scikit-learn-intelex 2024.3.0__py312-none-win_amd64.whl → 2024.4.0__py312-none-win_amd64.whl

This diff represents the content of publicly available package versions that have been released to one of the supported registries. The information contained in this diff is provided for informational purposes only and reflects changes between package versions as they appear in their respective public registries.
Files changed (103) hide show
  1. {scikit_learn_intelex-2024.3.0.data → scikit_learn_intelex-2024.4.0.data}/data/Lib/site-packages/sklearnex/_device_offload.py +31 -4
  2. {scikit_learn_intelex-2024.3.0.data/data/Lib/site-packages/sklearnex/spmd → scikit_learn_intelex-2024.4.0.data/data/Lib/site-packages/sklearnex}/basic_statistics/__init__.py +2 -1
  3. scikit_learn_intelex-2024.4.0.data/data/Lib/site-packages/sklearnex/basic_statistics/incremental_basic_statistics.py +288 -0
  4. scikit_learn_intelex-2024.4.0.data/data/Lib/site-packages/sklearnex/basic_statistics/tests/test_incremental_basic_statistics.py +386 -0
  5. {scikit_learn_intelex-2024.3.0.data → scikit_learn_intelex-2024.4.0.data}/data/Lib/site-packages/sklearnex/decomposition/pca.py +3 -6
  6. {scikit_learn_intelex-2024.3.0.data → scikit_learn_intelex-2024.4.0.data}/data/Lib/site-packages/sklearnex/dispatcher.py +2 -2
  7. {scikit_learn_intelex-2024.3.0.data → scikit_learn_intelex-2024.4.0.data}/data/Lib/site-packages/sklearnex/ensemble/_forest.py +68 -75
  8. scikit_learn_intelex-2024.4.0.data/data/Lib/site-packages/sklearnex/linear_model/linear.py +316 -0
  9. {scikit_learn_intelex-2024.3.0.data → scikit_learn_intelex-2024.4.0.data}/data/Lib/site-packages/sklearnex/linear_model/logistic_regression.py +50 -9
  10. {scikit_learn_intelex-2024.3.0.data → scikit_learn_intelex-2024.4.0.data}/data/Lib/site-packages/sklearnex/linear_model/tests/test_linear.py +40 -5
  11. {scikit_learn_intelex-2024.3.0.data → scikit_learn_intelex-2024.4.0.data}/data/Lib/site-packages/sklearnex/neighbors/_lof.py +53 -36
  12. {scikit_learn_intelex-2024.3.0.data → scikit_learn_intelex-2024.4.0.data}/data/Lib/site-packages/sklearnex/neighbors/common.py +4 -1
  13. {scikit_learn_intelex-2024.3.0.data → scikit_learn_intelex-2024.4.0.data}/data/Lib/site-packages/sklearnex/neighbors/knn_classification.py +37 -122
  14. {scikit_learn_intelex-2024.3.0.data → scikit_learn_intelex-2024.4.0.data}/data/Lib/site-packages/sklearnex/neighbors/knn_regression.py +10 -117
  15. {scikit_learn_intelex-2024.3.0.data → scikit_learn_intelex-2024.4.0.data}/data/Lib/site-packages/sklearnex/neighbors/knn_unsupervised.py +6 -78
  16. {scikit_learn_intelex-2024.3.0.data → scikit_learn_intelex-2024.4.0.data}/data/Lib/site-packages/sklearnex/preview/cluster/k_means.py +5 -73
  17. {scikit_learn_intelex-2024.3.0.data → scikit_learn_intelex-2024.4.0.data}/data/Lib/site-packages/sklearnex/preview/covariance/covariance.py +6 -5
  18. {scikit_learn_intelex-2024.3.0.data → scikit_learn_intelex-2024.4.0.data}/data/Lib/site-packages/sklearnex/preview/covariance/tests/test_covariance.py +18 -5
  19. {scikit_learn_intelex-2024.3.0.data → scikit_learn_intelex-2024.4.0.data}/data/Lib/site-packages/sklearnex/svm/_common.py +4 -7
  20. {scikit_learn_intelex-2024.3.0.data → scikit_learn_intelex-2024.4.0.data}/data/Lib/site-packages/sklearnex/svm/nusvc.py +66 -50
  21. {scikit_learn_intelex-2024.3.0.data → scikit_learn_intelex-2024.4.0.data}/data/Lib/site-packages/sklearnex/svm/nusvr.py +3 -49
  22. {scikit_learn_intelex-2024.3.0.data → scikit_learn_intelex-2024.4.0.data}/data/Lib/site-packages/sklearnex/svm/svc.py +66 -51
  23. {scikit_learn_intelex-2024.3.0.data → scikit_learn_intelex-2024.4.0.data}/data/Lib/site-packages/sklearnex/svm/svr.py +3 -49
  24. {scikit_learn_intelex-2024.3.0.data → scikit_learn_intelex-2024.4.0.data}/data/Lib/site-packages/sklearnex/tests/_utils.py +14 -5
  25. {scikit_learn_intelex-2024.3.0.data → scikit_learn_intelex-2024.4.0.data}/data/Lib/site-packages/sklearnex/tests/test_n_jobs_support.py +8 -2
  26. {scikit_learn_intelex-2024.3.0.data → scikit_learn_intelex-2024.4.0.data}/data/Lib/site-packages/sklearnex/tests/test_patching.py +64 -54
  27. {scikit_learn_intelex-2024.3.0.data → scikit_learn_intelex-2024.4.0.data}/data/Lib/site-packages/sklearnex/utils/__init__.py +2 -1
  28. scikit_learn_intelex-2024.4.0.data/data/Lib/site-packages/sklearnex/utils/_namespace.py +97 -0
  29. {scikit_learn_intelex-2024.3.0.dist-info → scikit_learn_intelex-2024.4.0.dist-info}/METADATA +2 -2
  30. scikit_learn_intelex-2024.4.0.dist-info/RECORD +101 -0
  31. scikit_learn_intelex-2024.3.0.data/data/Lib/site-packages/sklearnex/linear_model/linear.py +0 -381
  32. scikit_learn_intelex-2024.3.0.dist-info/RECORD +0 -98
  33. {scikit_learn_intelex-2024.3.0.data → scikit_learn_intelex-2024.4.0.data}/data/Lib/site-packages/sklearnex/__init__.py +0 -0
  34. {scikit_learn_intelex-2024.3.0.data → scikit_learn_intelex-2024.4.0.data}/data/Lib/site-packages/sklearnex/__main__.py +0 -0
  35. {scikit_learn_intelex-2024.3.0.data → scikit_learn_intelex-2024.4.0.data}/data/Lib/site-packages/sklearnex/_config.py +0 -0
