scikit-learn-intelex 2024.2.0__py310-none-win_amd64.whl → 2024.4.0__py310-none-win_amd64.whl

This diff represents the content of publicly available package versions that have been released to one of the supported registries. The information contained in this diff is provided for informational purposes only and reflects changes between package versions as they appear in their respective public registries.

Potentially problematic release.


This version of scikit-learn-intelex might be problematic. Click here for more details.

Files changed (112) hide show
  1. {scikit_learn_intelex-2024.2.0.data → scikit_learn_intelex-2024.4.0.data}/data/Lib/site-packages/sklearnex/__init__.py +9 -7
  2. {scikit_learn_intelex-2024.2.0.data → scikit_learn_intelex-2024.4.0.data}/data/Lib/site-packages/sklearnex/_device_offload.py +31 -4
  3. {scikit_learn_intelex-2024.2.0.data/data/Lib/site-packages/sklearnex/spmd → scikit_learn_intelex-2024.4.0.data/data/Lib/site-packages/sklearnex}/basic_statistics/__init__.py +2 -1
  4. scikit_learn_intelex-2024.4.0.data/data/Lib/site-packages/sklearnex/basic_statistics/incremental_basic_statistics.py +288 -0
  5. scikit_learn_intelex-2024.4.0.data/data/Lib/site-packages/sklearnex/basic_statistics/tests/test_incremental_basic_statistics.py +386 -0
  6. {scikit_learn_intelex-2024.2.0.data → scikit_learn_intelex-2024.4.0.data}/data/Lib/site-packages/sklearnex/cluster/dbscan.py +3 -1
  7. scikit_learn_intelex-2024.4.0.data/data/Lib/site-packages/sklearnex/conftest.py +63 -0
  8. scikit_learn_intelex-2024.4.0.data/data/Lib/site-packages/sklearnex/decomposition/pca.py +335 -0
  9. scikit_learn_intelex-2024.2.0.data/data/Lib/site-packages/sklearnex/preview/decomposition/tests/test_preview_pca.py → scikit_learn_intelex-2024.4.0.data/data/Lib/site-packages/sklearnex/decomposition/tests/test_pca.py +22 -8
  10. {scikit_learn_intelex-2024.2.0.data → scikit_learn_intelex-2024.4.0.data}/data/Lib/site-packages/sklearnex/dispatcher.py +74 -43
  11. {scikit_learn_intelex-2024.2.0.data → scikit_learn_intelex-2024.4.0.data}/data/Lib/site-packages/sklearnex/ensemble/_forest.py +78 -89
  12. {scikit_learn_intelex-2024.2.0.data → scikit_learn_intelex-2024.4.0.data}/data/Lib/site-packages/sklearnex/ensemble/tests/test_forest.py +15 -19
  13. scikit_learn_intelex-2024.4.0.data/data/Lib/site-packages/sklearnex/linear_model/linear.py +316 -0
  14. {scikit_learn_intelex-2024.2.0.data → scikit_learn_intelex-2024.4.0.data}/data/Lib/site-packages/sklearnex/linear_model/logistic_regression.py +63 -11
  15. {scikit_learn_intelex-2024.2.0.data → scikit_learn_intelex-2024.4.0.data}/data/Lib/site-packages/sklearnex/linear_model/tests/test_linear.py +40 -5
  16. {scikit_learn_intelex-2024.2.0.data → scikit_learn_intelex-2024.4.0.data}/data/Lib/site-packages/sklearnex/linear_model/tests/test_logreg.py +0 -2
  17. {scikit_learn_intelex-2024.2.0.data → scikit_learn_intelex-2024.4.0.data}/data/Lib/site-packages/sklearnex/neighbors/_lof.py +74 -20
  18. {scikit_learn_intelex-2024.2.0.data → scikit_learn_intelex-2024.4.0.data}/data/Lib/site-packages/sklearnex/neighbors/common.py +4 -1
  19. {scikit_learn_intelex-2024.2.0.data → scikit_learn_intelex-2024.4.0.data}/data/Lib/site-packages/sklearnex/neighbors/knn_classification.py +44 -131
  20. scikit_learn_intelex-2024.2.0.data/data/Lib/site-packages/sklearnex/neighbors/knn_unsupervised.py → scikit_learn_intelex-2024.4.0.data/data/Lib/site-packages/sklearnex/neighbors/knn_regression.py +198 -221
  21. scikit_learn_intelex-2024.4.0.data/data/Lib/site-packages/sklearnex/neighbors/knn_unsupervised.py +146 -0
  22. {scikit_learn_intelex-2024.2.0.data → scikit_learn_intelex-2024.4.0.data}/data/Lib/site-packages/sklearnex/neighbors/tests/test_neighbors.py +0 -5
