scikit-learn-intelex 2024.2.0__py38-none-manylinux1_x86_64.whl → 2024.4.0__py38-none-manylinux1_x86_64.whl
This diff represents the content of publicly available package versions that have been released to one of the supported registries. The information contained in this diff is provided for informational purposes only and reflects changes between package versions as they appear in their respective public registries.
Potentially problematic release.
This version of scikit-learn-intelex might be problematic. Click here for more details.
- {scikit_learn_intelex-2024.2.0.dist-info → scikit_learn_intelex-2024.4.0.dist-info}/METADATA +2 -2
- {scikit_learn_intelex-2024.2.0.dist-info → scikit_learn_intelex-2024.4.0.dist-info}/RECORD +45 -45
- sklearnex/__init__.py +9 -7
- sklearnex/_device_offload.py +31 -4
- sklearnex/basic_statistics/__init__.py +2 -1
- sklearnex/basic_statistics/incremental_basic_statistics.py +288 -0
- sklearnex/basic_statistics/tests/test_incremental_basic_statistics.py +386 -0
- sklearnex/cluster/dbscan.py +3 -1
- sklearnex/conftest.py +63 -0
- sklearnex/decomposition/pca.py +319 -1
- sklearnex/decomposition/tests/test_pca.py +34 -5
- sklearnex/dispatcher.py +74 -43
- sklearnex/ensemble/_forest.py +78 -89
- sklearnex/ensemble/tests/test_forest.py +15 -19
- sklearnex/linear_model/linear.py +275 -340
- sklearnex/linear_model/logistic_regression.py +63 -11
- sklearnex/linear_model/tests/test_linear.py +40 -5
- sklearnex/linear_model/tests/test_logreg.py +0 -2
- sklearnex/neighbors/_lof.py +74 -20
- sklearnex/neighbors/common.py +4 -1
- sklearnex/neighbors/knn_classification.py +44 -131
- sklearnex/neighbors/knn_regression.py +16 -126
- sklearnex/neighbors/knn_unsupervised.py +11 -86
- sklearnex/neighbors/tests/test_neighbors.py +0 -5
- sklearnex/preview/__init__.py +1 -1
- sklearnex/preview/cluster/k_means.py +5 -73
- sklearnex/preview/covariance/covariance.py +6 -5
- sklearnex/preview/covariance/tests/test_covariance.py +18 -5
- sklearnex/spmd/ensemble/forest.py +4 -12
- sklearnex/svm/_common.py +4 -7
- sklearnex/svm/nusvc.py +70 -50
- sklearnex/svm/nusvr.py +6 -52
- sklearnex/svm/svc.py +70 -51
- sklearnex/svm/svr.py +3 -49
- sklearnex/tests/_utils.py +164 -0
- sklearnex/tests/test_memory_usage.py +8 -3
- sklearnex/tests/test_monkeypatch.py +177 -149
- sklearnex/tests/test_n_jobs_support.py +8 -2
- sklearnex/tests/test_parallel.py +6 -8
- sklearnex/tests/test_patching.py +322 -87
- sklearnex/utils/__init__.py +2 -1
- sklearnex/utils/_namespace.py +97 -0
- sklearnex/preview/decomposition/__init__.py +0 -19
- sklearnex/preview/decomposition/pca.py +0 -374
- sklearnex/preview/decomposition/tests/test_preview_pca.py +0 -42
- sklearnex/tests/_models_info.py +0 -170
- sklearnex/tests/utils/_launch_algorithms.py +0 -118
- {scikit_learn_intelex-2024.2.0.dist-info → scikit_learn_intelex-2024.4.0.dist-info}/LICENSE.txt +0 -0
- {scikit_learn_intelex-2024.2.0.dist-info → scikit_learn_intelex-2024.4.0.dist-info}/WHEEL +0 -0
- {scikit_learn_intelex-2024.2.0.dist-info → scikit_learn_intelex-2024.4.0.dist-info}/top_level.txt +0 -0
