scikit-learn-intelex 2024.3.0__py312-none-win_amd64.whl → 2024.5.0__py312-none-win_amd64.whl
This diff represents the content of publicly available package versions that have been released to one of the supported registries. The information contained in this diff is provided for informational purposes only and reflects changes between package versions as they appear in their respective public registries.
Potentially problematic release.
This version of scikit-learn-intelex might be problematic. Click here for more details.
- {scikit_learn_intelex-2024.3.0.data → scikit_learn_intelex-2024.5.0.data}/data/Lib/site-packages/sklearnex/_device_offload.py +39 -5
- {scikit_learn_intelex-2024.3.0.data/data/Lib/site-packages/sklearnex/spmd → scikit_learn_intelex-2024.5.0.data/data/Lib/site-packages/sklearnex}/basic_statistics/__init__.py +2 -1
- scikit_learn_intelex-2024.5.0.data/data/Lib/site-packages/sklearnex/basic_statistics/incremental_basic_statistics.py +288 -0
- scikit_learn_intelex-2024.5.0.data/data/Lib/site-packages/sklearnex/basic_statistics/tests/test_incremental_basic_statistics.py +384 -0
- scikit_learn_intelex-2024.5.0.data/data/Lib/site-packages/sklearnex/covariance/incremental_covariance.py +317 -0
- {scikit_learn_intelex-2024.3.0.data → scikit_learn_intelex-2024.5.0.data}/data/Lib/site-packages/sklearnex/covariance/tests/test_incremental_covariance.py +54 -17
- {scikit_learn_intelex-2024.3.0.data → scikit_learn_intelex-2024.5.0.data}/data/Lib/site-packages/sklearnex/decomposition/pca.py +71 -19
- {scikit_learn_intelex-2024.3.0.data → scikit_learn_intelex-2024.5.0.data}/data/Lib/site-packages/sklearnex/decomposition/tests/test_pca.py +2 -2
- {scikit_learn_intelex-2024.3.0.data → scikit_learn_intelex-2024.5.0.data}/data/Lib/site-packages/sklearnex/dispatcher.py +33 -2
- {scikit_learn_intelex-2024.3.0.data → scikit_learn_intelex-2024.5.0.data}/data/Lib/site-packages/sklearnex/ensemble/_forest.py +73 -79
- {scikit_learn_intelex-2024.3.0.data → scikit_learn_intelex-2024.5.0.data}/data/Lib/site-packages/sklearnex/linear_model/__init__.py +5 -3
- scikit_learn_intelex-2024.5.0.data/data/Lib/site-packages/sklearnex/linear_model/incremental_linear.py +387 -0
- scikit_learn_intelex-2024.5.0.data/data/Lib/site-packages/sklearnex/linear_model/linear.py +316 -0
- {scikit_learn_intelex-2024.3.0.data → scikit_learn_intelex-2024.5.0.data}/data/Lib/site-packages/sklearnex/linear_model/logistic_regression.py +50 -9
- scikit_learn_intelex-2024.5.0.data/data/Lib/site-packages/sklearnex/linear_model/tests/test_incremental_linear.py +200 -0
- {scikit_learn_intelex-2024.3.0.data → scikit_learn_intelex-2024.5.0.data}/data/Lib/site-packages/sklearnex/linear_model/tests/test_linear.py +40 -5
- {scikit_learn_intelex-2024.3.0.data → scikit_learn_intelex-2024.5.0.data}/data/Lib/site-packages/sklearnex/neighbors/_lof.py +53 -36
- {scikit_learn_intelex-2024.3.0.data → scikit_learn_intelex-2024.5.0.data}/data/Lib/site-packages/sklearnex/neighbors/common.py +4 -1
- {scikit_learn_intelex-2024.3.0.data → scikit_learn_intelex-2024.5.0.data}/data/Lib/site-packages/sklearnex/neighbors/knn_classification.py +37 -122
- {scikit_learn_intelex-2024.3.0.data → scikit_learn_intelex-2024.5.0.data}/data/Lib/site-packages/sklearnex/neighbors/knn_regression.py +10 -117
- {scikit_learn_intelex-2024.3.0.data → scikit_learn_intelex-2024.5.0.data}/data/Lib/site-packages/sklearnex/neighbors/knn_unsupervised.py +6 -78
- {scikit_learn_intelex-2024.3.0.data → scikit_learn_intelex-2024.5.0.data}/data/Lib/site-packages/sklearnex/neighbors/tests/test_neighbors.py +2 -2
- {scikit_learn_intelex-2024.3.0.data → scikit_learn_intelex-2024.5.0.data}/data/Lib/site-packages/sklearnex/preview/cluster/k_means.py +5 -73
- {scikit_learn_intelex-2024.3.0.data → scikit_learn_intelex-2024.5.0.data}/data/Lib/site-packages/sklearnex/preview/covariance/covariance.py +6 -5
- {scikit_learn_intelex-2024.3.0.data → scikit_learn_intelex-2024.5.0.data}/data/Lib/site-packages/sklearnex/preview/covariance/tests/test_covariance.py +18 -5
- {scikit_learn_intelex-2024.3.0.data → scikit_learn_intelex-2024.5.0.data}/data/Lib/site-packages/sklearnex/svm/_common.py +4 -7
- {scikit_learn_intelex-2024.3.0.data → scikit_learn_intelex-2024.5.0.data}/data/Lib/site-packages/sklearnex/svm/nusvc.py +66 -50
- {scikit_learn_intelex-2024.3.0.data → scikit_learn_intelex-2024.5.0.data}/data/Lib/site-packages/sklearnex/svm/nusvr.py +3 -49
- {scikit_learn_intelex-2024.3.0.data → scikit_learn_intelex-2024.5.0.data}/data/Lib/site-packages/sklearnex/svm/svc.py +66 -51
- {scikit_learn_intelex-2024.3.0.data → scikit_learn_intelex-2024.5.0.data}/data/Lib/site-packages/sklearnex/svm/svr.py +3 -49
- {scikit_learn_intelex-2024.3.0.data → scikit_learn_intelex-2024.5.0.data}/data/Lib/site-packages/sklearnex/tests/_utils.py +34 -16
- {scikit_learn_intelex-2024.3.0.data → scikit_learn_intelex-2024.5.0.data}/data/Lib/site-packages/sklearnex/tests/test_memory_usage.py +5 -1
- {scikit_learn_intelex-2024.3.0.data → scikit_learn_intelex-2024.5.0.data}/data/Lib/site-packages/sklearnex/tests/test_n_jobs_support.py +12 -2
- {scikit_learn_intelex-2024.3.0.data → scikit_learn_intelex-2024.5.0.data}/data/Lib/site-packages/sklearnex/tests/test_patching.py +87 -58
- {scikit_learn_intelex-2024.3.0.data → scikit_learn_intelex-2024.5.0.data}/data/Lib/site-packages/sklearnex/tests/test_run_to_run_stability_tests.py +1 -1
- {scikit_learn_intelex-2024.3.0.data → scikit_learn_intelex-2024.5.0.data}/data/Lib/site-packages/sklearnex/utils/__init__.py +2 -1
- scikit_learn_intelex-2024.5.0.data/data/Lib/site-packages/sklearnex/utils/_namespace.py +97 -0
- scikit_learn_intelex-2024.5.0.data/data/Lib/site-packages/sklearnex/utils/tests/test_finite.py +89 -0
- {scikit_learn_intelex-2024.3.0.dist-info → scikit_learn_intelex-2024.5.0.dist-info}/METADATA +227 -230
- scikit_learn_intelex-2024.5.0.dist-info/RECORD +104 -0
- {scikit_learn_intelex-2024.3.0.dist-info → scikit_learn_intelex-2024.5.0.dist-info}/WHEEL +1 -1
- scikit_learn_intelex-2024.3.0.data/data/Lib/site-packages/sklearnex/covariance/incremental_covariance.py +0 -130
- scikit_learn_intelex-2024.3.0.data/data/Lib/site-packages/sklearnex/linear_model/linear.py +0 -381
- scikit_learn_intelex-2024.3.0.dist-info/RECORD +0 -98
- {scikit_learn_intelex-2024.3.0.data → scikit_learn_intelex-2024.5.0.data}/data/Lib/site-packages/sklearnex/__init__.py +0 -0
- {scikit_learn_intelex-2024.3.0.data → scikit_learn_intelex-2024.5.0.data}/data/Lib/site-packages/sklearnex/__main__.py +0 -0
- {scikit_learn_intelex-2024.3.0.data → scikit_learn_intelex-2024.5.0.data}/data/Lib/site-packages/sklearnex/_config.py +0 -0
- {scikit_learn_intelex-2024.3.0.data → scikit_learn_intelex-2024.5.0.data}/data/Lib/site-packages/sklearnex/_utils.py +0 -0
- {scikit_learn_intelex-2024.3.0.data → scikit_learn_intelex-2024.5.0.data}/data/Lib/site-packages/sklearnex/basic_statistics/basic_statistics.py +0 -0
- {scikit_learn_intelex-2024.3.0.data → scikit_learn_intelex-2024.5.0.data}/data/Lib/site-packages/sklearnex/cluster/__init__.py +0 -0
- {scikit_learn_intelex-2024.3.0.data → scikit_learn_intelex-2024.5.0.data}/data/Lib/site-packages/sklearnex/cluster/dbscan.py +0 -0
- {scikit_learn_intelex-2024.3.0.data → scikit_learn_intelex-2024.5.0.data}/data/Lib/site-packages/sklearnex/cluster/k_means.py +0 -0
- {scikit_learn_intelex-2024.3.0.data → scikit_learn_intelex-2024.5.0.data}/data/Lib/site-packages/sklearnex/cluster/tests/test_dbscan.py +0 -0