  23. {scikit_learn_intelex-2024.2.0.data → scikit_learn_intelex-2024.4.0.data}/data/Lib/site-packages/sklearnex/preview/__init__.py +1 -1
  24. {scikit_learn_intelex-2024.2.0.data → scikit_learn_intelex-2024.4.0.data}/data/Lib/site-packages/sklearnex/preview/cluster/k_means.py +5 -73
  25. {scikit_learn_intelex-2024.2.0.data → scikit_learn_intelex-2024.4.0.data}/data/Lib/site-packages/sklearnex/preview/covariance/covariance.py +6 -5
  26. {scikit_learn_intelex-2024.2.0.data → scikit_learn_intelex-2024.4.0.data}/data/Lib/site-packages/sklearnex/preview/covariance/tests/test_covariance.py +18 -5
  27. {scikit_learn_intelex-2024.2.0.data → scikit_learn_intelex-2024.4.0.data}/data/Lib/site-packages/sklearnex/spmd/ensemble/forest.py +4 -12
  28. {scikit_learn_intelex-2024.2.0.data → scikit_learn_intelex-2024.4.0.data}/data/Lib/site-packages/sklearnex/svm/_common.py +4 -7
  29. {scikit_learn_intelex-2024.2.0.data → scikit_learn_intelex-2024.4.0.data}/data/Lib/site-packages/sklearnex/svm/nusvc.py +70 -50
  30. {scikit_learn_intelex-2024.2.0.data → scikit_learn_intelex-2024.4.0.data}/data/Lib/site-packages/sklearnex/svm/nusvr.py +6 -52
  31. {scikit_learn_intelex-2024.2.0.data → scikit_learn_intelex-2024.4.0.data}/data/Lib/site-packages/sklearnex/svm/svc.py +70 -51
  32. {scikit_learn_intelex-2024.2.0.data → scikit_learn_intelex-2024.4.0.data}/data/Lib/site-packages/sklearnex/svm/svr.py +3 -49
  33. scikit_learn_intelex-2024.4.0.data/data/Lib/site-packages/sklearnex/tests/_utils.py +164 -0
  34. {scikit_learn_intelex-2024.2.0.data → scikit_learn_intelex-2024.4.0.data}/data/Lib/site-packages/sklearnex/tests/test_memory_usage.py +8 -3
  35. scikit_learn_intelex-2024.4.0.data/data/Lib/site-packages/sklearnex/tests/test_monkeypatch.py +268 -0
  36. {scikit_learn_intelex-2024.2.0.data → scikit_learn_intelex-2024.4.0.data}/data/Lib/site-packages/sklearnex/tests/test_n_jobs_support.py +8 -2
  37. {scikit_learn_intelex-2024.2.0.data → scikit_learn_intelex-2024.4.0.data}/data/Lib/site-packages/sklearnex/tests/test_parallel.py +6 -8
  38. scikit_learn_intelex-2024.4.0.data/data/Lib/site-packages/sklearnex/tests/test_patching.py +371 -0
  39. {scikit_learn_intelex-2024.2.0.data → scikit_learn_intelex-2024.4.0.data}/data/Lib/site-packages/sklearnex/utils/__init__.py +2 -1
  40. scikit_learn_intelex-2024.4.0.data/data/Lib/site-packages/sklearnex/utils/_namespace.py +97 -0
  41. {scikit_learn_intelex-2024.2.0.dist-info → scikit_learn_intelex-2024.4.0.dist-info}/METADATA +2 -2
  42. scikit_learn_intelex-2024.4.0.dist-info/RECORD +101 -0
  43. scikit_learn_intelex-2024.2.0.data/data/Lib/site-packages/sklearnex/decomposition/pca.py +0 -17
  44. scikit_learn_intelex-2024.2.0.data/data/Lib/site-packages/sklearnex/decomposition/tests/test_pca.py +0 -27
  45. scikit_learn_intelex-2024.2.0.data/data/Lib/site-packages/sklearnex/linear_model/linear.py +0 -381
  46. scikit_learn_intelex-2024.2.0.data/data/Lib/site-packages/sklearnex/neighbors/knn_regression.py +0 -308
  47. scikit_learn_intelex-2024.2.0.data/data/Lib/site-packages/sklearnex/preview/decomposition/__init__.py +0 -19
  48. scikit_learn_intelex-2024.2.0.data/data/Lib/site-packages/sklearnex/preview/decomposition/pca.py +0 -374
  49. scikit_learn_intelex-2024.2.0.data/data/Lib/site-packages/sklearnex/tests/_models_info.py +0 -170
  50. scikit_learn_intelex-2024.2.0.data/data/Lib/site-packages/sklearnex/tests/test_monkeypatch.py +0 -240
  51. scikit_learn_intelex-2024.2.0.data/data/Lib/site-packages/sklearnex/tests/test_patching.py +0 -136
  52. scikit_learn_intelex-2024.2.0.data/data/Lib/site-packages/sklearnex/tests/utils/_launch_algorithms.py +0 -118
