scikit-learn-intelex 2024.2.0__py39-none-manylinux1_x86_64.whl → 2024.3.0__py39-none-manylinux1_x86_64.whl
This diff represents the content of publicly available package versions that have been released to one of the supported registries. The information contained in this diff is provided for informational purposes only and reflects changes between package versions as they appear in their respective public registries.
Potentially problematic release.
This version of scikit-learn-intelex might be problematic. Click here for more details.
- {scikit_learn_intelex-2024.2.0.dist-info → scikit_learn_intelex-2024.3.0.dist-info}/METADATA +2 -2
- {scikit_learn_intelex-2024.2.0.dist-info → scikit_learn_intelex-2024.3.0.dist-info}/RECORD +30 -33
- sklearnex/__init__.py +9 -7
- sklearnex/cluster/dbscan.py +3 -1
- sklearnex/conftest.py +63 -0
- sklearnex/decomposition/pca.py +322 -1
- sklearnex/decomposition/tests/test_pca.py +34 -5
- sklearnex/dispatcher.py +72 -41
- sklearnex/ensemble/_forest.py +10 -14
- sklearnex/ensemble/tests/test_forest.py +15 -19
- sklearnex/linear_model/logistic_regression.py +13 -2
- sklearnex/linear_model/tests/test_logreg.py +0 -2
- sklearnex/neighbors/_lof.py +39 -2
- sklearnex/neighbors/knn_classification.py +7 -9
- sklearnex/neighbors/knn_regression.py +6 -9
- sklearnex/neighbors/knn_unsupervised.py +5 -8
- sklearnex/neighbors/tests/test_neighbors.py +0 -5
- sklearnex/preview/__init__.py +1 -1
- sklearnex/spmd/ensemble/forest.py +4 -12
- sklearnex/svm/nusvc.py +4 -0
- sklearnex/svm/nusvr.py +3 -3
- sklearnex/svm/svc.py +4 -0
- sklearnex/tests/_utils.py +155 -0
- sklearnex/tests/test_memory_usage.py +8 -3
- sklearnex/tests/test_monkeypatch.py +177 -149
- sklearnex/tests/test_parallel.py +6 -8
- sklearnex/tests/test_patching.py +305 -80
- sklearnex/preview/decomposition/__init__.py +0 -19
- sklearnex/preview/decomposition/pca.py +0 -374
- sklearnex/preview/decomposition/tests/test_preview_pca.py +0 -42
- sklearnex/tests/_models_info.py +0 -170
- sklearnex/tests/utils/_launch_algorithms.py +0 -118
- {scikit_learn_intelex-2024.2.0.dist-info → scikit_learn_intelex-2024.3.0.dist-info}/LICENSE.txt +0 -0
- {scikit_learn_intelex-2024.2.0.dist-info → scikit_learn_intelex-2024.3.0.dist-info}/WHEEL +0 -0
- {scikit_learn_intelex-2024.2.0.dist-info → scikit_learn_intelex-2024.3.0.dist-info}/top_level.txt +0 -0
