scikit-learn-intelex 2024.3.0__py38-none-win_amd64.whl → 2024.4.0__py38-none-win_amd64.whl

This diff represents the content of publicly available package versions that have been released to one of the supported registries. The information contained in this diff is provided for informational purposes only and reflects changes between package versions as they appear in their respective public registries.

Potentially problematic release.


This version of scikit-learn-intelex might be problematic. Click here for more details.

Files changed (103) hide show
  1. {scikit_learn_intelex-2024.3.0.data → scikit_learn_intelex-2024.4.0.data}/data/Lib/site-packages/sklearnex/_device_offload.py +31 -4
  2. {scikit_learn_intelex-2024.3.0.data/data/Lib/site-packages/sklearnex/spmd → scikit_learn_intelex-2024.4.0.data/data/Lib/site-packages/sklearnex}/basic_statistics/__init__.py +2 -1
  3. scikit_learn_intelex-2024.4.0.data/data/Lib/site-packages/sklearnex/basic_statistics/incremental_basic_statistics.py +288 -0
  4. scikit_learn_intelex-2024.4.0.data/data/Lib/site-packages/sklearnex/basic_statistics/tests/test_incremental_basic_statistics.py +386 -0
  5. {scikit_learn_intelex-2024.3.0.data → scikit_learn_intelex-2024.4.0.data}/data/Lib/site-packages/sklearnex/decomposition/pca.py +3 -6
  6. {scikit_learn_intelex-2024.3.0.data → scikit_learn_intelex-2024.4.0.data}/data/Lib/site-packages/sklearnex/dispatcher.py +2 -2
  7. {scikit_learn_intelex-2024.3.0.data → scikit_learn_intelex-2024.4.0.data}/data/Lib/site-packages/sklearnex/ensemble/_forest.py +68 -75
  8. scikit_learn_intelex-2024.4.0.data/data/Lib/site-packages/sklearnex/linear_model/linear.py +316 -0
  9. {scikit_learn_intelex-2024.3.0.data → scikit_learn_intelex-2024.4.0.data}/data/Lib/site-packages/sklearnex/linear_model/logistic_regression.py +50 -9
  10. {scikit_learn_intelex-2024.3.0.data → scikit_learn_intelex-2024.4.0.data}/data/Lib/site-packages/sklearnex/linear_model/tests/test_linear.py +40 -5
  11. {scikit_learn_intelex-2024.3.0.data → scikit_learn_intelex-2024.4.0.data}/data/Lib/site-packages/sklearnex/neighbors/_lof.py +53 -36
  12. {scikit_learn_intelex-2024.3.0.data → scikit_learn_intelex-2024.4.0.data}/data/Lib/site-packages/sklearnex/neighbors/common.py +4 -1
  13. {scikit_learn_intelex-2024.3.0.data → scikit_learn_intelex-2024.4.0.data}/data/Lib/site-packages/sklearnex/neighbors/knn_classification.py +37 -122
  14. {scikit_learn_intelex-2024.3.0.data → scikit_learn_intelex-2024.4.0.data}/data/Lib/site-packages/sklearnex/neighbors/knn_regression.py +10 -117
  15. {scikit_learn_intelex-2024.3.0.data → scikit_learn_intelex-2024.4.0.data}/data/Lib/site-packages/sklearnex/neighbors/knn_unsupervised.py +6 -78
  16. {scikit_learn_intelex-2024.3.0.data → scikit_learn_intelex-2024.4.0.data}/data/Lib/site-packages/sklearnex/preview/cluster/k_means.py +5 -73
  17. {scikit_learn_intelex-2024.3.0.data → scikit_learn_intelex-2024.4.0.data}/data/Lib/site-packages/sklearnex/preview/covariance/covariance.py +6 -5
  18. {scikit_learn_intelex-2024.3.0.data → scikit_learn_intelex-2024.4.0.data}/data/Lib/site-packages/sklearnex/preview/covariance/tests/test_covariance.py +18 -5
  19. {scikit_learn_intelex-2024.3.0.data → scikit_learn_intelex-2024.4.0.data}/data/Lib/site-packages/sklearnex/svm/_common.py +4 -7
  20. {scikit_learn_intelex-2024.3.0.data → scikit_learn_intelex-2024.4.0.data}/data/Lib/site-packages/sklearnex/svm/nusvc.py +66 -50
  21. {scikit_learn_intelex-2024.3.0.data → scikit_learn_intelex-2024.4.0.data}/data/Lib/site-packages/sklearnex/svm/nusvr.py +3 -49
  22. {scikit_learn_intelex-2024.3.0.data → scikit_learn_intelex-2024.4.0.data}/data/Lib/site-packages/sklearnex/svm/svc.py +66 -51
  23. {scikit_learn_intelex-2024.3.0.data → scikit_learn_intelex-2024.4.0.data}/data/Lib/site-packages/sklearnex/svm/svr.py +3 -49
  24. {scikit_learn_intelex-2024.3.0.data → scikit_learn_intelex-2024.4.0.data}/data/Lib/site-packages/sklearnex/tests/_utils.py +14 -5
  25. {scikit_learn_intelex-2024.3.0.data → scikit_learn_intelex-2024.4.0.data}/data/Lib/site-packages/sklearnex/tests/test_n_jobs_support.py +8 -2
  26. {scikit_learn_intelex-2024.3.0.data → scikit_learn_intelex-2024.4.0.data}/data/Lib/site-packages/sklearnex/tests/test_patching.py +64 -54
  27. {scikit_learn_intelex-2024.3.0.data → scikit_learn_intelex-2024.4.0.data}/data/Lib/site-packages/sklearnex/utils/__init__.py +2 -1
  28. scikit_learn_intelex-2024.4.0.data/data/Lib/site-packages/sklearnex/utils/_namespace.py +97 -0
  29. {scikit_learn_intelex-2024.3.0.dist-info → scikit_learn_intelex-2024.4.0.dist-info}/METADATA +2 -2
  30. scikit_learn_intelex-2024.4.0.dist-info/RECORD +101 -0
  31. scikit_learn_intelex-2024.3.0.data/data/Lib/site-packages/sklearnex/linear_model/linear.py +0 -381
  32. scikit_learn_intelex-2024.3.0.dist-info/RECORD +0 -98
  33. {scikit_learn_intelex-2024.3.0.data → scikit_learn_intelex-2024.4.0.data}/data/Lib/site-packages/sklearnex/__init__.py +0 -0
  34. {scikit_learn_intelex-2024.3.0.data → scikit_learn_intelex-2024.4.0.data}/data/Lib/site-packages/sklearnex/__main__.py +0 -0
  35. {scikit_learn_intelex-2024.3.0.data → scikit_learn_intelex-2024.4.0.data}/data/Lib/site-packages/sklearnex/_config.py +0 -0
  36. {scikit_learn_intelex-2024.3.0.data → scikit_learn_intelex-2024.4.0.data}/data/Lib/site-packages/sklearnex/_utils.py +0 -0
  37. {scikit_learn_intelex-2024.3.0.data → scikit_learn_intelex-2024.4.0.data}/data/Lib/site-packages/sklearnex/basic_statistics/basic_statistics.py +0 -0
  38. {scikit_learn_intelex-2024.3.0.data → scikit_learn_intelex-2024.4.0.data}/data/Lib/site-packages/sklearnex/cluster/__init__.py +0 -0
  39. {scikit_learn_intelex-2024.3.0.data → scikit_learn_intelex-2024.4.0.data}/data/Lib/site-packages/sklearnex/cluster/dbscan.py +0 -0
  40. {scikit_learn_intelex-2024.3.0.data → scikit_learn_intelex-2024.4.0.data}/data/Lib/site-packages/sklearnex/cluster/k_means.py +0 -0
  41. {scikit_learn_intelex-2024.3.0.data → scikit_learn_intelex-2024.4.0.data}/data/Lib/site-packages/sklearnex/cluster/tests/test_dbscan.py +0 -0
  42. {scikit_learn_intelex-2024.3.0.data → scikit_learn_intelex-2024.4.0.data}/data/Lib/site-packages/sklearnex/cluster/tests/test_kmeans.py +0 -0
  43. {scikit_learn_intelex-2024.3.0.data → scikit_learn_intelex-2024.4.0.data}/data/Lib/site-packages/sklearnex/conftest.py +0 -0
  44. {scikit_learn_intelex-2024.3.0.data → scikit_learn_intelex-2024.4.0.data}/data/Lib/site-packages/sklearnex/covariance/__init__.py +0 -0
  45. {scikit_learn_intelex-2024.3.0.data → scikit_learn_intelex-2024.4.0.data}/data/Lib/site-packages/sklearnex/covariance/incremental_covariance.py +0 -0
  46. {scikit_learn_intelex-2024.3.0.data → scikit_learn_intelex-2024.4.0.data}/data/Lib/site-packages/sklearnex/covariance/tests/test_incremental_covariance.py +0 -0
  47. {scikit_learn_intelex-2024.3.0.data → scikit_learn_intelex-2024.4.0.data}/data/Lib/site-packages/sklearnex/decomposition/__init__.py +0 -0
  48. {scikit_learn_intelex-2024.3.0.data → scikit_learn_intelex-2024.4.0.data}/data/Lib/site-packages/sklearnex/decomposition/tests/test_pca.py +0 -0
  49. {scikit_learn_intelex-2024.3.0.data → scikit_learn_intelex-2024.4.0.data}/data/Lib/site-packages/sklearnex/doc/third-party-programs.txt +0 -0
  50. {scikit_learn_intelex-2024.3.0.data → scikit_learn_intelex-2024.4.0.data}/data/Lib/site-packages/sklearnex/ensemble/__init__.py +0 -0
  51. {scikit_learn_intelex-2024.3.0.data → scikit_learn_intelex-2024.4.0.data}/data/Lib/site-packages/sklearnex/ensemble/tests/test_forest.py +0 -0
  52. {scikit_learn_intelex-2024.3.0.data → scikit_learn_intelex-2024.4.0.data}/data/Lib/site-packages/sklearnex/glob/__main__.py +0 -0
  53. {scikit_learn_intelex-2024.3.0.data → scikit_learn_intelex-2024.4.0.data}/data/Lib/site-packages/sklearnex/glob/dispatcher.py +0 -0