|
@@ -0,0 +1,386 @@
|
|
|
1
|
+
# ===============================================================================
|
|
2
|
+
# Copyright 2024 Intel Corporation
|
|
3
|
+
#
|
|
4
|
+
# Licensed under the Apache License, Version 2.0 (the "License");
|
|
5
|
+
# you may not use this file except in compliance with the License.
|
|
6
|
+
# You may obtain a copy of the License at
|
|
7
|
+
#
|
|
8
|
+
# http://www.apache.org/licenses/LICENSE-2.0
|
|
9
|
+
#
|
|
10
|
+
# Unless required by applicable law or agreed to in writing, software
|
|
11
|
+
# distributed under the License is distributed on an "AS IS" BASIS,
|
|
12
|
+
# WITHOUT WARRANTIES OR CONDITIONS OF ANY KIND, either express or implied.
|
|
13
|
+
# See the License for the specific language governing permissions and
|
|
14
|
+
# limitations under the License.
|
|
15
|
+
# ===============================================================================
|
|
16
|
+
|
|
17
|
+
import numpy as np
|
|
18
|
+
import pytest
|
|
19
|
+
from numpy.testing import assert_allclose
|
|
20
|
+
|
|
21
|
+
from onedal.basic_statistics.tests.test_incremental_basic_statistics import (
|
|
22
|
+
expected_max,
|
|
23
|
+
expected_mean,
|
|
24
|
+
expected_sum,
|
|
25
|
+
options_and_tests,
|
|
26
|
+
)
|
|
27
|
+
from onedal.tests.utils._dataframes_support import (
|
|
28
|
+
_convert_to_dataframe,
|
|
29
|
+
get_dataframes_and_queues,
|
|
30
|
+
)
|
|
31
|
+
from sklearnex.basic_statistics import IncrementalBasicStatistics
|
|
32
|
+
|
|
33
|
+
|
|
34
|
+
@pytest.mark.parametrize("dataframe,queue", get_dataframes_and_queues())
|
|
35
|
+
@pytest.mark.parametrize("weighted", [True, False])
|
|
36
|
+
@pytest.mark.parametrize("dtype", [np.float32, np.float64])
|
|
37
|
+
def test_partial_fit_multiple_options_on_gold_data(dataframe, queue, weighted, dtype):
|
|
38
|
+
X = np.array([[0, 0], [1, 1]])
|
|
39
|
+
X = X.astype(dtype=dtype)
|
|
40
|
+
X_split = np.array_split(X, 2)
|
|
41
|
+
if weighted:
|
|
42
|
+
weights = np.array([1, 0.5])
|
|
43
|
+
weights = weights.astype(dtype=dtype)
|
|
44
|
+
weights_split = np.array_split(weights, 2)
|
|
45
|
+
|
|
46
|
+
incbs = IncrementalBasicStatistics()
|
|
47
|
+
for i in range(2):
|
|
48
|
+
X_split_df = _convert_to_dataframe(
|
|
49
|
+
X_split[i], sycl_queue=queue, target_df=dataframe
|
|
50
|
+
)
|
|
51
|
+
if weighted:
|
|
52
|
+
weights_split_df = _convert_to_dataframe(
|
|
53
|
+
weights_split[i], sycl_queue=queue, target_df=dataframe
|
|
54
|
+
)
|
|
55
|
+
result = incbs.partial_fit(X_split_df, sample_weight=weights_split_df)
|
|
56
|
+
else:
|
|
57
|
+
result = incbs.partial_fit(X_split_df)
|
|
58
|
+
|
|
59
|
+
if weighted:
|
|
60
|
+
expected_weighted_mean = np.array([0.25, 0.25])
|
|
61
|
+
expected_weighted_min = np.array([0, 0])
|
|
62
|
+
expected_weighted_max = np.array([0.5, 0.5])
|
|
63
|
+
assert_allclose(expected_weighted_mean, result.mean)
|
|
64
|
+
assert_allclose(expected_weighted_max, result.max)
|
|
65
|
+
assert_allclose(expected_weighted_min, result.min)
|
|
66
|
+
else:
|
|
67
|
+
