scikit-learn-intelex 2024.3.0__py311-none-win_amd64.whl → 2024.5.0__py311-none-win_amd64.whl

This diff represents the content of publicly available package versions that have been released to one of the supported registries. The information contained in this diff is provided for informational purposes only and reflects changes between package versions as they appear in their respective public registries.

Potentially problematic release.


This version of scikit-learn-intelex might be problematic. Click here for more details.

Files changed (107) hide show
  1. {scikit_learn_intelex-2024.3.0.data → scikit_learn_intelex-2024.5.0.data}/data/Lib/site-packages/sklearnex/_device_offload.py +39 -5
  2. {scikit_learn_intelex-2024.3.0.data/data/Lib/site-packages/sklearnex/spmd → scikit_learn_intelex-2024.5.0.data/data/Lib/site-packages/sklearnex}/basic_statistics/__init__.py +2 -1
  3. scikit_learn_intelex-2024.5.0.data/data/Lib/site-packages/sklearnex/basic_statistics/incremental_basic_statistics.py +288 -0
  4. scikit_learn_intelex-2024.5.0.data/data/Lib/site-packages/sklearnex/basic_statistics/tests/test_incremental_basic_statistics.py +384 -0
  5. scikit_learn_intelex-2024.5.0.data/data/Lib/site-packages/sklearnex/covariance/incremental_covariance.py +317 -0
  6. {scikit_learn_intelex-2024.3.0.data → scikit_learn_intelex-2024.5.0.data}/data/Lib/site-packages/sklearnex/covariance/tests/test_incremental_covariance.py +54 -17
  7. {scikit_learn_intelex-2024.3.0.data → scikit_learn_intelex-2024.5.0.data}/data/Lib/site-packages/sklearnex/decomposition/pca.py +71 -19
  8. {scikit_learn_intelex-2024.3.0.data → scikit_learn_intelex-2024.5.0.data}/data/Lib/site-packages/sklearnex/decomposition/tests/test_pca.py +2 -2
  9. {scikit_learn_intelex-2024.3.0.data → scikit_learn_intelex-2024.5.0.data}/data/Lib/site-packages/sklearnex/dispatcher.py +33 -2
  10. {scikit_learn_intelex-2024.3.0.data → scikit_learn_intelex-2024.5.0.data}/data/Lib/site-packages/sklearnex/ensemble/_forest.py +73 -79
  11. {scikit_learn_intelex-2024.3.0.data → scikit_learn_intelex-2024.5.0.data}/data/Lib/site-packages/sklearnex/linear_model/__init__.py +5 -3
  12. scikit_learn_intelex-2024.5.0.data/data/Lib/site-packages/sklearnex/linear_model/incremental_linear.py +387 -0
  13. scikit_learn_intelex-2024.5.0.data/data/Lib/site-packages/sklearnex/linear_model/linear.py +316 -0
  14. {scikit_learn_intelex-2024.3.0.data → scikit_learn_intelex-2024.5.0.data}/data/Lib/site-packages/sklearnex/linear_model/logistic_regression.py +50 -9
  15. scikit_learn_intelex-2024.5.0.data/data/Lib/site-packages/sklearnex/linear_model/tests/test_incremental_linear.py +200 -0
  16. {scikit_learn_intelex-2024.3.0.data → scikit_learn_intelex-2024.5.0.data}/data/Lib/site-packages/sklearnex/linear_model/tests/test_linear.py +40 -5
  17. {scikit_learn_intelex-2024.3.0.data → scikit_learn_intelex-2024.5.0.data}/data/Lib/site-packages/sklearnex/neighbors/_lof.py +53 -36
  18. {scikit_learn_intelex-2024.3.0.data → scikit_learn_intelex-2024.5.0.data}/data/Lib/site-packages/sklearnex/neighbors/common.py +4 -1
  19. {scikit_learn_intelex-2024.3.0.data → scikit_learn_intelex-2024.5.0.data}/data/Lib/site-packages/sklearnex/neighbors/knn_classification.py +37 -122
  20. {scikit_learn_intelex-2024.3.0.data → scikit_learn_intelex-2024.5.0.data}/data/Lib/site-packages/sklearnex/neighbors/knn_regression.py +10 -117
  21. {scikit_learn_intelex-2024.3.0.data → scikit_learn_intelex-2024.5.0.data}/data/Lib/site-packages/sklearnex/neighbors/knn_unsupervised.py +6 -78
  22. {scikit_learn_intelex-2024.3.0.data → scikit_learn_intelex-2024.5.0.data}/data/Lib/site-packages/sklearnex/neighbors/tests/test_neighbors.py +2 -2
  23. {scikit_learn_intelex-2024.3.0.data → scikit_learn_intelex-2024.5.0.data}/data/Lib/site-packages/sklearnex/preview/cluster/k_means.py +5 -73
  24. {scikit_learn_intelex-2024.3.0.data → scikit_learn_intelex-2024.5.0.data}/data/Lib/site-packages/sklearnex/preview/covariance/covariance.py +6 -5
  25. {scikit_learn_intelex-2024.3.0.data → scikit_learn_intelex-2024.5.0.data}/data/Lib/site-packages/sklearnex/preview/covariance/tests/test_covariance.py +18 -5
  26. {scikit_learn_intelex-2024.3.0.data → scikit_learn_intelex-2024.5.0.data}/data/Lib/site-packages/sklearnex/svm/_common.py +4 -7
  27. {scikit_learn_intelex-2024.3.0.data → scikit_learn_intelex-2024.5.0.data}/data/Lib/site-packages/sklearnex/svm/nusvc.py +66 -50
  28. {scikit_learn_intelex-2024.3.0.data → scikit_learn_intelex-2024.5.0.data}/data/Lib/site-packages/sklearnex/svm/nusvr.py +3 -49
  29. {scikit_learn_intelex-2024.3.0.data → scikit_learn_intelex-2024.5.0.data}/data/Lib/site-packages/sklearnex/svm/svc.py +66 -51
  30. {scikit_learn_intelex-2024.3.0.data → scikit_learn_intelex-2024.5.0.data}/data/Lib/site-packages/sklearnex/svm/svr.py +3 -49
  31. {scikit_learn_intelex-2024.3.0.data → scikit_learn_intelex-2024.5.0.data}/data/Lib/site-packages/sklearnex/tests/_utils.py +34 -16
  32. {scikit_learn_intelex-2024.3.0.data → scikit_learn_intelex-2024.5.0.data}/data/Lib/site-packages/sklearnex/tests/test_memory_usage.py +5 -1
  33. {scikit_learn_intelex-2024.3.0.data → scikit_learn_intelex-2024.5.0.data}/data/Lib/site-packages/sklearnex/tests/test_n_jobs_support.py +12 -2
  34. {scikit_learn_intelex-2024.3.0.data → scikit_learn_intelex-2024.5.0.data}/data/Lib/site-packages/sklearnex/tests/test_patching.py +87 -58
  35. {scikit_learn_intelex-2024.3.0.data → scikit_learn_intelex-2024.5.0.data}/data/Lib/site-packages/sklearnex/tests/test_run_to_run_stability_tests.py +1 -1