  36. {scikit_learn_intelex-2024.3.0.data → scikit_learn_intelex-2024.4.0.data}/data/Lib/site-packages/sklearnex/_utils.py +0 -0
  37. {scikit_learn_intelex-2024.3.0.data → scikit_learn_intelex-2024.4.0.data}/data/Lib/site-packages/sklearnex/basic_statistics/basic_statistics.py +0 -0
  38. {scikit_learn_intelex-2024.3.0.data → scikit_learn_intelex-2024.4.0.data}/data/Lib/site-packages/sklearnex/cluster/__init__.py +0 -0
  39. {scikit_learn_intelex-2024.3.0.data → scikit_learn_intelex-2024.4.0.data}/data/Lib/site-packages/sklearnex/cluster/dbscan.py +0 -0
  40. {scikit_learn_intelex-2024.3.0.data → scikit_learn_intelex-2024.4.0.data}/data/Lib/site-packages/sklearnex/cluster/k_means.py +0 -0
  41. {scikit_learn_intelex-2024.3.0.data → scikit_learn_intelex-2024.4.0.data}/data/Lib/site-packages/sklearnex/cluster/tests/test_dbscan.py +0 -0
  42. {scikit_learn_intelex-2024.3.0.data → scikit_learn_intelex-2024.4.0.data}/data/Lib/site-packages/sklearnex/cluster/tests/test_kmeans.py +0 -0
  43. {scikit_learn_intelex-2024.3.0.data → scikit_learn_intelex-2024.4.0.data}/data/Lib/site-packages/sklearnex/conftest.py +0 -0
  44. {scikit_learn_intelex-2024.3.0.data → scikit_learn_intelex-2024.4.0.data}/data/Lib/site-packages/sklearnex/covariance/__init__.py +0 -0
  45. {scikit_learn_intelex-2024.3.0.data → scikit_learn_intelex-2024.4.0.data}/data/Lib/site-packages/sklearnex/covariance/incremental_covariance.py +0 -0
  46. {scikit_learn_intelex-2024.3.0.data → scikit_learn_intelex-2024.4.0.data}/data/Lib/site-packages/sklearnex/covariance/tests/test_incremental_covariance.py +0 -0
  47. {scikit_learn_intelex-2024.3.0.data → scikit_learn_intelex-2024.4.0.data}/data/Lib/site-packages/sklearnex/decomposition/__init__.py +0 -0
  48. {scikit_learn_intelex-2024.3.0.data → scikit_learn_intelex-2024.4.0.data}/data/Lib/site-packages/sklearnex/decomposition/tests/test_pca.py +0 -0
  49. {scikit_learn_intelex-2024.3.0.data → scikit_learn_intelex-2024.4.0.data}/data/Lib/site-packages/sklearnex/doc/third-party-programs.txt +0 -0
  50. {scikit_learn_intelex-2024.3.0.data → scikit_learn_intelex-2024.4.0.data}/data/Lib/site-packages/sklearnex/ensemble/__init__.py +0 -0
  51. {scikit_learn_intelex-2024.3.0.data → scikit_learn_intelex-2024.4.0.data}/data/Lib/site-packages/sklearnex/ensemble/tests/test_forest.py +0 -0
  52. {scikit_learn_intelex-2024.3.0.data → scikit_learn_intelex-2024.4.0.data}/data/Lib/site-packages/sklearnex/glob/__main__.py +0 -0
  53. {scikit_learn_intelex-2024.3.0.data → scikit_learn_intelex-2024.4.0.data}/data/Lib/site-packages/sklearnex/glob/dispatcher.py +0 -0
  54. {scikit_learn_intelex-2024.3.0.data → scikit_learn_intelex-2024.4.0.data}/data/Lib/site-packages/sklearnex/linear_model/__init__.py +0 -0
  55. {scikit_learn_intelex-2024.3.0.data → scikit_learn_intelex-2024.4.0.data}/data/Lib/site-packages/sklearnex/linear_model/coordinate_descent.py +0 -0
  56. {scikit_learn_intelex-2024.3.0.data → scikit_learn_intelex-2024.4.0.data}/data/Lib/site-packages/sklearnex/linear_model/logistic_path.py +0 -0
  57. {scikit_learn_intelex-2024.3.0.data → scikit_learn_intelex-2024.4.0.data}/data/Lib/site-packages/sklearnex/linear_model/ridge.py +0 -0
  58. {scikit_learn_intelex-2024.3.0.data → scikit_learn_intelex-2024.4.0.data}/data/Lib/site-packages/sklearnex/linear_model/tests/test_logreg.py +0 -0
  59. {scikit_learn_intelex-2024.3.0.data → scikit_learn_intelex-2024.4.0.data}/data/Lib/site-packages/sklearnex/manifold/__init__.py +0 -0
  60. {scikit_learn_intelex-2024.3.0.data → scikit_learn_intelex-2024.4.0.data}/data/Lib/site-packages/sklearnex/manifold/t_sne.py +0 -0
  61. {scikit_learn_intelex-2024.3.0.data → scikit_learn_intelex-2024.4.0.data}/data/Lib/site-packages/sklearnex/manifold/tests/test_tsne.py +0 -0
  62. {scikit_learn_intelex-2024.3.0.data → scikit_learn_intelex-2024.4.0.data}/data/Lib/site-packages/sklearnex/metrics/__init__.py +0 -0
  63. {scikit_learn_intelex-2024.3.0.data → scikit_learn_intelex-2024.4.0.data}/data/Lib/site-packages/sklearnex/metrics/pairwise.py +0 -0
  64. {scikit_learn_intelex-2024.3.0.data → scikit_learn_intelex-2024.4.0.data}/data/Lib/site-packages/sklearnex/metrics/ranking.py +0 -0
  65. {scikit_learn_intelex-2024.3.0.data → scikit_learn_intelex-2024.4.0.data}/data/Lib/site-packages/sklearnex/metrics/tests/test_metrics.py +0 -0
  66. {scikit_learn_intelex-2024.3.0.data → scikit_learn_intelex-2024.4.0.data}/data/Lib/site-packages/sklearnex/model_selection/__init__.py +0 -0
  67. {scikit_learn_intelex-2024.3.0.data → scikit_learn_intelex-2024.4.0.data}/data/Lib/site-packages/sklearnex/model_selection/split.py +0 -0
  68. {scikit_learn_intelex-2024.3.0.data → scikit_learn_intelex-2024.4.0.data}/data/Lib/site-packages/sklearnex/model_selection/tests/test_model_selection.py +0 -0
  69. {scikit_learn_intelex-2024.3.0.data → scikit_learn_intelex-2024.4.0.data}/data/Lib/site-packages/sklearnex/neighbors/__init__.py +0 -0
  70. {scikit_learn_intelex-2024.3.0.data → scikit_learn_intelex-2024.4.0.data}/data/Lib/site-packages/sklearnex/neighbors/tests/test_neighbors.py +0 -0