expected_mean = np.array([0.5, 0.5])
|
|
68
|
+
expected_min = np.array([0, 0])
|
|
69
|
+
expected_max = np.array([1, 1])
|
|
70
|
+
assert_allclose(expected_mean, result.mean)
|
|
71
|
+
assert_allclose(expected_max, result.max)
|
|
72
|
+
assert_allclose(expected_min, result.min)
|
|
73
|
+
|
|
74
|
+
|
|
75
|
+
@pytest.mark.parametrize("dataframe,queue", get_dataframes_and_queues())
|
|
76
|
+
@pytest.mark.parametrize("num_batches", [2, 10])
|
|
77
|
+
@pytest.mark.parametrize("option", options_and_tests)
|
|
78
|
+
@pytest.mark.parametrize("row_count", [100, 1000])
|
|
79
|
+
@pytest.mark.parametrize("column_count", [10, 100])
|
|
80
|
+
@pytest.mark.parametrize("weighted", [True, False])
|
|
81
|
+
@pytest.mark.parametrize("dtype", [np.float32, np.float64])
|
|
82
|
+
def test_partial_fit_single_option_on_random_data(
|
|
83
|
+
dataframe, queue, num_batches, option, row_count, column_count, weighted, dtype
|
|
84
|
+
):
|
|
85
|
+
result_option, function, tols = option
|
|
86
|
+
fp32tol, fp64tol = tols
|
|
87
|
+
seed = 77
|
|
88
|
+
gen = np.random.default_rng(seed)
|
|
89
|
+
X = gen.uniform(low=-0.3, high=+0.7, size=(row_count, column_count))
|
|
90
|
+
X = X.astype(dtype=dtype)
|
|
91
|
+
X_split = np.array_split(X, num_batches)
|
|
92
|
+
if weighted:
|
|
93
|
+
weights = gen.uniform(low=-0.5, high=+1.0, size=row_count)
|
|
94
|
+
weights = weights.astype(dtype=dtype)
|
|
95
|
+
weights_split = np.array_split(weights, num_batches)
|
|
96
|
+
incbs = IncrementalBasicStatistics(result_options=result_option)
|
|
97
|
+
|
|
98
|
+
for i in range(num_batches):
|
|
99
|
+
X_split_df = _convert_to_dataframe(
|
|
100
|
+
X_split[i], sycl_queue=queue, target_df=dataframe
|
|
101
|
+
)
|
|
102
|
+
if weighted:
|
|
103
|
+
weights_split_df = _convert_to_dataframe(
|
|
104
|
+
weights_split[i], sycl_queue=queue, target_df=dataframe
|
|
105
|
+
)
|
|
106
|
+
result = incbs.partial_fit(X_split_df, sample_weight=weights_split_df)
|
|
107
|
+
else:
|
|
108
|
+
result = incbs.partial_fit(X_split_df)
|
|
109
|
+
|
|
110
|
+
res = getattr(result, result_option)
|
|
111
|
+
if weighted:
|
|
112
|
+
weighted_data = np.diag(weights) @ X
|
|
113
|
+
gtr = function(weighted_data)
|
|
114
|
+
else:
|
|
115
|
+
gtr = function(X)
|
|
116
|
+
|
|
117
|
+
tol = fp32tol if res.dtype == np.float32 else fp64tol
|
|
118
|
+
assert_allclose(gtr, res, atol=tol)
|
|
119
|
+
|
|
120
|
+
|
|
121
|
+
@pytest.mark.parametrize("dataframe,queue", get_dataframes_and_queues())
|
|
122
|
+
@pytest.mark.parametrize("num_batches", [2, 10])
|
|
123
|
+
@pytest.mark.parametrize("row_count", [100, 1000])
|
|
124
|
+
@pytest.mark.parametrize("column_count", [10, 100])
|
|
125
|
+
@pytest.mark.parametrize("weighted", [True, False])
|
|
126
|
+
@pytest.mark.parametrize("dtype", [np.float32, np.float64])
|
|
127
|
+
def test_partial_fit_multiple_options_on_random_data(
|
|
128
|
+
dataframe, queue, num_batches, row_count, column_count, weighted, dtype
|
|
129
|
+
):
|
|
130
|
+
seed = 42
|
|
131
|
+
gen = np.random.default_rng(seed)