  36. {scikit_learn_intelex-2024.3.0.data → scikit_learn_intelex-2024.5.0.data}/data/Lib/site-packages/sklearnex/utils/__init__.py +2 -1
  37. scikit_learn_intelex-2024.5.0.data/data/Lib/site-packages/sklearnex/utils/_namespace.py +97 -0
  38. scikit_learn_intelex-2024.5.0.data/data/Lib/site-packages/sklearnex/utils/tests/test_finite.py +89 -0
  39. {scikit_learn_intelex-2024.3.0.dist-info → scikit_learn_intelex-2024.5.0.dist-info}/METADATA +227 -230
  40. scikit_learn_intelex-2024.5.0.dist-info/RECORD +104 -0
  41. {scikit_learn_intelex-2024.3.0.dist-info → scikit_learn_intelex-2024.5.0.dist-info}/WHEEL +1 -1
  42. scikit_learn_intelex-2024.3.0.data/data/Lib/site-packages/sklearnex/covariance/incremental_covariance.py +0 -130
  43. scikit_learn_intelex-2024.3.0.data/data/Lib/site-packages/sklearnex/linear_model/linear.py +0 -381
  44. scikit_learn_intelex-2024.3.0.dist-info/RECORD +0 -98
  45. {scikit_learn_intelex-2024.3.0.data → scikit_learn_intelex-2024.5.0.data}/data/Lib/site-packages/sklearnex/__init__.py +0 -0
  46. {scikit_learn_intelex-2024.3.0.data → scikit_learn_intelex-2024.5.0.data}/data/Lib/site-packages/sklearnex/__main__.py +0 -0
  47. {scikit_learn_intelex-2024.3.0.data → scikit_learn_intelex-2024.5.0.data}/data/Lib/site-packages/sklearnex/_config.py +0 -0
  48. {scikit_learn_intelex-2024.3.0.data → scikit_learn_intelex-2024.5.0.data}/data/Lib/site-packages/sklearnex/_utils.py +0 -0
  49. {scikit_learn_intelex-2024.3.0.data → scikit_learn_intelex-2024.5.0.data}/data/Lib/site-packages/sklearnex/basic_statistics/basic_statistics.py +0 -0
  50. {scikit_learn_intelex-2024.3.0.data → scikit_learn_intelex-2024.5.0.data}/data/Lib/site-packages/sklearnex/cluster/__init__.py +0 -0
  51. {scikit_learn_intelex-2024.3.0.data → scikit_learn_intelex-2024.5.0.data}/data/Lib/site-packages/sklearnex/cluster/dbscan.py +0 -0
  52. {scikit_learn_intelex-2024.3.0.data → scikit_learn_intelex-2024.5.0.data}/data/Lib/site-packages/sklearnex/cluster/k_means.py +0 -0
  53. {scikit_learn_intelex-2024.3.0.data → scikit_learn_intelex-2024.5.0.data}/data/Lib/site-packages/sklearnex/cluster/tests/test_dbscan.py +0 -0
  54. {scikit_learn_intelex-2024.3.0.data → scikit_learn_intelex-2024.5.0.data}/data/Lib/site-packages/sklearnex/cluster/tests/test_kmeans.py +0 -0
  55. {scikit_learn_intelex-2024.3.0.data → scikit_learn_intelex-2024.5.0.data}/data/Lib/site-packages/sklearnex/conftest.py +0 -0
  56. {scikit_learn_intelex-2024.3.0.data → scikit_learn_intelex-2024.5.0.data}/data/Lib/site-packages/sklearnex/covariance/__init__.py +0 -0
  57. {scikit_learn_intelex-2024.3.0.data → scikit_learn_intelex-2024.5.0.data}/data/Lib/site-packages/sklearnex/decomposition/__init__.py +0 -0
  58. {scikit_learn_intelex-2024.3.0.data → scikit_learn_intelex-2024.5.0.data}/data/Lib/site-packages/sklearnex/doc/third-party-programs.txt +0 -0
  59. {scikit_learn_intelex-2024.3.0.data → scikit_learn_intelex-2024.5.0.data}/data/Lib/site-packages/sklearnex/ensemble/__init__.py +0 -0
  60. {scikit_learn_intelex-2024.3.0.data → scikit_learn_intelex-2024.5.0.data}/data/Lib/site-packages/sklearnex/ensemble/tests/test_forest.py +0 -0
  61. {scikit_learn_intelex-2024.3.0.data → scikit_learn_intelex-2024.5.0.data}/data/Lib/site-packages/sklearnex/glob/__main__.py +0 -0
  62. {scikit_learn_intelex-2024.3.0.data → scikit_learn_intelex-2024.5.0.data}/data/Lib/site-packages/sklearnex/glob/dispatcher.py +0 -0
  63. {scikit_learn_intelex-2024.3.0.data → scikit_learn_intelex-2024.5.0.data}/data/Lib/site-packages/sklearnex/linear_model/coordinate_descent.py +0 -0
  64. {scikit_learn_intelex-2024.3.0.data → scikit_learn_intelex-2024.5.0.data}/data/Lib/site-packages/sklearnex/linear_model/logistic_path.py +0 -0
  65. {scikit_learn_intelex-2024.3.0.data → scikit_learn_intelex-2024.5.0.data}/data/Lib/site-packages/sklearnex/linear_model/ridge.py +0 -0
  66. {scikit_learn_intelex-2024.3.0.data → scikit_learn_intelex-2024.5.0.data}/data/Lib/site-packages/sklearnex/linear_model/tests/test_logreg.py +0 -0
  67. {scikit_learn_intelex-2024.3.0.data → scikit_learn_intelex-2024.5.0.data}/data/Lib/site-packages/sklearnex/manifold/__init__.py +0 -0
  68. {scikit_learn_intelex-2024.3.0.data → scikit_learn_intelex-2024.5.0.data}/data/Lib/site-packages/sklearnex/manifold/t_sne.py +0 -0
  69. {scikit_learn_intelex-2024.3.0.data → scikit_learn_intelex-2024.5.0.data}/data/Lib/site-packages/sklearnex/manifold/tests/test_tsne.py +0 -0
  70. {scikit_learn_intelex-2024.3.0.data → scikit_learn_intelex-2024.5.0.data}/data/Lib/site-packages/sklearnex/metrics/__init__.py +0 -0
  71. {scikit_learn_intelex-2024.3.0.data → scikit_learn_intelex-2024.5.0.data}/data/Lib/site-packages/sklearnex/metrics/pairwise.py +0 -0
  72. {scikit_learn_intelex-2024.3.0.data → scikit_learn_intelex-2024.5.0.data}/data/Lib/site-packages/sklearnex/metrics/ranking.py +0 -0
  73. {scikit_learn_intelex-2024.3.0.data → scikit_learn_intelex-2024.5.0.data}/data/Lib/site-packages/sklearnex/metrics/tests/test_metrics.py +0 -0
  74. {scikit_learn_intelex-2024.3.0.data → scikit_learn_intelex-2024.5.0.data}/data/Lib/site-packages/sklearnex/model_selection/__init__.py +0 -0
  75. {scikit_learn_intelex-2024.3.0.data → scikit_learn_intelex-2024.5.0.data}/data/Lib/site-packages/sklearnex/model_selection/split.py +0 -0
  76. {scikit_learn_intelex-2024.3.0.data → scikit_learn_intelex-2024.5.0.data}/data/Lib/site-packages/sklearnex/model_selection/tests/test_model_selection.py +0 -0
  77. {scikit_learn_intelex-2024.3.0.data → scikit_learn_intelex-2024.5.0.data}/data/Lib/site-packages/sklearnex/neighbors/__init__.py +0 -0