  71. {scikit_learn_intelex-2024.3.0.data → scikit_learn_intelex-2024.4.0.data}/data/Lib/site-packages/sklearnex/preview/__init__.py +0 -0
  72. {scikit_learn_intelex-2024.3.0.data → scikit_learn_intelex-2024.4.0.data}/data/Lib/site-packages/sklearnex/preview/cluster/__init__.py +0 -0
  73. {scikit_learn_intelex-2024.3.0.data → scikit_learn_intelex-2024.4.0.data}/data/Lib/site-packages/sklearnex/preview/cluster/_common.py +0 -0
  74. {scikit_learn_intelex-2024.3.0.data → scikit_learn_intelex-2024.4.0.data}/data/Lib/site-packages/sklearnex/preview/covariance/__init__.py +0 -0
  75. {scikit_learn_intelex-2024.3.0.data → scikit_learn_intelex-2024.4.0.data}/data/Lib/site-packages/sklearnex/spmd/__init__.py +0 -0
  76. {scikit_learn_intelex-2024.3.0.data/data/Lib/site-packages/sklearnex → scikit_learn_intelex-2024.4.0.data/data/Lib/site-packages/sklearnex/spmd}/basic_statistics/__init__.py +0 -0
  77. {scikit_learn_intelex-2024.3.0.data → scikit_learn_intelex-2024.4.0.data}/data/Lib/site-packages/sklearnex/spmd/basic_statistics/basic_statistics.py +0 -0
  78. {scikit_learn_intelex-2024.3.0.data → scikit_learn_intelex-2024.4.0.data}/data/Lib/site-packages/sklearnex/spmd/cluster/__init__.py +0 -0
  79. {scikit_learn_intelex-2024.3.0.data → scikit_learn_intelex-2024.4.0.data}/data/Lib/site-packages/sklearnex/spmd/cluster/dbscan.py +0 -0
  80. {scikit_learn_intelex-2024.3.0.data → scikit_learn_intelex-2024.4.0.data}/data/Lib/site-packages/sklearnex/spmd/cluster/kmeans.py +0 -0
  81. {scikit_learn_intelex-2024.3.0.data → scikit_learn_intelex-2024.4.0.data}/data/Lib/site-packages/sklearnex/spmd/covariance/__init__.py +0 -0
  82. {scikit_learn_intelex-2024.3.0.data → scikit_learn_intelex-2024.4.0.data}/data/Lib/site-packages/sklearnex/spmd/covariance/covariance.py +0 -0
  83. {scikit_learn_intelex-2024.3.0.data → scikit_learn_intelex-2024.4.0.data}/data/Lib/site-packages/sklearnex/spmd/decomposition/__init__.py +0 -0
  84. {scikit_learn_intelex-2024.3.0.data → scikit_learn_intelex-2024.4.0.data}/data/Lib/site-packages/sklearnex/spmd/decomposition/pca.py +0 -0
  85. {scikit_learn_intelex-2024.3.0.data → scikit_learn_intelex-2024.4.0.data}/data/Lib/site-packages/sklearnex/spmd/ensemble/__init__.py +0 -0
  86. {scikit_learn_intelex-2024.3.0.data → scikit_learn_intelex-2024.4.0.data}/data/Lib/site-packages/sklearnex/spmd/ensemble/forest.py +0 -0
  87. {scikit_learn_intelex-2024.3.0.data → scikit_learn_intelex-2024.4.0.data}/data/Lib/site-packages/sklearnex/spmd/linear_model/__init__.py +0 -0
  88. {scikit_learn_intelex-2024.3.0.data → scikit_learn_intelex-2024.4.0.data}/data/Lib/site-packages/sklearnex/spmd/linear_model/linear_model.py +0 -0
  89. {scikit_learn_intelex-2024.3.0.data → scikit_learn_intelex-2024.4.0.data}/data/Lib/site-packages/sklearnex/spmd/linear_model/logistic_regression.py +0 -0
  90. {scikit_learn_intelex-2024.3.0.data → scikit_learn_intelex-2024.4.0.data}/data/Lib/site-packages/sklearnex/spmd/neighbors/__init__.py +0 -0
  91. {scikit_learn_intelex-2024.3.0.data → scikit_learn_intelex-2024.4.0.data}/data/Lib/site-packages/sklearnex/spmd/neighbors/neighbors.py +0 -0
  92. {scikit_learn_intelex-2024.3.0.data → scikit_learn_intelex-2024.4.0.data}/data/Lib/site-packages/sklearnex/svm/__init__.py +0 -0
  93. {scikit_learn_intelex-2024.3.0.data → scikit_learn_intelex-2024.4.0.data}/data/Lib/site-packages/sklearnex/svm/tests/test_svm.py +0 -0
  94. {scikit_learn_intelex-2024.3.0.data → scikit_learn_intelex-2024.4.0.data}/data/Lib/site-packages/sklearnex/tests/test_config.py +0 -0
  95. {scikit_learn_intelex-2024.3.0.data → scikit_learn_intelex-2024.4.0.data}/data/Lib/site-packages/sklearnex/tests/test_memory_usage.py +0 -0
  96. {scikit_learn_intelex-2024.3.0.data → scikit_learn_intelex-2024.4.0.data}/data/Lib/site-packages/sklearnex/tests/test_monkeypatch.py +0 -0
  97. {scikit_learn_intelex-2024.3.0.data → scikit_learn_intelex-2024.4.0.data}/data/Lib/site-packages/sklearnex/tests/test_parallel.py +0 -0
  98. {scikit_learn_intelex-2024.3.0.data → scikit_learn_intelex-2024.4.0.data}/data/Lib/site-packages/sklearnex/tests/test_run_to_run_stability_tests.py +0 -0
  99. {scikit_learn_intelex-2024.3.0.data → scikit_learn_intelex-2024.4.0.data}/data/Lib/site-packages/sklearnex/utils/parallel.py +0 -0
  100. {scikit_learn_intelex-2024.3.0.data → scikit_learn_intelex-2024.4.0.data}/data/Lib/site-packages/sklearnex/utils/validation.py +0 -0
  101. {scikit_learn_intelex-2024.3.0.dist-info → scikit_learn_intelex-2024.4.0.dist-info}/LICENSE.txt +0 -0
  102. {scikit_learn_intelex-2024.3.0.dist-info → scikit_learn_intelex-2024.4.0.dist-info}/WHEEL +0 -0
  103. {scikit_learn_intelex-2024.3.0.dist-info → scikit_learn_intelex-2024.4.0.dist-info}/top_level.txt +0 -0
@@ -0,0 +1,386 @@
1
+ # ===============================================================================
2
+ # Copyright 2024 Intel Corporation
3
+ #
4
+ # Licensed under the Apache License, Version 2.0 (the "License");
5
+ # you may not use this file except in compliance with the License.