|
|
132
|
+
X = gen.uniform(low=-0.3, high=+0.7, size=(row_count, column_count))
|
|
133
|
+
X = X.astype(dtype=dtype)
|
|
134
|
+
X_split = np.array_split(X, num_batches)
|
|
135
|
+
if weighted:
|
|
136
|
+
weights = gen.uniform(low=-0.5, high=+1.0, size=row_count)
|
|
137
|
+
weights = weights.astype(dtype=dtype)
|
|
138
|
+
weights_split = np.array_split(weights, num_batches)
|
|
139
|
+
incbs = IncrementalBasicStatistics(result_options=["mean", "max", "sum"])
|
|
140
|
+
|
|
141
|
+
for i in range(num_batches):
|
|
142
|
+
X_split_df = _convert_to_dataframe(
|
|
143
|
+
X_split[i], sycl_queue=queue, target_df=dataframe
|
|
144
|
+
)
|
|
145
|
+
if weighted:
|
|
146
|
+
weights_split_df = _convert_to_dataframe(
|
|
147
|
+
weights_split[i], sycl_queue=queue, target_df=dataframe
|
|
148
|
+
)
|
|
149
|
+
result = incbs.partial_fit(X_split_df, sample_weight=weights_split_df)
|
|
150
|
+
else:
|
|
151
|
+
result = incbs.partial_fit(X_split_df)
|
|
152
|
+
|
|
153
|
+
res_mean, res_max, res_sum = result.mean, result.max, result.sum
|
|
154
|
+
if weighted:
|
|
155
|
+
weighted_data = np.diag(weights) @ X
|
|
156
|
+
gtr_mean, gtr_max, gtr_sum = (
|
|
157
|
+
expected_mean(weighted_data),
|
|
158
|
+
expected_max(weighted_data),
|
|
159
|
+
expected_sum(weighted_data),
|
|
160
|
+
)
|
|
161
|
+
else:
|
|
162
|
+
gtr_mean, gtr_max, gtr_sum = (
|
|
163
|
+
expected_mean(X),
|
|
164
|
+
expected_max(X),
|
|
165
|
+
expected_sum(X),
|
|
166
|
+
)
|
|
167
|
+
|
|
168
|
+
tol = 1e-5 if res_mean.dtype == np.float32 else 1e-7
|
|
169
|
+
assert_allclose(gtr_mean, res_mean, atol=tol)
|
|
170
|
+
assert_allclose(gtr_max, res_max, atol=tol)
|
|
171
|
+
assert_allclose(gtr_sum, res_sum, atol=tol)
|
|
172
|
+
|
|
173
|
+
|
|
174
|
+
@pytest.mark.parametrize("dataframe,queue", get_dataframes_and_queues())
|
|
175
|
+
@pytest.mark.parametrize("num_batches", [2, 10])
|
|
176
|
+
@pytest.mark.parametrize("row_count", [100, 1000])
|
|
177
|
+
@pytest.mark.parametrize("column_count", [10, 100])
|
|
178
|
+
@pytest.mark.parametrize("weighted", [True, False])
|
|
179
|
+
@pytest.mark.parametrize("dtype", [np.float32, np.float64])
|
|
180
|
+
def test_partial_fit_all_option_on_random_data(
|
|
181
|
+
dataframe, queue, num_batches, row_count, column_count, weighted, dtype
|
|
182
|
+
):
|
|
183
|
+
seed = 77
|
|
184
|
+
gen = np.random.default_rng(seed)
|
|
185
|
+
X = gen.uniform(low=-0.3, high=+0.7, size=(row_count, column_count))
|
|
186
|
+
X = X.astype(dtype=dtype)
|
|
187
|
+
X_split = np.array_split(X, num_batches)
|
|
188
|
+
if weighted:
|
|
189
|
+
weights = gen.uniform(low=-0.5, high=+1.0, size=row_count)
|
|
190
|
+
weights = weights.astype(dtype=dtype)
|
|
191
|
+
weights_split = np.array_split(weights, num_batches)
|
|
192
|
+
incbs = IncrementalBasicStatistics(result_options="all")
|
|
193
|
+
|
|
194
|
+
for i in range(num_batches):
|
|
195
|
+
X_split_df = _convert_to_dataframe(
|
|
196
|
+
X_split[i], sycl_queue=queue, target_df=dataframe
|
|
197
|
+
)
|
|
198
|
+
if weighted:
|
|
199
|
+
