn_intelex-2024.5.0.data}/data/Lib/site-packages/sklearnex/svm/nusvr.py +3 -49
  29. {scikit_learn_intelex-2024.3.0.data → scikit_learn_intelex-2024.5.0.data}/data/Lib/site-packages/sklearnex/svm/svc.py +66 -51
  30. {scikit_learn_intelex-2024.3.0.data → scikit_learn_intelex-2024.5.0.data}/data/Lib/site-packages/sklearnex/svm/svr.py +3 -49
  31. {scikit_learn_intelex-2024.3.0.data → scikit_learn_intelex-2024.5.0.data}/data/Lib/site-packages/sklearnex/tests/_utils.py +34 -16
  32. {scikit_learn_intelex-2024.3.0.data → scikit_learn_intelex-2024.5.0.data}/data/Lib/site-packages/sklearnex/tests/test_memory_usage.py +5 -1
  33. {scikit_learn_intelex-2024.3.0.data → scikit_learn_intelex-2024.5.0.data}/data/Lib/site-packages/sklearnex/tests/test_n_jobs_support.py +12 -2
  34. {scikit_learn_intelex-2024.3.0.data → scikit_learn_intelex-2024.5.0.data}/data/Lib/site-packages/sklearnex/tests/test_patching.py +87 -58
  35. {scikit_learn_intelex-2024.3.0.data → scikit_learn_intelex-2024.5.0.data}/data/Lib/site-packages/sklearnex/tests/test_run_to_run_stability_tests.py +1 -1
  36. {scikit_learn_intelex-2024.3.0.data → scikit_learn_intelex-2024.5.0.data}/data/Lib/site-packages/sklearnex/utils/__init__.py +2 -1
  37. scikit_learn_intelex-2024.5.0.data/data/Lib/site-packages/sklearnex/utils/_namespace.py +97 -0
  38. scikit_learn_intelex-2024.5.0.data/data/Lib/site-packages/sklearnex/utils/tests/test_finite.py +89 -0
  39. {scikit_learn_intelex-2024.3.0.dist-info → scikit_learn_intelex-2024.5.0.dist-info}/METADATA +227 -230
  40. scikit_learn_intelex-2024.5.0.dist-info/RECORD +104 -0
  41. {scikit_learn_intelex-2024.3.0.dist-info → scikit_learn_intelex-2024.5.0.dist-info}/WHEEL +1 -1
  42. scikit_learn_intelex-2024.3.0.data/data/Lib/site-packages/sklearnex/covariance/incremental_covariance.py +0 -130
  43. scikit_learn_intelex-2024.3.0.data/data/Lib/site-packages/sklearnex/linear_model/linear.py +0 -381
  44. scikit_learn_intelex-2024.3.0.dist-info/RECORD +0 -98
  45. {scikit_learn_intelex-2024.3.0.data → scikit_learn_intelex-2024.5.0.data}/data/Lib/site-packages/sklearnex/__init__.py +0 -0
  46. {scikit_learn_intelex-2024.3.0.data → scikit_learn_intelex-2024.5.0.data}/data/Lib/site-packages/sklearnex/__main__.py +0 -0
  47. {scikit_learn_intelex-2024.3.0.data → scikit_learn_intelex-2024.5.0.data}/data/Lib/site-packages/sklearnex/_config.py +0 -0
  48. {scikit_learn_intelex-2024.3.0.data → scikit_learn_intelex-2024.5.0.data}/data/Lib/site-packages/sklearnex/_utils.py +0 -0
  49. {scikit_learn_intelex-2024.3.0.data → scikit_learn_intelex-2024.5.0.data}/data/Lib/site-packages/sklearnex/basic_statistics/basic_statistics.py +0 -0
  50. {scikit_learn_intelex-2024.3.0.data → scikit_learn_intelex-2024.5.0.data}/data/Lib/site-packages/sklearnex/cluster/__init__.py +0 -0
  51. {scikit_learn_intelex-2024.3.0.data → scikit_learn_intelex-2024.5.0.data}/data/Lib/site-packages/sklearnex/cluster/dbscan.py +0 -0
  52. {scikit_learn_intelex-2024.3.0.data → scikit_learn_intelex-2024.5.0.data}/data/Lib/site-packages/sklearnex/cluster/k_means.py +0 -0