- {scikit_learn_intelex-2024.3.0.data → scikit_learn_intelex-2024.5.0.data}/data/Lib/site-packages/sklearnex/cluster/tests/test_kmeans.py +0 -0
- {scikit_learn_intelex-2024.3.0.data → scikit_learn_intelex-2024.5.0.data}/data/Lib/site-packages/sklearnex/conftest.py +0 -0
- {scikit_learn_intelex-2024.3.0.data → scikit_learn_intelex-2024.5.0.data}/data/Lib/site-packages/sklearnex/covariance/__init__.py +0 -0
- {scikit_learn_intelex-2024.3.0.data → scikit_learn_intelex-2024.5.0.data}/data/Lib/site-packages/sklearnex/decomposition/__init__.py +0 -0
- {scikit_learn_intelex-2024.3.0.data → scikit_learn_intelex-2024.5.0.data}/data/Lib/site-packages/sklearnex/doc/third-party-programs.txt +0 -0
- {scikit_learn_intelex-2024.3.0.data → scikit_learn_intelex-2024.5.0.data}/data/Lib/site-packages/sklearnex/ensemble/__init__.py +0 -0
- {scikit_learn_intelex-2024.3.0.data → scikit_learn_intelex-2024.5.0.data}/data/Lib/site-packages/sklearnex/ensemble/tests/test_forest.py +0 -0
- {scikit_learn_intelex-2024.3.0.data → scikit_learn_intelex-2024.5.0.data}/data/Lib/site-packages/sklearnex/glob/__main__.py +0 -0
- {scikit_learn_intelex-2024.3.0.data → scikit_learn_intelex-2024.5.0.data}/data/Lib/site-packages/sklearnex/glob/dispatcher.py +0 -0
- {scikit_learn_intelex-2024.3.0.data → scikit_learn_intelex-2024.5.0.data}/data/Lib/site-packages/sklearnex/linear_model/coordinate_descent.py +0 -0
- {scikit_learn_intelex-2024.3.0.data → scikit_learn_intelex-2024.5.0.data}/data/Lib/site-packages/sklearnex/linear_model/logistic_path.py +0 -0
- {scikit_learn_intelex-2024.3.0.data → scikit_learn_intelex-2024.5.0.data}/data/Lib/site-packages/sklearnex/linear_model/ridge.py +0 -0
- {scikit_learn_intelex-2024.3.0.data → scikit_learn_intelex-2024.5.0.data}/data/Lib/site-packages/sklearnex/linear_model/tests/test_logreg.py +0 -0
- {scikit_learn_intelex-2024.3.0.data → scikit_learn_intelex-2024.5.0.data}/data/Lib/site-packages/sklearnex/manifold/__init__.py +0 -0
- {scikit_learn_intelex-2024.3.0.data → scikit_learn_intelex-2024.5.0.data}/data/Lib/site-packages/sklearnex/manifold/t_sne.py +0 -0
- {scikit_learn_intelex-2024.3.0.data → scikit_learn_intelex-2024.5.0.data}/data/Lib/site-packages/sklearnex/manifold/tests/test_tsne.py +0 -0
- {scikit_learn_intelex-2024.3.0.data → scikit_learn_intelex-2024.5.0.data}/data/Lib/site-packages/sklearnex/metrics/__init__.py +0 -0
- {scikit_learn_intelex-2024.3.0.data → scikit_learn_intelex-2024.5.0.data}/data/Lib/site-packages/sklearnex/metrics/pairwise.py +0 -0
- {scikit_learn_intelex-2024.3.0.data → scikit_learn_intelex-2024.5.0.data}/data/Lib/site-packages/sklearnex/metrics/ranking.py +0 -0
- {scikit_learn_intelex-2024.3.0.data → scikit_learn_intelex-2024.5.0.data}/data/Lib/site-packages/sklearnex/metrics/tests/test_metrics.py +0 -0
- {scikit_learn_intelex-2024.3.0.data → scikit_learn_intelex-2024.5.0.data}/data/Lib/site-packages/sklearnex/model_selection/__init__.py +0 -0
- {scikit_learn_intelex-2024.3.0.data → scikit_learn_intelex-2024.5.0.data}/data/Lib/site-packages/sklearnex/model_selection/split.py +0 -0
- {scikit_learn_intelex-2024.3.0.data → scikit_learn_intelex-2024.5.0.data}/data/Lib/site-packages/sklearnex/model_selection/tests/test_model_selection.py +0 -0
- {scikit_learn_intelex-2024.3.0.data → scikit_learn_intelex-2024.5.0.data}/data/Lib/site-packages/sklearnex/neighbors/__init__.py +0 -0
- {scikit_learn_intelex-2024.3.0.data → scikit_learn_intelex-2024.5.0.data}/data/Lib/site-packages/sklearnex/preview/__init__.py +0 -0
- {scikit_learn_intelex-2024.3.0.data → scikit_learn_intelex-2024.5.0.data}/data/Lib/site-packages/sklearnex/preview/cluster/__init__.py +0 -0
- {scikit_learn_intelex-2024.3.0.data → scikit_learn_intelex-2024.5.0.data}/data/Lib/site-packages/sklearnex/preview/cluster/_common.py +0 -0
- {scikit_learn_intelex-2024.3.0.data → scikit_learn_intelex-2024.5.0.data}/data/Lib/site-packages/sklearnex/preview/covariance/__init__.py +0 -0
- {scikit_learn_intelex-2024.3.0.data → scikit_learn_intelex-2024.5.0.data}/data/Lib/site-packages/sklearnex/spmd/__init__.py +0 -0
- {scikit_learn_intelex-2024.3.0.data/data/Lib/site-packages/sklearnex → scikit_learn_intelex-2024.5.0.data/data/Lib/site-packages/sklearnex/spmd}/basic_statistics/__init__.py +0 -0
- {scikit_learn_intelex-2024.3.0.data → scikit_learn_intelex-2024.5.0.data}/data/Lib/site-packages/sklearnex/spmd/basic_statistics/basic_statistics.py +0 -0
- {scikit_learn_intelex-2024.3.0.data → scikit_learn_intelex-2024.5.0.data}/data/Lib/site-packages/sklearnex/spmd/cluster/__init__.py +0 -0
- {scikit_learn_intelex-2024.3.0.data → scikit_learn_intelex-2024.5.0.data}/data/Lib/site-packages/sklearnex/spmd/cluster/dbscan.py +0 -0
- {scikit_learn_intelex-2024.3.0.data → scikit_learn_intelex-2024.5.0.data}/data/Lib/site-packages/sklearnex/spmd/cluster/kmeans.py +0 -0
- {scikit_learn_intelex-2024.3.0.data → scikit_learn_intelex-2024.5.0.data}/data/Lib/site-packages/sklearnex/spmd/covariance/__init__.py +0 -0
- {scikit_learn_intelex-2024.3.0.data → scikit_learn_intelex-2024.5.0.data}/data/Lib/site-packages/sklearnex/spmd/covariance/covariance.py +0 -0
- {scikit_learn_intelex-2024.3.0.data → scikit_learn_intelex-2024.5.0.data}/data/Lib/site-packages/sklearnex/spmd/decomposition/__init__.py +0 -0
- {scikit_learn_intelex-2024.3.0.data → scikit_learn_intelex-2024.5.0.data}/data/Lib/site-packages/sklearnex/spmd/decomposition/pca.py +0 -0
- {scikit_learn_intelex-2024.3.0.data → scikit_learn_intelex-2024.5.0.data}/data/Lib/site-packages/sklearnex/spmd/ensemble/__init__.py +0 -0
- {scikit_learn_intelex-2024.3.0.data → scikit_learn_intelex-2024.5.0.data}/data/Lib/site-packages/sklearnex/spmd/ensemble/forest.py +0 -0
- {scikit_learn_intelex-2024.3.0.data → scikit_learn_intelex-2024.5.0.data}/data/Lib/site-packages/sklearnex/spmd/linear_model/__init__.py +0 -0
- {scikit_learn_intelex-2024.3.0.data → scikit_learn_intelex-2024.5.0.data}/data/Lib/site-packages/sklearnex/spmd/linear_model/linear_model.py +0 -0
- {scikit_learn_intelex-2024.3.0.data → scikit_learn_intelex-2024.5.0.data}/data/Lib/site-packages/sklearnex/spmd/linear_model/logistic_regression.py +0 -0
- {scikit_learn_intelex-2024.3.0.data → scikit_learn_intelex-2024.5.0.data}/data/Lib/site-packages/sklearnex/spmd/neighbors/__init__.py +0 -0
- {scikit_learn_intelex-2024.3.0.data → scikit_learn_intelex-2024.5.0.data}/data/Lib/site-packages/sklearnex/spmd/neighbors/neighbors.py +0 -0
- {scikit_learn_intelex-2024.3.0.data → scikit_learn_intelex-2024.5.0.data}/data/Lib/site-packages/sklearnex/svm/__init__.py +0 -0
- {scikit_learn_intelex-2024.3.0.data → scikit_learn_intelex-2024.5.0.data}/data/Lib/site-packages/sklearnex/svm/tests/test_svm.py +0 -0
- {scikit_learn_intelex-2024.3.0.data → scikit_learn_intelex-2024.5.0.data}/data/Lib/site-packages/sklearnex/tests/test_config.py +0 -0
- {scikit_learn_intelex-2024.3.0.data → scikit_learn_intelex-2024.5.0.data}/data/Lib/site-packages/sklearnex/tests/test_monkeypatch.py +0 -0
- {scikit_learn_intelex-2024.3.0.data → scikit_learn_intelex-2024.5.0.data}/data/Lib/site-packages/sklearnex/tests/test_parallel.py +0 -0
- {scikit_learn_intelex-2024.3.0.data → scikit_learn_intelex-2024.5.0.data}/data/Lib/site-packages/sklearnex/utils/parallel.py +0 -0
- {scikit_learn_intelex-2024.3.0.data → scikit_learn_intelex-2024.5.0.data}/data/Lib/site-packages/sklearnex/utils/validation.py +0 -0
- {scikit_learn_intelex-2024.3.0.dist-info → scikit_learn_intelex-2024.5.0.dist-info}/LICENSE.txt +0 -0
- {scikit_learn_intelex-2024.3.0.dist-info → scikit_learn_intelex-2024.5.0.dist-info}/top_level.txt +0 -0