  78. {scikit_learn_intelex-2024.3.0.data → scikit_learn_intelex-2024.5.0.data}/data/Lib/site-packages/sklearnex/preview/__init__.py +0 -0
  79. {scikit_learn_intelex-2024.3.0.data → scikit_learn_intelex-2024.5.0.data}/data/Lib/site-packages/sklearnex/preview/cluster/__init__.py +0 -0
  80. {scikit_learn_intelex-2024.3.0.data → scikit_learn_intelex-2024.5.0.data}/data/Lib/site-packages/sklearnex/preview/cluster/_common.py +0 -0
  81. {scikit_learn_intelex-2024.3.0.data → scikit_learn_intelex-2024.5.0.data}/data/Lib/site-packages/sklearnex/preview/covariance/__init__.py +0 -0
  82. {scikit_learn_intelex-2024.3.0.data → scikit_learn_intelex-2024.5.0.data}/data/Lib/site-packages/sklearnex/spmd/__init__.py +0 -0
  83. {scikit_learn_intelex-2024.3.0.data/data/Lib/site-packages/sklearnex → scikit_learn_intelex-2024.5.0.data/data/Lib/site-packages/sklearnex/spmd}/basic_statistics/__init__.py +0 -0
  84. {scikit_learn_intelex-2024.3.0.data → scikit_learn_intelex-2024.5.0.data}/data/Lib/site-packages/sklearnex/spmd/basic_statistics/basic_statistics.py +0 -0
  85. {scikit_learn_intelex-2024.3.0.data → scikit_learn_intelex-2024.5.0.data}/data/Lib/site-packages/sklearnex/spmd/cluster/__init__.py +0 -0
  86. {scikit_learn_intelex-2024.3.0.data → scikit_learn_intelex-2024.5.0.data}/data/Lib/site-packages/sklearnex/spmd/cluster/dbscan.py +0 -0
  87. {scikit_learn_intelex-2024.3.0.data → scikit_learn_intelex-2024.5.0.data}/data/Lib/site-packages/sklearnex/spmd/cluster/kmeans.py +0 -0
  88. {scikit_learn_intelex-2024.3.0.data → scikit_learn_intelex-2024.5.0.data}/data/Lib/site-packages/sklearnex/spmd/covariance/__init__.py +0 -0
  89. {scikit_learn_intelex-2024.3.0.data → scikit_learn_intelex-2024.5.0.data}/data/Lib/site-packages/sklearnex/spmd/covariance/covariance.py +0 -0
  90. {scikit_learn_intelex-2024.3.0.data → scikit_learn_intelex-2024.5.0.data}/data/Lib/site-packages/sklearnex/spmd/decomposition/__init__.py +0 -0
  91. {scikit_learn_intelex-2024.3.0.data → scikit_learn_intelex-2024.5.0.data}/data/Lib/site-packages/sklearnex/spmd/decomposition/pca.py +0 -0
  92. {scikit_learn_intelex-2024.3.0.data → scikit_learn_intelex-2024.5.0.data}/data/Lib/site-packages/sklearnex/spmd/ensemble/__init__.py +0 -0
  93. {scikit_learn_intelex-2024.3.0.data → scikit_learn_intelex-2024.5.0.data}/data/Lib/site-packages/sklearnex/spmd/ensemble/forest.py +0 -0
  94. {scikit_learn_intelex-2024.3.0.data → scikit_learn_intelex-2024.5.0.data}/data/Lib/site-packages/sklearnex/spmd/linear_model/__init__.py +0 -0
  95. {scikit_learn_intelex-2024.3.0.data → scikit_learn_intelex-2024.5.0.data}/data/Lib/site-packages/sklearnex/spmd/linear_model/linear_model.py +0 -0
  96. {scikit_learn_intelex-2024.3.0.data → scikit_learn_intelex-2024.5.0.data}/data/Lib/site-packages/sklearnex/spmd/linear_model/logistic_regression.py +0 -0
  97. {scikit_learn_intelex-2024.3.0.data → scikit_learn_intelex-2024.5.0.data}/data/Lib/site-packages/sklearnex/spmd/neighbors/__init__.py +0 -0
  98. {scikit_learn_intelex-2024.3.0.data → scikit_learn_intelex-2024.5.0.data}/data/Lib/site-packages/sklearnex/spmd/neighbors/neighbors.py +0 -0
  99. {scikit_learn_intelex-2024.3.0.data → scikit_learn_intelex-2024.5.0.data}/data/Lib/site-packages/sklearnex/svm/__init__.py +0 -0
  100. {scikit_learn_intelex-2024.3.0.data → scikit_learn_intelex-2024.5.0.data}/data/Lib/site-packages/sklearnex/svm/tests/test_svm.py +0 -0
  101. {scikit_learn_intelex-2024.3.0.data → scikit_learn_intelex-2024.5.0.data}/data/Lib/site-packages/sklearnex/tests/test_config.py +0 -0
  102. {scikit_learn_intelex-2024.3.0.data → scikit_learn_intelex-2024.5.0.data}/data/Lib/site-packages/sklearnex/tests/test_monkeypatch.py +0 -0
  103. {scikit_learn_intelex-2024.3.0.data → scikit_learn_intelex-2024.5.0.data}/data/Lib/site-packages/sklearnex/tests/test_parallel.py +0 -0
  104. {scikit_learn_intelex-2024.3.0.data → scikit_learn_intelex-2024.5.0.data}/data/Lib/site-packages/sklearnex/utils/parallel.py +0 -0
  105. {scikit_learn_intelex-2024.3.0.data → scikit_learn_intelex-2024.5.0.data}/data/Lib/site-packages/sklearnex/utils/validation.py +0 -0
  106. {scikit_learn_intelex-2024.3.0.dist-info → scikit_learn_intelex-2024.5.0.dist-info}/LICENSE.txt +0 -0
  107. {scikit_learn_intelex-2024.3.0.dist-info → scikit_learn_intelex-2024.5.0.dist-info}/top_level.txt +0 -0
@@ -25,8 +25,11 @@ from sklearn.ensemble import ExtraTreesClassifier as sklearn_ExtraTreesClassifie
25
25
  from sklearn.ensemble import ExtraTreesRegressor as sklearn_ExtraTreesRegressor
26
26
  from sklearn.ensemble import RandomForestClassifier as sklearn_RandomForestClassifier
27
27
  from sklearn.ensemble import RandomForestRegressor as sklearn_RandomForestRegressor
28
+ from sklearn.ensemble._forest import ForestClassifier as sklearn_ForestClassifier
29
+ from sklearn.ensemble._forest import ForestRegressor as sklearn_ForestRegressor
28
30
  from sklearn.ensemble._forest import _get_n_samples_bootstrap
29
31
  from sklearn.exceptions import DataConversionWarning
32
+ from sklearn.metrics import accuracy_score
30
33
  from sklearn.tree import (
31
34
  DecisionTreeClassifier,
32
35
  DecisionTreeRegressor,
@@ -35,12 +38,7 @@ from sklearn.tree import (
35
38
  )
36
39
  from sklearn.tree._tree import Tree
37
40
  from sklearn.utils import check_random_state, deprecated
38
- from sklearn.utils.validation import (
39
- check_array,
40
- check_consistent_length,
41
- check_is_fitted,
42
- check_X_y,
43
- )
41
+ from sklearn.utils.validation import check_array, check_is_fitted
44
42
 