  53. {scikit_learn_intelex-2024.3.0.data → scikit_learn_intelex-2024.5.0.data}/data/Lib/site-packages/sklearnex/cluster/tests/test_dbscan.py +0 -0
  54. {scikit_learn_intelex-2024.3.0.data → scikit_learn_intelex-2024.5.0.data}/data/Lib/site-packages/sklearnex/cluster/tests/test_kmeans.py +0 -0
  55. {scikit_learn_intelex-2024.3.0.data → scikit_learn_intelex-2024.5.0.data}/data/Lib/site-packages/sklearnex/conftest.py +0 -0
  56. {scikit_learn_intelex-2024.3.0.data → scikit_learn_intelex-2024.5.0.data}/data/Lib/site-packages/sklearnex/covariance/__init__.py +0 -0
  57. {scikit_learn_intelex-2024.3.0.data → scikit_learn_intelex-2024.5.0.data}/data/Lib/site-packages/sklearnex/decomposition/__init__.py +0 -0
  58. {scikit_learn_intelex-2024.3.0.data → scikit_learn_intelex-2024.5.0.data}/data/Lib/site-packages/sklearnex/doc/third-party-programs.txt +0 -0
  59. {scikit_learn_intelex-2024.3.0.data → scikit_learn_intelex-2024.5.0.data}/data/Lib/site-packages/sklearnex/ensemble/__init__.py +0 -0
  60. {scikit_learn_intelex-2024.3.0.data → scikit_learn_intelex-2024.5.0.data}/data/Lib/site-packages/sklearnex/ensemble/tests/test_forest.py +0 -0
  61. {scikit_learn_intelex-2024.3.0.data → scikit_learn_intelex-2024.5.0.data}/data/Lib/site-packages/sklearnex/glob/__main__.py +0 -0
  62. {scikit_learn_intelex-2024.3.0.data → scikit_learn_intelex-2024.5.0.data}/data/Lib/site-packages/sklearnex/glob/dispatcher.py +0 -0
  63. {scikit_learn_intelex-2024.3.0.data → scikit_learn_intelex-2024.5.0.data}/data/Lib/site-packages/sklearnex/linear_model/coordinate_descent.py +0 -0
  64. {scikit_learn_intelex-2024.3.0.data → scikit_learn_intelex-2024.5.0.data}/data/Lib/site-packages/sklearnex/linear_model/logistic_path.py +0 -0
  65. {scikit_learn_intelex-2024.3.0.data → scikit_learn_intelex-2024.5.0.data}/data/Lib/site-packages/sklearnex/linear_model/ridge.py +0 -0
  66. {scikit_learn_intelex-2024.3.0.data → scikit_learn_intelex-2024.5.0.data}/data/Lib/site-packages/sklearnex/linear_model/tests/test_logreg.py +0 -0
  67. {scikit_learn_intelex-2024.3.0.data → scikit_learn_intelex-2024.5.0.data}/data/Lib/site-packages/sklearnex/manifold/__init__.py +0 -0
  68. {scikit_learn_intelex-2024.3.0.data → scikit_learn_intelex-2024.5.0.data}/data/Lib/site-packages/sklearnex/manifold/t_sne.py +0 -0
  69. {scikit_learn_intelex-2024.3.0.data → scikit_learn_intelex-2024.5.0.data}/data/Lib/site-packages/sklearnex/manifold/tests/test_tsne.py +0 -0
  70. {scikit_learn_intelex-2024.3.0.data → scikit_learn_intelex-2024.5.0.data}/data/Lib/site-packages/sklearnex/metrics/__init__.py +0 -0
  71. {scikit_learn_intelex-2024.3.0.data → scikit_learn_intelex-2024.5.0.data}/data/Lib/site-packages/sklearnex/metrics/pairwise.py +0 -0
  72. {scikit_learn_intelex-2024.3.0.data → scikit_learn_intelex-2024.5.0.data}/data/Lib/site-packages/sklearnex/metrics/ranking.py +0 -0
  73. {scikit_learn_intelex-2024.3.0.data → scikit_learn_intelex-2024.5.0.data}/data/Lib/site-packages/sklearnex/metrics/tests/test_metrics.py +0 -0
  74. {scikit_learn_intelex-2024.3.0.data → scikit_learn_intelex-2024.5.0.data}/data/Lib/site-packages/sklearnex/model_selection/__init__.py +0 -0