  53. scikit_learn_intelex-2024.2.0.dist-info/RECORD +0 -101
  54. {scikit_learn_intelex-2024.2.0.data → scikit_learn_intelex-2024.4.0.data}/data/Lib/site-packages/sklearnex/__main__.py +0 -0
  55. {scikit_learn_intelex-2024.2.0.data → scikit_learn_intelex-2024.4.0.data}/data/Lib/site-packages/sklearnex/_config.py +0 -0
  56. {scikit_learn_intelex-2024.2.0.data → scikit_learn_intelex-2024.4.0.data}/data/Lib/site-packages/sklearnex/_utils.py +0 -0
  57. {scikit_learn_intelex-2024.2.0.data → scikit_learn_intelex-2024.4.0.data}/data/Lib/site-packages/sklearnex/basic_statistics/basic_statistics.py +0 -0
  58. {scikit_learn_intelex-2024.2.0.data → scikit_learn_intelex-2024.4.0.data}/data/Lib/site-packages/sklearnex/cluster/__init__.py +0 -0
  59. {scikit_learn_intelex-2024.2.0.data → scikit_learn_intelex-2024.4.0.data}/data/Lib/site-packages/sklearnex/cluster/k_means.py +0 -0
  60. {scikit_learn_intelex-2024.2.0.data → scikit_learn_intelex-2024.4.0.data}/data/Lib/site-packages/sklearnex/cluster/tests/test_dbscan.py +0 -0
  61. {scikit_learn_intelex-2024.2.0.data → scikit_learn_intelex-2024.4.0.data}/data/Lib/site-packages/sklearnex/cluster/tests/test_kmeans.py +0 -0
  62. {scikit_learn_intelex-2024.2.0.data → scikit_learn_intelex-2024.4.0.data}/data/Lib/site-packages/sklearnex/covariance/__init__.py +0 -0
  63. {scikit_learn_intelex-2024.2.0.data → scikit_learn_intelex-2024.4.0.data}/data/Lib/site-packages/sklearnex/covariance/incremental_covariance.py +0 -0
  64. {scikit_learn_intelex-2024.2.0.data → scikit_learn_intelex-2024.4.0.data}/data/Lib/site-packages/sklearnex/covariance/tests/test_incremental_covariance.py +0 -0
  65. {scikit_learn_intelex-2024.2.0.data → scikit_learn_intelex-2024.4.0.data}/data/Lib/site-packages/sklearnex/decomposition/__init__.py +0 -0
  66. {scikit_learn_intelex-2024.2.0.data → scikit_learn_intelex-2024.4.0.data}/data/Lib/site-packages/sklearnex/doc/third-party-programs.txt +0 -0
  67. {scikit_learn_intelex-2024.2.0.data → scikit_learn_intelex-2024.4.0.data}/data/Lib/site-packages/sklearnex/ensemble/__init__.py +0 -0
  68. {scikit_learn_intelex-2024.2.0.data → scikit_learn_intelex-2024.4.0.data}/data/Lib/site-packages/sklearnex/glob/__main__.py +0 -0
  69. {scikit_learn_intelex-2024.2.0.data → scikit_learn_intelex-2024.4.0.data}/data/Lib/site-packages/sklearnex/glob/dispatcher.py +0 -0
  70. {scikit_learn_intelex-2024.2.0.data → scikit_learn_intelex-2024.4.0.data}/data/Lib/site-packages/sklearnex/linear_model/__init__.py +0 -0
  71. {scikit_learn_intelex-2024.2.0.data → scikit_learn_intelex-2024.4.0.data}/data/Lib/site-packages/sklearnex/linear_model/coordinate_descent.py +0 -0
  72. {scikit_learn_intelex-2024.2.0.data → scikit_learn_intelex-2024.4.0.data}/data/Lib/site-packages/sklearnex/linear_model/logistic_path.py +0 -0
  73. {scikit_learn_intelex-2024.2.0.data → scikit_learn_intelex-2024.4.0.data}/data/Lib/site-packages/sklearnex/linear_model/ridge.py +0 -0
  74. {scikit_learn_intelex-2024.2.0.data → scikit_learn_intelex-2024.4.0.data}/data/Lib/site-packages/sklearnex/manifold/__init__.py +0 -0
  75. {scikit_learn_intelex-2024.2.0.data → scikit_learn_intelex-2024.4.0.data}/data/Lib/site-packages/sklearnex/manifold/t_sne.py +0 -0
  76. {scikit_learn_intelex-2024.2.0.data → scikit_learn_intelex-2024.4.0.data}/data/Lib/site-packages/sklearnex/manifold/tests/test_tsne.py +0 -0
  77. {scikit_learn_intelex-2024.2.0.data → scikit_learn_intelex-2024.4.0.data}/data/Lib/site-packages/sklearnex/metrics/__init__.py +0 -0
  78. {scikit_learn_intelex-2024.2.0.data → scikit_learn_intelex-2024.4.0.data}/data/Lib/site-packages/sklearnex/metrics/pairwise.py +0 -0
  79. {scikit_learn_intelex-2024.2.0.data → scikit_learn_intelex-2024.4.0.data}/data/Lib/site-packages/sklearnex/metrics/ranking.py +0 -0