45
43
  from daal4py.sklearn._n_jobs_support import control_n_jobs
46
44
  from daal4py.sklearn._utils import (
@@ -52,19 +50,10 @@ from onedal.ensemble import ExtraTreesClassifier as onedal_ExtraTreesClassifier
52
50
  from onedal.ensemble import ExtraTreesRegressor as onedal_ExtraTreesRegressor
53
51
  from onedal.ensemble import RandomForestClassifier as onedal_RandomForestClassifier
54
52
  from onedal.ensemble import RandomForestRegressor as onedal_RandomForestRegressor
55
-
56
- # try catch needed for changes in structures observed in Scikit-learn around v0.22
57
- try:
58
- from sklearn.ensemble._forest import ForestClassifier as sklearn_ForestClassifier
59
- from sklearn.ensemble._forest import ForestRegressor as sklearn_ForestRegressor
60
- except ModuleNotFoundError:
61
- from sklearn.ensemble.forest import ForestClassifier as sklearn_ForestClassifier
62
- from sklearn.ensemble.forest import ForestRegressor as sklearn_ForestRegressor
63
-
64
53
  from onedal.primitives import get_tree_state_cls, get_tree_state_reg
65
54
  from onedal.utils import _num_features, _num_samples
55
+ from sklearnex.utils import get_namespace
66
56
 