|
@@ -1,130 +0,0 @@
|
|
|
1
|
-
# ===============================================================================
|
|
2
|
-
# Copyright 2024 Intel Corporation
|
|
3
|
-
#
|
|
4
|
-
# Licensed under the Apache License, Version 2.0 (the "License");
|
|
5
|
-
# you may not use this file except in compliance with the License.
|
|
6
|
-
# You may obtain a copy of the License at
|
|
7
|
-
#
|
|
8
|
-
# http://www.apache.org/licenses/LICENSE-2.0
|
|
9
|
-
#
|
|
10
|
-
# Unless required by applicable law or agreed to in writing, software
|
|
11
|
-
# distributed under the License is distributed on an "AS IS" BASIS,
|
|
12
|
-
# WITHOUT WARRANTIES OR CONDITIONS OF ANY KIND, either express or implied.
|
|
13
|
-
# See the License for the specific language governing permissions and
|
|
14
|
-
# limitations under the License.
|
|
15
|
-
# ===============================================================================
|
|
16
|
-
|
|
17
|
-
import numpy as np
|
|
18
|
-
from sklearn.utils import check_array, gen_batches
|
|
19
|
-
|
|
20
|
-
from daal4py.sklearn._n_jobs_support import control_n_jobs
|
|
21
|
-
from onedal._device_offload import support_usm_ndarray
|
|
22
|
-
from onedal.covariance import (
|
|
23
|
-
IncrementalEmpiricalCovariance as onedal_IncrementalEmpiricalCovariance,
|
|
24
|
-
)
|
|
25
|
-
|
|
26
|
-
|
|
27
|
-
@control_n_jobs(decorated_methods=["partial_fit"])
|
|
28
|
-
class IncrementalEmpiricalCovariance:
|
|
29
|
-
"""
|
|
30
|
-
Incremental estimator for covariance.
|
|
31
|
-
Allows to compute empirical covariance estimated by maximum
|
|
32
|
-
likelihood method if data are splitted into batches.
|
|
33
|
-
|
|
34
|
-
Parameters
|
|
35
|
-
----------
|
|
36
|
-
batch_size : int, default=None
|
|
37
|
-
The number of samples to use for each batch. Only used when calling
|
|
38
|
-
``fit``. If ``batch_size`` is ``None``, then ``batch_size``
|
|
39
|
-
is inferred from the data and set to ``5 * n_features``, to provide a
|
|
40
|
-
balance between approximation accuracy and memory consumption.
|
|
41
|
-
|
|
42
|
-
Attributes
|
|
43
|
-
----------
|
|
44
|
-
location_ : ndarray of shape (n_features,)
|
|
45
|
-
Estimated location, i.e. the estimated mean.
|
|
46
|
-
|
|
47
|
-
covariance_ : ndarray of shape (n_features, n_features)
|
|
48
|
-
Estimated covariance matrix
|
|
49
|
-
"""
|
|
50
|
-
|
|
51
|
-
_onedal_incremental_covariance = staticmethod(onedal_IncrementalEmpiricalCovariance)
|
|
52
|
-
|
|
53
|
-
def __init__(self, batch_size=None):
|
|
54
|
-
self._need_to_finalize = False # If True then finalize compute should
|
|
55
|
-
# be called to obtain covariance_ or location_ from partial compute data
|
|
56
|
-
self.batch_size = batch_size
|
|
57
|
-
|
|
58
|
-
def _onedal_finalize_fit(self):
|
|
59
|
-
assert hasattr(self, "_onedal_estimator")
|
|
60
|
-
self._onedal_estimator.finalize_fit()
|
|
61
|
-
self._need_to_finalize = False
|
|
62
|
-
|
|
63
|
-
def _onedal_partial_fit(self, X, queue):
|
|
64
|
-
onedal_params = {
|
|
65
|
-
"method": "dense",
|
|
66
|
-
"bias": True,
|
|
67
|
-
}
|
|
68
|
-
if not hasattr(self, "_onedal_estimator"):
|
|
69
|
-
self._onedal_estimator = self._onedal_incremental_covariance(**onedal_params)
|
|
70
|
-
self._onedal_estimator.partial_fit(X, queue)
|
|
71
|
-
self._need_to_finalize = True
|
|
72
|
-
|
|
73
|
-
@property
|
|
74
|
-
def covariance_(self):
|
|
75
|
-
if self._need_to_finalize:
|
|
76
|
-
self._onedal_finalize_fit()
|
|
77
|
-
return self._onedal_estimator.covariance_
|
|
78
|
-
|
|
79
|
-
@property
|
|
80
|
-
def location_(self):
|
|
81
|
-
if self._need_to_finalize:
|
|
82
|
-
self._onedal_finalize_fit()
|
|
83
|
-
return self._onedal_estimator.location_
|
|
84
|
-
|
|
85
|
-
@support_usm_ndarray()
|
|
86
|
-
def partial_fit(self, X, queue=None):
|
|
87
|
-
"""
|
|
88
|
-
Incremental fit with X. All of X is processed as a single batch.
|
|
89
|
-
|
|
90
|
-
Parameters
|
|
91
|
-
----------
|
|
92
|
-
X : array-like of shape (n_samples, n_features)
|
|
93
|
-
Training data, where `n_samples` is the number of samples and
|
|
94
|
-
`n_features` is the number of features.
|
|
95
|
-
|
|
96
|
-
Returns
|
|
97
|
-
-------
|
|
98
|
-
self : object
|
|
99
|
-
Returns the instance itself.
|
|
100
|
-
"""
|
|
101
|
-
X = check_array(X, dtype=[np.float64, np.float32])
|
|
102
|
-
self._onedal_partial_fit(X, queue)
|
|
103
|
-
return self
|
|
104
|
-
|
|
105
|
-
def fit(self, X, queue=None):
|
|
106
|
-
"""
|
|
107
|
-
Fit the model with X, using minibatches of size batch_size.
|
|
108
|
-
|
|
109
|
-
Parameters
|
|
110
|
-
----------
|
|
111
|
-
X : array-like of shape (n_samples, n_features)
|
|
112
|
-
Training data, where `n_samples` is the number of samples and
|
|
113
|
-
`n_features` is the number of features.
|
|
114
|
-
|
|
115
|
-
Returns
|
|
116
|
-
-------
|
|
117
|
-
self : object
|
|
118
|
-
Returns the instance itself.