  80. {scikit_learn_intelex-2024.2.0.data → scikit_learn_intelex-2024.4.0.data}/data/Lib/site-packages/sklearnex/metrics/tests/test_metrics.py +0 -0
  81. {scikit_learn_intelex-2024.2.0.data → scikit_learn_intelex-2024.4.0.data}/data/Lib/site-packages/sklearnex/model_selection/__init__.py +0 -0
  82. {scikit_learn_intelex-2024.2.0.data → scikit_learn_intelex-2024.4.0.data}/data/Lib/site-packages/sklearnex/model_selection/split.py +0 -0
  83. {scikit_learn_intelex-2024.2.0.data → scikit_learn_intelex-2024.4.0.data}/data/Lib/site-packages/sklearnex/model_selection/tests/test_model_selection.py +0 -0
  84. {scikit_learn_intelex-2024.2.0.data → scikit_learn_intelex-2024.4.0.data}/data/Lib/site-packages/sklearnex/neighbors/__init__.py +0 -0
  85. {scikit_learn_intelex-2024.2.0.data → scikit_learn_intelex-2024.4.0.data}/data/Lib/site-packages/sklearnex/preview/cluster/__init__.py +0 -0
  86. {scikit_learn_intelex-2024.2.0.data → scikit_learn_intelex-2024.4.0.data}/data/Lib/site-packages/sklearnex/preview/cluster/_common.py +0 -0
  87. {scikit_learn_intelex-2024.2.0.data → scikit_learn_intelex-2024.4.0.data}/data/Lib/site-packages/sklearnex/preview/covariance/__init__.py +0 -0
  88. {scikit_learn_intelex-2024.2.0.data → scikit_learn_intelex-2024.4.0.data}/data/Lib/site-packages/sklearnex/spmd/__init__.py +0 -0
  89. {scikit_learn_intelex-2024.2.0.data/data/Lib/site-packages/sklearnex → scikit_learn_intelex-2024.4.0.data/data/Lib/site-packages/sklearnex/spmd}/basic_statistics/__init__.py +0 -0
  90. {scikit_learn_intelex-2024.2.0.data → scikit_learn_intelex-2024.4.0.data}/data/Lib/site-packages/sklearnex/spmd/basic_statistics/basic_statistics.py +0 -0
  91. {scikit_learn_intelex-2024.2.0.data → scikit_learn_intelex-2024.4.0.data}/data/Lib/site-packages/sklearnex/spmd/cluster/__init__.py +0 -0
  92. {scikit_learn_intelex-2024.2.0.data → scikit_learn_intelex-2024.4.0.data}/data/Lib/site-packages/sklearnex/spmd/cluster/dbscan.py +0 -0
  93. {scikit_learn_intelex-2024.2.0.data → scikit_learn_intelex-2024.4.0.data}/data/Lib/site-packages/sklearnex/spmd/cluster/kmeans.py +0 -0
  94. {scikit_learn_intelex-2024.2.0.data → scikit_learn_intelex-2024.4.0.data}/data/Lib/site-packages/sklearnex/spmd/covariance/__init__.py +0 -0
  95. {scikit_learn_intelex-2024.2.0.data → scikit_learn_intelex-2024.4.0.data}/data/Lib/site-packages/sklearnex/spmd/covariance/covariance.py +0 -0
  96. {scikit_learn_intelex-2024.2.0.data → scikit_learn_intelex-2024.4.0.data}/data/Lib/site-packages/sklearnex/spmd/decomposition/__init__.py +0 -0
  97. {scikit_learn_intelex-2024.2.0.data → scikit_learn_intelex-2024.4.0.data}/data/Lib/site-packages/sklearnex/spmd/decomposition/pca.py +0 -0
  98. {scikit_learn_intelex-2024.2.0.data → scikit_learn_intelex-2024.4.0.data}/data/Lib/site-packages/sklearnex/spmd/ensemble/__init__.py +0 -0
  99. {scikit_learn_intelex-2024.2.0.data → scikit_learn_intelex-2024.4.0.data}/data/Lib/site-packages/sklearnex/spmd/linear_model/__init__.py +0 -0
  100. {scikit_learn_intelex-2024.2.0.data → scikit_learn_intelex-2024.4.0.data}/data/Lib/site-packages/sklearnex/spmd/linear_model/linear_model.py +0 -0
  101. {scikit_learn_intelex-2024.2.0.data → scikit_learn_intelex-2024.4.0.data}/data/Lib/site-packages/sklearnex/spmd/linear_model/logistic_regression.py +0 -0
  102. {scikit_learn_intelex-2024.2.0.data → scikit_learn_intelex-2024.4.0.data}/data/Lib/site-packages/sklearnex/spmd/neighbors/__init__.py +0 -0
  103. {scikit_learn_intelex-2024.2.0.data → scikit_learn_intelex-2024.4.0.data}/data/Lib/site-packages/sklearnex/spmd/neighbors/neighbors.py +0 -0
  104. {scikit_learn_intelex-2024.2.0.data → scikit_learn_intelex-2024.4.0.data}/data/Lib/site-packages/sklearnex/svm/__init__.py +0 -0