67
- from .._config import get_config
68
57
  from .._device_offload import dispatch, wrap_output_data
69
58
  from .._utils import PatchingConditionsChain
70
59
 
@@ -78,24 +67,14 @@ class BaseForest(ABC):
78
67
  _onedal_factory = None
79
68
 
80
69
  def _onedal_fit(self, X, y, sample_weight=None, queue=None):
81
- if sklearn_check_version("0.24"):
82
- X, y = self._validate_data(
83
- X,
84
- y,
85
- multi_output=False,
86
- accept_sparse=False,
87
- dtype=[np.float64, np.float32],
88
- force_all_finite=False,
89
- )
90
- else:
91
- X, y = check_X_y(
92
- X,
93
- y,
94
- accept_sparse=False,
95
- dtype=[np.float64, np.float32],
96
- multi_output=False,
97
- force_all_finite=False,
98
- )
70
+ X, y = self._validate_data(
71
+ X,
72
+ y,
73
+ multi_output=False,
74
+ accept_sparse=False,
75
+ dtype=[np.float64, np.float32],
76
+ force_all_finite=False,
77
+ )
99
78
 
100
79
  if sample_weight is not None:
101
80
  sample_weight = self.check_sample_weight(sample_weight, X)
@@ -173,15 +152,6 @@ class BaseForest(ABC):
173
152
 
174
153
  return self
175
154
 
176
- def _fit_proba(self, X, y, sample_weight=None, queue=None):
177
- params = self.get_params()
178
- self.__class__(**params)
179
-
180
- # We use stock metaestimators below, so the only way
181
- # to pass a queue is using config_context.
182
- cfg = get_config()
183
- cfg["target_offload"] = queue
184
-
185
155
  def _save_attributes(self):
186
156
  if self.oob_score:
187
157
  self.oob_score_ = self._onedal_estimator.oob_score_
@@ -204,8 +174,6 @@ class BaseForest(ABC):
204
174
  self._validate_estimator()
205
175
  return self
206
176
 
207
- # TODO:
208
- # move to onedal modul.
209
177
  def _check_parameters(self):
210
178
  if isinstance(self.min_samples_leaf, numbers.Integral):
211
179
  if not 1 <= self.min_samples_leaf:
@@ -550,18 +518,14 @@ class ForestClassifier(sklearn_ForestClassifier, BaseForest):
550
518
  )
551
519
 
552
520
  if patching_status.get_status():
553
- if sklearn_check_version("0.24"):
554
- X, y = self._validate_data(
555
- X,
556
- y,
557
- multi_output=True,
558
- accept_sparse=True,
559
- dtype=[np.float64, np.float32],
560
- force_all_finite=False,
561
- )
562
- else:
563
- X = check_array(X, dtype=[np.float64, np.float32], force_all_finite=False)
564
- y = check_array(y, ensure_2d=False, dtype=X.dtype, force_all_finite=False)
521
+ X, y = self._validate_data(
522
+ X,
523
+ y,
524
+ multi_output=True,
525
+ accept_sparse=True,
526
+ dtype=[np.float64, np.float32],
527
+ force_all_finite=False,
528
+ )
565
529
 
566
530
  if y.ndim == 2 and y.shape[1] == 1:
567
531
  warnings.warn(
@@ -655,9 +619,38 @@ class ForestClassifier(sklearn_ForestClassifier, BaseForest):
655
619
  X,
656
620
  )
657
621
 
622
+ def predict_log_proba(self, X):
623
+ xp, _ = get_namespace(X)
624
+ proba = self.predict_proba(X)
625
+
626
+ if self.n_outputs_ == 1:
627
+ return xp.log(proba)
628
+
629
+ else:
630
+ for k in range(self.n_outputs_):
631
+ proba[k] = xp.log(proba[k])
632
+
633
+ return proba
634
+
635
+ @wrap_output_data
636
+ def score(self, X, y, sample_weight=None):
637
+ return dispatch(
638
+ self,
639
+ "score",
640
+ {
641
+ "onedal": self.__class__._onedal_score,
642
+ "sklearn": sklearn_ForestClassifier.score,
643
+ },
644
+ X,
645
+ y,
646
+ sample_weight=sample_weight,
647
+ )
648
+
658
649
  fit.__doc__ = sklearn_ForestClassifier.fit.__doc__
659
650
  predict.__doc__ = sklearn_ForestClassifier.predict.__doc__
660
651
  predict_proba.__doc__ = sklearn_ForestClassifier.predict_proba.__doc__
652
+ predict_log_proba.__doc__ = sklearn_ForestClassifier.predict_log_proba.__doc__
653
+ score.__doc__ = sklearn_ForestClassifier.score.__doc__
661
654
 
662
655
  def _onedal_cpu_supported(self, method_name, *data):
663
656
  class_name = self.__class__.__name__
@@ -684,7 +677,7 @@ class ForestClassifier(sklearn_ForestClassifier, BaseForest):
684
677
  ]
685
678
  )
686
679
 
687
- elif method_name in ["predict", "predict_proba"]:
680
+ elif method_name in ["predict", "predict_proba", "score"]:
688
681
  X = data[0]
689
682
 
690
683
  patching_status.and_conditions(
@@ -749,7 +742,7 @@ class ForestClassifier(sklearn_ForestClassifier, BaseForest):
749
742
  ]
750
743
  )
751
744
 
752
- elif method_name in ["predict", "predict_proba"]:
745
+ elif method_name in ["predict", "predict_proba", "score"]:
753
746
  X = data[0]
754
747
 
755
748
  patching_status.and_conditions(
@@ -784,15 +777,16 @@ class ForestClassifier(sklearn_ForestClassifier, BaseForest):
784
777
  return patching_status
785
778
 
786
779
  def _onedal_predict(self, X, queue=None):
780
+ check_is_fitted(self, "_onedal_estimator")
781
+
782
+ if sklearn_check_version("1.0"):
783
+ self._check_feature_names(X, reset=False)
784
+
787
785
  X = check_array(
788
786
  X,
789
787
  dtype=[np.float64, np.float32],
790
788
  force_all_finite=False,
791
789
  ) # Warning, order of dtype matters
792
- check_is_fitted(self, "_onedal_estimator")
793
-
794
- if sklearn_check_version("1.0"):
795
- self._check_feature_names(X, reset=False)
796
790
 
797
791
  res = self._onedal_estimator.predict(X, queue=queue)
798
792
  return np.take(self.classes_, res.ravel().astype(np.int64, casting="unsafe"))
@@ -801,12 +795,16 @@ class ForestClassifier(sklearn_ForestClassifier, BaseForest):
801
795
  X = check_array(X, dtype=[np.float64, np.float32], force_all_finite=False)
802
796
  check_is_fitted(self, "_onedal_estimator")
803
797
 