  75. {scikit_learn_intelex-2024.3.0.data → scikit_learn_intelex-2024.5.0.data}/data/Lib/site-packages/sklearnex/model_selection/split.py +0 -0
  76. {scikit_learn_intelex-2024.3.0.data → scikit_learn_intelex-2024.5.0.data}/data/Lib/site-packages/sklearnex/model_selection/tests/test_model_selection.py +0 -0
  77. {scikit_learn_intelex-2024.3.0.data → scikit_learn_intelex-2024.5.0.data}/data/Lib/site-packages/sklearnex/neighbors/__init__.py +0 -0
  78. {scikit_learn_intelex-2024.3.0.data → scikit_learn_intelex-2024.5.0.data}/data/Lib/site-packages/sklearnex/preview/__init__.py +0 -0
  79. {scikit_learn_intelex-2024.3.0.data → scikit_learn_intelex-2024.5.0.data}/data/Lib/site-packages/sklearnex/preview/cluster/__init__.py +0 -0
  80. {scikit_learn_intelex-2024.3.0.data → scikit_learn_intelex-2024.5.0.data}/data/Lib/site-packages/sklearnex/preview/cluster/_common.py +0 -0
  81. {scikit_learn_intelex-2024.3.0.data → scikit_learn_intelex-2024.5.0.data}/data/Lib/site-packages/sklearnex/preview/covariance/__init__.py +0 -0
  82. {scikit_learn_intelex-2024.3.0.data → scikit_learn_intelex-2024.5.0.data}/data/Lib/site-packages/sklearnex/spmd/__init__.py +0 -0
  83. {scikit_learn_intelex-2024.3.0.data/data/Lib/site-packages/sklearnex → scikit_learn_intelex-2024.5.0.data/data/Lib/site-packages/sklearnex/spmd}/basic_statistics/__init__.py +0 -0
  84. {scikit_learn_intelex-2024.3.0.data → scikit_learn_intelex-2024.5.0.data}/data/Lib/site-packages/sklearnex/spmd/basic_statistics/basic_statistics.py +0 -0
  85. {scikit_learn_intelex-2024.3.0.data → scikit_learn_intelex-2024.5.0.data}/data/Lib/site-packages/sklearnex/spmd/cluster/__init__.py +0 -0
  86. {scikit_learn_intelex-2024.3.0.data → scikit_learn_intelex-2024.5.0.data}/data/Lib/site-packages/sklearnex/spmd/cluster/dbscan.py +0 -0
  87. {scikit_learn_intelex-2024.3.0.data → scikit_learn_intelex-2024.5.0.data}/data/Lib/site-packages/sklearnex/spmd/cluster/kmeans.py +0 -0
  88. {scikit_learn_intelex-2024.3.0.data → scikit_learn_intelex-2024.5.0.data}/data/Lib/site-packages/sklearnex/spmd/covariance/__init__.py +0 -0
  89. {scikit_learn_intelex-2024.3.0.data → scikit_learn_intelex-2024.5.0.data}/data/Lib/site-packages/sklearnex/spmd/covariance/covariance.py +0 -0
  90. {scikit_learn_intelex-2024.3.0.data → scikit_learn_intelex-2024.5.0.data}/data/Lib/site-packages/sklearnex/spmd/decomposition/__init__.py +0 -0
  91. {scikit_learn_intelex-2024.3.0.data → scikit_learn_intelex-2024.5.0.data}/data/Lib/site-packages/sklearnex/spmd/decomposition/pca.py +0 -0
  92. {scikit_learn_intelex-2024.3.0.data → scikit_learn_intelex-2024.5.0.data}/data/Lib/site-packages/sklearnex/spmd/ensemble/__init__.py +0 -0
  93. {scikit_learn_intelex-2024.3.0.data → scikit_learn_intelex-2024.5.0.data}/data/Lib/site-packages/sklearnex/spmd/ensemble/forest.py +0 -0
  94. {scikit_learn_intelex-2024.3.0.data → scikit_learn_intelex-2024.5.0.data}/data/Lib/site-packages/sklearnex/spmd/linear_model/__init__.py +0 -0
  95. {scikit_learn_intelex-2024.3.0.data → scikit_learn_intelex-2024.5.0.data}/data/Lib/site-packages/sklearnex/spmd/linear_model/linear_model.py +0 -0