6
+ # You may obtain a copy of the License at
7
+ #
8
+ # http://www.apache.org/licenses/LICENSE-2.0
9
+ #
10
+ # Unless required by applicable law or agreed to in writing, software
11
+ # distributed under the License is distributed on an "AS IS" BASIS,
12
+ # WITHOUT WARRANTIES OR CONDITIONS OF ANY KIND, either express or implied.
13
+ # See the License for the specific language governing permissions and
14
+ # limitations under the License.
15
+ # ===============================================================================
16
+
17
+ import numpy as np
18
+ import pytest
19
+ from numpy.testing import assert_allclose
20
+
21
+ from onedal.basic_statistics.tests.test_incremental_basic_statistics import (
22
+ expected_max,
23
+ expected_mean,
24
+ expected_sum,
25
+ options_and_tests,
26
+ )
27
+ from onedal.tests.utils._dataframes_support import (
28
+ _convert_to_dataframe,
29
+ get_dataframes_and_queues,
30
+ )
31
+ from sklearnex.basic_statistics import IncrementalBasicStatistics
32
+
33
+
34
+ @pytest.mark.parametrize("dataframe,queue", get_dataframes_and_queues())
35
+ @pytest.mark.parametrize("weighted", [True, False])
36
+ @pytest.mark.parametrize("dtype", [np.float32, np.float64])
37
+ def test_partial_fit_multiple_options_on_gold_data(dataframe, queue, weighted, dtype):
38
+ X = np.array([[0, 0], [1, 1]])
39
+ X = X.astype(dtype=dtype)
40
+ X_split = np.array_split(X, 2)
41
+ if weighted:
42
+ weights = np.array([1, 0.5])
43
+ weights = weights.astype(dtype=dtype)
44
+ weights_split = np.array_split(weights, 2)
45
+
46
+ incbs = IncrementalBasicStatistics()
47
+ for i in range(2):
48
+ X_split_df = _convert_to_dataframe(
49
+ X_split[i], sycl_queue=queue, target_df=dataframe
50
+ )
51
+ if weighted:
52
+ weights_split_df = _convert_to_dataframe(
53
+ weights_split[i], sycl_queue=queue, target_df=dataframe
54
+ )
55
+ result = incbs.partial_fit(X_split_df, sample_weight=weights_split_df)
56
+ else:
57
+ result = incbs.partial_fit(X_split_df)
58
+
59
+ if weighted:
60
+ expected_weighted_mean = np.array([0.25, 0.25])
61
+ expected_weighted_min = np.array([0, 0])
62
+ expected_weighted_max = np.array([0.5, 0.5])
63
+ assert_allclose(expected_weighted_mean, result.mean)
64
+ assert_allclose(expected_weighted_max, result.max)
65
+ assert_allclose(expected_weighted_min, result.min)
66
+ else:
67
+ expected_mean = np.array([0.5, 0.5])
68
+ expected_min = np.array([0, 0])
69
+ expected_max = np.array([1, 1])
70
+ assert_allclose(expected_mean, result.mean)
71
+ assert_allclose(expected_max, result.max)
72
+ assert_allclose(expected_min, result.min)
73
+
74
+
75
+ @pytest.mark.parametrize("dataframe,queue", get_dataframes_and_queues())
76
+ @pytest.mark.parametrize("num_batches", [2, 10])
77
+ @pytest.mark.parametrize("option", options_and_tests)
78
+ @pytest.mark.parametrize("row_count", [100, 1000])
79
+ @pytest.mark.parametrize("column_count", [10, 100])
80
+ @pytest.mark.parametrize("weighted", [True, False])
81
+ @pytest.mark.parametrize("dtype", [np.float32, np.float64])
82
+ def test_partial_fit_single_option_on_random_data(
83
+ dataframe, queue, num_batches, option, row_count, column_count, weighted, dtype
84
+ ):
85
+ result_option, function, tols = option
86
+ fp32tol, fp64tol = tols
87
+ seed = 77
88
+ gen = np.random.default_rng(seed)
89
+ X = gen.uniform(low=-0.3, high=+0.7, size=(row_count, column_count))
90
+ X = X.astype(dtype=dtype)
91
+ X_split = np.array_split(X, num_batches)
92
+ if weighted:
93
+ weights = gen.uniform(low=-0.5, high=+1.0, size=row_count)
94
+ weights = weights.astype(dtype=dtype)
95
+ weights_split = np.array_split(weights, num_batches)
96
+ incbs = IncrementalBasicStatistics(result_options=result_option)
97
+
98
+ for i in range(num_batches):
99
+ X_split_df = _convert_to_dataframe(
100
+ X_split[i], sycl_queue=queue, target_df=dataframe
101
+ )
102
+ if weighted:
103
+ weights_split_df = _convert_to_dataframe(
104
+ weights_split[i], sycl_queue=queue, target_df=dataframe
105
+ )
106
+ result = incbs.partial_fit(X_split_df, sample_weight=weights_split_df)
107
+ else:
108
+ result = incbs.partial_fit(X_split_df)
109
+
110
+ res = getattr(result, result_option)
111
+ if weighted:
112
+ weighted_data = np.diag(weights) @ X
113
+ gtr = function(weighted_data)
114
+ else:
115
+ gtr = function(X)
116
+
117
+ tol = fp32tol if res.dtype == np.float32 else fp64tol
118
+ assert_allclose(gtr, res, atol=tol)
119
+
120
+
121
+ @pytest.mark.parametrize("dataframe,queue", get_dataframes_and_queues())
122
+ @pytest.mark.parametrize("num_batches", [2, 10])
123
+ @pytest.mark.parametrize("row_count", [100, 1000])
124
+ @pytest.mark.parametrize("column_count", [10, 100])
125
+ @pytest.mark.parametrize("weighted", [True, False])
126
+ @pytest.mark.parametrize("dtype", [np.float32, np.float64])
127
+ def test_partial_fit_multiple_options_on_random_data(
128
+ dataframe, queue, num_batches, row_count, column_count, weighted, dtype
129
+ ):
130
+ seed = 42
131
+ gen = np.random.default_rng(seed)
132