|
@@ -1,374 +0,0 @@
|
|
|
1
|
-
# ===============================================================================
|
|
2
|
-
# Copyright 2023 Intel Corporation
|
|
3
|
-
#
|
|
4
|
-
# Licensed under the Apache License, Version 2.0 (the "License");
|
|
5
|
-
# you may not use this file except in compliance with the License.
|
|
6
|
-
# You may obtain a copy of the License at
|
|
7
|
-
#
|
|
8
|
-
# http://www.apache.org/licenses/LICENSE-2.0
|
|
9
|
-
#
|
|
10
|
-
# Unless required by applicable law or agreed to in writing, software
|
|
11
|
-
# distributed under the License is distributed on an "AS IS" BASIS,
|
|
12
|
-
# WITHOUT WARRANTIES OR CONDITIONS OF ANY KIND, either express or implied.
|
|
13
|
-
# See the License for the specific language governing permissions and
|
|
14
|
-
# limitations under the License.
|
|
15
|
-
# ===============================================================================
|
|
16
|
-
|
|
17
|
-
import numbers
|
|
18
|
-
from math import sqrt
|
|
19
|
-
|
|
20
|
-
import numpy as np
|
|
21
|
-
from scipy.sparse import issparse
|
|
22
|
-
from sklearn.base import BaseEstimator
|
|
23
|
-
from sklearn.utils.extmath import stable_cumsum
|
|
24
|
-
from sklearn.utils.validation import check_array, check_is_fitted
|
|
25
|
-
|
|
26
|
-
from daal4py.sklearn._n_jobs_support import control_n_jobs
|
|
27
|
-
from daal4py.sklearn._utils import sklearn_check_version
|
|
28
|
-
from onedal.utils import _check_array
|
|
29
|
-
|
|
30
|
-
from ..._device_offload import dispatch
|
|
31
|
-
from ..._utils import PatchingConditionsChain, register_hyperparameters
|
|
32
|
-
|
|
33
|
-
if sklearn_check_version("1.1") and not sklearn_check_version("1.2"):
|
|
34
|
-
from sklearn.utils import check_scalar
|
|
35
|
-
if sklearn_check_version("0.23"):
|
|
36
|
-
from sklearn.decomposition._pca import _infer_dimension
|
|
37
|
-
else:
|
|
38
|
-
from sklearn.decomposition._pca import _infer_dimension_
|
|
39
|
-
|
|
40
|
-
from sklearn.decomposition import PCA as sklearn_PCA
|
|
41
|
-
|
|
42
|
-
from onedal.common.hyperparameters import get_hyperparameters
|
|
43
|
-
from onedal.decomposition import PCA as onedal_PCA
|
|
44
|
-
|
|
45
|
-
|
|
46
|
-
@register_hyperparameters({"fit": get_hyperparameters("covariance", "compute")})
|
|
47
|
-
@control_n_jobs(decorated_methods=["fit", "transform"])
|
|
48
|
-
class PCA(sklearn_PCA):
|
|
49
|
-
__doc__ = sklearn_PCA.__doc__
|
|
50
|
-
|
|
51
|
-
if sklearn_check_version("1.2"):
|
|
52
|
-
_parameter_constraints: dict = {**sklearn_PCA._parameter_constraints}
|
|
53
|
-
|
|
54
|
-
def __init__(
|
|
55
|
-
self,
|
|
56
|
-
n_components=None,
|
|
57
|
-
*,
|
|
58
|
-
copy=True,
|
|
59
|
-
whiten=False,
|
|
60
|
-
svd_solver="auto",
|
|
61
|
-
tol=0.0,
|
|
62
|
-
iterated_power="auto",
|
|
63
|
-
n_oversamples=10,
|
|
64
|
-
power_iteration_normalizer="auto",
|
|
65
|
-
random_state=None,
|
|
66
|
-
):
|
|
67
|
-
self.n_components = n_components
|
|
68
|
-
self.copy = copy
|
|
69
|
-
self.whiten = whiten
|
|
70
|
-
self.svd_solver = svd_solver
|
|
71
|
-
self.tol = tol
|
|
72
|
-
self.iterated_power = iterated_power
|
|
73
|
-
self.n_oversamples = n_oversamples
|
|
74
|
-
self.power_iteration_normalizer = power_iteration_normalizer
|
|
75
|
-
self.random_state = random_state
|
|
76
|
-
|
|
77
|
-
def _validate_n_components(self, n_components, n_samples, n_features, n_sf_min):
|
|
78
|
-
if n_components == "mle":
|
|
79
|
-
if n_samples < n_features:
|
|
80
|
-
raise ValueError(
|
|
81
|
-
"n_components='mle' is only supported if" " n_samples >= n_features"
|
|
82
|
-
)
|
|
83
|
-
elif not 0 <= n_components <= n_sf_min:
|
|
84
|
-
raise ValueError(
|
|
85
|
-
"n_components=%r must be between 0 and "
|
|
86
|
-
"min(n_samples, n_features)=%r with "
|
|
87
|
-
"svd_solver='full'" % (n_components, min(n_samples, n_features))
|
|
88
|
-
)
|
|
89
|
-
elif n_components >= 1:
|
|
90
|
-
if not isinstance(n_components, numbers.Integral):
|
|
91
|
-
raise ValueError(
|
|
92
|
-
"n_components=%r must be of type int "
|
|
93
|
-
"when greater than or equal to 1, "
|
|
94
|
-
"was of type=%r" % (n_components, type(n_components))
|
|
95
|
-
)
|
|
96
|
-
|
|
97
|
-
def fit(self, X, y=None):
|
|
98