  96. {scikit_learn_intelex-2024.3.0.data → scikit_learn_intelex-2024.5.0.data}/data/Lib/site-packages/sklearnex/spmd/linear_model/logistic_regression.py +0 -0
  97. {scikit_learn_intelex-2024.3.0.data → scikit_learn_intelex-2024.5.0.data}/data/Lib/site-packages/sklearnex/spmd/neighbors/__init__.py +0 -0
  98. {scikit_learn_intelex-2024.3.0.data → scikit_learn_intelex-2024.5.0.data}/data/Lib/site-packages/sklearnex/spmd/neighbors/neighbors.py +0 -0
  99. {scikit_learn_intelex-2024.3.0.data → scikit_learn_intelex-2024.5.0.data}/data/Lib/site-packages/sklearnex/svm/__init__.py +0 -0
  100. {scikit_learn_intelex-2024.3.0.data → scikit_learn_intelex-2024.5.0.data}/data/Lib/site-packages/sklearnex/svm/tests/test_svm.py +0 -0
  101. {scikit_learn_intelex-2024.3.0.data → scikit_learn_intelex-2024.5.0.data}/data/Lib/site-packages/sklearnex/tests/test_config.py +0 -0
  102. {scikit_learn_intelex-2024.3.0.data → scikit_learn_intelex-2024.5.0.data}/data/Lib/site-packages/sklearnex/tests/test_monkeypatch.py +0 -0
  103. {scikit_learn_intelex-2024.3.0.data → scikit_learn_intelex-2024.5.0.data}/data/Lib/site-packages/sklearnex/tests/test_parallel.py +0 -0
  104. {scikit_learn_intelex-2024.3.0.data → scikit_learn_intelex-2024.5.0.data}/data/Lib/site-packages/sklearnex/utils/parallel.py +0 -0
  105. {scikit_learn_intelex-2024.3.0.data → scikit_learn_intelex-2024.5.0.data}/data/Lib/site-packages/sklearnex/utils/validation.py +0 -0
  106. {scikit_learn_intelex-2024.3.0.dist-info → scikit_learn_intelex-2024.5.0.dist-info}/LICENSE.txt +0 -0
  107. {scikit_learn_intelex-2024.3.0.dist-info → scikit_learn_intelex-2024.5.0.dist-info}/top_level.txt +0 -0
@@ -16,6 +16,7 @@
16
16
 
17
17
  import logging
18
18
  import sys
19
+ from collections.abc import Iterable
19
20
  from functools import wraps
20
21
 
21
22
  import numpy as np
@@ -126,8 +127,15 @@ def _transfer_to_host(queue, *data):
126
127
  queue = usm_iface["syclobj"]
127
128
 
128
129
  buffer = as_usm_memory(item).copy_to_host()
130
+ order = "C"
131
+ if usm_iface["strides"] is not None:
132
+ if usm_iface["strides"][0] < usm_iface["strides"][1]:
133
+ order = "F"
129
134
  item = np.ndarray(
130
- shape=usm_iface["shape"], dtype=usm_iface["typestr"], buffer=buffer
135
+ shape=usm_iface["shape"],
136
+ dtype=usm_iface["typestr"],
137
+ buffer=buffer,
138
+ order=order,
131
139
  )
132
140
  has_usm_data = True
133
141
  else:
@@ -200,9 +208,35 @@ def _copy_to_usm(queue, array):
200
208
  raise RuntimeError(
201
209
  "dpctl need to be installed to work " "with __sycl_usm_array_interface__"
202
210
  )
203
- mem = MemoryUSMDevice(array.nbytes, queue=queue)
204
- mem.copy_from_host(array.tobytes())
205
- return usm_ndarray(array.shape, array.dtype, buffer=mem)
211
+
212
+ if hasattr(array, "__array__"):
213
+
214
+ try:
215
+ mem = MemoryUSMDevice(array.nbytes, queue=queue)
216
+ mem.copy_from_host(array.tobytes())
217
+ return usm_ndarray(array.shape, array.dtype, buffer=mem)
218
+ except ValueError as e:
219
+ # ValueError will raise if device does not support the dtype
220
+ # retry with float32 (needed for fp16 and fp64 support issues)
221
+ # try again as float32, if it is a float32 just raise the error.