+ X = gen.uniform(low=-0.3, high=+0.7, size=(row_count, column_count))
133
+ X = X.astype(dtype=dtype)
134
+ X_split = np.array_split(X, num_batches)
135
+ if weighted:
136
+ weights = gen.uniform(low=-0.5, high=+1.0, size=row_count)
137
+ weights = weights.astype(dtype=dtype)
138
+ weights_split = np.array_split(weights, num_batches)
139
+ incbs = IncrementalBasicStatistics(result_options=["mean", "max", "sum"])
140
+
141
+ for i in range(num_batches):
142
+ X_split_df = _convert_to_dataframe(
143
+ X_split[i], sycl_queue=queue, target_df=dataframe
144
+ )
145
+ if weighted:
146
+ weights_split_df = _convert_to_dataframe(
147
+ weights_split[i], sycl_queue=queue, target_df=dataframe
148
+ )
149
+ result = incbs.partial_fit(X_split_df, sample_weight=weights_split_df)
150
+ else:
151
+ result = incbs.partial_fit(X_split_df)
152
+
153
+ res_mean, res_max, res_sum = result.mean, result.max, result.sum
154
+ if weighted:
155
+ weighted_data = np.diag(weights) @ X
156
+ gtr_mean, gtr_max, gtr_sum = (
157
+ expected_mean(weighted_data),
158
+ expected_max(weighted_data),
159
+ expected_sum(weighted_data),
160
+ )
161
+ else:
162
+ gtr_mean, gtr_max, gtr_sum = (
163
+ expected_mean(X),
164
+ expected_max(X),
165
+ expected_sum(X),
166
+ )
167
+
168
+ tol = 1e-5 if res_mean.dtype == np.float32 else 1e-7
169
+ assert_allclose(gtr_mean, res_mean, atol=tol)
170
+ assert_allclose(gtr_max, res_max, atol=tol)
171
+ assert_allclose(gtr_sum, res_sum, atol=tol)
172
+
173
+
174
+ @pytest.mark.parametrize("dataframe,queue", get_dataframes_and_queues())
175
+ @pytest.mark.parametrize("num_batches", [2, 10])
176
+ @pytest.mark.parametrize("row_count", [100, 1000])
177
+ @pytest.mark.parametrize("column_count", [10, 100])
178
+ @pytest.mark.parametrize("weighted", [True, False])
179
+ @pytest.mark.parametrize("dtype", [np.float32, np.float64])
180
+ def test_partial_fit_all_option_on_random_data(
181
+ dataframe, queue, num_batches, row_count, column_count, weighted, dtype
182
+ ):
183
+ seed = 77
184
+ gen = np.random.default_rng(seed)
185
+ X = gen.uniform(low=-0.3, high=+0.7, size=(row_count, column_count))
186
+ X = X.astype(dtype=dtype)
187
+ X_split = np.array_split(X, num_batches)
188
+ if weighted:
189
+ weights = gen.uniform(low=-0.5, high=+1.0, size=row_count)
190
+ weights = weights.astype(dtype=dtype)
191
+ weights_split = np.array_split(weights, num_batches)
192
+ incbs = IncrementalBasicStatistics(result_options="all")
193
+
194
+ for i in range(num_batches):
195
+ X_split_df = _convert_to_dataframe(
196
+ X_split[i], sycl_queue=queue, target_df=dataframe
197
+ )
198
+ if weighted:
199
+ weights_split_df = _convert_to_dataframe(
200
+ weights_split[i], sycl_queue=queue, target_df=dataframe
201
+ )
202
+ result = incbs.partial_fit(X_split_df, sample_weight=weights_split_df)
203
+ else:
204
+ result = incbs.partial_fit(X_split_df)
205
+
206
+ if weighted:
207
+ weighted_data = np.diag(weights) @ X
208
+
209
+ for option in options_and_tests:
210
+ result_option, function, tols = option
211
+ print(result_option)
212
+ fp32tol, fp64tol = tols
213
+ res = getattr(result, result_option)
214
+ if weighted:
215
+ gtr = function(weighted_data)
216
+ else:
217
+ gtr = function(X)
218
+ tol = fp32tol if res.dtype == np.float32 else fp64tol
219
+ assert_allclose(gtr, res, atol=tol)
220
+
221
+
222
+ @pytest.mark.parametrize("dataframe,queue", get_dataframes_and_queues())
223
+ @pytest.mark.parametrize("weighted", [True, False])
224
+ @pytest.mark.parametrize("dtype", [np.float32, np.float64])
225
+ def test_fit_multiple_options_on_gold_data(dataframe, queue, weighted, dtype):
226
+ X = np.array([[0, 0], [1, 1]])
227
+ X = X.astype(dtype=dtype)
228
+ X_df = _convert_to_dataframe(X, sycl_queue=queue, target_df=dataframe)
229
+ if weighted:
230
+ weights = np.array([1, 0.5])
231
+ weights = weights.astype(dtype=dtype)
232
+ weights_df = _convert_to_dataframe(weights, sycl_queue=queue, target_df=dataframe)
233
+ incbs = IncrementalBasicStatistics(batch_size=1)
234
+
235
+ if weighted:
236
+ result = incbs.fit(X_df, sample_weight=weights_df)
237
+ else:
238
+ result = incbs.fit(X_df)
239
+
240
+ if weighted:
241
+ expected_weighted_mean = np.array([0.25, 0.25])
242
+ expected_weighted_min = np.array([0, 0])
243
+ expected_weighted_max = np.array([0.5, 0.5])
244
+ assert_allclose(expected_weighted_mean, result.mean)
245
+ assert_allclose(expected_weighted_max, result.max)
246
+ assert_allclose(expected_weighted_min, result.min)
247
+ else:
248
+ expected_mean = np.array([0.5, 0.5])
249
+ expected_min = np.array([0, 0])
250
+ expected_max = np.array([1, 1])
251
+ assert_allclose(expected_mean, result.mean)
252
+ assert_allclose(expected_max, result.max)
253
+ assert_allclose(expected_min, result.min)
254
+
255
+
256
+ @pytest.mark.parametrize("dataframe,queue", get_dataframes_and_queues())
257
+ @pytest.mark.parametrize("num_batches", [2, 10])
258
+ @pytest.mark.parametrize("option", options_and_tests)
259
+ @pytest.mark.parametrize("row_count", [100, 1000])
260
+ @pytest.mark.parametrize("column_count", [10, 100])