|
|
119
|
-
"""
|
|
120
|
-
n_samples, n_features = X.shape
|
|
121
|
-
if self.batch_size is None:
|
|
122
|
-
batch_size_ = 5 * n_features
|
|
123
|
-
else:
|
|
124
|
-
batch_size_ = self.batch_size
|
|
125
|
-
for batch in gen_batches(n_samples, batch_size_):
|
|
126
|
-
X_batch = X[batch]
|
|
127
|
-
self.partial_fit(X_batch, queue=queue)
|
|
128
|
-
|
|
129
|
-
self._onedal_finalize_fit()
|
|
130
|
-
return self
|
|
@@ -1,381 +0,0 @@
|
|
|
1
|
-
# ===============================================================================
|
|
2
|
-
# Copyright 2023 Intel Corporation
|
|
3
|
-
#
|
|
4
|
-
# Licensed under the Apache License, Version 2.0 (the "License");
|
|
5
|
-
# you may not use this file except in compliance with the License.
|
|
6
|
-
# You may obtain a copy of the License at
|
|
7
|
-
#
|
|
8
|
-
# http://www.apache.org/licenses/LICENSE-2.0
|
|
9
|
-
#
|
|
10
|
-
# Unless required by applicable law or agreed to in writing, software
|
|
11
|
-
# distributed under the License is distributed on an "AS IS" BASIS,
|
|
12
|
-
# WITHOUT WARRANTIES OR CONDITIONS OF ANY KIND, either express or implied.
|
|
13
|
-
# See the License for the specific language governing permissions and
|
|
14
|
-
# limitations under the License.
|
|
15
|
-
# ===============================================================================
|
|
16
|
-
|
|
17
|
-
import logging
|
|
18
|
-
from abc import ABC
|
|
19
|
-
|
|
20
|
-
from daal4py.sklearn._utils import daal_check_version
|
|
21
|
-
|
|
22
|
-
|
|
23
|
-
def get_coef(self):
|
|
24
|
-
return self._coef_
|
|
25
|
-
|
|
26
|
-
|
|
27
|
-
def set_coef(self, value):
|
|
28
|
-
self._coef_ = value
|
|
29
|
-
if hasattr(self, "_onedal_estimator"):
|
|
30
|
-
self._onedal_estimator.coef_ = value
|
|
31
|
-
if not self._is_in_fit:
|
|
32
|
-
del self._onedal_estimator._onedal_model
|
|
33
|
-
|
|
34
|
-
|
|
35
|
-
def get_intercept(self):
|
|
36
|
-
return self._intercept_
|
|
37
|
-
|
|
38
|
-
|
|
39
|
-
def set_intercept(self, value):
|
|
40
|
-
self._intercept_ = value
|
|
41
|
-
if hasattr(self, "_onedal_estimator"):
|
|
42
|
-
self._onedal_estimator.intercept_ = value
|
|
43
|
-
if not self._is_in_fit:
|
|
44
|
-
del self._onedal_estimator._onedal_model
|
|
45
|
-
|
|
46
|
-
|
|
47
|
-
class BaseLinearRegression(ABC):
|
|
48
|
-
def _save_attributes(self):
|
|
49
|
-
self.n_features_in_ = self._onedal_estimator.n_features_in_
|
|
50
|
-
self.fit_status_ = 0
|
|
51
|
-
self._coef_ = self._onedal_estimator.coef_
|
|
52
|
-
self._intercept_ = self._onedal_estimator.intercept_
|
|
53
|
-
self._sparse = False
|
|
54
|
-
|
|
55
|
-
self.coef_ = property(get_coef, set_coef)
|
|
56
|
-
self.intercept_ = property(get_intercept, set_intercept)
|
|
57
|
-
|
|
58
|
-
self._is_in_fit = True
|
|
59
|
-
self.coef_ = self._coef_
|
|
60
|
-
self.intercept_ = self._intercept_
|
|
61
|
-
self._is_in_fit = False
|
|
62
|
-
|
|
63
|
-
|
|
64
|
-
if daal_check_version((2023, "P", 100)):
|
|
65
|
-
import numpy as np
|
|
66
|
-
from sklearn.linear_model import LinearRegression as sklearn_LinearRegression
|
|
67
|
-
|
|
68
|
-
from daal4py.sklearn._n_jobs_support import control_n_jobs
|
|
69
|
-
from daal4py.sklearn._utils import get_dtype, make2d, sklearn_check_version
|
|
70
|
-
|
|
71
|
-
from .._device_offload import dispatch, wrap_output_data
|
|
72
|
-
from .._utils import (
|
|
73
|
-
PatchingConditionsChain,
|
|
74
|
-
get_patch_message,
|
|
75
|
-
register_hyperparameters,
|
|
76
|
-
)
|
|
77
|
-
from ..utils.validation import _assert_all_finite
|
|
78
|
-
|
|
79
|
-
if sklearn_check_version("1.0") and not sklearn_check_version("1.2"):
|
|
80
|
-
from sklearn.linear_model._base import _deprecate_normalize
|
|
81
|
-
|
|
82
|
-
from scipy.sparse import issparse
|
|
83
|
-
from sklearn.exceptions import NotFittedError
|
|
84
|
-
from sklearn.utils.validation import _deprecate_positional_args, check_X_y
|
|
85
|
-
|
|
86
|
-
from onedal.common.hyperparameters import get_hyperparameters
|
|
87
|
-
from onedal.linear_model import LinearRegression as onedal_LinearRegression
|
|
88
|
-
from onedal.utils import _num_features, _num_samples
|
|
89
|
-
|
|
90
|
-
@register_hyperparameters({"fit": get_hyperparameters("linear_regression", "train")})
|
|
91
|
-
@control_n_jobs(decorated_methods=["fit", "predict"])
|
|
92
|
-
class LinearRegression(sklearn_LinearRegression, BaseLinearRegression):
|
|
93
|
-
__doc__ = sklearn_LinearRegression.__doc__
|
|
94
|
-
intercept_, coef_ = None, None
|
|
95
|
-
|
|
96
|
-
if sklearn_check_version("1.2"):
|
|
97
|
-
_parameter_constraints: dict = {
|
|
98
|
-
**sklearn_LinearRegression._parameter_constraints
|
|
99
|
-
}
|
|
100
|
-
|
|
101
|
-
def __init__(
|
|
102
|
-
self,
|
|
103
|
-
fit_intercept=True,
|
|
104
|
-
copy_X=True,
|
|
105
|
-
n_jobs=None,
|
|
106
|
-
positive=False,
|
|
107
|
-
):
|
|
108
|
-
super().__init__(
|
|
109
|
-
fit_intercept=fit_intercept,
|
|
110
|
-
copy_X=copy_X,
|
|
111
|
-
n_jobs=n_jobs,
|
|
112
|
-
positive=positive,
|
|
113
|
-
)
|
|
114
|
-
|
|
115
|
-
elif sklearn_check_version("0.24"):
|
|
116
|
-
|
|
117
|
-
def __init__(
|
|
118
|
-
self,
|
|
119
|
-
fit_intercept=True,
|
|
120
|
-
normalize="deprecated" if sklearn_check_version("1.0") else False,
|
|
121
|
-
copy_X=True,
|
|
122
|
-
n_jobs=None,
|
|
123
|
-
positive=False,
|
|
124
|
-
):
|
|
125
|
-
super().__init__(
|
|
126
|
-
fit_intercept=fit_intercept,
|
|
127
|
-
normalize=normalize,
|
|
128
|
-
copy_X=copy_X,
|
|
129
|
-
n_jobs=n_jobs,
|
|
130
|
-
positive=positive,
|
|
131
|
-
)
|
|
132
|
-
|
|
133
|
-
else:
|
|
134
|
-
|
|
135
|
-
def __init__(
|
|
136
|
-
self,
|
|
137
|
-
fit_intercept=True,
|
|
138
|
-
normalize=False,
|
|
139
|
-
copy_X=True,
|
|
140
|
-
n_jobs=None,
|
|
141
|
-
):
|
|
142
|
-
super().__init__(
|
|
143
|
-
fit_intercept=fit_intercept,
|
|
144
|
-
normalize=normalize,
|
|
145
|
-
copy_X=copy_X,
|
|
146
|
-
n_jobs=n_jobs,
|
|
147
|
-
)
|
|
148
|
-
|
|
149
|
-
def fit(self, X, y, sample_weight=None):
|
|
150
|
-
"""
|
|
151
|
-
Fit linear model.
|
|
152
|
-
Parameters
|
|
153
|
-
----------
|
|
154
|
-
X : {array-like, sparse matrix} of shape (n_samples, n_features)
|
|
155
|
-
Training data.
|
|
156
|
-
y : array-like of shape (n_samples,) or (n_samples, n_targets)
|
|
157
|
-
Target values. Will be cast to X's dtype if necessary.
|
|
158
|
-
sample_weight : array-like of shape (n_samples,), default=None
|
|
159
|
-
Individual weights for each sample.
|
|
160
|
-
.. versionadded:: 0.17
|
|
161
|
-
parameter *sample_weight* support to LinearRegression.
|
|
162
|
-
Returns
|
|
163
|
-
-------
|
|
164
|
-
self : object
|
|
165
|
-
Fitted Estimator.
|
|
166
|
-
"""
|
|
167
|
-
if sklearn_check_version("1.0"):
|
|
168
|
-
self._check_feature_names(X, reset=True)
|
|
169
|
-
if sklearn_check_version("1.2"):
|
|
170
|
-
self._validate_params()
|
|
171
|
-
|
|
172
|
-
dispatch(
|
|
173
|
-
self,
|
|
174
|
-
"fit",
|
|
175
|
-
{
|
|
176
|
-
"onedal": self.__class__._onedal_fit,
|
|
177
|
-
"sklearn": sklearn_LinearRegression.fit,
|
|
178
|
-
},
|
|
179
|
-
X,
|
|
180
|
-
y,
|
|
181
|
-
sample_weight,
|
|
182
|
-
)
|
|
183
|
-
return self
|
|
184
|
-
|
|
185
|
-
@wrap_output_data
|
|
186
|
-
def predict(self, X):
|
|
187
|
-
"""
|
|
188
|
-
Predict using the linear model.