222
+ if array.dtype == np.float32:
223
+ raise e
224
+ return _copy_to_usm(queue, array.astype(np.float32))
225
+ else:
226
+ if isinstance(array, Iterable):
227
+ array = [_copy_to_usm(queue, i) for i in array]
228
+ return array
229
+
230
+
231
+ if dpnp_available:
232
+
233
+ def _convert_to_dpnp(array):
234
+ if isinstance(array, usm_ndarray):
235
+ return dpnp.array(array, copy=False)
236
+ elif isinstance(array, Iterable):
237
+ for i in range(len(array)):
238
+ array[i] = _convert_to_dpnp(array[i])
239
+ return array
206
240
 
207
241
 
208
242
  def wrap_output_data(func):
@@ -217,7 +251,7 @@ def wrap_output_data(func):
217
251
  if usm_iface is not None:
218
252
  result = _copy_to_usm(usm_iface["syclobj"], result)
219
253
  if dpnp_available and isinstance(data[0], dpnp.ndarray):
220
- result = dpnp.array(result, copy=False)
254
+ result = _convert_to_dpnp(result)
221
255
  return result
222
256
 
223
257
  return wrapper
@@ -15,5 +15,6 @@
15
15
  # ==============================================================================
16
16
 
17
17
  from .basic_statistics import BasicStatistics
18
+ from .incremental_basic_statistics import IncrementalBasicStatistics
18
19
 
19
- __all__ = ["BasicStatistics"]
20
+ __all__ = ["BasicStatistics", "IncrementalBasicStatistics"]
@@ -0,0 +1,288 @@
1
+ # ==============================================================================
2
+ # Copyright 2024 Intel Corporation
3
+ #
4
+ # Licensed under the Apache License, Version 2.0 (the "License");
5
+ # you may not use this file except in compliance with the License.
6
+ # You may obtain a copy of the License at
7
+ #
8
+ # http://www.apache.org/licenses/LICENSE-2.0
9
+ #
10
+ # Unless required by applicable law or agreed to in writing, software
11
+ # distributed under the License is distributed on an "AS IS" BASIS,
12
+ # WITHOUT WARRANTIES OR CONDITIONS OF ANY KIND, either express or implied.
13
+ # See the License for the specific language governing permissions and
14
+ # limitations under the License.
15
+ # ==============================================================================
16
+
17
+ import numpy as np
18
+ from sklearn.base import BaseEstimator
19
+ from sklearn.utils import check_array, gen_batches
20
+ from sklearn.utils.validation import _check_sample_weight
21
+
22
+ from daal4py.sklearn._n_jobs_support import control_n_jobs
23
+ from daal4py.sklearn._utils import sklearn_check_version
24
+ from onedal.basic_statistics import (
25
+ IncrementalBasicStatistics as onedal_IncrementalBasicStatistics,
26
+ )
27
+
28
+ from .._device_offload import dispatch
29
+ from .._utils import PatchingConditionsChain
30
+
31
+ if sklearn_check_version("1.2"):
32
+ from sklearn.utils._param_validation import Interval, StrOptions
33
+
34
+ import numbers
35
+
36
+
37
+ @control_n_jobs(decorated_methods=["partial_fit", "_onedal_finalize_fit"])
38
+ class IncrementalBasicStatistics(BaseEstimator):
39
+ """
40
+ Incremental estimator for basic statistics.
41
+ Allows to compute basic statistics if data are splitted into batches.
42
+ Parameters
43
+ ----------
44
+ result_options: string or list, default='all'
45
+ List of statistics to compute
46
+
47
+ batch_size : int, default=None
48
+ The number of samples to use for each batch. Only used when calling
49
+ ``fit``. If ``batch_size`` is ``None``, then ``batch_size``
50
+ is inferred from the data and set to ``5 * n_features``, to provide a
51
+ balance between approximation accuracy and memory consumption.