|
-
if sklearn_check_version("1.2"):
|
|
99
|
-
self._validate_params()
|
|
100
|
-
elif sklearn_check_version("1.1"):
|
|
101
|
-
check_scalar(
|
|
102
|
-
self.n_oversamples,
|
|
103
|
-
"n_oversamples",
|
|
104
|
-
min_val=1,
|
|
105
|
-
target_type=numbers.Integral,
|
|
106
|
-
)
|
|
107
|
-
|
|
108
|
-
if sklearn_check_version("0.23"):
|
|
109
|
-
X = self._validate_data(
|
|
110
|
-
X,
|
|
111
|
-
dtype=[np.float64, np.float32],
|
|
112
|
-
ensure_2d=True,
|
|
113
|
-
copy=False,
|
|
114
|
-
accept_sparse=True,
|
|
115
|
-
)
|
|
116
|
-
else:
|
|
117
|
-
X = _check_array(
|
|
118
|
-
X,
|
|
119
|
-
dtype=[np.float64, np.float32],
|
|
120
|
-
ensure_2d=True,
|
|
121
|
-
copy=False,
|
|
122
|
-
accept_sparse=True,
|
|
123
|
-
)
|
|
124
|
-
|
|
125
|
-
n_samples, n_features = X.shape
|
|
126
|
-
n_sf_min = min(n_samples, n_features)
|
|
127
|
-
|
|
128
|
-
if self.n_components is None:
|
|
129
|
-
if self.svd_solver == "arpack":
|
|
130
|
-
n_components = n_sf_min - 1
|
|
131
|
-
else:
|
|
132
|
-
n_components = n_sf_min
|
|
133
|
-
else:
|
|
134
|
-
n_components = self.n_components
|
|
135
|
-
|
|
136
|
-
self._validate_n_components(n_components, n_samples, n_features, n_sf_min)
|
|
137
|
-
|
|
138
|
-
self._fit_svd_solver = self.svd_solver
|
|
139
|
-
|
|
140
|
-
if self._fit_svd_solver == "auto":
|
|
141
|
-
if sklearn_check_version("1.1"):
|
|
142
|
-
if max(X.shape) <= 500 or n_components == "mle":
|
|
143
|
-
self._fit_svd_solver = "full"
|
|
144
|
-
elif 1 <= n_components < 0.8 * n_sf_min:
|
|
145
|
-
self._fit_svd_solver = "randomized"
|
|
146
|
-
else:
|
|
147
|
-
self._fit_svd_solver = "full"
|
|
148
|
-
else:
|
|
149
|
-
if n_components == "mle":
|
|
150
|
-
self._fit_svd_solver = "full"
|
|
151
|
-
else:
|
|
152
|
-
n, p, k = X.shape[0], X.shape[1], n_components
|
|
153
|
-
# check if sklearnex is faster than randomized sklearn
|
|
154
|
-
# Refer to daal4py
|
|
155
|
-
regression_coefs = np.array(
|
|
156
|
-
[
|
|
157
|
-
[9.779873e-11, n * p * k],
|
|
158
|
-
[-1.122062e-11, n * p * p],
|
|
159
|
-
[1.127905e-09, n**2],
|
|
160
|
-
]
|
|
161
|
-
)
|
|
162
|
-
|
|
163
|
-
if (
|
|
164
|
-
n_components >= 1
|
|
165
|
-
and np.dot(regression_coefs[:, 0], regression_coefs[:, 1]) <= 0
|
|
166
|
-
):
|
|
167
|
-
self._fit_svd_solver = "randomized"
|
|
168
|
-
else:
|
|
169
|
-
self._fit_svd_solver = "full"
|
|
170
|
-
|
|
171
|
-
dispatch(
|
|
172
|
-
self,
|
|
173
|
-
"fit",
|
|
174
|
-
{
|
|
175
|
-
"onedal": self.__class__._onedal_fit,
|
|
176
|
-
"sklearn": sklearn_PCA.fit,
|
|
177
|
-
},
|
|
178
|
-
X,
|
|
179
|
-
)
|
|
180
|
-
return self
|
|
181
|
-
|
|
182
|
-
def _onedal_supported(self, method_name, *data):
|
|
183
|
-
class_name = self.__class__.__name__
|
|
184
|
-
X = data[0]
|
|
185
|
-
|
|
186
|
-
if method_name == "fit":
|
|
187
|
-
patching_status = PatchingConditionsChain(
|
|
188
|
-
f"sklearn.decomposition.{class_name}.{method_name}"
|
|
189
|
-
)
|
|
190
|
-
patching_status.and_conditions(
|
|
191
|
-
[
|
|
192
|
-
(
|
|
193
|
-
self._fit_svd_solver == "full",
|
|
194
|
-
f"'{self._fit_svd_solver}' SVD solver is not supported. "
|
|
195
|
-
"Only 'full' solver is supported.",
|
|
196
|
-
),
|
|
197
|
-
(not issparse(X), "oneDAL PCA does not support sparse inputs"),
|
|
198
|
-
(
|
|
199
|
-
X.shape[1] / X.shape[0] < 2,
|
|
200
|
-
"The shape of X does not satisfy oneDAL requirements: "
|
|
201
|
-
"number of features / number of samples >= 2",
|
|
202
|
-
),
|
|
203
|
-
]
|
|
204
|
-
)
|
|
205
|
-
return patching_status
|
|
206
|
-
elif method_name == "transform":
|
|
207
|
-
patching_status = PatchingConditionsChain(
|
|
208
|
-
f"sklearn.decomposition.{class_name}.{method_name}"
|
|
209
|
-
)
|
|
210
|
-
patching_status.and_conditions(
|
|
211
|
-
[
|
|
212
|
-
(hasattr(self, "_onedal_estimator"), "oneDAL model was not trained"),
|
|
213
|
-
]
|
|
214
|
-
)
|
|
215
|
-
return patching_status
|
|
216
|
-
raise RuntimeError(f"Unknown method {method_name} in {self.__class__.__name__}")
|
|
217
|
-
|
|
218
|
-
def _onedal_cpu_supported(self, method_name, *data):
|
|
219
|
-
return self._onedal_supported(method_name, *data)
|
|
220
|
-
|
|
221
|
-
def _onedal_gpu_supported(self, method_name, *data):
|
|