|
|
189
|
-
Parameters
|
|
190
|
-
----------
|
|
191
|
-
X : array-like or sparse matrix, shape (n_samples, n_features)
|
|
192
|
-
Samples.
|
|
193
|
-
Returns
|
|
194
|
-
-------
|
|
195
|
-
C : array, shape (n_samples, n_targets)
|
|
196
|
-
Returns predicted values.
|
|
197
|
-
"""
|
|
198
|
-
if sklearn_check_version("1.0"):
|
|
199
|
-
self._check_feature_names(X, reset=False)
|
|
200
|
-
return dispatch(
|
|
201
|
-
self,
|
|
202
|
-
"predict",
|
|
203
|
-
{
|
|
204
|
-
"onedal": self.__class__._onedal_predict,
|
|
205
|
-
"sklearn": sklearn_LinearRegression.predict,
|
|
206
|
-
},
|
|
207
|
-
X,
|
|
208
|
-
)
|
|
209
|
-
|
|
210
|
-
def _test_type_and_finiteness(self, X_in):
|
|
211
|
-
X = X_in if isinstance(X_in, np.ndarray) else np.asarray(X_in)
|
|
212
|
-
|
|
213
|
-
dtype = X.dtype
|
|
214
|
-
if "complex" in str(type(dtype)):
|
|
215
|
-
return False
|
|
216
|
-
|
|
217
|
-
try:
|
|
218
|
-
_assert_all_finite(X)
|
|
219
|
-
except BaseException:
|
|
220
|
-
return False
|
|
221
|
-
return True
|
|
222
|
-
|
|
223
|
-
def _onedal_fit_supported(self, method_name, *data):
|
|
224
|
-
assert method_name == "fit"
|
|
225
|
-
assert len(data) == 3
|
|
226
|
-
X, y, sample_weight = data
|
|
227
|
-
|
|
228
|
-
class_name = self.__class__.__name__
|
|
229
|
-
patching_status = PatchingConditionsChain(
|
|
230
|
-
f"sklearn.linear_model.{class_name}.fit"
|
|
231
|
-
)
|
|
232
|
-
|
|
233
|
-
normalize_is_set = (
|
|
234
|
-
hasattr(self, "normalize")
|
|
235
|
-
and self.normalize
|
|
236
|
-
and self.normalize != "deprecated"
|
|
237
|
-
)
|
|
238
|
-
positive_is_set = hasattr(self, "positive") and self.positive
|
|
239
|
-
|
|
240
|
-
n_samples = _num_samples(X)
|
|
241
|
-
n_features = _num_features(X, fallback_1d=True)
|
|
242
|
-
|
|
243
|
-
# Check if equations are well defined
|
|
244
|
-
is_good_for_onedal = n_samples > (n_features + int(self.fit_intercept))
|
|
245
|
-
|
|
246
|
-
dal_ready = patching_status.and_conditions(
|
|
247
|
-
[
|
|
248
|
-
(sample_weight is None, "Sample weight is not supported."),
|
|
249
|
-
(
|
|
250
|
-
not issparse(X) and not issparse(y),
|
|
251
|
-
"Sparse input is not supported.",
|
|
252
|
-
),
|
|
253
|
-
(not normalize_is_set, "Normalization is not supported."),
|
|
254
|
-
(
|
|
255
|
-
not positive_is_set,
|
|
256
|
-
"Forced positive coefficients are not supported.",
|
|
257
|
-
),
|
|
258
|
-
(
|
|
259
|
-
is_good_for_onedal,
|
|
260
|
-
"The shape of X (fitting) does not satisfy oneDAL requirements:."
|
|
261
|
-
"Number of features + 1 >= number of samples.",
|
|
262
|
-
),
|
|
263
|
-
]
|
|
264
|
-
)
|
|
265
|
-
if not dal_ready:
|
|
266
|
-
return patching_status
|
|
267
|
-
|
|
268
|
-
if not patching_status.and_condition(
|
|
269
|
-
self._test_type_and_finiteness(X), "Input X is not supported."
|
|
270
|
-
):
|
|
271
|
-
return patching_status
|
|
272
|
-
|
|
273
|
-
patching_status.and_condition(
|
|
274
|
-
self._test_type_and_finiteness(y), "Input y is not supported."
|
|
275
|
-
)
|
|
276
|
-
|
|
277
|
-
return patching_status
|
|
278
|
-
|
|
279
|
-
def _onedal_predict_supported(self, method_name, *data):
|
|
280
|
-
assert method_name == "predict"
|
|
281
|
-
assert len(data) == 1
|
|
282
|
-
|
|
283
|
-
class_name = self.__class__.__name__
|
|
284
|
-
patching_status = PatchingConditionsChain(
|
|
285
|
-
f"sklearn.linear_model.{class_name}.predict"
|
|
286
|
-
)
|
|
287
|
-
|
|
288
|
-
n_samples = _num_samples(*data)
|
|
289
|
-
model_is_sparse = issparse(self.coef_) or (
|
|
290
|
-
self.fit_intercept and issparse(self.intercept_)
|
|
291
|
-
)
|
|
292
|
-
dal_ready = patching_status.and_conditions(
|
|
293
|
-
[
|
|
294
|
-
(n_samples > 0, "Number of samples is less than 1."),
|
|
295
|
-
(not issparse(*data), "Sparse input is not supported."),
|
|
296
|
-
(not model_is_sparse, "Sparse coefficients are not supported."),
|
|
297
|
-
(hasattr(self, "_onedal_estimator"), "oneDAL model was not trained."),
|
|
298
|
-
]
|
|
299
|
-
)
|
|
300
|
-
if not dal_ready:
|
|
301
|
-
return patching_status
|
|
302
|
-
|
|
303
|
-
patching_status.and_condition(
|
|
304
|
-
self._test_type_and_finiteness(*data), "Input X is not supported."
|
|
305
|
-
)
|
|
306
|
-
|
|
307
|
-
return patching_status
|
|
308
|
-
|
|
309
|
-
def _onedal_supported(self, method_name, *data):
|
|
310
|
-
if method_name == "fit":
|
|
311
|
-
return self._onedal_fit_supported(method_name, *data)
|
|
312
|
-
if method_name == "predict":
|
|
313
|
-
return self._onedal_predict_supported(method_name, *data)
|
|
314
|
-
raise RuntimeError(
|
|
315
|
-
f"Unknown method {method_name} in {self.__class__.__name__}"
|
|
316
|
-
)
|
|
317
|
-
|
|
318
|
-
def _onedal_gpu_supported(self, method_name, *data):
|
|
319
|
-
return self._onedal_supported(method_name, *data)
|
|
320
|
-
|
|
321
|
-
def _onedal_cpu_supported(self, method_name, *data):
|
|
322
|
-
return self._onedal_supported(method_name, *data)
|
|
323
|
-
|
|
324
|
-
def _initialize_onedal_estimator(self):
|
|
325
|
-
onedal_params = {"fit_intercept": self.fit_intercept, "copy_X": self.copy_X}
|
|
326
|
-
self._onedal_estimator = onedal_LinearRegression(**onedal_params)
|
|
327
|
-
|
|
328
|
-
def _onedal_fit(self, X, y, sample_weight, queue=None):
|
|
329
|
-
assert sample_weight is None
|
|
330
|
-
|
|
331
|
-
check_params = {
|
|
332
|
-
"X": X,
|
|
333
|
-
"y": y,
|
|
334
|
-
"dtype": [np.float64, np.float32],
|
|
335
|
-
"accept_sparse": ["csr", "csc", "coo"],
|
|
336
|
-
"y_numeric": True,
|
|
337
|
-
"multi_output": True,
|
|
338
|
-
"force_all_finite": False,
|
|
339
|
-
}
|
|
340
|
-
if sklearn_check_version("1.2"):
|
|
341
|
-
X, y = self._validate_data(**check_params)
|
|
342
|
-
else:
|
|
343
|
-
X, y = check_X_y(**check_params)
|
|
344
|
-
|
|