  54. {scikit_learn_intelex-2024.3.0.data → scikit_learn_intelex-2024.4.0.data}/data/Lib/site-packages/sklearnex/linear_model/__init__.py +0 -0
  55. {scikit_learn_intelex-2024.3.0.data → scikit_learn_intelex-2024.4.0.data}/data/Lib/site-packages/sklearnex/linear_model/coordinate_descent.py +0 -0
  56. {scikit_learn_intelex-2024.3.0.data → scikit_learn_intelex-2024.4.0.data}/data/Lib/site-packages/sklearnex/linear_model/logistic_path.py +0 -0
  57. {scikit_learn_intelex-2024.3.0.data → scikit_learn_intelex-2024.4.0.data}/data/Lib/site-packages/sklearnex/linear_model/ridge.py +0 -0
  58. {scikit_learn_intelex-2024.3.0.data → scikit_learn_intelex-2024.4.0.data}/data/Lib/site-packages/sklearnex/linear_model/tests/test_logreg.py +0 -0
  59. {scikit_learn_intelex-2024.3.0.data → scikit_learn_intelex-2024.4.0.data}/data/Lib/site-packages/sklearnex/manifold/__init__.py +0 -0
  60. {scikit_learn_intelex-2024.3.0.data → scikit_learn_intelex-2024.4.0.data}/data/Lib/site-packages/sklearnex/manifold/t_sne.py +0 -0
  61. {scikit_learn_intelex-2024.3.0.data → scikit_learn_intelex-2024.4.0.data}/data/Lib/site-packages/sklearnex/manifold/tests/test_tsne.py +0 -0
  62. {scikit_learn_intelex-2024.3.0.data → scikit_learn_intelex-2024.4.0.data}/data/Lib/site-packages/sklearnex/metrics/__init__.py +0 -0
  63. {scikit_learn_intelex-2024.3.0.data → scikit_learn_intelex-2024.4.0.data}/data/Lib/site-packages/sklearnex/metrics/pairwise.py +0 -0
  64. {scikit_learn_intelex-2024.3.0.data → scikit_learn_intelex-2024.4.0.data}/data/Lib/site-packages/sklearnex/metrics/ranking.py +0 -0
  65. {scikit_learn_intelex-2024.3.0.data → scikit_learn_intelex-2024.4.0.data}/data/Lib/site-packages/sklearnex/metrics/tests/test_metrics.py +0 -0
  66. {scikit_learn_intelex-2024.3.0.data → scikit_learn_intelex-2024.4.0.data}/data/Lib/site-packages/sklearnex/model_selection/__init__.py +0 -0
  67. {scikit_learn_intelex-2024.3.0.data → scikit_learn_intelex-2024.4.0.data}/data/Lib/site-packages/sklearnex/model_selection/split.py +0 -0
  68. {scikit_learn_intelex-2024.3.0.data → scikit_learn_intelex-2024.4.0.data}/data/Lib/site-packages/sklearnex/model_selection/tests/test_model_selection.py +0 -0
  69. {scikit_learn_intelex-2024.3.0.data → scikit_learn_intelex-2024.4.0.data}/data/Lib/site-packages/sklearnex/neighbors/__init__.py +0 -0
  70. {scikit_learn_intelex-2024.3.0.data → scikit_learn_intelex-2024.4.0.data}/data/Lib/site-packages/sklearnex/neighbors/tests/test_neighbors.py +0 -0
  71. {scikit_learn_intelex-2024.3.0.data → scikit_learn_intelex-2024.4.0.data}/data/Lib/site-packages/sklearnex/preview/__init__.py +0 -0
  72. {scikit_learn_intelex-2024.3.0.data → scikit_learn_intelex-2024.4.0.data}/data/Lib/site-packages/sklearnex/preview/cluster/__init__.py +0 -0
  73. {scikit_learn_intelex-2024.3.0.data → scikit_learn_intelex-2024.4.0.data}/data/Lib/site-packages/sklearnex/preview/cluster/_common.py +0 -0
  74. {scikit_learn_intelex-2024.3.0.data → scikit_learn_intelex-2024.4.0.data}/data/Lib/site-packages/sklearnex/preview/covariance/__init__.py +0 -0
  75. {scikit_learn_intelex-2024.3.0.data → scikit_learn_intelex-2024.4.0.data}/data/Lib/site-packages/sklearnex/spmd/__init__.py +0 -0
  76. {scikit_learn_intelex-2024.3.0.data/data/Lib/site-packages/sklearnex → scikit_learn_intelex-2024.4.0.data/data/Lib/site-packages/sklearnex/spmd}/basic_statistics/__init__.py +0 -0
  77. {scikit_learn_intelex-2024.3.0.data → scikit_learn_intelex-2024.4.0.data}/data/Lib/site-packages/sklearnex/spmd/basic_statistics/basic_statistics.py +0 -0
  78. {scikit_learn_intelex-2024.3.0.data → scikit_learn_intelex-2024.4.0.data}/data/Lib/site-packages/sklearnex/spmd/cluster/__init__.py +0 -0
  79. {scikit_learn_intelex-2024.3.0.data → scikit_learn_intelex-2024.4.0.data}/data/Lib/site-packages/sklearnex/spmd/cluster/dbscan.py +0 -0
  80. {scikit_learn_intelex-2024.3.0.data → scikit_learn_intelex-2024.4.0.data}/data/Lib/site-packages/sklearnex/spmd/cluster/kmeans.py +0 -0
  81. {scikit_learn_intelex-2024.3.0.data → scikit_learn_intelex-2024.4.0.data}/data/Lib/site-packages/sklearnex/spmd/covariance/__init__.py +0 -0
  82. {scikit_learn_intelex-2024.3.0.data → scikit_learn_intelex-2024.4.0.data}/data/Lib/site-packages/sklearnex/spmd/covariance/covariance.py +0 -0
  83. {scikit_learn_intelex-2024.3.0.data → scikit_learn_intelex-2024.4.0.data}/data/Lib/site-packages/sklearnex/spmd/decomposition/__init__.py +0 -0
  84. {scikit_learn_intelex-2024.3.0.data → scikit_learn_intelex-2024.4.0.data}/data/Lib/site-packages/sklearnex/spmd/decomposition/pca.py +0 -0
  85. {scikit_learn_intelex-2024.3.0.data → scikit_learn_intelex-2024.4.0.data}/data/Lib/site-packages/sklearnex/spmd/ensemble/__init__.py +0 -0
  86. {scikit_learn_intelex-2024.3.0.data → scikit_learn_intelex-2024.4.0.data}/data/Lib/site-packages/sklearnex/spmd/ensemble/forest.py +0 -0
  87. {scikit_learn_intelex-2024.3.0.data → scikit_learn_intelex-2024.4.0.data}/data/Lib/site-packages/sklearnex/spmd/linear_model/__init__.py +0 -0
  88. {scikit_learn_intelex-2024.3.0.data → scikit_learn_intelex-2024.4.0.data}/data/Lib/site-packages/sklearnex/spmd/linear_model/linear_model.py +0 -0
  89. {scikit_learn_intelex-2024.3.0.data → scikit_learn_intelex-2024.4.0.data}/data/Lib/site-packages/sklearnex/spmd/linear_model/logistic_regression.py +0 -0
  90. {scikit_learn_intelex-2024.3.0.data → scikit_learn_intelex-2024.4.0.data}/data/Lib/site-packages/sklearnex/spmd/neighbors/__init__.py +0 -0
  91. {scikit_learn_intelex-2024.3.0.data → scikit_learn_intelex-2024.4.0.data}/data/Lib/site-packages/sklearnex/spmd/neighbors/neighbors.py +0 -0
  92. {scikit_learn_intelex-2024.3.0.data → scikit_learn_intelex-2024.4.0.data}/data/Lib/site-packages/sklearnex/svm/__init__.py +0 -0
  93. {scikit_learn_intelex-2024.3.0.data → scikit_learn_intelex-2024.4.0.data}/data/Lib/site-packages/sklearnex/svm/tests/test_svm.py +0 -0
  94. {scikit_learn_intelex-2024.3.0.data → scikit_learn_intelex-2024.4.0.data}/data/Lib/site-packages/sklearnex/tests/test_config.py +0 -0
  95. {scikit_learn_intelex-2024.3.0.data → scikit_learn_intelex-2024.4.0.data}/data/Lib/site-packages/sklearnex/tests/test_memory_usage.py +0 -0
  96. {scikit_learn_intelex-2024.3.0.data → scikit_learn_intelex-2024.4.0.data}/data/Lib/site-packages/sklearnex/tests/test_monkeypatch.py +0 -0
  97. {scikit_learn_intelex-2024.3.0.data → scikit_learn_intelex-2024.4.0.data}/data/Lib/site-packages/sklearnex/tests/test_parallel.py +0 -0
  98. {scikit_learn_intelex-2024.3.0.data → scikit_learn_intelex-2024.4.0.data}/data/Lib/site-packages/sklearnex/tests/test_run_to_run_stability_tests.py +0 -0
  99. {scikit_learn_intelex-2024.3.0.data → scikit_learn_intelex-2024.4.0.data}/data/Lib/site-packages/sklearnex/utils/parallel.py +0 -0
  100. {scikit_learn_intelex-2024.3.0.data → scikit_learn_intelex-2024.4.0.data}/data/Lib/site-packages/sklearnex/utils/validation.py +0 -0
  101. {scikit_learn_intelex-2024.3.0.dist-info → scikit_learn_intelex-2024.4.0.dist-info}/LICENSE.txt +0 -0
  102. {scikit_learn_intelex-2024.3.0.dist-info → scikit_learn_intelex-2024.4.0.dist-info}/WHEEL +0 -0
  103. {scikit_learn_intelex-2024.3.0.dist-info → scikit_learn_intelex-2024.4.0.dist-info}/top_level.txt +0 -0
@@ -26,24 +26,7 @@ from inspect import signature
26
26
  import numpy as np
27
27
  import numpy.random as nprnd
28
28
  import pytest
29
- from _utils import (
30
- DTYPES,
31
- PATCHED_FUNCTIONS,
32
- PATCHED_MODELS,
33
- SPECIAL_INSTANCES,
34
- UNPATCHED_FUNCTIONS,
35
- UNPATCHED_MODELS,
36
- gen_dataset,
37
- gen_models_info,
38
- )
39
- from sklearn.base import (
40
- BaseEstimator,
41
- ClassifierMixin,
42
- ClusterMixin,
43
- OutlierMixin,
44
- RegressorMixin,
45
- TransformerMixin,
46
- )
29
+ from sklearn.base import BaseEstimator
47
30
 