  105. {scikit_learn_intelex-2024.2.0.data → scikit_learn_intelex-2024.4.0.data}/data/Lib/site-packages/sklearnex/svm/tests/test_svm.py +0 -0
  106. {scikit_learn_intelex-2024.2.0.data → scikit_learn_intelex-2024.4.0.data}/data/Lib/site-packages/sklearnex/tests/test_config.py +0 -0
  107. {scikit_learn_intelex-2024.2.0.data → scikit_learn_intelex-2024.4.0.data}/data/Lib/site-packages/sklearnex/tests/test_run_to_run_stability_tests.py +0 -0
  108. {scikit_learn_intelex-2024.2.0.data → scikit_learn_intelex-2024.4.0.data}/data/Lib/site-packages/sklearnex/utils/parallel.py +0 -0
  109. {scikit_learn_intelex-2024.2.0.data → scikit_learn_intelex-2024.4.0.data}/data/Lib/site-packages/sklearnex/utils/validation.py +0 -0
  110. {scikit_learn_intelex-2024.2.0.dist-info → scikit_learn_intelex-2024.4.0.dist-info}/LICENSE.txt +0 -0
  111. {scikit_learn_intelex-2024.2.0.dist-info → scikit_learn_intelex-2024.4.0.dist-info}/WHEEL +0 -0
  112. {scikit_learn_intelex-2024.2.0.dist-info → scikit_learn_intelex-2024.4.0.dist-info}/top_level.txt +0 -0
@@ -0,0 +1,97 @@
1
+ # ==============================================================================
2
+ # Copyright 2024 Intel Corporation
3
+ #
4
+ # Licensed under the Apache License, Version 2.0 (the "License");
5
+ # you may not use this file except in compliance with the License.
6
+ # You may obtain a copy of the License at
7
+ #
8
+ # http://www.apache.org/licenses/LICENSE-2.0
9
+ #
10
+ # Unless required by applicable law or agreed to in writing, software
11
+ # distributed under the License is distributed on an "AS IS" BASIS,
12
+ # WITHOUT WARRANTIES OR CONDITIONS OF ANY KIND, either express or implied.
13
+ # See the License for the specific language governing permissions and
14
+ # limitations under the License.
15
+ # ==============================================================================
16
+
17
+ import numpy as np
18
+
19
+ from daal4py.sklearn._utils import sklearn_check_version
20
+
21
+ from .._device_offload import dpnp_available
22
+
23
+ if sklearn_check_version("1.2"):
24
+ from sklearn.utils._array_api import get_namespace as sklearn_get_namespace
25
+
26
+ if dpnp_available:
27
+ import dpnp
28
+
29
+
30
+ def get_namespace(*arrays):
31
+ """Get namespace of arrays.
32
+
33
+ Introspect `arrays` arguments and return their common Array API
34
+ compatible namespace object, if any. NumPy 1.22 and later can
35
+ construct such containers using the `numpy.array_api` namespace
36
+ for instance.
37
+
38
+ This function will return the namespace of SYCL-related arrays
39
+ which define the __sycl_usm_array_interface__ attribute
40
+ regardless of array_api support, the configuration of
41
+ array_api_dispatch, or scikit-learn version.
42
+
43
+ See: https://numpy.org/neps/nep-0047-array-api-standard.html
44
+
45
+ If `arrays` are regular numpy arrays, an instance of the
46
+ `_NumPyApiWrapper` compatibility wrapper is returned instead.
47
+
48
+ Namespace support is not enabled by default. To enabled it
49
+ call:
50
+
51
+ sklearn.set_config(array_api_dispatch=True)
52
+
53
+ or:
54
+
55
+ with sklearn.config_context(array_api_dispatch=True):
56
+ # your code here
57
+
58
+ Otherwise an instance of the `_NumPyApiWrapper`
59
+ compatibility wrapper is always returned irrespective of
60
+ the fact that arrays implement the `__array_namespace__`
61
+ protocol or not.
62
+
63
+ Parameters
64
+ ----------
65
+ *arrays : array objects
66
+ Array objects.
67
+
68
+ Returns
69
+ -------
70
+ namespace : module
71
+ Namespace shared by array objects.
72
+
73
+ is_array_api : bool
74
+ True of the arrays are containers that implement the Array API spec.