261
+ @pytest.mark.parametrize("weighted", [True, False])
262
+ @pytest.mark.parametrize("dtype", [np.float32, np.float64])
263
+ def test_fit_single_option_on_random_data(
264
+ dataframe, queue, num_batches, option, row_count, column_count, weighted, dtype
265
+ ):
266
+ result_option, function, tols = option
267
+ fp32tol, fp64tol = tols
268
+ seed = 77
269
+ gen = np.random.default_rng(seed)
270
+ batch_size = row_count // num_batches
271
+ X = gen.uniform(low=-0.3, high=+0.7, size=(row_count, column_count))
272
+ X = X.astype(dtype=dtype)
273
+ X_df = _convert_to_dataframe(X, sycl_queue=queue, target_df=dataframe)
274
+ if weighted:
275
+ weights = gen.uniform(low=-0.5, high=1.0, size=row_count)
276
+ weights = weights.astype(dtype=dtype)
277
+ weights_df = _convert_to_dataframe(weights, sycl_queue=queue, target_df=dataframe)
278
+ incbs = IncrementalBasicStatistics(
279
+ result_options=result_option, batch_size=batch_size
280
+ )
281
+
282
+ if weighted:
283
+ result = incbs.fit(X_df, sample_weight=weights_df)
284
+ else:
285
+ result = incbs.fit(X_df)
286
+
287
+ res = getattr(result, result_option)
288
+ if weighted:
289
+ weighted_data = np.diag(weights) @ X
290
+ gtr = function(weighted_data)
291
+ else:
292
+ gtr = function(X)
293
+
294
+ tol = fp32tol if res.dtype == np.float32 else fp64tol
295
+ assert_allclose(gtr, res, atol=tol)
296
+
297
+
298
+ @pytest.mark.parametrize("dataframe,queue", get_dataframes_and_queues())
299
+ @pytest.mark.parametrize("num_batches", [2, 10])
300
+ @pytest.mark.parametrize("row_count", [100, 1000])
301
+ @pytest.mark.parametrize("column_count", [10, 100])
302
+ @pytest.mark.parametrize("weighted", [True, False])
303
+ @pytest.mark.parametrize("dtype", [np.float32, np.float64])
304
+ def test_partial_fit_multiple_options_on_random_data(
305
+ dataframe, queue, num_batches, row_count, column_count, weighted, dtype
306
+ ):
307
+ seed = 77
308
+ gen = np.random.default_rng(seed)
309
+ batch_size = row_count // num_batches
310
+ X = gen.uniform(low=-0.3, high=+0.7, size=(row_count, column_count))
311
+ X = X.astype(dtype=dtype)
312
+ X_df = _convert_to_dataframe(X, sycl_queue=queue, target_df=dataframe)
313
+ if weighted:
314
+ weights = gen.uniform(low=-0.5, high=1.0, size=row_count)
315
+ weights = weights.astype(dtype=dtype)
316
+ weights_df = _convert_to_dataframe(weights, sycl_queue=queue, target_df=dataframe)
317
+ incbs = IncrementalBasicStatistics(
318
+ result_options=["mean", "max", "sum"], batch_size=batch_size
319
+ )
320
+
321
+ if weighted:
322
+ result = incbs.fit(X_df, sample_weight=weights_df)
323
+ else:
324
+ result = incbs.fit(X_df)
325
+
326
+ res_mean, res_max, res_sum = result.mean, result.max, result.sum
327
+ if weighted:
328
+ weighted_data = np.diag(weights) @ X
329
+ gtr_mean, gtr_max, gtr_sum = (
330
+ expected_mean(weighted_data),
331
+ expected_max(weighted_data),
332
+ expected_sum(weighted_data),
333
+ )
334
+ else:
335
+ gtr_mean, gtr_max, gtr_sum = (
336
+ expected_mean(X),
337
+ expected_max(X),
338
+ expected_sum(X),
339
+ )
340
+
341
+ tol = 3e-4 if res_mean.dtype == np.float32 else 1e-7
342
+ assert_allclose(gtr_mean, res_mean, atol=tol)
343
+ assert_allclose(gtr_max, res_max, atol=tol)
344
+ assert_allclose(gtr_sum, res_sum, atol=tol)
345
+
346
+
347
+ @pytest.mark.parametrize("dataframe,queue", get_dataframes_and_queues())
348
+ @pytest.mark.parametrize("num_batches", [2, 10])
349
+ @pytest.mark.parametrize("row_count", [100, 1000])
350
+ @pytest.mark.parametrize("column_count", [10, 100])
351
+ @pytest.mark.parametrize("weighted", [True, False])
352
+ @pytest.mark.parametrize("dtype", [np.float32, np.float64])
353
+ def test_fit_all_option_on_random_data(
354
+ dataframe, queue, num_batches, row_count, column_count, weighted, dtype
355
+ ):
356
+ seed = 77
357
+ gen = np.random.default_rng(seed)
358
+ batch_size = row_count // num_batches
359
+ X = gen.uniform(low=-0.3, high=+0.7, size=(row_count, column_count))
360
+ X = X.astype(dtype=dtype)
361
+ X_df = _convert_to_dataframe(X, sycl_queue=queue, target_df=dataframe)
362
+ if weighted:
363
+ weights = gen.uniform(low=-0.5, high=+1.0, size=row_count)
364
+ weights = weights.astype(dtype=dtype)
365
+ weights_df = _convert_to_dataframe(weights, sycl_queue=queue, target_df=dataframe)
366
+ incbs = IncrementalBasicStatistics(result_options="all", batch_size=batch_size)
367
+
368
+ if weighted:
369
+ result = incbs.fit(X_df, sample_weight=weights_df)
370
+ else:
371
+ result = incbs.fit(X_df)
372
+
373
+ if weighted:
374
+ weighted_data = np.diag(weights) @ X
375
+
376
+ for option in options_and_tests:
377
+ result_option, function, tols = option
378
+ print(result_option)
379
+ fp32tol, fp64tol = tols
380
+ res = getattr(result, result_option)
381
+ if weighted:
382
+ gtr = function(weighted_data)
383
+ else:
384
+ gtr = function(X)
385
+ tol = fp32tol if res.dtype == np.float32 else fp64tol
386
+ assert_allclose(gtr, res, atol=tol)
@@ -95,6 +95,7 @@ if daal_check_version((2024, "P", 100)):
95
95
  self._fit(X)
96
96
  return self
97
97
 