48
31
  from daal4py.sklearn._utils import sklearn_check_version
49
32
  from onedal.tests.utils._dataframes_support import (
@@ -53,21 +36,39 @@ from onedal.tests.utils._dataframes_support import (
53
36
  from sklearnex import is_patched_instance
54
37
  from sklearnex.dispatcher import _is_preview_enabled
55
38
  from sklearnex.metrics import pairwise_distances, roc_auc_score
39
+ from sklearnex.tests._utils import (
40
+ DTYPES,
41
+ PATCHED_FUNCTIONS,
42
+ PATCHED_MODELS,
43
+ SPECIAL_INSTANCES,
44
+ UNPATCHED_FUNCTIONS,
45
+ UNPATCHED_MODELS,
46
+ gen_dataset,
47
+ gen_models_info,
48
+ )
56
49
 
57
50
 
58
51
  @pytest.mark.parametrize("dtype", DTYPES)
59
- @pytest.mark.parametrize(
60
- "dataframe, queue", get_dataframes_and_queues(dataframe_filter_="numpy")
61
- )
52
+ @pytest.mark.parametrize("dataframe, queue", get_dataframes_and_queues())
62
53
  @pytest.mark.parametrize("metric", ["cosine", "correlation"])
63
54
  def test_pairwise_distances_patching(caplog, dataframe, queue, dtype, metric):
64
55
  with caplog.at_level(logging.WARNING, logger="sklearnex"):
56
+ if dtype == np.float16 and queue and not queue.sycl_device.has_aspect_fp16:
57
+ pytest.skip("Hardware does not support fp16 SYCL testing")
58
+ elif dtype == np.float64 and queue and not queue.sycl_device.has_aspect_fp64:
59
+ pytest.skip("Hardware does not support fp64 SYCL testing")
60
+ elif queue and queue.sycl_device.is_gpu:
61
+ pytest.skip("pairwise_distances does not support GPU queues")
62
+
65
63
  rng = nprnd.default_rng()
66
64
  X = _convert_to_dataframe(
67
- rng.random(size=1000), sycl_queue=queue, target_df=dataframe, dtype=dtype
65
+ rng.random(size=1000).reshape(1, -1),
66
+ sycl_queue=queue,
67
+ target_df=dataframe,
68
+ dtype=dtype,
68
69
  )
69
70
 