345
|
-
if sklearn_check_version("1.0") and not sklearn_check_version("1.2"):
|
|
346
|
-
self._normalize = _deprecate_normalize(
|
|
347
|
-
self.normalize,
|
|
348
|
-
default=False,
|
|
349
|
-
estimator_name=self.__class__.__name__,
|
|
350
|
-
)
|
|
351
|
-
|
|
352
|
-
self._initialize_onedal_estimator()
|
|
353
|
-
try:
|
|
354
|
-
self._onedal_estimator.fit(X, y, queue=queue)
|
|
355
|
-
self._save_attributes()
|
|
356
|
-
|
|
357
|
-
except RuntimeError:
|
|
358
|
-
logging.getLogger("sklearnex").info(
|
|
359
|
-
f"{self.__class__.__name__}.fit "
|
|
360
|
-
+ get_patch_message("sklearn_after_onedal")
|
|
361
|
-
)
|
|
362
|
-
|
|
363
|
-
del self._onedal_estimator
|
|
364
|
-
super().fit(X, y)
|
|
365
|
-
|
|
366
|
-
def _onedal_predict(self, X, queue=None):
|
|
367
|
-
X = self._validate_data(X, accept_sparse=False, reset=False)
|
|
368
|
-
if not hasattr(self, "_onedal_estimator"):
|
|
369
|
-
self._initialize_onedal_estimator()
|
|
370
|
-
self._onedal_estimator.coef_ = self.coef_
|
|
371
|
-
self._onedal_estimator.intercept_ = self.intercept_
|
|
372
|
-
|
|
373
|
-
return self._onedal_estimator.predict(X, queue=queue)
|
|
374
|
-
|
|
375
|
-
else:
|
|
376
|
-
from daal4py.sklearn.linear_model import LinearRegression
|
|
377
|
-
|
|
378
|
-
logging.warning(
|
|
379
|
-
"Sklearnex LinearRegression requires oneDAL version >= 2023.1 "
|
|
380
|
-
"but it was not found"
|
|
381
|
-
)
|
|
@@ -1,98 +0,0 @@
|
|
|
1
|
-
scikit_learn_intelex-2024.3.0.data/data/Lib/site-packages/sklearnex/__init__.py,sha256=DVpGCMMQcUlrOGj_iy1jk3ZhCfa0_TFISYLqaUDRqC0,1780
|
|
2
|
-
scikit_learn_intelex-2024.3.0.data/data/Lib/site-packages/sklearnex/__main__.py,sha256=Le9BJq6aLEGSSoZwJLsOADxsV89ynBfA8BcoJHk9F24,1921
|
|
3
|
-
scikit_learn_intelex-2024.3.0.data/data/Lib/site-packages/sklearnex/_config.py,sha256=6WS3UuS4-0DxIJyGn7yQMosj-mGkLybLQrg3W7dED5o,3928
|
|
4
|
-
scikit_learn_intelex-2024.3.0.data/data/Lib/site-packages/sklearnex/_device_offload.py,sha256=J0tZqj6tfvIFonWR01PadtTLgloQk_QEfXeCoqEvJlk,7710
|
|
5
|
-
scikit_learn_intelex-2024.3.0.data/data/Lib/site-packages/sklearnex/_utils.py,sha256=EV4jC3plVdndsgrfPBsJZTzggrRdYWLwOpoIRWtTXt4,3812
|
|
6
|
-
scikit_learn_intelex-2024.3.0.data/data/Lib/site-packages/sklearnex/conftest.py,sha256=ZvcfQljZNBa3zlE1iITvuacHblugVtK6X80LwNXrnWI,2130
|
|
7
|
-
scikit_learn_intelex-2024.3.0.data/data/Lib/site-packages/sklearnex/dispatcher.py,sha256=9NPax55jPByCK0zzIvvE4wtmEJ7pCMrDh7IPeP2-vZ8,14389
|
|
8
|
-
scikit_learn_intelex-2024.3.0.data/data/Lib/site-packages/sklearnex/basic_statistics/__init__.py,sha256=NA5RGlwcp27UEeCgz0ngzYYd3MAIRpxlTy86uhM2-RE,821
|
|
9
|
-
scikit_learn_intelex-2024.3.0.data/data/Lib/site-packages/sklearnex/basic_statistics/basic_statistics.py,sha256=j5jBZ3DgXjoyjCBEFfYQHyl3LgLXEWWFnNHwInThdZw,796
|
|
10
|
-
scikit_learn_intelex-2024.3.0.data/data/Lib/site-packages/sklearnex/cluster/__init__.py,sha256=TsDzdbKzEubaP86iY8a7mSW0ZQzgjzGYuPkhc5lZmlQ,853
|
|
11
|
-
scikit_learn_intelex-2024.3.0.data/data/Lib/site-packages/sklearnex/cluster/dbscan.py,sha256=JJaNVhV4dVK0xte9xzQpCAka80xVu3M7_SzmvD3k-EY,6736
|
|
12
|
-
scikit_learn_intelex-2024.3.0.data/data/Lib/site-packages/sklearnex/cluster/k_means.py,sha256=1QKcFUQcnycu8kSD8uYSaDIuedHbxZsV_gvUfcEwVAM,806
|
|
13
|
-
scikit_learn_intelex-2024.3.0.data/data/Lib/site-packages/sklearnex/cluster/tests/test_dbscan.py,sha256=AgFoKwXFVyLKLvEtJVs0qlbBs1Ci3PcRft7f-6_ENOU,1464
|
|
14
|
-
scikit_learn_intelex-2024.3.0.data/data/Lib/site-packages/sklearnex/cluster/tests/test_kmeans.py,sha256=H3a9NSHRRSASo0Eceo44Kjq6GwEoMqMzcubaNt1s1QQ,1213
|
|
15
|
-
scikit_learn_intelex-2024.3.0.data/data/Lib/site-packages/sklearnex/covariance/__init__.py,sha256=_c86wiKDGBH50ofN-_tn7lO4M2YVEWO5AHhJIfimUDk,859
|
|
16
|
-
scikit_learn_intelex-2024.3.0.data/data/Lib/site-packages/sklearnex/covariance/incremental_covariance.py,sha256=3s9gmLP48DPhlhnFcg2JB7RQ2sliSZdNroJkv8-1sIA,4526
|
|
17
|
-
scikit_learn_intelex-2024.3.0.data/data/Lib/site-packages/sklearnex/covariance/tests/test_incremental_covariance.py,sha256=JIa4p-1_RYvU2ZVLx27iz0OKp0Nwrl9sYCsT0Dlyi2I,5402
|
|
18
|
-
scikit_learn_intelex-2024.3.0.data/data/Lib/site-packages/sklearnex/decomposition/__init__.py,sha256=RJBYDWyvnn5DA-j5r4IqVdXLp6H4mdPySsSjnXhlv-U,805
|
|
19
|
-
scikit_learn_intelex-2024.3.0.data/data/Lib/site-packages/sklearnex/decomposition/pca.py,sha256=XLUUM-bGeXiFXc81uUxNEIYwQ6e5edmjQ94wqnLt_xg,12829
|
|
20
|
-
scikit_learn_intelex-2024.3.0.data/data/Lib/site-packages/sklearnex/decomposition/tests/test_pca.py,sha256=FJYMosxpQpdOo71QD0jVx47oWEhvVNdut_5EOxTyT_0,2201
|
|
21
|
-
scikit_learn_intelex-2024.3.0.data/data/Lib/site-packages/sklearnex/doc/third-party-programs.txt,sha256=qA1XbOqYkMRnp29p8VxXjfcH0kHE8NSO5s2heea83-8,21773
|
|
22
|
-
scikit_learn_intelex-2024.3.0.data/data/Lib/site-packages/sklearnex/ensemble/__init__.py,sha256=2xB2KfG7l7uJv0p3kfVhrs4KLM174SCsigZhYqwSYAA,1035
|
|
23
|
-
scikit_learn_intelex-2024.3.0.data/data/Lib/site-packages/sklearnex/ensemble/_forest.py,sha256=kOtLig8WVipa2VbgMgTQAkHkbSd5UHcz05uMJCtJ8AE,70553
|
|
24
|
-
scikit_learn_intelex-2024.3.0.data/data/Lib/site-packages/sklearnex/ensemble/tests/test_forest.py,sha256=r1GSPQuVVuWYoNB3ZLiGKfMSwq3lp5i6k-Rgr7InonQ,4456
|
|
25
|
-
scikit_learn_intelex-2024.3.0.data/data/Lib/site-packages/sklearnex/glob/__main__.py,sha256=--FAjkhh5E6a1TFOGu6_BM3MHe78jP8oSpl0xKiRtTI,2531
|
|
26
|
-
scikit_learn_intelex-2024.3.0.data/data/Lib/site-packages/sklearnex/glob/dispatcher.py,sha256=IEEPhAOCVzC2JDFvYtijbiPAbaUY5RrCAhFLRjMMe1w,3018
|
|
27
|
-
scikit_learn_intelex-2024.3.0.data/data/Lib/site-packages/sklearnex/linear_model/__init__.py,sha256=5XZDZh8R0SmT8D8ZtSjW7-MKRO7l1jOZ8CUnt_OzHe4,1047
|
|
28
|
-