222
|
-
return self._onedal_supported(method_name, *data)
|
|
223
|
-
|
|
224
|
-
def _onedal_fit(self, X, y=None, queue=None):
|
|
225
|
-
if self.n_components == "mle" or self.n_components is None:
|
|
226
|
-
onedal_n_components = min(X.shape)
|
|
227
|
-
elif 0 < self.n_components < 1:
|
|
228
|
-
onedal_n_components = min(X.shape)
|
|
229
|
-
else:
|
|
230
|
-
onedal_n_components = self.n_components
|
|
231
|
-
|
|
232
|
-
onedal_params = {
|
|
233
|
-
"n_components": onedal_n_components,
|
|
234
|
-
"is_deterministic": True,
|
|
235
|
-
"method": "precomputed",
|
|
236
|
-
}
|
|
237
|
-
self._onedal_estimator = onedal_PCA(**onedal_params)
|
|
238
|
-
self._onedal_estimator.fit(X, queue=queue)
|
|
239
|
-
self._save_attributes()
|
|
240
|
-
|
|
241
|
-
U = None
|
|
242
|
-
S = self.singular_values_
|
|
243
|
-
V = self.components_
|
|
244
|
-
|
|
245
|
-
return U, S, V
|
|
246
|
-
|
|
247
|
-
def _onedal_predict(self, X, queue=None):
|
|
248
|
-
return self._onedal_estimator.predict(X, queue)
|
|
249
|
-
|
|
250
|
-
def _onedal_transform(self, X):
|
|
251
|
-
X = _check_array(X, dtype=[np.float64, np.float32], ensure_2d=True, copy=False)
|
|
252
|
-
|
|
253
|
-
if hasattr(self, "n_features_in_"):
|
|
254
|
-
if self.n_features_in_ != X.shape[1]:
|
|
255
|
-
raise ValueError(
|
|
256
|
-
f"X has {X.shape[1]} features, "
|
|
257
|
-
f"but {self.__class__.__name__} is expecting "
|
|
258
|
-
f"{self.n_features_in_} features as input"
|
|
259
|
-
)
|
|
260
|
-
elif hasattr(self, "n_features_"):
|
|
261
|
-
if self.n_features_ != X.shape[1]:
|
|
262
|
-
raise ValueError(
|
|
263
|
-
f"X has {X.shape[1]} features, "
|
|
264
|
-
f"but {self.__class__.__name__} is expecting "
|
|
265
|
-
f"{self.n_features_} features as input"
|
|
266
|
-
)
|
|
267
|
-
|
|
268
|
-
# Mean center
|
|
269
|
-
X_centered = X - self.mean_
|
|
270
|
-
return dispatch(
|
|
271
|
-
self,
|
|
272
|
-
"transform",
|
|
273
|
-
{
|
|
274
|
-
"onedal": self.__class__._onedal_predict,
|
|
275
|
-
"sklearn": sklearn_PCA.transform,
|
|
276
|
-
},
|
|
277
|
-
X_centered,
|
|
278
|
-
)
|
|
279
|
-
|
|
280
|
-
def transform(self, X):
|
|
281
|
-
check_is_fitted(self)
|
|
282
|
-
if hasattr(self, "_onedal_estimator"):
|
|
283
|
-
X_new = self._onedal_transform(X)[:, : self.n_components_]
|
|
284
|
-
if self.whiten:
|
|
285
|
-
X_new /= np.sqrt(self.explained_variance_)
|
|
286
|
-
else:
|
|
287
|
-
return super().transform(X)
|
|
288
|
-
return X_new
|
|
289
|
-
|
|
290
|
-
def fit_transform(self, X, y=None):
|
|
291
|
-
"""Fit the model with X and apply the dimensionality reduction on X.
|
|
292
|
-
Parameters
|
|
293
|
-
----------
|
|
294
|
-
X : array-like of shape (n_samples, n_features)
|
|
295
|
-
Training data, where `n_samples` is the number of samples
|
|
296
|
-
and `n_features` is the number of features.
|
|
297
|
-
y : Ignored.
|
|
298
|
-
|
|
299
|
-
Returns
|
|
300
|
-
-------
|
|
301
|
-
X_new : ndarray of shape (n_samples, n_components)
|
|
302
|
-
Transformed values of X.
|
|
303
|
-
"""
|
|
304
|
-
if self.svd_solver in ["randomized", "arpack"]:
|
|
305
|
-
return super().fit_transform(X)
|
|
306
|
-
else:
|
|
307
|
-
self.fit(X)
|
|
308
|
-
if hasattr(self, "_onedal_estimator"):
|
|
309
|
-
X_new = self._onedal_transform(X)[:, : self.n_components_]
|
|
310
|
-
if self.whiten:
|
|
311
|
-
X_new /= np.sqrt(self.explained_variance_)
|
|
312
|
-
return X_new
|
|
313
|
-
else:
|
|
314
|
-
return super().transform(X)
|
|
315
|
-
|
|
316
|
-
fit.__doc__ = sklearn_PCA.fit.__doc__
|
|
317
|
-
transform.__doc__ = sklearn_PCA.transform.__doc__
|
|
318
|
-
fit_transform.__doc__ = sklearn_PCA.fit_transform.__doc__
|
|
319
|
-
|
|
320
|
-
def _save_attributes(self):
|
|
321
|
-
self.n_samples_ = self._onedal_estimator.n_samples_
|
|
322
|
-
|
|
323
|
-
if sklearn_check_version("1.2"):
|
|
324
|
-
self.n_features_in_ = self._onedal_estimator.n_features_in_
|
|
325
|
-
n_features = self.n_features_in_
|
|
326
|
-
elif sklearn_check_version("0.24"):
|
|
327
|
-
self.n_features_ = self._onedal_estimator.n_features_
|
|
328
|
-
self.n_features_in_ = self._onedal_estimator.n_features_in_
|
|
329
|
-
n_features = self.n_features_in_
|
|
330
|
-
else:
|
|
331
|
-