70
- _ = pairwise_distances(X.reshape(1, -1), metric=metric)
71
+ _ = pairwise_distances(X, metric=metric)
71
72
  assert all(
72
73
  [
73
74
  "running accelerated version" in i.message
@@ -80,12 +81,13 @@ def test_pairwise_distances_patching(caplog, dataframe, queue, dtype, metric):
80
81
  @pytest.mark.parametrize(
81
82
  "dtype", [i for i in DTYPES if "32" in i.__name__ or "64" in i.__name__]
82
83
  )
83
- @pytest.mark.parametrize(
84
- "dataframe, queue", get_dataframes_and_queues(dataframe_filter_="numpy")
85
- )
84
+ @pytest.mark.parametrize("dataframe, queue", get_dataframes_and_queues())
86
85
  def test_roc_auc_score_patching(caplog, dataframe, queue, dtype):
87
86
  if dtype in [np.uint32, np.uint64] and sys.platform == "win32":
88
87
  pytest.skip("Windows issue with unsigned ints")
88
+ elif dtype == np.float64 and queue and not queue.sycl_device.has_aspect_fp64:
89
+ pytest.skip("Hardware does not support fp64 SYCL testing")
90
+
89
91
  with caplog.at_level(logging.WARNING, logger="sklearnex"):
90
92
  rng = nprnd.default_rng()
91
93
  X = _convert_to_dataframe(
@@ -112,14 +114,25 @@ def test_roc_auc_score_patching(caplog, dataframe, queue, dtype):
112
114
 
113
115
 
114
116
  @pytest.mark.parametrize("dtype", DTYPES)
115
- @pytest.mark.parametrize(
116
- "dataframe, queue", get_dataframes_and_queues(dataframe_filter_="numpy")
117
- )
117
+ @pytest.mark.parametrize("dataframe, queue", get_dataframes_and_queues())
118
118
  @pytest.mark.parametrize("estimator, method", gen_models_info(PATCHED_MODELS))
119
119
  def test_standard_estimator_patching(caplog, dataframe, queue, dtype, estimator, method):
120
120
  with caplog.at_level(logging.WARNING, logger="sklearnex"):
121
121
  est = PATCHED_MODELS[estimator]()
122
122
 
123
+ if queue:
124
+ if dtype == np.float16 and not queue.sycl_device.has_aspect_fp16:
125
+ pytest.skip("Hardware does not support fp16 SYCL testing")
126
+ elif dtype == np.float64 and not queue.sycl_device.has_aspect_fp64:
127
+ pytest.skip("Hardware does not support fp64 SYCL testing")
128
+ elif queue.sycl_device.is_gpu and estimator in [
129
+ "KMeans",
130
+ "ElasticNet",
131
+ "Lasso",
132
+ "Ridge",
133
+ ]:
134
+ pytest.skip(f"{estimator} does not support GPU queues")
135
+
123
136
  if estimator == "TSNE" and method == "fit_transform":
124
137
  pytest.skip("TSNE.fit_transform is too slow for common testing")
125
138
  elif (
@@ -129,15 +142,17 @@ def test_standard_estimator_patching(caplog, dataframe, queue, dtype, estimator,
129
142
  and dtype in [np.uint32, np.uint64]
130
143
  ):
131
144
  pytest.skip("Windows segmentation fault for Ridge.predict for unsigned ints")
132
- elif not hasattr(est, method):
145
+ elif method and not hasattr(est, method):
133
146
  pytest.skip(f"sklearn available_if prevents testing {estimator}.{method}")
147
+
134
148
  X, y = gen_dataset(est, queue=queue, target_df=dataframe, dtype=dtype)
135
149
  est.fit(X, y)
136
150
 
137
- if method != "score":
138
- getattr(est, method)(X)
139
- else:
140
- est.score(X, y)
151
+ if method:
152
+ if method != "score":
153
+ getattr(est, method)(X)
154
+ else:
155
+ est.score(X, y)
141
156
  assert all(
142
157
  [
143
158
  "running accelerated version" in i.message
@@ -148,9 +163,7 @@ def test_standard_estimator_patching(caplog, dataframe, queue, dtype, estimator,
148
163
 
149
164
 
150
165
  @pytest.mark.parametrize("dtype", DTYPES)
151
- @pytest.mark.parametrize(
152
- "dataframe, queue", get_dataframes_and_queues(dataframe_filter_="numpy")
153
- )
166
+ @pytest.mark.parametrize("dataframe, queue", get_dataframes_and_queues())
154
167
  @pytest.mark.parametrize("estimator, method", gen_models_info(SPECIAL_INSTANCES))
155
168
  def test_special_estimator_patching(caplog, dataframe, queue, dtype, estimator, method):
156
169
  # prepare logging
@@ -158,15 +171,24 @@ def test_special_estimator_patching(caplog, dataframe, queue, dtype, estimator,
158
171
  with caplog.at_level(logging.WARNING, logger="sklearnex"):
159
172
  est = SPECIAL_INSTANCES[estimator]
160
173
 
174
+ # Its not possible to get the dpnp/dpctl arrays to be in the proper dtype
175
+ if dtype == np.float16 and queue and not queue.sycl_device.has_aspect_fp16:
176
+ pytest.skip("Hardware does not support fp16 SYCL testing")
177
+ elif dtype == np.float64 and queue and not queue.sycl_device.has_aspect_fp64:
178
+ pytest.skip("Hardware does not support fp64 SYCL testing")
179
+
161
180
  X, y = gen_dataset(est, queue=queue, target_df=dataframe, dtype=dtype)
162
181
  est.fit(X, y)
163
182
 
164
- if not hasattr(est, method):
183
+ if method and not hasattr(est, method):
165
184
  pytest.skip(f"sklearn available_if prevents testing {estimator}.{method}")
166
- if method != "score":
167
- getattr(est, method)(X)
168
- else:
169
- est.score(X, y)
185
+
186
+ if method:
187
+ if method != "score":
188
+ getattr(est, method)(X)
189
+ else:
190
+ est.score(X, y)
191
+
170
192
  assert all(
171
193
  [
172
194
  "running accelerated version" in i.message
@@ -311,18 +333,6 @@ def test_if_estimator_inherits_sklearn(estimator):
311
333
  ), f"{estimator} does not inherit from the patched sklearn estimator"
312
334
  else:
313
335
  assert issubclass(est, BaseEstimator)
314
- assert any(
315
- [
316
- issubclass(est, i)
317
- for i in [
318
- ClassifierMixin,
319
- ClusterMixin,
320
- OutlierMixin,
321
- RegressorMixin,
322
- TransformerMixin,
323
- ]
324
- ]
325
- ), f"{estimator} does not inherit a sklearn Mixin"
326
336
 
327
337
 
328
338
  @pytest.mark.parametrize("estimator", UNPATCHED_MODELS.keys())
@@ -14,6 +14,7 @@
14
14
  # limitations under the License.
15
15
  # ===============================================================================
16
16
 