weights_split_df = _convert_to_dataframe(
|
|
200
|
+
weights_split[i], sycl_queue=queue, target_df=dataframe
|
|
201
|
+
)
|
|
202
|
+
result = incbs.partial_fit(X_split_df, sample_weight=weights_split_df)
|
|
203
|
+
else:
|
|
204
|
+
result = incbs.partial_fit(X_split_df)
|
|
205
|
+
|
|
206
|
+
if weighted:
|
|
207
|
+
weighted_data = np.diag(weights) @ X
|
|
208
|
+
|
|
209
|
+
for option in options_and_tests:
|
|
210
|
+
result_option, function, tols = option
|
|
211
|
+
print(result_option)
|
|
212
|
+
fp32tol, fp64tol = tols
|
|
213
|
+
res = getattr(result, result_option)
|
|
214
|
+
if weighted:
|
|
215
|
+
gtr = function(weighted_data)
|
|
216
|
+
else:
|
|
217
|
+
gtr = function(X)
|
|
218
|
+
tol = fp32tol if res.dtype == np.float32 else fp64tol
|
|
219
|
+
assert_allclose(gtr, res, atol=tol)
|
|
220
|
+
|
|
221
|
+
|
|
222
|
+
@pytest.mark.parametrize("dataframe,queue", get_dataframes_and_queues())
|
|
223
|
+
@pytest.mark.parametrize("weighted", [True, False])
|
|
224
|
+
@pytest.mark.parametrize("dtype", [np.float32, np.float64])
|
|
225
|
+
def test_fit_multiple_options_on_gold_data(dataframe, queue, weighted, dtype):
|
|
226
|
+
X = np.array([[0, 0], [1, 1]])
|
|
227
|
+
X = X.astype(dtype=dtype)
|
|
228
|
+
X_df = _convert_to_dataframe(X, sycl_queue=queue, target_df=dataframe)
|
|
229
|
+
if weighted:
|
|
230
|
+
weights = np.array([1, 0.5])
|
|
231
|
+
weights = weights.astype(dtype=dtype)
|
|
232
|
+
weights_df = _convert_to_dataframe(weights, sycl_queue=queue, target_df=dataframe)
|
|
233
|
+
incbs = IncrementalBasicStatistics(batch_size=1)
|
|
234
|
+
|
|
235
|
+
if weighted:
|
|
236
|
+
result = incbs.fit(X_df, sample_weight=weights_df)
|
|
237
|
+
else:
|
|
238
|
+
result = incbs.fit(X_df)
|
|
239
|
+
|
|
240
|
+
if weighted:
|
|
241
|
+
expected_weighted_mean = np.array([0.25, 0.25])
|
|
242
|
+
expected_weighted_min = np.array([0, 0])
|
|
243
|
+
expected_weighted_max = np.array([0.5, 0.5])
|
|
244
|
+
assert_allclose(expected_weighted_mean, result.mean)
|
|
245
|
+
assert_allclose(expected_weighted_max, result.max)
|
|
246
|
+
assert_allclose(expected_weighted_min, result.min)
|
|
247
|
+
else:
|
|
248
|
+
expected_mean = np.array([0.5, 0.5])
|
|
249
|
+
expected_min = np.array([0, 0])
|
|
250
|
+
expected_max = np.array([1, 1])
|
|
251
|
+
assert_allclose(expected_mean, result.mean)
|
|
252
|
+
assert_allclose(expected_max, result.max)
|
|
253
|
+
assert_allclose(expected_min, result.min)
|
|
254
|
+
|
|
255
|
+
|
|
256
|
+
@pytest.mark.parametrize("dataframe,queue", get_dataframes_and_queues())
|
|
257
|
+
@pytest.mark.parametrize("num_batches", [2, 10])
|
|
258
|
+
@pytest.mark.parametrize("option", options_and_tests)
|
|
259
|
+
@pytest.mark.parametrize("row_count", [100, 1000])
|
|
260
|
+
@pytest.mark.parametrize("column_count", [10, 100])
|
|
261
|
+
@pytest.mark.parametrize("weighted", [True, False])
|
|
262
|
+
@pytest.mark.parametrize("dtype", [np.float32, np.float64])
|
|
263
|
+
def test_fit_single_option_on_random_data(
|
|
264
|
+