804
- if sklearn_check_version("0.23"):
805
- self._check_n_features(X, reset=False)
798
+ self._check_n_features(X, reset=False)
806
799
  if sklearn_check_version("1.0"):
807
800
  self._check_feature_names(X, reset=False)
808
801
  return self._onedal_estimator.predict_proba(X, queue=queue)
809
802
 
803
+ def _onedal_score(self, X, y, sample_weight=None, queue=None):
804
+ return accuracy_score(
805
+ y, self._onedal_predict(X, queue=queue), sample_weight=sample_weight
806
+ )
807
+
810
808
 
811
809
  class ForestRegressor(sklearn_ForestRegressor, BaseForest):
812
810
  _err = "out_of_bag_error_r2|out_of_bag_error_prediction"
@@ -916,18 +914,14 @@ class ForestRegressor(sklearn_ForestRegressor, BaseForest):
916
914
  )
917
915
 
918
916
  if patching_status.get_status():
919
- if sklearn_check_version("0.24"):
920
- X, y = self._validate_data(
921
- X,
922
- y,
923
- multi_output=True,
924
- accept_sparse=True,
925
- dtype=[np.float64, np.float32],
926
- force_all_finite=False,
927
- )
928
- else:
929
- X = check_array(X, dtype=[np.float64, np.float32], force_all_finite=False)
930
- y = check_array(y, ensure_2d=False, dtype=X.dtype, force_all_finite=False)
917
+ X, y = self._validate_data(
918
+ X,
919
+ y,
920
+ multi_output=True,
921
+ accept_sparse=True,
922
+ dtype=[np.float64, np.float32],
923
+ force_all_finite=False,
924
+ )
931
925
 
932
926
  if y.ndim == 2 and y.shape[1] == 1:
933
927
  warnings.warn(
@@ -1129,7 +1123,7 @@ class ForestRegressor(sklearn_ForestRegressor, BaseForest):
1129
1123
  predict.__doc__ = sklearn_ForestRegressor.predict.__doc__
1130
1124
 
1131
1125
 
1132
- @control_n_jobs(decorated_methods=["fit", "predict", "predict_proba"])
1126
+ @control_n_jobs(decorated_methods=["fit", "predict", "predict_proba", "score"])
1133
1127
  class RandomForestClassifier(ForestClassifier):
1134
1128
  __doc__ = sklearn_RandomForestClassifier.__doc__
1135
1129
  _onedal_factory = onedal_RandomForestClassifier
@@ -1540,7 +1534,7 @@ class RandomForestRegressor(ForestRegressor):
1540
1534
  self.min_bin_size = min_bin_size
1541
1535
 
1542
1536
 
1543
- @control_n_jobs(decorated_methods=["fit", "predict", "predict_proba"])
1537
+ @control_n_jobs(decorated_methods=["fit", "predict", "predict_proba", "score"])
1544
1538
  class ExtraTreesClassifier(ForestClassifier):
1545
1539
  __doc__ = sklearn_ExtraTreesClassifier.__doc__
1546
1540
  _onedal_factory = onedal_ExtraTreesClassifier
@@ -15,14 +15,16 @@
15
15
  # ===============================================================================
16
16
 
17
17
  from .coordinate_descent import ElasticNet, Lasso
18
+ from .incremental_linear import IncrementalLinearRegression
18
19
  from .linear import LinearRegression
19
20
  from .logistic_regression import LogisticRegression
20
21
  from .ridge import Ridge
21
22
 