self.n_features_ = self._onedal_estimator.n_features_
|
|
332
|
-
n_features = self.n_features_
|
|
333
|
-
n_sf_min = min(self.n_samples_, n_features)
|
|
334
|
-
|
|
335
|
-
self.mean_ = self._onedal_estimator.mean_
|
|
336
|
-
self.singular_values_ = self._onedal_estimator.singular_values_
|
|
337
|
-
self.explained_variance_ = self._onedal_estimator.explained_variance_
|
|
338
|
-
self.explained_variance_ratio_ = self._onedal_estimator.explained_variance_ratio_
|
|
339
|
-
|
|
340
|
-
if self.n_components is None:
|
|
341
|
-
self.n_components_ = self._onedal_estimator.n_components_
|
|
342
|
-
elif self.n_components == "mle":
|
|
343
|
-
if sklearn_check_version("0.23"):
|
|
344
|
-
self.n_components_ = _infer_dimension(
|
|
345
|
-
self.explained_variance_, self.n_samples_
|
|
346
|
-
)
|
|
347
|
-
else:
|
|
348
|
-
self.n_components_ = _infer_dimension_(
|
|
349
|
-
self.explained_variance_, self.n_samples_, n_features
|
|
350
|
-
)
|
|
351
|
-
elif 0 < self.n_components < 1.0:
|
|
352
|
-
ratio_cumsum = stable_cumsum(self.explained_variance_ratio_)
|
|
353
|
-
self.n_components_ = (
|
|
354
|
-
np.searchsorted(ratio_cumsum, self.n_components, side="right") + 1
|
|
355
|
-
)
|
|
356
|
-
else:
|
|
357
|
-
self.n_components_ = self._onedal_estimator.n_components_
|
|
358
|
-
|
|
359
|
-
if self.n_components_ < n_sf_min:
|
|
360
|
-
if self.explained_variance_.shape[0] == n_sf_min:
|
|
361
|
-
self.noise_variance_ = self.explained_variance_[
|
|
362
|
-
self.n_components_ :
|
|
363
|
-
].mean()
|
|
364
|
-
else:
|
|
365
|
-
self.noise_variance_ = self._onedal_estimator.noise_variance_
|
|
366
|
-
else:
|
|
367
|
-
self.noise_variance_ = 0.0
|
|
368
|
-
|
|
369
|
-
self.explained_variance_ = self.explained_variance_[: self.n_components_]
|
|
370
|
-
self.explained_variance_ratio_ = self.explained_variance_ratio_[
|
|
371
|
-
: self.n_components_
|
|
372
|
-
]
|
|
373
|
-
self.components_ = self._onedal_estimator.components_[: self.n_components_]
|
|
374
|
-
self.singular_values_ = self.singular_values_[: self.n_components_]
|
|
@@ -1,42 +0,0 @@
|
|
|
1
|
-
# ===============================================================================
|
|
2
|
-
# Copyright 2023 Intel Corporation
|
|
3
|
-
#
|
|
4
|
-
# Licensed under the Apache License, Version 2.0 (the "License");
|
|
5
|
-
# you may not use this file except in compliance with the License.
|
|
6
|
-
# You may obtain a copy of the License at
|
|
7
|
-
#
|
|
8
|
-
# http://www.apache.org/licenses/LICENSE-2.0
|
|
9
|
-
#
|
|
10
|
-
# Unless required by applicable law or agreed to in writing, software
|
|
11
|
-
# distributed under the License is distributed on an "AS IS" BASIS,
|
|
12
|
-
# WITHOUT WARRANTIES OR CONDITIONS OF ANY KIND, either express or implied.
|
|
13
|
-
# See the License for the specific language governing permissions and
|
|
14
|
-
# limitations under the License.
|
|
15
|
-
# ===============================================================================
|
|
16
|
-
|
|
17
|
-
import numpy as np
|
|
18
|
-
import pytest
|
|
19
|
-
from numpy.testing import assert_allclose
|
|
20
|
-
|
|
21
|
-
from daal4py.sklearn._utils import daal_check_version
|
|
22
|
-
from onedal.tests.utils._dataframes_support import (
|
|
23
|
-
_as_numpy,
|
|
24
|
-
_convert_to_dataframe,
|
|
25
|
-
get_dataframes_and_queues,
|
|
26
|
-
)
|
|
27
|
-
|
|
28
|
-
|
|
29
|
-
@pytest.mark.parametrize("dataframe,queue", get_dataframes_and_queues())
|
|
30
|
-
@pytest.mark.parametrize("macro_block", [None, 1024])
|
|
31
|
-
def test_sklearnex_import(dataframe, queue, macro_block):
|
|
32
|
-
from sklearnex.preview.decomposition import PCA
|
|
33
|
-
|
|
34
|
-
X = [[-1, -1], [-2, -1], [-3, -2], [1, 1], [2, 1], [3, 2]]
|
|
35
|
-
X = _convert_to_dataframe(X, sycl_queue=queue, target_df=dataframe)
|
|
36
|
-
pca = PCA(n_components=2, svd_solver="full")
|
|
37
|
-
if daal_check_version((2024, "P", 0)) and macro_block is not None:
|
|
38
|
-
pca.get_hyperparameters("fit").cpu_macro_block = macro_block
|
|
39
|
-
pca.fit(X)
|
|
40
|
-
assert "sklearnex" in pca.__module__
|
|
41
|
-
assert hasattr(pca, "_onedal_estimator")
|
|
42
|
-
assert_allclose(_as_numpy(pca.singular_values_), [6.30061232, 0.54980396])