52
+
53
+ Attributes (are existing only if corresponding result option exists)
54
+ ----------
55
+ min : ndarray of shape (n_features,)
56
+ Minimum of each feature over all samples.
57
+
58
+ max : ndarray of shape (n_features,)
59
+ Maximum of each feature over all samples.
60
+
61
+ sum : ndarray of shape (n_features,)
62
+ Sum of each feature over all samples.
63
+
64
+ mean : ndarray of shape (n_features,)
65
+ Mean of each feature over all samples.
66
+
67
+ variance : ndarray of shape (n_features,)
68
+ Variance of each feature over all samples.
69
+
70
+ variation : ndarray of shape (n_features,)
71
+ Variation of each feature over all samples.
72
+
73
+ sum_squares : ndarray of shape (n_features,)
74
+ Sum of squares for each feature over all samples.
75
+
76
+ standard_deviation : ndarray of shape (n_features,)
77
+ Standard deviation of each feature over all samples.
78
+
79
+ sum_squares_centered : ndarray of shape (n_features,)
80
+ Centered sum of squares for each feature over all samples.
81
+
82
+ second_order_raw_moment : ndarray of shape (n_features,)
83
+ Second order moment of each feature over all samples.
84
+ """
85
+
86
+ _onedal_incremental_basic_statistics = staticmethod(onedal_IncrementalBasicStatistics)
87
+
88
+ if sklearn_check_version("1.2"):
89
+ _parameter_constraints: dict = {
90
+ "result_options": [
91
+ StrOptions(
92
+ {
93
+ "all",
94
+ "min",
95
+ "max",
96
+ "sum",
97
+ "mean",
98
+ "variance",
99
+ "variation",
100
+ "sum_squares",
101
+ "standard_deviation",
102
+ "sum_squares_centered",
103
+ "second_order_raw_moment",
104
+ }
105
+ ),
106
+ list,
107
+ ],
108
+ "batch_size": [Interval(numbers.Integral, 1, None, closed="left"), None],
109
+ }
110
+
111
+ def __init__(self, result_options="all", batch_size=None):
112
+ if result_options == "all":
113
+ self.result_options = (
114
+ self._onedal_incremental_basic_statistics.get_all_result_options()
115
+ )
116
+ else:
117
+ self.result_options = result_options
118
+ self._need_to_finalize = False
119
+ self.batch_size = batch_size
120
+
121
+ def _onedal_supported(self, method_name, *data):
122
+ patching_status = PatchingConditionsChain(
123
+ f"sklearn.covariance.{self.__class__.__name__}.{method_name}"
124
+ )
125
+ return patching_status
126
+
127
+ _onedal_cpu_supported = _onedal_supported
128
+ _onedal_gpu_supported = _onedal_supported
129
+
130
+ def _get_onedal_result_options(self, options):
131
+ if isinstance(options, list):
132
+ onedal_options = "|".join(self.result_options)
133
+ else:
134
+ onedal_options = options
135
+ assert isinstance(onedal_options, str)
136
+ return options
137
+
138
+ def _onedal_finalize_fit(self):
139
+ assert hasattr(self, "_onedal_estimator")
140
+ self._onedal_estimator.finalize_fit()
141
+ self._need_to_finalize = False
142
+
143
+ def _onedal_partial_fit(self, X, sample_weight=None, queue=None):
144
+ first_pass = not hasattr(self, "n_samples_seen_") or self.n_samples_seen_ == 0
145
+
146
+ if sklearn_check_version("1.0"):
147
+ X = self._validate_data(
148
+ X,
149
+ dtype=[np.float64, np.float32],
150
+ reset=first_pass,
151
+ )
152
+ else:
153
+ X = check_array(
154
+ X,
155
+ dtype=[np.float64, np.float32],
156
+ )
157
+
158
+ if sample_weight is not None:
159
+ sample_weight = _check_sample_weight(sample_weight, X)
160
+
161
+ if first_pass:
162
+ self.n_samples_seen_ = X.shape[0]
163
+ self.n_features_in_ = X.shape[1]
164
+ else:
165
+ self.n_samples_seen_ += X.shape[0]
166
+
167
+ onedal_params = {
168
+ "result_options": self._get_onedal_result_options(self.result_options)
169
+ }
170
+ if not hasattr(self, "_onedal_estimator"):