17
+ from ._namespace import get_namespace
17
18
  from .validation import _assert_all_finite
18
19
 
19
- __all__ = ["_assert_all_finite"]
20
+ __all__ = ["get_namespace", "_assert_all_finite"]
@@ -0,0 +1,97 @@
1
+ # ==============================================================================
2
+ # Copyright 2024 Intel Corporation
3
+ #
4
+ # Licensed under the Apache License, Version 2.0 (the "License");
5
+ # you may not use this file except in compliance with the License.
6
+ # You may obtain a copy of the License at
7
+ #
8
+ # http://www.apache.org/licenses/LICENSE-2.0
9
+ #
10
+ # Unless required by applicable law or agreed to in writing, software
11
+ # distributed under the License is distributed on an "AS IS" BASIS,
12
+ # WITHOUT WARRANTIES OR CONDITIONS OF ANY KIND, either express or implied.
13
+ # See the License for the specific language governing permissions and
14
+ # limitations under the License.
15
+ # ==============================================================================
16
+
17
+ import numpy as np
18
+
19
+ from daal4py.sklearn._utils import sklearn_check_version
20
+
21
+ from .._device_offload import dpnp_available
22
+
23
+ if sklearn_check_version("1.2"):
24
+ from sklearn.utils._array_api import get_namespace as sklearn_get_namespace
25
+
26
+ if dpnp_available:
27
+ import dpnp
28
+
29
+
30
+ def get_namespace(*arrays):
31
+ """Get namespace of arrays.
32
+
33
+ Introspect `arrays` arguments and return their common Array API
34
+ compatible namespace object, if any. NumPy 1.22 and later can
35
+ construct such containers using the `numpy.array_api` namespace
36
+ for instance.
37
+
38
+ This function will return the namespace of SYCL-related arrays
39
+ which define the __sycl_usm_array_interface__ attribute
40
+ regardless of array_api support, the configuration of
41
+ array_api_dispatch, or scikit-learn version.
42
+
43
+ See: https://numpy.org/neps/nep-0047-array-api-standard.html
44
+
45
+ If `arrays` are regular numpy arrays, an instance of the
46
+ `_NumPyApiWrapper` compatibility wrapper is returned instead.
47
+
48
+ Namespace support is not enabled by default. To enabled it
49
+ call:
50
+
51
+ sklearn.set_config(array_api_dispatch=True)
52
+
53
+ or:
54
+
55
+ with sklearn.config_context(array_api_dispatch=True):
56
+ # your code here
57
+
58
+ Otherwise an instance of the `_NumPyApiWrapper`
59
+ compatibility wrapper is always returned irrespective of
60
+ the fact that arrays implement the `__array_namespace__`
61
+ protocol or not.
62
+
63
+ Parameters
64
+ ----------
65
+ *arrays : array objects
66
+ Array objects.
67
+
68
+ Returns
69
+ -------
70
+ namespace : module
71
+ Namespace shared by array objects.
72
+
73
+ is_array_api : bool
74
+ True of the arrays are containers that implement the Array API spec.
75
+ """
76
+
77
+ # sycl support designed to work regardless of array_api_dispatch sklearn global value
78
+ sycl_type = {type(x): x for x in arrays if hasattr(x, "__sycl_usm_array_interface__")}
79
+
80
+ if len(sycl_type) > 1:
81
+ raise ValueError(f"Multiple SYCL types for array inputs: {sycl_type}")
82
+
83
+ if sycl_type:
84
+
85
+ (X,) = sycl_type.values()
86
+
87
+ if hasattr(X, "__array_namespace__"):
88
+ return X.__array_namespace__(), True
89
+ elif dpnp_available and isinstance(X, dpnp.ndarray):
90
+ return dpnp, False
91
+ else:
92
+ raise ValueError(f"SYCL type not recognized: {sycl_type}")
93
+
94
+ elif sklearn_check_version("1.2"):
95
+ return sklearn_get_namespace(*arrays)
96
+ else:
97
+ return np, True
@@ -1,6 +1,6 @@
1
1
  Metadata-Version: 2.1
2
2
  Name: scikit-learn-intelex
3
- Version: 2024.3.0
3
+ Version: 2024.4.0
4
4
  Summary: Intel(R) Extension for Scikit-learn is a seamless way to speed up your Scikit-learn application.
5
5
  Home-page: https://github.com/intel/scikit-learn-intelex
6
6
  Author: Intel Corporation
@@ -31,7 +31,7 @@ Classifier: Topic :: Software Development
31
31
  Requires-Python: >=3.7
32
32
  Description-Content-Type: text/markdown
33
33
  License-File: LICENSE.txt
34
- Requires-Dist: daal4py (==2024.3.0)
34
+ Requires-Dist: daal4py (==2024.4.0)
35
35
  Requires-Dist: scikit-learn (>=0.22)
36
36
 