98
+ @wrap_output_data
98
99
  def _fit(self, X):
99
100
  if sklearn_check_version("1.2"):
100
101
  self._validate_params()
@@ -166,13 +167,11 @@ if daal_check_version((2024, "P", 100)):
166
167
 
167
168
  return self._onedal_estimator.predict(X, queue=queue)
168
169
 
169
- @wrap_output_data
170
170
  def fit_transform(self, X, y=None):
171
171
  U, S, Vt = self._fit(X)
172
172
  if U is None:
173
173
  # oneDAL PCA was fit
174
- X_transformed = self._onedal_transform(X)
175
- return X_transformed
174
+ return self.transform(X)
176
175
  else:
177
176
  # Scikit-learn PCA was fit
178
177
  U = U[:, : self.n_components_]
@@ -298,11 +297,9 @@ if daal_check_version((2024, "P", 100)):
298
297
  self.n_samples_ = self._onedal_estimator.n_samples_
299
298
  if sklearn_check_version("1.2"):
300
299
  self.n_features_in_ = self._onedal_estimator.n_features_
301
- elif sklearn_check_version("0.24"):
302
- self.n_features_ = self._onedal_estimator.n_features_
303
- self.n_features_in_ = self._onedal_estimator.n_features_
304
300
  else:
305
301
  self.n_features_ = self._onedal_estimator.n_features_
302
+ self.n_features_in_ = self._onedal_estimator.n_features_
306
303
  self.n_components_ = self._onedal_estimator.n_components_
307
304
  self.components_ = self._onedal_estimator.components_
308
305
  self.mean_ = self._onedal_estimator.mean_
@@ -314,10 +314,10 @@ def get_patch_names():
314
314
  def patch_sklearn(name=None, verbose=True, global_patch=False, preview=False):
315
315
  if preview:
316
316
  os.environ["SKLEARNEX_PREVIEW"] = "enabled_via_patch_sklearn"
317
- if not sklearn_check_version("0.22"):
317
+ if not sklearn_check_version("0.24"):
318
318
  raise NotImplementedError(
319
319
  "Intel(R) Extension for Scikit-learn* patches apply "
320
- "for scikit-learn >= 0.22 only ..."
320
+ "for scikit-learn >= 0.24 only ..."
321
321
  )
322
322
 
323
323
  if global_patch:
@@ -25,8 +25,11 @@ from sklearn.ensemble import ExtraTreesClassifier as sklearn_ExtraTreesClassifie
25
25
  from sklearn.ensemble import ExtraTreesRegressor as sklearn_ExtraTreesRegressor
26
26
  from sklearn.ensemble import RandomForestClassifier as sklearn_RandomForestClassifier
27
27
  from sklearn.ensemble import RandomForestRegressor as sklearn_RandomForestRegressor
28
+ from sklearn.ensemble._forest import ForestClassifier as sklearn_ForestClassifier
29
+ from sklearn.ensemble._forest import ForestRegressor as sklearn_ForestRegressor
28
30
  from sklearn.ensemble._forest import _get_n_samples_bootstrap
29
31
  from sklearn.exceptions import DataConversionWarning
32
+ from sklearn.metrics import accuracy_score
30
33
  from sklearn.tree import (
31
34
  DecisionTreeClassifier,
32
35
  DecisionTreeRegressor,
@@ -35,12 +38,7 @@ from sklearn.tree import (
35
38
  )
36
39
  from sklearn.tree._tree import Tree
37
40
  from sklearn.utils import check_random_state, deprecated
38
- from sklearn.utils.validation import (
39
- check_array,
40
- check_consistent_length,
41
- check_is_fitted,
42
- check_X_y,
43
- )
41
+ from sklearn.utils.validation import check_array, check_is_fitted
44
42
 
45
43
  from daal4py.sklearn._n_jobs_support import control_n_jobs
46
44
  from daal4py.sklearn._utils import (
@@ -52,19 +50,10 @@ from onedal.ensemble import ExtraTreesClassifier as onedal_ExtraTreesClassifier
52
50
  from onedal.ensemble import ExtraTreesRegressor as onedal_ExtraTreesRegressor
53
51
  from onedal.ensemble import RandomForestClassifier as onedal_RandomForestClassifier
54
52
  from onedal.ensemble import RandomForestRegressor as onedal_RandomForestRegressor
55
-
56
- # try catch needed for changes in structures observed in Scikit-learn around v0.22
57
- try:
58
- from sklearn.ensemble._forest import ForestClassifier as sklearn_ForestClassifier
59
- from sklearn.ensemble._forest import ForestRegressor as sklearn_ForestRegressor
60
- except ModuleNotFoundError:
61
- from sklearn.ensemble.forest import ForestClassifier as sklearn_ForestClassifier
62
- from sklearn.ensemble.forest import ForestRegressor as sklearn_ForestRegressor
63
-
64
53
  from onedal.primitives import get_tree_state_cls, get_tree_state_reg
65
54
  from onedal.utils import _num_features, _num_samples
55
+ from sklearnex.utils import get_namespace
66
56
 
67
- from .._config import get_config
68
57
  from .._device_offload import dispatch, wrap_output_data
69
58
  from .._utils import PatchingConditionsChain
70
59
 
@@ -78,24 +67,14 @@ class BaseForest(ABC):
78
67
  _onedal_factory = None
79
68
 
80
69
  def _onedal_fit(self, X, y, sample_weight=None, queue=None):
81
- if sklearn_check_version("0.24"):
82
- X, y = self._validate_data(
83
- X,
84
- y,
85
- multi_output=False,
86
- accept_sparse=False,
87
- dtype=[np.float64, np.float32],
88
- force_all_finite=False,
89
- )
90
- else:
91
- X, y = check_X_y(
92
- X,
93
- y,
94
- accept_sparse=False,
95
- dtype=[np.float64, np.float32],
96
- multi_output=False,
97
- force_all_finite=False,
98
- )
70
+ X, y = self._validate_data(
71
+ X,
72
+ y,
73
+ multi_output=False,
74
+ accept_sparse=False,
75
+ dtype=[np.float64, np.float32],
76
+ force_all_finite=False,
77
+ )
99
78
 
100
79
  if sample_weight is not None:
101
80
  sample_weight = self.check_sample_weight(sample_weight, X)
@@ -173,15 +152,6 @@ class BaseForest(ABC):
173
152
 
174
153
  return self
175
154
 
176
- def _fit_proba(self, X, y, sample_weight=None, queue=None):
177
- params = self.get_params()
178
- self.__class__(**params)
179
-
180
- # We use stock metaestimators below, so the only way
181
- # to pass a queue is using config_context.
182
- cfg = get_config()
183
- cfg["target_offload"] = queue
184
-
185
155
  def _save_attributes(self):
186
156
  if self.oob_score:
187
157
  self.oob_score_ = self._onedal_estimator.oob_score_
@@ -204,8 +174,6 @@ class BaseForest(ABC):
204
174
  self._validate_estimator()
205
175
  return self
206
176
 
207
- # TODO:
208
- # move to onedal modul.
209
177
  def _check_parameters(self):
210
178
  if isinstance(self.min_samples_leaf, numbers.Integral):
211
179
  if not 1 <= self.min_samples_leaf:
@@ -550,18 +518,14 @@ class ForestClassifier(sklearn_ForestClassifier, BaseForest):
550
518
  )
551
519
 