scikit_learn_intelex-2024.3.0.data/data/Lib/site-packages/sklearnex/linear_model/coordinate_descent.py,sha256=uZOHIKfFlHoMlNXZCh2MAnZE30fRZlmtcF7UsZQ3Vq4,822
|
|
29
|
-
scikit_learn_intelex-2024.3.0.data/data/Lib/site-packages/sklearnex/linear_model/linear.py,sha256=ed7pNKKnRkwa-wC0haUCOGHQoPkA4AuFhKNMzmRL6Fw,13832
|
|
30
|
-
scikit_learn_intelex-2024.3.0.data/data/Lib/site-packages/sklearnex/linear_model/logistic_path.py,sha256=Nq3JPXSzE4bjamnP3gGQtsMKks2v7s6bSiuYRnFqrRw,849
|
|
31
|
-
scikit_learn_intelex-2024.3.0.data/data/Lib/site-packages/sklearnex/linear_model/logistic_regression.py,sha256=KgQ97a7-4ywoRakCUlqPxp-0s4EMZr2XTah-NupKUUY,12990
|
|
32
|
-
scikit_learn_intelex-2024.3.0.data/data/Lib/site-packages/sklearnex/linear_model/ridge.py,sha256=0oxlM5McYYvl0KxK9OIGJKM6lOADuFSPTdfx-efJNTI,810
|
|
33
|
-
scikit_learn_intelex-2024.3.0.data/data/Lib/site-packages/sklearnex/linear_model/tests/test_linear.py,sha256=li9LLWgap6YCwvNiHQ9yHduvUIsK1lpXfuVNR3dLwig,3200
|
|
34
|
-
scikit_learn_intelex-2024.3.0.data/data/Lib/site-packages/sklearnex/linear_model/tests/test_logreg.py,sha256=mUYDwTDUekERlzxjnVeOeCUcNv4KJAXdTIiELZNSaDc,3283
|
|
35
|
-
scikit_learn_intelex-2024.3.0.data/data/Lib/site-packages/sklearnex/manifold/__init__.py,sha256=3FU5fY1YvHAyNeSlUHsZfPnAbvlAUtZpum0Obmok2KE,809
|
|
36
|
-
scikit_learn_intelex-2024.3.0.data/data/Lib/site-packages/sklearnex/manifold/t_sne.py,sha256=U6F_dGB6taVuEJvTnVBWD-sri3x3m0Khu3HI4wXidhg,805
|
|
37
|
-
scikit_learn_intelex-2024.3.0.data/data/Lib/site-packages/sklearnex/manifold/tests/test_tsne.py,sha256=SNqe1yg45mL4qIsxpX5hDpBsIyrv9r__6wfrerjp3yU,1063
|
|
38
|
-
scikit_learn_intelex-2024.3.0.data/data/Lib/site-packages/sklearnex/metrics/__init__.py,sha256=EHOCTU9RERa0Rrkr4dgmyO9ippbN5kjH_FwK3BqIROc,907
|
|
39
|
-
scikit_learn_intelex-2024.3.0.data/data/Lib/site-packages/sklearnex/metrics/pairwise.py,sha256=5T_Vcbiadzi7oo0hq6vLl_BHQzXOmDsn5pHaMCPSHd8,818
|
|
40
|
-
scikit_learn_intelex-2024.3.0.data/data/Lib/site-packages/sklearnex/metrics/ranking.py,sha256=rjJxQntblbegSZRwDsOOy2ntIYBqlnV8NM46IAc0MiE,813
|
|
41
|
-
scikit_learn_intelex-2024.3.0.data/data/Lib/site-packages/sklearnex/metrics/tests/test_metrics.py,sha256=Nwfz8UV4V4fKLLY7f9P9eg8uY09xLXaFx1GC49TOiA8,1579
|
|
42
|
-
scikit_learn_intelex-2024.3.0.data/data/Lib/site-packages/sklearnex/model_selection/__init__.py,sha256=64045Y-nzLDBepO6IRjt88LhL2DM3KdvpCF2vvj_RpA,842
|
|
43
|
-
scikit_learn_intelex-2024.3.0.data/data/Lib/site-packages/sklearnex/model_selection/split.py,sha256=qjmy8sRf_QEG8LhT0ivn_tICMCYmt7ffZZV1-rLQnko,824
|
|
44
|
-
scikit_learn_intelex-2024.3.0.data/data/Lib/site-packages/sklearnex/model_selection/tests/test_model_selection.py,sha256=3kZIq8kba8SW93DBWXupoRymNStR1_mGGYSErQRnwME,1338
|
|
45
|
-
scikit_learn_intelex-2024.3.0.data/data/Lib/site-packages/sklearnex/neighbors/__init__.py,sha256=_GMJ2L-6YechRYI2fOFwHjy0kebUncE81z4FmdXUlb8,1078
|
|
46
|
-
scikit_learn_intelex-2024.3.0.data/data/Lib/site-packages/sklearnex/neighbors/_lof.py,sha256=5ze0t8_0EXMwsayKux70zJ0Cl4ndDjzv3Fkr2iUXMUc,8109
|
|
47
|
-
scikit_learn_intelex-2024.3.0.data/data/Lib/site-packages/sklearnex/neighbors/common.py,sha256=iia-EUIRUIohDCIGpHbVx2PeDlwUvz4Mj1Tn169jidA,10781
|
|
48
|
-
scikit_learn_intelex-2024.3.0.data/data/Lib/site-packages/sklearnex/neighbors/knn_classification.py,sha256=eS_uUEdhlBITAUfsaUsAQRh85g01ltsDAug2Rog4gEQ,11161
|
|
49
|
-
scikit_learn_intelex-2024.3.0.data/data/Lib/site-packages/sklearnex/neighbors/knn_regression.py,sha256=76eLRvngIy56RyNa4e6-Hz_OqeXiulm6CEkwO7ICuUA,9977
|
|
50
|
-
scikit_learn_intelex-2024.3.0.data/data/Lib/site-packages/sklearnex/neighbors/knn_unsupervised.py,sha256=j9YsD5RzawcKWytr7UR3qNlNni5wkAh3vVZWRBSA7sQ,7542
|
|
51
|
-
scikit_learn_intelex-2024.3.0.data/data/Lib/site-packages/sklearnex/neighbors/tests/test_neighbors.py,sha256=gcJeJwDoT7wvyvk423k9TDGTGfbXUSTQETUT-VYQ74U,3409
|
|
52
|
-
scikit_learn_intelex-2024.3.0.data/data/Lib/site-packages/sklearnex/preview/__init__.py,sha256=OXC_k2kudA13rVesXb5ZlEC7_mKUS7uUra_BR-Tin30,780
|
|
53
|
-
scikit_learn_intelex-2024.3.0.data/data/Lib/site-packages/sklearnex/preview/cluster/__init__.py,sha256=FONzOuTGAb5NwdfFhLco99P_VccRk9NBkDHU3EKuAIs,794
|
|
54
|
-
scikit_learn_intelex-2024.3.0.data/data/Lib/site-packages/sklearnex/preview/cluster/_common.py,sha256=bgpzijxgyrAtdNCCHyCNsZ-N70KQYNwMuoCTNdUna6o,2718
|
|
55
|
-
scikit_learn_intelex-2024.3.0.data/data/Lib/site-packages/sklearnex/preview/cluster/k_means.py,sha256=jSuU8E6r4fdbbBnxBpWp4ybBa62kCnbBx7zDXyUr0Cs,13007
|
|
56
|
-
scikit_learn_intelex-2024.3.0.data/data/Lib/site-packages/sklearnex/preview/covariance/__init__.py,sha256=DPYTk8lwcVphtwU8J3CyUYH8Uz6Zr0Uz4S6nn-RY5iM,825
|
|
57
|
-
scikit_learn_intelex-2024.3.0.data/data/Lib/site-packages/sklearnex/preview/covariance/covariance.py,sha256=LrNrGP62FEhTSBVaO-EOYAaq-Rszc1VS2B2IqMgh4oo,4938
|
|
58
|
-
scikit_learn_intelex-2024.3.0.data/data/Lib/site-packages/sklearnex/preview/covariance/tests/test_covariance.py,sha256=GYI4bMIhGnjmOXpt8J7R0JQmpm9eOvDjIphugRa4kD8,2140
|
|
59
|
-
scikit_learn_intelex-2024.3.0.data/data/Lib/site-packages/sklearnex/spmd/__init__.py,sha256=ChQy2kEWlo4KGvs0RnbPoPEVhdgl8URV099B1rZtF5Y,889
|
|
60
|
-
scikit_learn_intelex-2024.3.0.data/data/Lib/site-packages/sklearnex/spmd/basic_statistics/__init__.py,sha256=NA5RGlwcp27UEeCgz0ngzYYd3MAIRpxlTy86uhM2-RE,821
|
|
61
|
-
scikit_learn_intelex-2024.3.0.data/data/Lib/site-packages/sklearnex/spmd/basic_statistics/basic_statistics.py,sha256=_dQ9mhVYxeuChATEpAmHpXDpgW3YvtK1qrG-kLr2MtI,886
|
|
62
|
-
scikit_learn_intelex-2024.3.0.data/data/Lib/site-packages/sklearnex/spmd/cluster/__init__.py,sha256=qBBfrCHh6_82EROLbu54XKk7SmmRwS1XJyCj0zwkoUw,1029
|
|
63
|
-
scikit_learn_intelex-2024.3.0.data/data/Lib/site-packages/sklearnex/spmd/cluster/dbscan.py,sha256=23YNzPhx4MZijU0md-E3ZkHpTkhUh5cmtS3loHe-KhI,1824