37
37
 
@@ -0,0 +1,101 @@
1
+ scikit_learn_intelex-2024.4.0.data/data/Lib/site-packages/sklearnex/__init__.py,sha256=DVpGCMMQcUlrOGj_iy1jk3ZhCfa0_TFISYLqaUDRqC0,1780
2
+ scikit_learn_intelex-2024.4.0.data/data/Lib/site-packages/sklearnex/__main__.py,sha256=Le9BJq6aLEGSSoZwJLsOADxsV89ynBfA8BcoJHk9F24,1921
3
+ scikit_learn_intelex-2024.4.0.data/data/Lib/site-packages/sklearnex/_config.py,sha256=6WS3UuS4-0DxIJyGn7yQMosj-mGkLybLQrg3W7dED5o,3928
4
+ scikit_learn_intelex-2024.4.0.data/data/Lib/site-packages/sklearnex/_device_offload.py,sha256=EX9bRBV9tFxQBRf8mS9ntBEmB7tcIfql8sYnb9Zjlto,8639
5
+ scikit_learn_intelex-2024.4.0.data/data/Lib/site-packages/sklearnex/_utils.py,sha256=EV4jC3plVdndsgrfPBsJZTzggrRdYWLwOpoIRWtTXt4,3812
6
+ scikit_learn_intelex-2024.4.0.data/data/Lib/site-packages/sklearnex/conftest.py,sha256=ZvcfQljZNBa3zlE1iITvuacHblugVtK6X80LwNXrnWI,2130
7
+ scikit_learn_intelex-2024.4.0.data/data/Lib/site-packages/sklearnex/dispatcher.py,sha256=Vpoy6kwOR0Y3ISfjpk0S1vEKhDZGLUKeMy-xwCBsCQs,14389
8
+ scikit_learn_intelex-2024.4.0.data/data/Lib/site-packages/sklearnex/basic_statistics/__init__.py,sha256=-lNh54F2FO0BuHDBLjhW7zp3yBcgFZ-DrXHj2H5hLXE,920
9
+ scikit_learn_intelex-2024.4.0.data/data/Lib/site-packages/sklearnex/basic_statistics/basic_statistics.py,sha256=j5jBZ3DgXjoyjCBEFfYQHyl3LgLXEWWFnNHwInThdZw,796
10
+ scikit_learn_intelex-2024.4.0.data/data/Lib/site-packages/sklearnex/basic_statistics/incremental_basic_statistics.py,sha256=NNWF9zdxBz2jT7dzt5hL6HRvjQIGosvViQE3KJMF1L4,10048
11
+ scikit_learn_intelex-2024.4.0.data/data/Lib/site-packages/sklearnex/basic_statistics/tests/test_incremental_basic_statistics.py,sha256=GarYPjojsyhbOat5vOXF85AofyFa_VretX4Vntc01C8,14992
12
+ scikit_learn_intelex-2024.4.0.data/data/Lib/site-packages/sklearnex/cluster/__init__.py,sha256=TsDzdbKzEubaP86iY8a7mSW0ZQzgjzGYuPkhc5lZmlQ,853
13
+ scikit_learn_intelex-2024.4.0.data/data/Lib/site-packages/sklearnex/cluster/dbscan.py,sha256=JJaNVhV4dVK0xte9xzQpCAka80xVu3M7_SzmvD3k-EY,6736
14
+ scikit_learn_intelex-2024.4.0.data/data/Lib/site-packages/sklearnex/cluster/k_means.py,sha256=1QKcFUQcnycu8kSD8uYSaDIuedHbxZsV_gvUfcEwVAM,806
15
+ scikit_learn_intelex-2024.4.0.data/data/Lib/site-packages/sklearnex/cluster/tests/test_dbscan.py,sha256=AgFoKwXFVyLKLvEtJVs0qlbBs1Ci3PcRft7f-6_ENOU,1464
16
+ scikit_learn_intelex-2024.4.0.data/data/Lib/site-packages/sklearnex/cluster/tests/test_kmeans.py,sha256=H3a9NSHRRSASo0Eceo44Kjq6GwEoMqMzcubaNt1s1QQ,1213
17
+ scikit_learn_intelex-2024.4.0.data/data/Lib/site-packages/sklearnex/covariance/__init__.py,sha256=_c86wiKDGBH50ofN-_tn7lO4M2YVEWO5AHhJIfimUDk,859
18
+ scikit_learn_intelex-2024.4.0.data/data/Lib/site-packages/sklearnex/covariance/incremental_covariance.py,sha256=3s9gmLP48DPhlhnFcg2JB7RQ2sliSZdNroJkv8-1sIA,4526
19
+ scikit_learn_intelex-2024.4.0.data/data/Lib/site-packages/sklearnex/covariance/tests/test_incremental_covariance.py,sha256=JIa4p-1_RYvU2ZVLx27iz0OKp0Nwrl9sYCsT0Dlyi2I,5402
20
+ scikit_learn_intelex-2024.4.0.data/data/Lib/site-packages/sklearnex/decomposition/__init__.py,sha256=RJBYDWyvnn5DA-j5r4IqVdXLp6H4mdPySsSjnXhlv-U,805
21
+ scikit_learn_intelex-2024.4.0.data/data/Lib/site-packages/sklearnex/decomposition/pca.py,sha256=ffR22wH2n5R8SYflEmOPDPc-QpTomiAMOegV0IMbslg,12654
22
+ scikit_learn_intelex-2024.4.0.data/data/Lib/site-packages/sklearnex/decomposition/tests/test_pca.py,sha256=FJYMosxpQpdOo71QD0jVx47oWEhvVNdut_5EOxTyT_0,2201
23
+ scikit_learn_intelex-2024.4.0.data/data/Lib/site-packages/sklearnex/doc/third-party-programs.txt,sha256=qA1XbOqYkMRnp29p8VxXjfcH0kHE8NSO5s2heea83-8,21773
24
+ scikit_learn_intelex-2024.4.0.data/data/Lib/site-packages/sklearnex/ensemble/__init__.py,sha256=2xB2KfG7l7uJv0p3kfVhrs4KLM174SCsigZhYqwSYAA,1035
25
+ scikit_learn_intelex-2024.4.0.data/data/Lib/site-packages/sklearnex/ensemble/_forest.py,sha256=OHxqhYhkdjzhhEeWLlE0_IXBrWmKCUJoP_B1gQcmTQM,70002
26
+ scikit_learn_intelex-2024.4.0.data/data/Lib/site-packages/sklearnex/ensemble/tests/test_forest.py,sha256=r1GSPQuVVuWYoNB3ZLiGKfMSwq3lp5i6k-Rgr7InonQ,4456
27
+ scikit_learn_intelex-2024.4.0.data/data/Lib/site-packages/sklearnex/glob/__main__.py,sha256=--FAjkhh5E6a1TFOGu6_BM3MHe78jP8oSpl0xKiRtTI,2531
28
+ scikit_learn_intelex-2024.4.0.data/data/Lib/site-packages/sklearnex/glob/dispatcher.py,sha256=IEEPhAOCVzC2JDFvYtijbiPAbaUY5RrCAhFLRjMMe1w,3018
29
+ scikit_learn_intelex-2024.4.0.data/data/Lib/site-packages/sklearnex/linear_model/__init__.py,sha256=5XZDZh8R0SmT8D8ZtSjW7-MKRO7l1jOZ8CUnt_OzHe4,1047
30
+ scikit_learn_intelex-2024.4.0.data/data/Lib/site-packages/sklearnex/linear_model/coordinate_descent.py,sha256=uZOHIKfFlHoMlNXZCh2MAnZE30fRZlmtcF7UsZQ3Vq4,822
31
+ scikit_learn_intelex-2024.4.0.data/data/Lib/site-packages/sklearnex/linear_model/linear.py,sha256=0A2kCTpsGZK8IVkbIhYoAXqMAxHOyY7dO5JLxbNWmLw,11159
32
+ scikit_learn_intelex-2024.4.0.data/data/Lib/site-packages/sklearnex/linear_model/logistic_path.py,sha256=Nq3JPXSzE4bjamnP3gGQtsMKks2v7s6bSiuYRnFqrRw,849
33
+ scikit_learn_intelex-2024.4.0.data/data/Lib/site-packages/sklearnex/linear_model/logistic_regression.py,sha256=6TRaDJ8nIHxjofIfUvmeJOP9_EwmUgVKKK1sxe9vS5A,14171