75
+ """
76
+
77
+ # sycl support designed to work regardless of array_api_dispatch sklearn global value
78
+ sycl_type = {type(x): x for x in arrays if hasattr(x, "__sycl_usm_array_interface__")}
79
+
80
+ if len(sycl_type) > 1:
81
+ raise ValueError(f"Multiple SYCL types for array inputs: {sycl_type}")
82
+
83
+ if sycl_type:
84
+
85
+ (X,) = sycl_type.values()
86
+
87
+ if hasattr(X, "__array_namespace__"):
88
+ return X.__array_namespace__(), True
89
+ elif dpnp_available and isinstance(X, dpnp.ndarray):
90
+ return dpnp, False
91
+ else:
92
+ raise ValueError(f"SYCL type not recognized: {sycl_type}")
93
+
94
+ elif sklearn_check_version("1.2"):
95
+ return sklearn_get_namespace(*arrays)
96
+ else:
97
+ return np, True
@@ -1,6 +1,6 @@
1
1
  Metadata-Version: 2.1
2
2
  Name: scikit-learn-intelex
3
- Version: 2024.2.0
3
+ Version: 2024.4.0
4
4
  Summary: Intel(R) Extension for Scikit-learn is a seamless way to speed up your Scikit-learn application.
5
5
  Home-page: https://github.com/intel/scikit-learn-intelex
6
6
  Author: Intel Corporation
@@ -31,7 +31,7 @@ Classifier: Topic :: Software Development
31
31
  Requires-Python: >=3.7
32
32
  Description-Content-Type: text/markdown
33
33
  License-File: LICENSE.txt
34
- Requires-Dist: daal4py (==2024.2.0)
34
+ Requires-Dist: daal4py (==2024.4.0)
35
35
  Requires-Dist: scikit-learn (>=0.22)
36
36
 
37
37
 
@@ -0,0 +1,101 @@
1
+ scikit_learn_intelex-2024.4.0.data/data/Lib/site-packages/sklearnex/__init__.py,sha256=DVpGCMMQcUlrOGj_iy1jk3ZhCfa0_TFISYLqaUDRqC0,1780
2
+ scikit_learn_intelex-2024.4.0.data/data/Lib/site-packages/sklearnex/__main__.py,sha256=Le9BJq6aLEGSSoZwJLsOADxsV89ynBfA8BcoJHk9F24,1921
3
+ scikit_learn_intelex-2024.4.0.data/data/Lib/site-packages/sklearnex/_config.py,sha256=6WS3UuS4-0DxIJyGn7yQMosj-mGkLybLQrg3W7dED5o,3928
4
+ scikit_learn_intelex-2024.4.0.data/data/Lib/site-packages/sklearnex/_device_offload.py,sha256=EX9bRBV9tFxQBRf8mS9ntBEmB7tcIfql8sYnb9Zjlto,8639
5
+ scikit_learn_intelex-2024.4.0.data/data/Lib/site-packages/sklearnex/_utils.py,sha256=EV4jC3plVdndsgrfPBsJZTzggrRdYWLwOpoIRWtTXt4,3812
6
+ scikit_learn_intelex-2024.4.0.data/data/Lib/site-packages/sklearnex/conftest.py,sha256=ZvcfQljZNBa3zlE1iITvuacHblugVtK6X80LwNXrnWI,2130
7
+ scikit_learn_intelex-2024.4.0.data/data/Lib/site-packages/sklearnex/dispatcher.py,sha256=Vpoy6kwOR0Y3ISfjpk0S1vEKhDZGLUKeMy-xwCBsCQs,14389
8
+ scikit_learn_intelex-2024.4.0.data/data/Lib/site-packages/sklearnex/basic_statistics/__init__.py,sha256=-lNh54F2FO0BuHDBLjhW7zp3yBcgFZ-DrXHj2H5hLXE,920
9
+ scikit_learn_intelex-2024.4.0.data/data/Lib/site-packages/sklearnex/basic_statistics/basic_statistics.py,sha256=j5jBZ3DgXjoyjCBEFfYQHyl3LgLXEWWFnNHwInThdZw,796
10
+ scikit_learn_intelex-2024.4.0.data/data/Lib/site-packages/sklearnex/basic_statistics/incremental_basic_statistics.py,sha256=NNWF9zdxBz2jT7dzt5hL6HRvjQIGosvViQE3KJMF1L4,10048
11
+ scikit_learn_intelex-2024.4.0.data/data/Lib/site-packages/sklearnex/basic_statistics/tests/test_incremental_basic_statistics.py,sha256=GarYPjojsyhbOat5vOXF85AofyFa_VretX4Vntc01C8,14992
12