|
|
64
|
-
scikit_learn_intelex-2024.3.0.data/data/Lib/site-packages/sklearnex/spmd/cluster/kmeans.py,sha256=Rnb9tr9LXVto5vCAumk7ZJfa9BYYDhdD1qUWL-QK5bY,868
|
|
65
|
-
scikit_learn_intelex-2024.3.0.data/data/Lib/site-packages/sklearnex/spmd/covariance/__init__.py,sha256=5xeL1REMIxCv5M1ya99GGKaVjctUngboZ3uXgxcZ04o,823
|
|
66
|
-
scikit_learn_intelex-2024.3.0.data/data/Lib/site-packages/sklearnex/spmd/covariance/covariance.py,sha256=_oIlr1W1vqDHqIPnsCb04HcBCen5oBHQr5-_n9OSvIA,884
|
|
67
|
-
scikit_learn_intelex-2024.3.0.data/data/Lib/site-packages/sklearnex/spmd/decomposition/__init__.py,sha256=dBh0ZMIiaqdf3DKbt8FWNB2K9Iacs395m8OxaDFQg_M,784
|
|
68
|
-
scikit_learn_intelex-2024.3.0.data/data/Lib/site-packages/sklearnex/spmd/decomposition/pca.py,sha256=CUrsVD2jae-A9H8RB_emza_fe82CwnFa5PEy0fW_EZ8,871
|
|
69
|
-
scikit_learn_intelex-2024.3.0.data/data/Lib/site-packages/sklearnex/spmd/ensemble/__init__.py,sha256=B3yi7hWoVogMIiw0QRT_x5atsAFS-OO72YPLGeUQJ8M,873
|
|
70
|
-
scikit_learn_intelex-2024.3.0.data/data/Lib/site-packages/sklearnex/spmd/ensemble/forest.py,sha256=vIJJd10wIigFMtJMsiNDNLJ_PP2om-60zpQY_fd11-U,2909
|
|
71
|
-
scikit_learn_intelex-2024.3.0.data/data/Lib/site-packages/sklearnex/spmd/linear_model/__init__.py,sha256=WwqCr2DOyUnkSIHlP0yq0UI2yFDgSl5MHV7wu3QGJtA,893
|
|
72
|
-
scikit_learn_intelex-2024.3.0.data/data/Lib/site-packages/sklearnex/spmd/linear_model/linear_model.py,sha256=7QPCIQTWKBiZBTDZZbpZXi-REgxQCfRMt6rHPJAnc5E,883
|
|
73
|
-
scikit_learn_intelex-2024.3.0.data/data/Lib/site-packages/sklearnex/spmd/linear_model/logistic_regression.py,sha256=q_HkfWcg0RgFbk2t9FeV0ZY28HHAOtkGEnUj4tLuwt4,885
|
|
74
|
-
scikit_learn_intelex-2024.3.0.data/data/Lib/site-packages/sklearnex/spmd/neighbors/__init__.py,sha256=S16sH8N_18LN_8AgC_wGK5EDSNyuN-F-gI6GVlaiWVE,906
|
|
75
|
-
scikit_learn_intelex-2024.3.0.data/data/Lib/site-packages/sklearnex/spmd/neighbors/neighbors.py,sha256=SiKAS_RVt34MUcGytBS5pHnI_5vFNxJn8jqt1MOhDh8,940
|
|
76
|
-
scikit_learn_intelex-2024.3.0.data/data/Lib/site-packages/sklearnex/svm/__init__.py,sha256=f3e4ZFwZfx6MsXsn94VK1xVm6mWKT5XCiHczo6zNyAQ,1057
|
|
77
|
-
scikit_learn_intelex-2024.3.0.data/data/Lib/site-packages/sklearnex/svm/_common.py,sha256=Dt1Iyz1g04zOW6hn9cHa9ruzM_MHAIq0ZEEIxh5s7nI,7167
|
|
78
|
-
scikit_learn_intelex-2024.3.0.data/data/Lib/site-packages/sklearnex/svm/nusvc.py,sha256=-KMGIanTxVwT9ovvdvGuGBGoMMFQQpAyn1uCoz4CmXA,9150
|
|
79
|
-
scikit_learn_intelex-2024.3.0.data/data/Lib/site-packages/sklearnex/svm/nusvr.py,sha256=bkLU8HRlpnnZGxdL6t44Uo-idw1KQOeq2shKBIXf24g,5237
|
|
80
|
-
scikit_learn_intelex-2024.3.0.data/data/Lib/site-packages/sklearnex/svm/svc.py,sha256=2wa6gNGMLE1b-sPapP_i89P9fiALDamo8nRIo8H6VS4,10426
|
|
81
|
-
scikit_learn_intelex-2024.3.0.data/data/Lib/site-packages/sklearnex/svm/svr.py,sha256=fmYi0dghOmmyFFVI59COX9-tyouQnSDfHIbs8GY8AHs,5241
|
|
82
|
-
scikit_learn_intelex-2024.3.0.data/data/Lib/site-packages/sklearnex/svm/tests/test_svm.py,sha256=Ru-aGNGCsRJts7SEEYbnKcVqUx-DqPyUtw-hEoMVpW8,4190
|
|
83
|
-
scikit_learn_intelex-2024.3.0.data/data/Lib/site-packages/sklearnex/tests/_utils.py,sha256=XYWbUlcdzFDc2DKgHCBdScFrzarsWQrs9GKsTlJsqPs,5059
|
|
84
|
-
scikit_learn_intelex-2024.3.0.data/data/Lib/site-packages/sklearnex/tests/test_config.py,sha256=SnSJjxAAysISDyC3bYKSJiRHStkB9X-yjLeF11LpRog,1372
|
|
85
|
-
scikit_learn_intelex-2024.3.0.data/data/Lib/site-packages/sklearnex/tests/test_memory_usage.py,sha256=LwIuUgG7CUZ2kOk1XlxyaK7O3OlyoVwx40TgljaYs5Q,7327
|
|
86
|
-
scikit_learn_intelex-2024.3.0.data/data/Lib/site-packages/sklearnex/tests/test_monkeypatch.py,sha256=_9s_4jFvbttOf8uCuBrS4rn_AzQdFlKyRlthnGacUcU,9669
|
|
87
|
-
scikit_learn_intelex-2024.3.0.data/data/Lib/site-packages/sklearnex/tests/test_n_jobs_support.py,sha256=ynfCSdCMnR3yEq1YEf_cilVD7zSe0sS-ZQ9jC0hHo8M,3903
|
|
88
|
-
scikit_learn_intelex-2024.3.0.data/data/Lib/site-packages/sklearnex/tests/test_parallel.py,sha256=0zzlh2VJZWcHw5W4QSUthtAygOb6K0Bg1ekNsrdGJQE,1770
|
|
89
|
-
scikit_learn_intelex-2024.3.0.data/data/Lib/site-packages/sklearnex/tests/test_patching.py,sha256=eZQRz4GsUkm9yMZj_LgT62hMbUNVdTJg88_UccezoJA,13187
|
|
90
|
-
scikit_learn_intelex-2024.3.0.data/data/Lib/site-packages/sklearnex/tests/test_run_to_run_stability_tests.py,sha256=4HDOeJruA1EDILbyQJtsHFmEXC0D1upSHuOT-KyTlEc,14008
|
|
91
|
-
scikit_learn_intelex-2024.3.0.data/data/Lib/site-packages/sklearnex/utils/__init__.py,sha256=I8mbJQ3Zsm_F3sCLAhJQb7tUrG30kVsQ-wZoqA8vDdA,842
|
|
92
|
-
scikit_learn_intelex-2024.3.0.data/data/Lib/site-packages/sklearnex/utils/parallel.py,sha256=VBcS-KUdyq7XpJUN6ygmNjyWtYLroghbvCxQ8nVU3YI,2085
|
|
93
|
-
scikit_learn_intelex-2024.3.0.data/data/Lib/site-packages/sklearnex/utils/validation.py,sha256=fjfhQiKnBQnD7LCBlacMyvsrhGnlMLRXk5Q69uoZIP4,827
|
|
94
|
-
scikit_learn_intelex-2024.3.0.dist-info/LICENSE.txt,sha256=rVeK6nE7qRmAwbwjnG9ENguRsDgzEkFn5MZL2IU6QgY,10999
|
|
95
|
-
scikit_learn_intelex-2024.3.0.dist-info/METADATA,sha256=0WSz-4idn3UE38QlXnefqViBLjgDL00C_41LO1LVEXo,12448
|
|
96
|
-
scikit_learn_intelex-2024.3.0.dist-info/WHEEL,sha256=G27LerVAsJMtVEJpFfuoxcZMbwZpIab_g-fyc0T6CrM,100
|
|
97
|
-
scikit_learn_intelex-2024.3.0.dist-info/top_level.txt,sha256=AbpHGcgLb-kRsJGnwFEktk7uzpZOCcBY74-YBdrKVGs,1
|
|
98
|
-
scikit_learn_intelex-2024.3.0.dist-info/RECORD,,
|
|
File without changes
|
|
File without changes
|
|
File without changes
|
|
File without changes
|
|
File without changes
|
|
File without changes
|
|
File without changes
|
|
File without changes
|
|
File without changes
|
|
File without changes
|
|
File without changes
|
|
File without changes
|
|
File without changes
|
|
File without changes
|
|
File without changes
|
|
File without changes
|
|
File without changes
|