34
+ scikit_learn_intelex-2024.4.0.data/data/Lib/site-packages/sklearnex/linear_model/ridge.py,sha256=0oxlM5McYYvl0KxK9OIGJKM6lOADuFSPTdfx-efJNTI,810
35
+ scikit_learn_intelex-2024.4.0.data/data/Lib/site-packages/sklearnex/linear_model/tests/test_linear.py,sha256=kLoOcP9p0iCK2PhU438tGuPGuuBekF37FkA-YBcBMpM,4319
36
+ scikit_learn_intelex-2024.4.0.data/data/Lib/site-packages/sklearnex/linear_model/tests/test_logreg.py,sha256=mUYDwTDUekERlzxjnVeOeCUcNv4KJAXdTIiELZNSaDc,3283
37
+ scikit_learn_intelex-2024.4.0.data/data/Lib/site-packages/sklearnex/manifold/__init__.py,sha256=3FU5fY1YvHAyNeSlUHsZfPnAbvlAUtZpum0Obmok2KE,809
38
+ scikit_learn_intelex-2024.4.0.data/data/Lib/site-packages/sklearnex/manifold/t_sne.py,sha256=U6F_dGB6taVuEJvTnVBWD-sri3x3m0Khu3HI4wXidhg,805
39
+ scikit_learn_intelex-2024.4.0.data/data/Lib/site-packages/sklearnex/manifold/tests/test_tsne.py,sha256=SNqe1yg45mL4qIsxpX5hDpBsIyrv9r__6wfrerjp3yU,1063
40
+ scikit_learn_intelex-2024.4.0.data/data/Lib/site-packages/sklearnex/metrics/__init__.py,sha256=EHOCTU9RERa0Rrkr4dgmyO9ippbN5kjH_FwK3BqIROc,907
41
+ scikit_learn_intelex-2024.4.0.data/data/Lib/site-packages/sklearnex/metrics/pairwise.py,sha256=5T_Vcbiadzi7oo0hq6vLl_BHQzXOmDsn5pHaMCPSHd8,818
42
+ scikit_learn_intelex-2024.4.0.data/data/Lib/site-packages/sklearnex/metrics/ranking.py,sha256=rjJxQntblbegSZRwDsOOy2ntIYBqlnV8NM46IAc0MiE,813
43
+ scikit_learn_intelex-2024.4.0.data/data/Lib/site-packages/sklearnex/metrics/tests/test_metrics.py,sha256=Nwfz8UV4V4fKLLY7f9P9eg8uY09xLXaFx1GC49TOiA8,1579
44
+ scikit_learn_intelex-2024.4.0.data/data/Lib/site-packages/sklearnex/model_selection/__init__.py,sha256=64045Y-nzLDBepO6IRjt88LhL2DM3KdvpCF2vvj_RpA,842
45
+ scikit_learn_intelex-2024.4.0.data/data/Lib/site-packages/sklearnex/model_selection/split.py,sha256=qjmy8sRf_QEG8LhT0ivn_tICMCYmt7ffZZV1-rLQnko,824
46
+ scikit_learn_intelex-2024.4.0.data/data/Lib/site-packages/sklearnex/model_selection/tests/test_model_selection.py,sha256=3kZIq8kba8SW93DBWXupoRymNStR1_mGGYSErQRnwME,1338
47
+ scikit_learn_intelex-2024.4.0.data/data/Lib/site-packages/sklearnex/neighbors/__init__.py,sha256=_GMJ2L-6YechRYI2fOFwHjy0kebUncE81z4FmdXUlb8,1078
48
+ scikit_learn_intelex-2024.4.0.data/data/Lib/site-packages/sklearnex/neighbors/_lof.py,sha256=5MPkWIb6FS55Q8xWzgc22Ec_PsouuN94SPovt-vsBGE,8648
49
+ scikit_learn_intelex-2024.4.0.data/data/Lib/site-packages/sklearnex/neighbors/common.py,sha256=8DxDoYtXtEM4RNoMCimpTVSDOOxUIJlNVOQvBXBhkd4,10875
50
+ scikit_learn_intelex-2024.4.0.data/data/Lib/site-packages/sklearnex/neighbors/knn_classification.py,sha256=ONoBbtwb5xoVLcpg5COpRNu1ZBOQ2EDh03RzbWDy5yo,8537
51
+ scikit_learn_intelex-2024.4.0.data/data/Lib/site-packages/sklearnex/neighbors/knn_regression.py,sha256=YBjvh6h56OaJHSZNGq8ZV8lsB-XpSWduEcVeHRuPorQ,6692
52
+ scikit_learn_intelex-2024.4.0.data/data/Lib/site-packages/sklearnex/neighbors/knn_unsupervised.py,sha256=qkj-hSEq8QetYsWlofnik3PpFvo1iBUbIOhywo8wFWk,5362
53
+ scikit_learn_intelex-2024.4.0.data/data/Lib/site-packages/sklearnex/neighbors/tests/test_neighbors.py,sha256=gcJeJwDoT7wvyvk423k9TDGTGfbXUSTQETUT-VYQ74U,3409
54
+ scikit_learn_intelex-2024.4.0.data/data/Lib/site-packages/sklearnex/preview/__init__.py,sha256=OXC_k2kudA13rVesXb5ZlEC7_mKUS7uUra_BR-Tin30,780
55
+ scikit_learn_intelex-2024.4.0.data/data/Lib/site-packages/sklearnex/preview/cluster/__init__.py,sha256=FONzOuTGAb5NwdfFhLco99P_VccRk9NBkDHU3EKuAIs,794
56
+ scikit_learn_intelex-2024.4.0.data/data/Lib/site-packages/sklearnex/preview/cluster/_common.py,sha256=bgpzijxgyrAtdNCCHyCNsZ-N70KQYNwMuoCTNdUna6o,2718
57
+ scikit_learn_intelex-2024.4.0.data/data/Lib/site-packages/sklearnex/preview/cluster/k_means.py,sha256=RdF9mwgvZ1xgyeLhCQA2WaPvPsS1ndktXXcaNj6S460,10464
58
+ scikit_learn_intelex-2024.4.0.data/data/Lib/site-packages/sklearnex/preview/covariance/__init__.py,sha256=DPYTk8lwcVphtwU8J3CyUYH8Uz6Zr0Uz4S6nn-RY5iM,825
59
+ scikit_learn_intelex-2024.4.0.data/data/Lib/site-packages/sklearnex/preview/covariance/covariance.py,sha256=NjRTWLie7UbpfN16wGSxJSRHRhUnvTn03cPPc8PpPd8,5131
60
+ scikit_learn_intelex-2024.4.0.data/data/Lib/site-packages/sklearnex/preview/covariance/tests/test_covariance.py,sha256=FOgvhJxFQo9sNG4Uo-ebuw3ZXJ9tSxdk8qKm0ZJzTdc,2487
61
+ scikit_learn_intelex-2024.4.0.data/data/Lib/site-packages/sklearnex/spmd/__init__.py,sha256=ChQy2kEWlo4KGvs0RnbPoPEVhdgl8URV099B1rZtF5Y,889
62
+ scikit_learn_intelex-2024.4.0.data/data/Lib/site-packages/sklearnex/spmd/basic_statistics/__init__.py,sha256=NA5RGlwcp27UEeCgz0ngzYYd3MAIRpxlTy86uhM2-RE,821
63
+ scikit_learn_intelex-2024.4.0.data/data/Lib/site-packages/sklearnex/spmd/basic_statistics/basic_statistics.py,sha256=_dQ9mhVYxeuChATEpAmHpXDpgW3YvtK1qrG-kLr2MtI,886
64
+ scikit_learn_intelex-2024.4.0.data/data/Lib/site-packages/sklearnex/spmd/cluster/__init__.py,sha256=qBBfrCHh6_82EROLbu54XKk7SmmRwS1XJyCj0zwkoUw,1029
65
+ scikit_learn_intelex-2024.4.0.data/data/Lib/site-packages/sklearnex/spmd/cluster/dbscan.py,sha256=23YNzPhx4MZijU0md-E3ZkHpTkhUh5cmtS3loHe-KhI,1824
66
+ scikit_learn_intelex-2024.4.0.data/data/Lib/site-packages/sklearnex/spmd/cluster/kmeans.py,sha256=Rnb9tr9LXVto5vCAumk7ZJfa9BYYDhdD1qUWL-QK5bY,868