22
23
  __all__ = [
23
- "Ridge",
24
- "LinearRegression",
25
- "LogisticRegression",
26
24
  "ElasticNet",
25
+ "IncrementalLinearRegression",
27
26
  "Lasso",
27
+ "LinearRegression",
28
+ "LogisticRegression",
29
+ "Ridge",
28
30
  ]
@@ -0,0 +1,387 @@
1
+ # ===============================================================================
2
+ # Copyright 2024 Intel Corporation
3
+ #
4
+ # Licensed under the Apache License, Version 2.0 (the "License");
5
+ # you may not use this file except in compliance with the License.
6
+ # You may obtain a copy of the License at
7
+ #
8
+ # http://www.apache.org/licenses/LICENSE-2.0
9
+ #
10
+ # Unless required by applicable law or agreed to in writing, software
11
+ # distributed under the License is distributed on an "AS IS" BASIS,
12
+ # WITHOUT WARRANTIES OR CONDITIONS OF ANY KIND, either express or implied.
13
+ # See the License for the specific language governing permissions and
14
+ # limitations under the License.
15
+ # ===============================================================================
16
+
17
+ import numbers
18
+ import warnings
19
+
20
+ import numpy as np
21
+ from sklearn.base import BaseEstimator, MultiOutputMixin, RegressorMixin
22
+ from sklearn.exceptions import NotFittedError
23
+ from sklearn.utils import check_array, gen_batches
24
+
25
+ from daal4py.sklearn._n_jobs_support import control_n_jobs
26
+ from daal4py.sklearn._utils import sklearn_check_version
27
+ from onedal.linear_model import (
28
+ IncrementalLinearRegression as onedal_IncrementalLinearRegression,
29
+ )
30
+
31
+ if sklearn_check_version("1.2"):
32
+ from sklearn.utils._param_validation import Interval
33
+
34
+ from onedal.common.hyperparameters import get_hyperparameters
35
+
36
+ from .._device_offload import dispatch, wrap_output_data
37
+ from .._utils import PatchingConditionsChain, register_hyperparameters
38
+
39
+
40
+ @register_hyperparameters(
41
+ {
42
+ "fit": get_hyperparameters("linear_regression", "train"),
43
+ "partial_fit": get_hyperparameters("linear_regression", "train"),
44
+ }
45
+ )
46
+ @control_n_jobs(
47
+ decorated_methods=["fit", "partial_fit", "predict", "_onedal_finalize_fit"]
48
+ )
49
+ class IncrementalLinearRegression(MultiOutputMixin, RegressorMixin, BaseEstimator):
50
+ """
51
+ Incremental estimator for linear regression.
52
+ Allows to train linear regression if data are splitted into batches.
53
+
54
+ Parameters
55
+ ----------
56
+ fit_intercept : bool, default=True
57
+ Whether to calculate the intercept for this model. If set
58
+ to False, no intercept will be used in calculations
59
+ (i.e. data is expected to be centered).
60
+
61
+ copy_X : bool, default=True
62
+ If True, X will be copied; else, it may be overwritten.
63
+
64
+ n_jobs : int, default=None
65
+ The number of jobs to use for the computation.
66
+
67
+ batch_size : int, default=None
68
+ The number of samples to use for each batch. Only used when calling
69
+ ``fit``. If ``batch_size`` is ``None``, then ``batch_size``
70
+ is inferred from the data and set to ``5 * n_features``, to provide a
71
+ balance between approximation accuracy and memory consumption.
72
+
73
+ Attributes
74
+ ----------
75
+ coef_ : array of shape (n_features, ) or (n_targets, n_features)
76
+ Estimated coefficients for the linear regression problem.
77
+ If multiple targets are passed during the fit (y 2D), this
78
+ is a 2D array of shape (n_targets, n_features), while if only
79
+ one target is passed, this is a 1D array of length n_features.
80
+
81
+ intercept_ : float or array of shape (n_targets,)
82
+ Independent term in the linear model. Set to 0.0 if
83
+ `fit_intercept = False`.
84
+
85
+ n_features_in_ : int
86
+ Number of features seen during :term:`fit`.
87
+
88
+ n_samples_seen_ : int
89
+ The number of samples processed by the estimator. Will be reset on
90
+ new calls to fit, but increments across ``partial_fit`` calls.
91
+ It should be not less than `n_features_in_` if `fit_intercept`
92
+ is False and not less than `n_features_in_` + 1 if `fit_intercept`
93
+ is True to obtain regression coefficients.
94
+
95
+ batch_size_ : int
96
+ Inferred batch size from ``batch_size``.
97
+
98
+ n_features_in_ : int
99
+ Number of features seen during :term:`fit` `partial_fit`.
100
+
101
+ """
102
+
103
+ _onedal_incremental_linear = staticmethod(onedal_IncrementalLinearRegression)
104
+
105
+ if sklearn_check_version("1.2"):
106
+ _parameter_constraints: dict = {
107
+ "fit_intercept": ["boolean"],
108
+ "copy_X": ["boolean"],
109
+ "n_jobs": [Interval(numbers.Integral, -1, None, closed="left"), None],
110
+ "batch_size": [Interval(numbers.Integral, 1, None, closed="left"), None],
111
+ }
112
+
113
+ def __init__(self, *, fit_intercept=True, copy_X=True, n_jobs=None, batch_size=None):
114
+ self.fit_intercept = fit_intercept
115
+ self.copy_X = copy_X
116
+ self.n_jobs = n_jobs
117
+ self.batch_size = batch_size
118
+
119
+ def _onedal_supported(self, method_name, *data):
120
+ patching_status = PatchingConditionsChain(
121
+ f"sklearn.linear_model.{self.__class__.__name__}.{method_name}"
122
+ )
123
+ return patching_status
124
+
125
+ _onedal_cpu_supported = _onedal_supported
126
+ _onedal_gpu_supported = _onedal_supported
127
+
128
+ def _onedal_predict(self, X, queue=None):
129
+ if sklearn_check_version("1.2"):
130
+ self._validate_params()
131
+
132
+ if sklearn_check_version("1.0"):
133
+ X = self._validate_data(
134
+ X,
135
+ dtype=[np.float64, np.float32],
136
+ copy=self.copy_X,
137
+ )
138
+ else:
139
+ X = check_array(
140
+ X,
141
+ dtype=[np.float64, np.float32],
142
+ copy=self.copy_X,
143
+ )
144
+
145
+ assert hasattr(self, "_onedal_estimator")
146
+ if self._need_to_finalize:
147
+ self._onedal_finalize_fit()
148
+ return self._onedal_estimator.predict(X, queue)
149
+
150
+ def _onedal_partial_fit(self, X, y, queue=None):
151
+ first_pass = not hasattr(self, "n_samples_seen_") or self.n_samples_seen_ == 0
152
+
153
+ if sklearn_check_version("1.2"):
154
+ self._validate_params()
155
+
156
+ if sklearn_check_version("1.0"):
157
+ X, y = self._validate_data(
158
+ X,
159
+ y,
160
+ dtype=[np.float64, np.float32],
161
+ reset=first_pass,
162
+ copy=self.copy_X,
163
+ multi_output=True,
164
+ )
165
+ else:
166
+ X = check_array(
167
+ X,