|
sklearnex/tests/_models_info.py
DELETED
|
@@ -1,170 +0,0 @@
|
|
|
1
|
-
# ==============================================================================
|
|
2
|
-
# Copyright 2021 Intel Corporation
|
|
3
|
-
#
|
|
4
|
-
# Licensed under the Apache License, Version 2.0 (the "License");
|
|
5
|
-
# you may not use this file except in compliance with the License.
|
|
6
|
-
# You may obtain a copy of the License at
|
|
7
|
-
#
|
|
8
|
-
# http://www.apache.org/licenses/LICENSE-2.0
|
|
9
|
-
#
|
|
10
|
-
# Unless required by applicable law or agreed to in writing, software
|
|
11
|
-
# distributed under the License is distributed on an "AS IS" BASIS,
|
|
12
|
-
# WITHOUT WARRANTIES OR CONDITIONS OF ANY KIND, either express or implied.
|
|
13
|
-
# See the License for the specific language governing permissions and
|
|
14
|
-
# limitations under the License.
|
|
15
|
-
# ==============================================================================
|
|
16
|
-
|
|
17
|
-
import numpy as np
|
|
18
|
-
from sklearn.cluster import DBSCAN, KMeans
|
|
19
|
-
from sklearn.decomposition import PCA
|
|
20
|
-
from sklearn.ensemble import RandomForestClassifier, RandomForestRegressor
|
|
21
|
-
from sklearn.linear_model import (
|
|
22
|
-
ElasticNet,
|
|
23
|
-
Lasso,
|
|
24
|
-
LinearRegression,
|
|
25
|
-
LogisticRegression,
|
|
26
|
-
LogisticRegressionCV,
|
|
27
|
-
Ridge,
|
|
28
|
-
)
|
|
29
|
-
from sklearn.manifold import TSNE
|
|
30
|
-
from sklearn.neighbors import (
|
|
31
|
-
KNeighborsClassifier,
|
|
32
|
-
KNeighborsRegressor,
|
|
33
|
-
LocalOutlierFactor,
|
|
34
|
-
NearestNeighbors,
|
|
35
|
-
)
|
|
36
|
-
from sklearn.svm import SVC
|
|
37
|
-
|
|
38
|
-
MODELS_INFO = [
|
|
39
|
-
{
|
|
40
|
-
"model": KNeighborsClassifier(algorithm="brute"),
|
|
41
|
-
"methods": ["kneighbors", "predict", "predict_proba", "score"],
|
|
42
|
-
"dataset": "classifier",
|
|
43
|
-
},
|
|
44
|
-
{
|
|
45
|
-
"model": KNeighborsRegressor(algorithm="brute"),
|
|
46
|
-
"methods": ["kneighbors", "predict", "score"],
|
|
47
|
-
"dataset": "regression",
|
|
48
|
-
},
|
|
49
|
-
{
|
|
50
|
-
"model": NearestNeighbors(algorithm="brute"),
|
|
51
|
-
"methods": ["kneighbors"],
|
|
52
|
-
"dataset": "blobs",
|
|
53
|
-
},
|
|
54
|
-
{
|
|
55
|
-
"model": LocalOutlierFactor(novelty=False),
|
|
56
|
-
"methods": ["fit_predict"],
|
|
57
|
-
"dataset": "blobs",
|
|
58
|
-
},
|
|
59
|
-
{
|
|
60
|
-
"model": LocalOutlierFactor(novelty=True),
|
|
61
|
-
"methods": ["predict"],
|
|
62
|
-
"dataset": "blobs",
|
|
63
|
-
},
|
|
64
|
-
{
|
|
65
|
-
"model": DBSCAN(),
|
|
66
|
-
"methods": ["fit_predict"],
|
|
67
|
-
"dataset": "blobs",
|
|
68
|
-
},
|
|
69
|
-
{
|
|
70
|
-
"model": SVC(probability=True),
|
|
71
|
-
"methods": ["decision_function", "predict", "predict_proba", "score"],
|
|
72
|
-
"dataset": "classifier",
|
|
73
|
-
},
|
|
74
|
-
{
|
|
75
|
-
"model": KMeans(),
|
|
76
|
-
"methods": ["fit_predict", "fit_transform", "transform", "predict", "score"],