dataframe, queue, num_batches, option, row_count, column_count, weighted, dtype
|
|
265
|
+
):
|
|
266
|
+
result_option, function, tols = option
|
|
267
|
+
fp32tol, fp64tol = tols
|
|
268
|
+
seed = 77
|
|
269
|
+
gen = np.random.default_rng(seed)
|
|
270
|
+
batch_size = row_count // num_batches
|
|
271
|
+
X = gen.uniform(low=-0.3, high=+0.7, size=(row_count, column_count))
|
|
272
|
+
X = X.astype(dtype=dtype)
|
|
273
|
+
X_df = _convert_to_dataframe(X, sycl_queue=queue, target_df=dataframe)
|
|
274
|
+
if weighted:
|
|
275
|
+
weights = gen.uniform(low=-0.5, high=1.0, size=row_count)
|
|
276
|
+
weights = weights.astype(dtype=dtype)
|
|
277
|
+
weights_df = _convert_to_dataframe(weights, sycl_queue=queue, target_df=dataframe)
|
|
278
|
+
incbs = IncrementalBasicStatistics(
|
|
279
|
+
result_options=result_option, batch_size=batch_size
|
|
280
|
+
)
|
|
281
|
+
|
|
282
|
+
if weighted:
|
|
283
|
+
result = incbs.fit(X_df, sample_weight=weights_df)
|
|
284
|
+
else:
|
|
285
|
+
result = incbs.fit(X_df)
|
|
286
|
+
|
|
287
|
+
res = getattr(result, result_option)
|
|
288
|
+
if weighted:
|
|
289
|
+
weighted_data = np.diag(weights) @ X
|
|
290
|
+
gtr = function(weighted_data)
|
|
291
|
+
else:
|
|
292
|
+
gtr = function(X)
|
|
293
|
+
|
|
294
|
+
tol = fp32tol if res.dtype == np.float32 else fp64tol
|
|
295
|
+
assert_allclose(gtr, res, atol=tol)
|
|
296
|
+
|
|
297
|
+
|
|
298
|
+
@pytest.mark.parametrize("dataframe,queue", get_dataframes_and_queues())
|
|
299
|
+
@pytest.mark.parametrize("num_batches", [2, 10])
|
|
300
|
+
@pytest.mark.parametrize("row_count", [100, 1000])
|
|
301
|
+
@pytest.mark.parametrize("column_count", [10, 100])
|
|
302
|
+
@pytest.mark.parametrize("weighted", [True, False])
|
|
303
|
+
@pytest.mark.parametrize("dtype", [np.float32, np.float64])
|
|
304
|
+
def test_partial_fit_multiple_options_on_random_data(
|
|
305
|
+
dataframe, queue, num_batches, row_count, column_count, weighted, dtype
|
|
306
|
+
):
|
|
307
|
+
seed = 77
|
|
308
|
+
gen = np.random.default_rng(seed)
|
|
309
|
+
batch_size = row_count // num_batches
|
|
310
|
+
X = gen.uniform(low=-0.3, high=+0.7, size=(row_count, column_count))
|
|
311
|
+
X = X.astype(dtype=dtype)
|
|
312
|
+
X_df = _convert_to_dataframe(X, sycl_queue=queue, target_df=dataframe)
|
|
313
|
+
if weighted:
|
|
314
|
+
weights = gen.uniform(low=-0.5, high=1.0, size=row_count)
|
|
315
|
+
weights = weights.astype(dtype=dtype)
|
|
316
|
+
weights_df = _convert_to_dataframe(weights, sycl_queue=queue, target_df=dataframe)
|
|
317
|
+
incbs = IncrementalBasicStatistics(
|
|
318
|
+
result_options=["mean", "max", "sum"], batch_size=batch_size
|
|
319
|
+
)
|
|
320
|
+
|
|
321
|
+
if weighted:
|
|
322
|
+
result = incbs.fit(X_df, sample_weight=weights_df)
|
|
323
|
+
else:
|
|
324
|
+
result = incbs.fit(X_df)
|
|
325
|
+
|
|
326
|
+
res_mean, res_max, res_sum = result.mean, result.max, result.sum
|
|
327
|
+
if weighted:
|
|
328
|
+
weighted_data = np.diag(weights) @ X
|
|
329
|
+
gtr_mean, gtr_max, gtr_sum = (
|
|
330
|
+
expected_mean(weighted_data),