552
520
  if patching_status.get_status():
553
- if sklearn_check_version("0.24"):
554
- X, y = self._validate_data(
555
- X,
556
- y,
557
- multi_output=True,
558
- accept_sparse=True,
559
- dtype=[np.float64, np.float32],
560
- force_all_finite=False,
561
- )
562
- else:
563
- X = check_array(X, dtype=[np.float64, np.float32], force_all_finite=False)
564
- y = check_array(y, ensure_2d=False, dtype=X.dtype, force_all_finite=False)
521
+ X, y = self._validate_data(
522
+ X,
523
+ y,
524
+ multi_output=True,
525
+ accept_sparse=True,
526
+ dtype=[np.float64, np.float32],
527
+ force_all_finite=False,
528
+ )
565
529
 
566
530
  if y.ndim == 2 and y.shape[1] == 1:
567
531
  warnings.warn(
@@ -655,9 +619,38 @@ class ForestClassifier(sklearn_ForestClassifier, BaseForest):
655
619
  X,
656
620
  )
657
621
 
622
+ def predict_log_proba(self, X):
623
+ xp, _ = get_namespace(X)
624
+ proba = self.predict_proba(X)
625
+
626
+ if self.n_outputs_ == 1:
627
+ return xp.log(proba)
628
+
629
+ else:
630
+ for k in range(self.n_outputs_):
631
+ proba[k] = xp.log(proba[k])
632
+
633
+ return proba
634
+
635
+ @wrap_output_data
636
+ def score(self, X, y, sample_weight=None):
637
+ return dispatch(
638
+ self,
639
+ "score",
640
+ {
641
+ "onedal": self.__class__._onedal_score,
642
+ "sklearn": sklearn_ForestClassifier.score,
643
+ },
644
+ X,
645
+ y,
646
+ sample_weight=sample_weight,
647
+ )
648
+
658
649
  fit.__doc__ = sklearn_ForestClassifier.fit.__doc__
659
650
  predict.__doc__ = sklearn_ForestClassifier.predict.__doc__
660
651
  predict_proba.__doc__ = sklearn_ForestClassifier.predict_proba.__doc__
652
+ predict_log_proba.__doc__ = sklearn_ForestClassifier.predict_log_proba.__doc__
653
+ score.__doc__ = sklearn_ForestClassifier.score.__doc__
661
654
 
662
655
  def _onedal_cpu_supported(self, method_name, *data):
663
656
  class_name = self.__class__.__name__
@@ -684,7 +677,7 @@ class ForestClassifier(sklearn_ForestClassifier, BaseForest):
684
677
  ]
685
678
  )
686
679
 
687
- elif method_name in ["predict", "predict_proba"]:
680
+ elif method_name in ["predict", "predict_proba", "score"]:
688
681
  X = data[0]
689
682
 
690
683
  patching_status.and_conditions(
@@ -749,7 +742,7 @@ class ForestClassifier(sklearn_ForestClassifier, BaseForest):
749
742
  ]
750
743
  )
751
744
 
752
- elif method_name in ["predict", "predict_proba"]:
745
+ elif method_name in ["predict", "predict_proba", "score"]:
753
746
  X = data[0]
754
747
 
755
748
  patching_status.and_conditions(
@@ -801,12 +794,16 @@ class ForestClassifier(sklearn_ForestClassifier, BaseForest):
801
794
  X = check_array(X, dtype=[np.float64, np.float32], force_all_finite=False)
802
795
  check_is_fitted(self, "_onedal_estimator")
803
796
 
804
- if sklearn_check_version("0.23"):
805
- self._check_n_features(X, reset=False)
797
+ self._check_n_features(X, reset=False)
806
798
  if sklearn_check_version("1.0"):
807
799
  self._check_feature_names(X, reset=False)
808
800
  return self._onedal_estimator.predict_proba(X, queue=queue)
809
801
 
802
+ def _onedal_score(self, X, y, sample_weight=None, queue=None):
803
+ return accuracy_score(
804
+ y, self._onedal_predict(X, queue=queue), sample_weight=sample_weight
805
+ )
806
+
810
807
 
811
808
  class ForestRegressor(sklearn_ForestRegressor, BaseForest):
812
809
  _err = "out_of_bag_error_r2|out_of_bag_error_prediction"
@@ -916,18 +913,14 @@ class ForestRegressor(sklearn_ForestRegressor, BaseForest):
916
913
  )
917
914
 
918
915
  if patching_status.get_status():
919
- if sklearn_check_version("0.24"):
920
- X, y = self._validate_data(
921
- X,
922
- y,
923
- multi_output=True,
924
- accept_sparse=True,
925
- dtype=[np.float64, np.float32],
926
- force_all_finite=False,
927
- )
928
- else:
929
- X = check_array(X, dtype=[np.float64, np.float32], force_all_finite=False)
930
- y = check_array(y, ensure_2d=False, dtype=X.dtype, force_all_finite=False)
916
+ X, y = self._validate_data(
917
+ X,
918
+ y,
919
+ multi_output=True,
920
+ accept_sparse=True,
921
+ dtype=[np.float64, np.float32],
922
+ force_all_finite=False,
923
+ )
931
924
 
932
925
  if y.ndim == 2 and y.shape[1] == 1:
933
926
  warnings.warn(
@@ -1129,7 +1122,7 @@ class ForestRegressor(sklearn_ForestRegressor, BaseForest):
1129
1122
  predict.__doc__ = sklearn_ForestRegressor.predict.__doc__
1130
1123
 
1131
1124
 
1132
- @control_n_jobs(decorated_methods=["fit", "predict", "predict_proba"])
1125
+ @control_n_jobs(decorated_methods=["fit", "predict", "predict_proba", "score"])
1133
1126
  class RandomForestClassifier(ForestClassifier):
1134
1127
  __doc__ = sklearn_RandomForestClassifier.__doc__
1135
1128
  _onedal_factory = onedal_RandomForestClassifier
@@ -1540,7 +1533,7 @@ class RandomForestRegressor(ForestRegressor):
1540
1533
  self.min_bin_size = min_bin_size
1541
1534
 
1542
1535
 
1543
- @control_n_jobs(decorated_methods=["fit", "predict", "predict_proba"])
1536
+ @control_n_jobs(decorated_methods=["fit", "predict", "predict_proba", "score"])
1544
1537
  class ExtraTreesClassifier(ForestClassifier):
1545
1538
  __doc__ = sklearn_ExtraTreesClassifier.__doc__
1546
1539
  _onedal_factory = onedal_ExtraTreesClassifier