|
|
77
|
-
"dataset": "blobs",
|
|
78
|
-
},
|
|
79
|
-
{
|
|
80
|
-
"model": ElasticNet(),
|
|
81
|
-
"methods": ["predict", "score"],
|
|
82
|
-
"dataset": "regression",
|
|
83
|
-
},
|
|
84
|
-
{
|
|
85
|
-
"model": Lasso(),
|
|
86
|
-
"methods": ["predict", "score"],
|
|
87
|
-
"dataset": "regression",
|
|
88
|
-
},
|
|
89
|
-
{
|
|
90
|
-
"model": PCA(),
|
|
91
|
-
"methods": ["fit_transform", "transform", "score"],
|
|
92
|
-
"dataset": "classifier",
|
|
93
|
-
},
|
|
94
|
-
{
|
|
95
|
-
"model": LogisticRegression(max_iter=100, multi_class="multinomial"),
|
|
96
|
-
"methods": [
|
|
97
|
-
"decision_function",
|
|
98
|
-
"predict",
|
|
99
|
-
"predict_proba",
|
|
100
|
-
"predict_log_proba",
|
|
101
|
-
"score",
|
|
102
|
-
],
|
|
103
|
-
"dataset": "classifier",
|
|
104
|
-
},
|
|
105
|
-
{
|
|
106
|
-
"model": LogisticRegressionCV(max_iter=100),
|
|
107
|
-
"methods": [
|
|
108
|
-
"decision_function",
|
|
109
|
-
"predict",
|
|
110
|
-
"predict_proba",
|
|
111
|
-
"predict_log_proba",
|
|
112
|
-
"score",
|
|
113
|
-
],
|
|
114
|
-
"dataset": "classifier",
|
|
115
|
-
},
|
|
116
|
-
{
|
|
117
|
-
"model": RandomForestClassifier(n_estimators=10),
|
|
118
|
-
"methods": ["predict", "predict_proba", "predict_log_proba", "score"],
|
|
119
|
-
"dataset": "classifier",
|
|
120
|
-
},
|
|
121
|
-
{
|
|
122
|
-
"model": RandomForestRegressor(n_estimators=10),
|
|
123
|
-
"methods": ["predict", "score"],
|
|
124
|
-
"dataset": "regression",
|
|
125
|
-
},
|
|
126
|
-
{
|
|
127
|
-
"model": LinearRegression(),
|
|
128
|
-
"methods": ["predict", "score"],
|
|
129
|
-
"dataset": "regression",
|
|
130
|
-
},
|
|
131
|
-
{
|
|
132
|
-
"model": Ridge(),
|
|
133
|
-
"methods": ["predict", "score"],
|
|
134
|
-
"dataset": "regression",
|
|
135
|
-
},
|
|
136
|
-
]
|
|
137
|
-
|
|
138
|
-
TYPES = [
|
|
139
|
-
np.int8,
|
|
140
|
-
np.int16,
|
|
141
|
-
np.int32,
|
|
142
|
-
np.int64,
|
|
143
|
-
np.float16,
|
|
144
|
-
np.float32,
|
|
145
|
-
np.float64,
|
|
146
|
-
np.uint8,
|
|
147
|
-
np.uint16,
|
|
148
|
-
np.uint32,
|
|
149
|
-
np.uint64,
|
|
150
|
-
]
|
|
151
|
-
|
|
152
|
-
TO_SKIP = [
|
|
153
|
-
# --------------- NO INFO ---------------
|
|
154
|
-
r"KMeans .*transform",
|
|
155
|
-
r"KMeans .*score",
|
|
156
|
-
r"PCA .*score",
|
|
157
|
-
r"LogisticRegression .*decision_function",
|
|
158
|
-
r"LogisticRegressionCV .*decision_function",
|
|
159
|
-
r"LogisticRegressionCV .*predict",
|
|
160
|
-
r"LogisticRegressionCV .*predict_proba",
|
|
161
|
-
r"LogisticRegressionCV .*predict_log_proba",
|
|
162
|
-
r"LogisticRegressionCV .*score",
|
|
163
|
-
# --------------- Scikit ---------------
|
|
164
|
-
r"Ridge float16 predict",
|
|
165
|
-
r"Ridge float16 score",
|
|
166
|
-
r"RandomForestClassifier .*predict_proba",
|
|
167
|
-
r"RandomForestClassifier .*predict_log_proba",
|
|
168
|
-
r"pairwise_distances .*pairwise_distances", # except float64
|
|
169
|
-
r"roc_auc_score .*roc_auc_score",
|
|
170
|
-
]