|
|
331
|
+
expected_max(weighted_data),
|
|
332
|
+
expected_sum(weighted_data),
|
|
333
|
+
)
|
|
334
|
+
else:
|
|
335
|
+
gtr_mean, gtr_max, gtr_sum = (
|
|
336
|
+
expected_mean(X),
|
|
337
|
+
expected_max(X),
|
|
338
|
+
expected_sum(X),
|
|
339
|
+
)
|
|
340
|
+
|
|
341
|
+
tol = 3e-4 if res_mean.dtype == np.float32 else 1e-7
|
|
342
|
+
assert_allclose(gtr_mean, res_mean, atol=tol)
|
|
343
|
+
assert_allclose(gtr_max, res_max, atol=tol)
|
|
344
|
+
assert_allclose(gtr_sum, res_sum, atol=tol)
|
|
345
|
+
|
|
346
|
+
|
|
347
|
+
@pytest.mark.parametrize("dataframe,queue", get_dataframes_and_queues())
|
|
348
|
+
@pytest.mark.parametrize("num_batches", [2, 10])
|
|
349
|
+
@pytest.mark.parametrize("row_count", [100, 1000])
|
|
350
|
+
@pytest.mark.parametrize("column_count", [10, 100])
|
|
351
|
+
@pytest.mark.parametrize("weighted", [True, False])
|
|
352
|
+
@pytest.mark.parametrize("dtype", [np.float32, np.float64])
|
|
353
|
+
def test_fit_all_option_on_random_data(
|
|
354
|
+
dataframe, queue, num_batches, row_count, column_count, weighted, dtype
|
|
355
|
+
):
|
|
356
|
+
seed = 77
|
|
357
|
+
gen = np.random.default_rng(seed)
|
|
358
|
+
batch_size = row_count // num_batches
|
|
359
|
+
X = gen.uniform(low=-0.3, high=+0.7, size=(row_count, column_count))
|
|
360
|
+
X = X.astype(dtype=dtype)
|
|
361
|
+
X_df = _convert_to_dataframe(X, sycl_queue=queue, target_df=dataframe)
|
|
362
|
+
if weighted:
|
|
363
|
+
weights = gen.uniform(low=-0.5, high=+1.0, size=row_count)
|
|
364
|
+
weights = weights.astype(dtype=dtype)
|
|
365
|
+
weights_df = _convert_to_dataframe(weights, sycl_queue=queue, target_df=dataframe)
|
|
366
|
+
incbs = IncrementalBasicStatistics(result_options="all", batch_size=batch_size)
|
|
367
|
+
|
|
368
|
+
if weighted:
|
|
369
|
+
result = incbs.fit(X_df, sample_weight=weights_df)
|
|
370
|
+
else:
|
|
371
|
+
result = incbs.fit(X_df)
|
|
372
|
+
|
|
373
|
+
if weighted:
|
|
374
|
+
weighted_data = np.diag(weights) @ X
|
|
375
|
+
|
|
376
|
+
for option in options_and_tests:
|
|
377
|
+
result_option, function, tols = option
|
|
378
|
+
print(result_option)
|
|
379
|
+
fp32tol, fp64tol = tols
|
|
380
|
+
res = getattr(result, result_option)
|
|
381
|
+
if weighted:
|
|
382
|
+
gtr = function(weighted_data)
|
|
383
|
+
else:
|
|
384
|
+
gtr = function(X)
|
|
385
|
+
tol = fp32tol if res.dtype == np.float32 else fp64tol
|
|
386
|
+
assert_allclose(gtr, res, atol=tol)
|
sklearnex/cluster/dbscan.py
CHANGED
|
@@ -26,7 +26,7 @@ from daal4py.sklearn._n_jobs_support import control_n_jobs
|
|
|
26
26
|
from daal4py.sklearn._utils import sklearn_check_version
|
|
27
27
|
from onedal.cluster import DBSCAN as onedal_DBSCAN
|
|
28
28
|
|
|
29
|
-
from .._device_offload import dispatch
|
|
29
|
+
from .._device_offload import dispatch
|
|
30
30
|
from .._utils import PatchingConditionsChain
|
|
31
31
|
|
|
32
32
|
if sklearn_check_version("1.1") and not sklearn_check_version("1.2"):
|
|
@@ -186,3 +186,5 @@ class DBSCAN(sklearn_DBSCAN, BaseDBSCAN):
|
|
|
186
186
|
)