67
+ scikit_learn_intelex-2024.4.0.data/data/Lib/site-packages/sklearnex/spmd/covariance/__init__.py,sha256=5xeL1REMIxCv5M1ya99GGKaVjctUngboZ3uXgxcZ04o,823
68
+ scikit_learn_intelex-2024.4.0.data/data/Lib/site-packages/sklearnex/spmd/covariance/covariance.py,sha256=_oIlr1W1vqDHqIPnsCb04HcBCen5oBHQr5-_n9OSvIA,884
69
+ scikit_learn_intelex-2024.4.0.data/data/Lib/site-packages/sklearnex/spmd/decomposition/__init__.py,sha256=dBh0ZMIiaqdf3DKbt8FWNB2K9Iacs395m8OxaDFQg_M,784
70
+ scikit_learn_intelex-2024.4.0.data/data/Lib/site-packages/sklearnex/spmd/decomposition/pca.py,sha256=CUrsVD2jae-A9H8RB_emza_fe82CwnFa5PEy0fW_EZ8,871
71
+ scikit_learn_intelex-2024.4.0.data/data/Lib/site-packages/sklearnex/spmd/ensemble/__init__.py,sha256=B3yi7hWoVogMIiw0QRT_x5atsAFS-OO72YPLGeUQJ8M,873
72
+ scikit_learn_intelex-2024.4.0.data/data/Lib/site-packages/sklearnex/spmd/ensemble/forest.py,sha256=vIJJd10wIigFMtJMsiNDNLJ_PP2om-60zpQY_fd11-U,2909
73
+ scikit_learn_intelex-2024.4.0.data/data/Lib/site-packages/sklearnex/spmd/linear_model/__init__.py,sha256=WwqCr2DOyUnkSIHlP0yq0UI2yFDgSl5MHV7wu3QGJtA,893
74
+ scikit_learn_intelex-2024.4.0.data/data/Lib/site-packages/sklearnex/spmd/linear_model/linear_model.py,sha256=7QPCIQTWKBiZBTDZZbpZXi-REgxQCfRMt6rHPJAnc5E,883
75
+ scikit_learn_intelex-2024.4.0.data/data/Lib/site-packages/sklearnex/spmd/linear_model/logistic_regression.py,sha256=q_HkfWcg0RgFbk2t9FeV0ZY28HHAOtkGEnUj4tLuwt4,885
76
+ scikit_learn_intelex-2024.4.0.data/data/Lib/site-packages/sklearnex/spmd/neighbors/__init__.py,sha256=S16sH8N_18LN_8AgC_wGK5EDSNyuN-F-gI6GVlaiWVE,906
77
+ scikit_learn_intelex-2024.4.0.data/data/Lib/site-packages/sklearnex/spmd/neighbors/neighbors.py,sha256=SiKAS_RVt34MUcGytBS5pHnI_5vFNxJn8jqt1MOhDh8,940
78
+ scikit_learn_intelex-2024.4.0.data/data/Lib/site-packages/sklearnex/svm/__init__.py,sha256=f3e4ZFwZfx6MsXsn94VK1xVm6mWKT5XCiHczo6zNyAQ,1057
79
+ scikit_learn_intelex-2024.4.0.data/data/Lib/site-packages/sklearnex/svm/_common.py,sha256=52csEWTYWEVgUVWUm3RjX1VD_5VyyawXBvc7lBBp5qY,7010
80
+ scikit_learn_intelex-2024.4.0.data/data/Lib/site-packages/sklearnex/svm/nusvc.py,sha256=J4F_Tm9oYC-WK1Nf_CNqSnvuYEEZZ9xa3VY-x0G_2cw,9871
81
+ scikit_learn_intelex-2024.4.0.data/data/Lib/site-packages/sklearnex/svm/nusvr.py,sha256=ZFBnQzMgD4aRSk3BRIxwKfwErVyDJnNoR7vrIMm5WLk,3655
82
+ scikit_learn_intelex-2024.4.0.data/data/Lib/site-packages/sklearnex/svm/svc.py,sha256=u9wQ8dsvQvO4XP_3JSfYFBNJcuDyv3HVG5NY6jZqhZk,11125
83
+ scikit_learn_intelex-2024.4.0.data/data/Lib/site-packages/sklearnex/svm/svr.py,sha256=ldNWehrU4vgqX_0T8splmBjPsQln7w_h8L4XNpIgP6A,3655
84
+ scikit_learn_intelex-2024.4.0.data/data/Lib/site-packages/sklearnex/svm/tests/test_svm.py,sha256=Ru-aGNGCsRJts7SEEYbnKcVqUx-DqPyUtw-hEoMVpW8,4190
85
+ scikit_learn_intelex-2024.4.0.data/data/Lib/site-packages/sklearnex/tests/_utils.py,sha256=hc3LxZDhlncONCGxqvWajQE7iVnSnt98Q9bem-KJDGI,5386
86
+ scikit_learn_intelex-2024.4.0.data/data/Lib/site-packages/sklearnex/tests/test_config.py,sha256=SnSJjxAAysISDyC3bYKSJiRHStkB9X-yjLeF11LpRog,1372
87
+ scikit_learn_intelex-2024.4.0.data/data/Lib/site-packages/sklearnex/tests/test_memory_usage.py,sha256=LwIuUgG7CUZ2kOk1XlxyaK7O3OlyoVwx40TgljaYs5Q,7327
88
+ scikit_learn_intelex-2024.4.0.data/data/Lib/site-packages/sklearnex/tests/test_monkeypatch.py,sha256=_9s_4jFvbttOf8uCuBrS4rn_AzQdFlKyRlthnGacUcU,9669
89
+ scikit_learn_intelex-2024.4.0.data/data/Lib/site-packages/sklearnex/tests/test_n_jobs_support.py,sha256=fNGlQz882qAJoJ56ymbID0hpIsO_7PHLmXxSew2JA_k,4124
90
+ scikit_learn_intelex-2024.4.0.data/data/Lib/site-packages/sklearnex/tests/test_parallel.py,sha256=0zzlh2VJZWcHw5W4QSUthtAygOb6K0Bg1ekNsrdGJQE,1770
91
+ scikit_learn_intelex-2024.4.0.data/data/Lib/site-packages/sklearnex/tests/test_patching.py,sha256=Gc4MChHY6lVUFkm3sgPF4RDd1uOqHQFfh9ac60d4vfQ,14299
92
+ scikit_learn_intelex-2024.4.0.data/data/Lib/site-packages/sklearnex/tests/test_run_to_run_stability_tests.py,sha256=4HDOeJruA1EDILbyQJtsHFmEXC0D1upSHuOT-KyTlEc,14008
93
+ scikit_learn_intelex-2024.4.0.data/data/Lib/site-packages/sklearnex/utils/__init__.py,sha256=FFlM8zc2qnSdPYpLjSt4Ma_9FjC8qk8wXJa-5B8hCs0,898
94
+ scikit_learn_intelex-2024.4.0.data/data/Lib/site-packages/sklearnex/utils/_namespace.py,sha256=lWzvzcObxq350A-Ms8JyTbaQStR8rgH4DgQYhWruHL4,3166
95
+ scikit_learn_intelex-2024.4.0.data/data/Lib/site-packages/sklearnex/utils/parallel.py,sha256=VBcS-KUdyq7XpJUN6ygmNjyWtYLroghbvCxQ8nVU3YI,2085
96
+ scikit_learn_intelex-2024.4.0.data/data/Lib/site-packages/sklearnex/utils/validation.py,sha256=fjfhQiKnBQnD7LCBlacMyvsrhGnlMLRXk5Q69uoZIP4,827
97
+ scikit_learn_intelex-2024.4.0.dist-info/LICENSE.txt,sha256=rVeK6nE7qRmAwbwjnG9ENguRsDgzEkFn5MZL2IU6QgY,10999
98
+ scikit_learn_intelex-2024.4.0.dist-info/METADATA,sha256=o67KC09tI-M1vRew0u70i6UExD3Vnzu3dYRrbLFSTAo,12448
99
+ scikit_learn_intelex-2024.4.0.dist-info/WHEEL,sha256=EL6xoqqjbROFcjnsV_38AkJ5UOTZv-vTn6od7mqm5rc,99
100
+ scikit_learn_intelex-2024.4.0.dist-info/top_level.txt,sha256=AbpHGcgLb-kRsJGnwFEktk7uzpZOCcBY74-YBdrKVGs,1
101
+ scikit_learn_intelex-2024.4.0.dist-info/RECORD,,