171
+ self._onedal_estimator = self._onedal_incremental_basic_statistics(
172
+ **onedal_params
173
+ )
174
+ self._onedal_estimator.partial_fit(X, sample_weight, queue)
175
+ self._need_to_finalize = True
176
+
177
+ def _onedal_fit(self, X, sample_weight=None, queue=None):
178
+ if sklearn_check_version("1.0"):
179
+ X = self._validate_data(X, dtype=[np.float64, np.float32])
180
+ else:
181
+ X = check_array(X, dtype=[np.float64, np.float32])
182
+
183
+ if sample_weight is not None:
184
+ sample_weight = _check_sample_weight(sample_weight, X)
185
+
186
+ n_samples, n_features = X.shape
187
+ if self.batch_size is None:
188
+ self.batch_size_ = 5 * n_features
189
+ else:
190
+ self.batch_size_ = self.batch_size
191
+
192
+ self.n_samples_seen_ = 0
193
+ if hasattr(self, "_onedal_estimator"):
194
+ self._onedal_estimator._reset()
195
+
196
+ for batch in gen_batches(X.shape[0], self.batch_size_):
197
+ X_batch = X[batch]
198
+ weights_batch = sample_weight[batch] if sample_weight is not None else None
199
+ self._onedal_partial_fit(X_batch, weights_batch, queue=queue)
200
+
201
+ if sklearn_check_version("1.2"):
202
+ self._validate_params()
203
+
204
+ self.n_features_in_ = X.shape[1]
205
+
206
+ self._onedal_finalize_fit()
207
+
208
+ return self
209
+
210
+ def __getattr__(self, attr):
211
+ result_options = self.__dict__["result_options"]
212
+ is_statistic_attr = (
213
+ isinstance(result_options, str) and (attr == result_options)
214
+ ) or (isinstance(result_options, list) and (attr in result_options))
215
+ if is_statistic_attr:
216
+ if self._need_to_finalize:
217
+ self._onedal_finalize_fit()
218
+ return getattr(self._onedal_estimator, attr)
219
+ if attr in self.__dict__:
220
+ return self.__dict__[attr]
221
+
222
+ raise AttributeError(
223
+ f"'{self.__class__.__name__}' object has no attribute '{attr}'"
224
+ )
225
+
226
+ def partial_fit(self, X, sample_weight=None):
227
+ """Incremental fit with X. All of X is processed as a single batch.
228
+
229
+ Parameters
230
+ ----------
231
+ X : array-like of shape (n_samples, n_features)
232
+ Data for compute, where `n_samples` is the number of samples and
233
+ `n_features` is the number of features.
234
+
235
+ y : Ignored
236
+ Not used, present for API consistency by convention.
237
+
238
+ sample_weight : array-like of shape (n_samples,), default=None
239
+ Weights for compute weighted statistics, where `n_samples` is the number of samples.
240
+
241
+ Returns
242
+ -------
243
+ self : object
244
+ Returns the instance itself.
245
+ """
246
+ dispatch(
247
+ self,
248
+ "partial_fit",
249
+ {
250
+ "onedal": self.__class__._onedal_partial_fit,
251
+ "sklearn": None,
252
+ },
253
+ X,
254
+ sample_weight,
255
+ )
256
+ return self
257
+
258
+ def fit(self, X, y=None, sample_weight=None):
259
+ """Compute statistics with X, using minibatches of size batch_size.
260
+
261
+ Parameters
262
+ ----------
263
+ X : array-like of shape (n_samples, n_features)
264
+ Data for compute, where `n_samples` is the number of samples and
265
+ `n_features` is the number of features.
266
+
267
+ y : Ignored
268
+ Not used, present for API consistency by convention.
269
+
270
+ sample_weight : array-like of shape (n_samples,), default=None
271
+ Weights for compute weighted statistics, where `n_samples` is the number of samples.
272
+
273
+ Returns
274
+ -------
275
+ self : object
276
+ Returns the instance itself.
277
+ """
278
+ dispatch(
279
+ self,
280
+ "fit",
281
+ {
282
+ "onedal": self.__class__._onedal_fit,
283
+ "sklearn": None,
284
+ },
285
+ X,
286
+ sample_weight,
287
+ )
288
+ return self