168
+ dtype=[np.float64, np.float32],
169
+ copy=self.copy_X,
170
+ )
171
+ y = check_array(
172
+ y,
173
+ dtype=[np.float64, np.float32],
174
+ copy=False,
175
+ ensure_2d=False,
176
+ )
177
+
178
+ if first_pass:
179
+ self.n_samples_seen_ = X.shape[0]
180
+ self.n_features_in_ = X.shape[1]
181
+ else:
182
+ self.n_samples_seen_ += X.shape[0]
183
+ onedal_params = {"fit_intercept": self.fit_intercept, "copy_X": self.copy_X}
184
+ if not hasattr(self, "_onedal_estimator"):
185
+ self._onedal_estimator = self._onedal_incremental_linear(**onedal_params)
186
+ self._onedal_estimator.partial_fit(X, y, queue)
187
+ self._need_to_finalize = True
188
+
189
+ def _onedal_finalize_fit(self):
190
+ assert hasattr(self, "_onedal_estimator")
191
+ is_underdetermined = self.n_samples_seen_ < self.n_features_in_ + int(
192
+ self.fit_intercept
193
+ )
194
+ if is_underdetermined:
195
+ raise ValueError("Not enough samples to finalize")
196
+ self._onedal_estimator.finalize_fit()
197
+ self._need_to_finalize = False
198
+
199
+ def _onedal_fit(self, X, y, queue=None):
200
+ if sklearn_check_version("1.2"):
201
+ self._validate_params()
202
+
203
+ if sklearn_check_version("1.0"):
204
+ X, y = self._validate_data(
205
+ X, y, dtype=[np.float64, np.float32], copy=self.copy_X, multi_output=True
206
+ )
207
+ else:
208
+ X = check_array(
209
+ X,
210
+ dtype=[np.float64, np.float32],
211
+ copy=self.copy_X,
212
+ )
213
+ y = check_array(
214
+ y,
215
+ dtype=[np.float64, np.float32],
216
+ copy=False,
217
+ ensure_2d=False,
218
+ )
219
+
220
+ n_samples, n_features = X.shape
221
+
222
+ is_underdetermined = n_samples < n_features + int(self.fit_intercept)
223
+ if is_underdetermined:
224
+ raise ValueError("Not enough samples to run oneDAL backend")
225
+
226
+ if self.batch_size is None:
227
+ self.batch_size_ = 5 * n_features
228
+ else:
229
+ self.batch_size_ = self.batch_size
230
+
231
+ self.n_samples_seen_ = 0
232
+ if hasattr(self, "_onedal_estimator"):
233
+ self._onedal_estimator._reset()
234
+
235
+ for batch in gen_batches(n_samples, self.batch_size_):
236
+ X_batch, y_batch = X[batch], y[batch]
237
+ self._onedal_partial_fit(X_batch, y_batch, queue=queue)
238
+
239
+ if sklearn_check_version("1.2"):
240
+ self._validate_params()
241
+
242
+ # finite check occurs on onedal side
243
+ self.n_features_in_ = n_features
244
+
245
+ if n_samples == 1:
246
+ warnings.warn(
247
+ "Only one sample available. You may want to reshape your data array"
248
+ )
249
+
250
+ self._onedal_finalize_fit()
251
+
252
+ return self
253
+
254
+ def get_intercept_(self):
255
+ if hasattr(self, "_onedal_estimator"):
256
+ if self._need_to_finalize:
257
+ self._onedal_finalize_fit()
258
+
259
+ return self._onedal_estimator.intercept_
260
+ else:
261
+ raise AttributeError(
262
+ f"'{self.__class__.__name__}' object has no attribute 'intercept_'"
263
+ )
264
+
265
+ def set_intercept_(self, value):
266
+ self.__dict__["intercept_"] = value
267
+ if hasattr(self, "_onedal_estimator"):
268
+ self._onedal_estimator.intercept_ = value
269
+ del self._onedal_estimator._onedal_model
270
+
271
+ def get_coef_(self):
272
+ if hasattr(self, "_onedal_estimator"):
273
+ if self._need_to_finalize:
274
+ self._onedal_finalize_fit()
275
+
276
+ return self._onedal_estimator.coef_
277
+ else:
278
+ raise AttributeError(
279
+ f"'{self.__class__.__name__}' object has no attribute 'coef_'"
280
+ )
281
+
282
+ def set_coef_(self, value):
283
+ self.__dict__["coef_"] = value
284
+ if hasattr(self, "_onedal_estimator"):
285
+ self._onedal_estimator.coef_ = value
286
+ del self._onedal_estimator._onedal_model
287
+
288
+ coef_ = property(get_coef_, set_coef_)
289
+ intercept_ = property(get_intercept_, set_intercept_)
290
+
291
+ def partial_fit(self, X, y):
292
+ """
293
+ Incremental fit linear model with X and y. All of X and y is
294
+ processed as a single batch.
295
+
296
+ Parameters
297
+ ----------
298
+ X : array-like of shape (n_samples, n_features)
299
+ Training data, where `n_samples` is the number of samples and
300
+ `n_features` is the number of features.
301
+
302
+ y : array-like of shape (n_samples,) or (n_samples, n_targets)
303
+ Target values, where `n_samples` is the number of samples and
304
+ `n_targets` is the number of targets.
305
+
306
+ Returns
307
+ -------
308
+ self : object
309
+ Returns the instance itself.
310
+ """
311
+
312
+ dispatch(
313
+ self,
314
+ "partial_fit",
315
+ {
316
+ "onedal": self.__class__._onedal_partial_fit,
317
+ "sklearn": None,
318
+ },
319
+ X,
320
+ y,
321
+ )
322
+ return self
323
+
324
+ def fit(self, X, y):
325
+ """
326
+ Fit the model with X and y, using minibatches of size batch_size.
327
+
328
+ Parameters
329
+ ----------
330
+ X : array-like of shape (n_samples, n_features)
331
+ Training data, where `n_samples` is the number of samples and
332
+ `n_features` is the number of features. It is necessary for
333
+ `n_samples` to be not less than `n_features` if `fit_intercept`
334
+ is False and not less than `n_features` + 1 if `fit_intercept`
335
+ is True
336
+
337
+ y : array-like of shape (n_samples,) or (n_samples, n_targets)
338
+ Target values, where `n_samples` is the number of samples and
339
+ `n_targets` is the number of targets.
340
+
341
+ Returns
342
+ -------
343
+ self : object
344
+ Returns the instance itself.
345
+ """
346
+
347
+ dispatch(
348
+ self,
349
+ "fit",
350
+ {
351
+ "onedal": self.__class__._onedal_fit,
352
+ "sklearn": None,
353
+ },
354
+ X,
355
+ y,
356
+ )
357
+ return self
358
+
359
+ @wrap_output_data
360
+ def predict(self, X, y=None):
361
+ """
362
+ Predict using the linear model.
363
+ Parameters
364
+ ----------
365
+ X : array-like or sparse matrix, shape (n_samples, n_features)
366
+ Samples.
367
+ Returns
368
+ -------
369
+ C : array, shape (n_samples, n_targets)
370
+ Returns predicted values.
371
+ """
372
+ if not hasattr(self, "coef_"):
373
+ msg = (
374
+ "This %(name)s instance is not fitted yet. Call 'fit' or 'partial_fit' "
375
+ "with appropriate arguments before using this estimator."
376
+ )
377
+ raise NotFittedError(msg % {"name": self.__class__.__name__})
378
+
379
+ return dispatch(
380
+ self,
381
+ "predict",
382
+ {
383
+ "onedal": self.__class__._onedal_predict,
384
+ "sklearn": None,
385
+ },
386
+ X,
387
+ )