|
|
@@ -1,118 +0,0 @@
|
|
|
1
|
-
# ==============================================================================
|
|
2
|
-
# Copyright 2021 Intel Corporation
|
|
3
|
-
#
|
|
4
|
-
# Licensed under the Apache License, Version 2.0 (the "License");
|
|
5
|
-
# you may not use this file except in compliance with the License.
|
|
6
|
-
# You may obtain a copy of the License at
|
|
7
|
-
#
|
|
8
|
-
# http://www.apache.org/licenses/LICENSE-2.0
|
|
9
|
-
#
|
|
10
|
-
# Unless required by applicable law or agreed to in writing, software
|
|
11
|
-
# distributed under the License is distributed on an "AS IS" BASIS,
|
|
12
|
-
# WITHOUT WARRANTIES OR CONDITIONS OF ANY KIND, either express or implied.
|
|
13
|
-
# See the License for the specific language governing permissions and
|
|
14
|
-
# limitations under the License.
|
|
15
|
-
# ==============================================================================
|
|
16
|
-
|
|
17
|
-
import logging
|
|
18
|
-
import random
|
|
19
|
-
|
|
20
|
-
import numpy as np
|
|
21
|
-
|
|
22
|
-
from sklearnex import patch_sklearn
|
|
23
|
-
|
|
24
|
-
patch_sklearn()
|
|
25
|
-
|
|
26
|
-
import pathlib
|
|
27
|
-
import sys
|
|
28
|
-
|
|
29
|
-
from sklearn.datasets import load_diabetes, load_iris, make_regression
|
|
30
|
-
from sklearn.metrics import pairwise_distances, roc_auc_score
|
|
31
|
-
|
|
32
|
-
absolute_path = str(pathlib.Path(__file__).parent.absolute())
|
|
33
|
-
sys.path.append(absolute_path + "/../")
|
|
34
|
-
from _models_info import MODELS_INFO, TYPES
|
|
35
|
-
|
|
36
|
-
|
|
37
|
-
def get_class_name(x):
|
|
38
|
-
return x.__class__.__name__
|
|
39
|
-
|
|
40
|
-
|
|
41
|
-
def generate_dataset(name, dtype, model_name):
|
|
42
|
-
if model_name == "LinearRegression":
|
|
43
|
-
X, y = make_regression(n_samples=1000, n_features=5)
|
|
44
|
-
elif name in ["blobs", "classifier"]:
|
|
45
|
-
X, y = load_iris(return_X_y=True)
|
|
46
|
-
elif name == "regression":
|
|
47
|
-
X, y = load_diabetes(return_X_y=True)
|
|
48
|
-
else:
|
|
49
|
-
raise ValueError("Unknown dataset type")
|
|
50
|
-
X = np.array(X, dtype=dtype)
|
|
51
|
-
y = np.array(y, dtype=dtype)
|
|
52
|
-
return (X, y)
|
|
53
|
-
|
|
54
|
-
|
|
55
|
-
def run_patch(model_info, dtype):
|
|
56
|
-
print(get_class_name(model_info["model"]), dtype.__name__)
|
|
57
|
-
X, y = generate_dataset(
|
|
58
|
-
model_info["dataset"], dtype, get_class_name(model_info["model"])
|
|
59
|
-
)
|
|
60
|
-
model = model_info["model"]
|
|
61
|
-
model.fit(X, y)
|
|
62
|
-
logging.info("fit")
|
|
63
|
-
for i in model_info["methods"]:
|
|
64
|
-
if i == "predict":
|
|
65
|
-
model.predict(X)
|
|
66
|
-
elif i == "predict_proba":
|
|
67
|
-
model.predict_proba(X)
|
|
68
|
-
elif i == "predict_log_proba":
|
|
69
|
-
model.predict_log_proba(X)
|
|
70
|
-
elif i == "decision_function":
|
|
71
|
-
model.decision_function(X)
|
|
72
|
-
elif i == "fit_predict":
|
|
73
|
-
model.fit_predict(X)
|
|
74
|
-
elif i == "transform":
|
|
75
|
-
model.transform(X)
|
|
76
|
-
elif i == "fit_transform":
|
|
77
|
-
model.fit_transform(X)
|
|
78
|
-
elif i == "kneighbors":
|
|
79
|
-
model.kneighbors(X)
|
|
80
|
-
elif i == "score":
|
|
81
|
-
model.score(X, y)
|
|
82
|
-
else:
|
|
83
|
-
raise ValueError(i + " is wrong method")
|
|
84
|
-
logging.info(i)
|
|
85
|
-
|
|
86
|
-
|
|
87
|
-
def run_algotithms():
|
|
88
|
-
for info in MODELS_INFO:
|
|
89
|
-
for t in TYPES:
|
|
90
|
-
model_name = get_class_name(info["model"])
|
|
91
|
-
if model_name in ["Ridge", "LinearRegression"] and t.__name__ == "uint32":
|
|
92
|
-
continue
|
|
93
|
-
run_patch(info, t)
|
|
94
|
-
|
|
95
|
-
|
|
96
|
-
def run_utils():
|
|
97
|
-
# pairwise_distances
|
|
98
|
-
for metric in ["cosine", "correlation"]:
|
|
99
|
-
for t in TYPES:
|
|
100
|
-
X = np.random.rand(1000)
|
|
101
|
-
X = np.array(X, dtype=t)
|
|
102
|
-
print("pairwise_distances", t.__name__)
|
|
103
|
-
_ = pairwise_distances(X.reshape(1, -1), metric=metric)
|
|
104
|
-
logging.info("pairwise_distances")
|
|
105
|
-
# roc_auc_score
|
|
106
|
-
for t in [np.float32, np.float64]:
|
|
107
|
-
a = [random.randint(0, 1) for i in range(1000)]
|
|
108
|
-
b = [random.randint(0, 1) for i in range(1000)]
|
|
109
|
-
a = np.array(a, dtype=t)
|
|
110
|
-
b = np.array(b, dtype=t)
|
|
111
|
-
print("roc_auc_score", t.__name__)
|
|
112
|
-
_ = roc_auc_score(a, b)
|
|
113
|
-
logging.info("roc_auc_score")
|
|
114
|
-
|
|
115
|
-
|
|
116
|
-
if __name__ == "__main__":
|
|
117
|
-
run_algotithms()
|
|
118
|
-
run_utils()
|