+ scikit_learn_intelex-2024.4.0.data/data/Lib/site-packages/sklearnex/cluster/__init__.py,sha256=TsDzdbKzEubaP86iY8a7mSW0ZQzgjzGYuPkhc5lZmlQ,853
13
+ scikit_learn_intelex-2024.4.0.data/data/Lib/site-packages/sklearnex/cluster/dbscan.py,sha256=JJaNVhV4dVK0xte9xzQpCAka80xVu3M7_SzmvD3k-EY,6736
14
+ scikit_learn_intelex-2024.4.0.data/data/Lib/site-packages/sklearnex/cluster/k_means.py,sha256=1QKcFUQcnycu8kSD8uYSaDIuedHbxZsV_gvUfcEwVAM,806
15
+ scikit_learn_intelex-2024.4.0.data/data/Lib/site-packages/sklearnex/cluster/tests/test_dbscan.py,sha256=AgFoKwXFVyLKLvEtJVs0qlbBs1Ci3PcRft7f-6_ENOU,1464
16
+ scikit_learn_intelex-2024.4.0.data/data/Lib/site-packages/sklearnex/cluster/tests/test_kmeans.py,sha256=H3a9NSHRRSASo0Eceo44Kjq6GwEoMqMzcubaNt1s1QQ,1213
17
+ scikit_learn_intelex-2024.4.0.data/data/Lib/site-packages/sklearnex/covariance/__init__.py,sha256=_c86wiKDGBH50ofN-_tn7lO4M2YVEWO5AHhJIfimUDk,859
18
+ scikit_learn_intelex-2024.4.0.data/data/Lib/site-packages/sklearnex/covariance/incremental_covariance.py,sha256=3s9gmLP48DPhlhnFcg2JB7RQ2sliSZdNroJkv8-1sIA,4526
19
+ scikit_learn_intelex-2024.4.0.data/data/Lib/site-packages/sklearnex/covariance/tests/test_incremental_covariance.py,sha256=JIa4p-1_RYvU2ZVLx27iz0OKp0Nwrl9sYCsT0Dlyi2I,5402
20
+ scikit_learn_intelex-2024.4.0.data/data/Lib/site-packages/sklearnex/decomposition/__init__.py,sha256=RJBYDWyvnn5DA-j5r4IqVdXLp6H4mdPySsSjnXhlv-U,805
21
+ scikit_learn_intelex-2024.4.0.data/data/Lib/site-packages/sklearnex/decomposition/pca.py,sha256=ffR22wH2n5R8SYflEmOPDPc-QpTomiAMOegV0IMbslg,12654
22
+ scikit_learn_intelex-2024.4.0.data/data/Lib/site-packages/sklearnex/decomposition/tests/test_pca.py,sha256=FJYMosxpQpdOo71QD0jVx47oWEhvVNdut_5EOxTyT_0,2201
23
+ scikit_learn_intelex-2024.4.0.data/data/Lib/site-packages/sklearnex/doc/third-party-programs.txt,sha256=qA1XbOqYkMRnp29p8VxXjfcH0kHE8NSO5s2heea83-8,21773
24
+ scikit_learn_intelex-2024.4.0.data/data/Lib/site-packages/sklearnex/ensemble/__init__.py,sha256=2xB2KfG7l7uJv0p3kfVhrs4KLM174SCsigZhYqwSYAA,1035
25
+ scikit_learn_intelex-2024.4.0.data/data/Lib/site-packages/sklearnex/ensemble/_forest.py,sha256=OHxqhYhkdjzhhEeWLlE0_IXBrWmKCUJoP_B1gQcmTQM,70002
26
+ scikit_learn_intelex-2024.4.0.data/data/Lib/site-packages/sklearnex/ensemble/tests/test_forest.py,sha256=r1GSPQuVVuWYoNB3ZLiGKfMSwq3lp5i6k-Rgr7InonQ,4456
27
+ scikit_learn_intelex-2024.4.0.data/data/Lib/site-packages/sklearnex/glob/__main__.py,sha256=--FAjkhh5E6a1TFOGu6_BM3MHe78jP8oSpl0xKiRtTI,2531
28
+ scikit_learn_intelex-2024.4.0.data/data/Lib/site-packages/sklearnex/glob/dispatcher.py,sha256=IEEPhAOCVzC2JDFvYtijbiPAbaUY5RrCAhFLRjMMe1w,3018
29
+ scikit_learn_intelex-2024.4.0.data/data/Lib/site-packages/sklearnex/linear_model/__init__.py,sha256=5XZDZh8R0SmT8D8ZtSjW7-MKRO7l1jOZ8CUnt_OzHe4,1047
30
+ scikit_learn_intelex-2024.4.0.data/data/Lib/site-packages/sklearnex/linear_model/coordinate_descent.py,sha256=uZOHIKfFlHoMlNXZCh2MAnZE30fRZlmtcF7UsZQ3Vq4,822
31
+ scikit_learn_intelex-2024.4.0.data/data/Lib/site-packages/sklearnex/linear_model/linear.py,sha256=0A2kCTpsGZK8IVkbIhYoAXqMAxHOyY7dO5JLxbNWmLw,11159
32