|
|
187
187
|
|
|
188
188
|
return self
|
|
189
|
+
|
|
190
|
+
fit.__doc__ = sklearn_DBSCAN.fit.__doc__
|
sklearnex/conftest.py
ADDED
|
@@ -0,0 +1,63 @@
|
|
|
1
|
+
# ==============================================================================
|
|
2
|
+
# Copyright 2024 Intel Corporation
|
|
3
|
+
#
|
|
4
|
+
# Licensed under the Apache License, Version 2.0 (the "License");
|
|
5
|
+
# you may not use this file except in compliance with the License.
|
|
6
|
+
# You may obtain a copy of the License at
|
|
7
|
+
#
|
|
8
|
+
# http://www.apache.org/licenses/LICENSE-2.0
|
|
9
|
+
#
|
|
10
|
+
# Unless required by applicable law or agreed to in writing, software
|
|
11
|
+
# distributed under the License is distributed on an "AS IS" BASIS,
|
|
12
|
+
# WITHOUT WARRANTIES OR CONDITIONS OF ANY KIND, either express or implied.
|
|
13
|
+
# See the License for the specific language governing permissions and
|
|
14
|
+
# limitations under the License.
|
|
15
|
+
# ==============================================================================
|
|
16
|
+
|
|
17
|
+
import io
|
|
18
|
+
import logging
|
|
19
|
+
|
|
20
|
+
import pytest
|
|
21
|
+
|
|
22
|
+
from sklearnex import patch_sklearn, unpatch_sklearn
|
|
23
|
+
|
|
24
|
+
|
|
25
|
+
def pytest_configure(config):
|
|
26
|
+
config.addinivalue_line(
|
|
27
|
+
"markers", "allow_sklearn_fallback: mark test to not check for sklearnex usage"
|
|
28
|
+
)
|
|
29
|
+
|
|
30
|
+
|
|
31
|
+
@pytest.hookimpl(hookwrapper=True)
|
|
32
|
+
def pytest_runtest_call(item):
|
|
33
|
+
# setup logger to check for sklearn fallback
|
|
34
|
+
if not item.get_closest_marker("allow_sklearn_fallback"):
|
|
35
|
+
log_stream = io.StringIO()
|
|
36
|
+
log_handler = logging.StreamHandler(log_stream)
|
|
37
|
+
sklearnex_logger = logging.getLogger("sklearnex")
|
|
38
|
+
level = sklearnex_logger.level
|
|
39
|
+
sklearnex_stderr_handler = sklearnex_logger.handlers
|
|
40
|
+
sklearnex_logger.handlers = []
|
|
41
|
+
sklearnex_logger.addHandler(log_handler)
|
|
42
|
+
sklearnex_logger.setLevel(logging.INFO)
|
|
43
|
+
log_handler.setLevel(logging.INFO)
|
|
44
|
+
|
|
45
|
+
yield
|
|
46
|
+
|
|
47
|
+
sklearnex_logger.handlers = sklearnex_stderr_handler
|
|
48
|
+
sklearnex_logger.setLevel(level)
|
|
49
|
+
sklearnex_logger.removeHandler(log_handler)
|
|
50
|
+
text = log_stream.getvalue()
|
|
51
|
+
if "fallback to original Scikit-learn" in text:
|
|
52
|
+
raise TypeError(
|
|
53
|
+
f"test did not properly evaluate sklearnex functionality and fell back to sklearn:\n{text}"
|
|
54
|
+
)
|
|
55
|
+
else:
|
|
56
|
+
yield
|
|
57
|
+
|
|
58
|
+
|
|
59
|
+
@pytest.fixture
|
|
60
|
+
def with_sklearnex():
|
|
61
|
+
patch_sklearn()
|
|
62
|
+
yield
|
|
63
|
+
unpatch_sklearn()
|