+ scikit_learn_intelex-2024.4.0.data/data/Lib/site-packages/sklearnex/linear_model/logistic_path.py,sha256=Nq3JPXSzE4bjamnP3gGQtsMKks2v7s6bSiuYRnFqrRw,849
33
+ scikit_learn_intelex-2024.4.0.data/data/Lib/site-packages/sklearnex/linear_model/logistic_regression.py,sha256=6TRaDJ8nIHxjofIfUvmeJOP9_EwmUgVKKK1sxe9vS5A,14171
34
+ scikit_learn_intelex-2024.4.0.data/data/Lib/site-packages/sklearnex/linear_model/ridge.py,sha256=0oxlM5McYYvl0KxK9OIGJKM6lOADuFSPTdfx-efJNTI,810
35
+ scikit_learn_intelex-2024.4.0.data/data/Lib/site-packages/sklearnex/linear_model/tests/test_linear.py,sha256=kLoOcP9p0iCK2PhU438tGuPGuuBekF37FkA-YBcBMpM,4319
36
+ scikit_learn_intelex-2024.4.0.data/data/Lib/site-packages/sklearnex/linear_model/tests/test_logreg.py,sha256=mUYDwTDUekERlzxjnVeOeCUcNv4KJAXdTIiELZNSaDc,3283
37
+ scikit_learn_intelex-2024.4.0.data/data/Lib/site-packages/sklearnex/manifold/__init__.py,sha256=3FU5fY1YvHAyNeSlUHsZfPnAbvlAUtZpum0Obmok2KE,809
38
+ scikit_learn_intelex-2024.4.0.data/data/Lib/site-packages/sklearnex/manifold/t_sne.py,sha256=U6F_dGB6taVuEJvTnVBWD-sri3x3m0Khu3HI4wXidhg,805
39
+ scikit_learn_intelex-2024.4.0.data/data/Lib/site-packages/sklearnex/manifold/tests/test_tsne.py,sha256=SNqe1yg45mL4qIsxpX5hDpBsIyrv9r__6wfrerjp3yU,1063
40
+ scikit_learn_intelex-2024.4.0.data/data/Lib/site-packages/sklearnex/metrics/__init__.py,sha256=EHOCTU9RERa0Rrkr4dgmyO9ippbN5kjH_FwK3BqIROc,907
41
+ scikit_learn_intelex-2024.4.0.data/data/Lib/site-packages/sklearnex/metrics/pairwise.py,sha256=5T_Vcbiadzi7oo0hq6vLl_BHQzXOmDsn5pHaMCPSHd8,818
42
+ scikit_learn_intelex-2024.4.0.data/data/Lib/site-packages/sklearnex/metrics/ranking.py,sha256=rjJxQntblbegSZRwDsOOy2ntIYBqlnV8NM46IAc0MiE,813
43
+ scikit_learn_intelex-2024.4.0.data/data/Lib/site-packages/sklearnex/metrics/tests/test_metrics.py,sha256=Nwfz8UV4V4fKLLY7f9P9eg8uY09xLXaFx1GC49TOiA8,1579
44
+ scikit_learn_intelex-2024.4.0.data/data/Lib/site-packages/sklearnex/model_selection/__init__.py,sha256=64045Y-nzLDBepO6IRjt88LhL2DM3KdvpCF2vvj_RpA,842
45
+ scikit_learn_intelex-2024.4.0.data/data/Lib/site-packages/sklearnex/model_selection/split.py,sha256=qjmy8sRf_QEG8LhT0ivn_tICMCYmt7ffZZV1-rLQnko,824
46
+ scikit_learn_intelex-2024.4.0.data/data/Lib/site-packages/sklearnex/model_selection/tests/test_model_selection.py,sha256=3kZIq8kba8SW93DBWXupoRymNStR1_mGGYSErQRnwME,1338
47
+ scikit_learn_intelex-2024.4.0.data/data/Lib/site-packages/sklearnex/neighbors/__init__.py,sha256=_GMJ2L-6YechRYI2fOFwHjy0kebUncE81z4FmdXUlb8,1078
48
+ scikit_learn_intelex-2024.4.0.data/data/Lib/site-packages/sklearnex/neighbors/_lof.py,sha256=5MPkWIb6FS55Q8xWzgc22Ec_PsouuN94SPovt-vsBGE,8648
49
+ scikit_learn_intelex-2024.4.0.data/data/Lib/site-packages/sklearnex/neighbors/common.py,sha256=8DxDoYtXtEM4RNoMCimpTVSDOOxUIJlNVOQvBXBhkd4,10875
50
+ scikit_learn_intelex-2024.4.0.data/data/Lib/site-packages/sklearnex/neighbors/knn_classification.py,sha256=ONoBbtwb5xoVLcpg5COpRNu1ZBOQ2EDh03RzbWDy5yo,8537
51
+ scikit_learn_intelex-2024.4.0.data/data/Lib/site-packages/sklearnex/neighbors/knn_regression.py,sha256=YBjvh6h56OaJHSZNGq8ZV8lsB-XpSWduEcVeHRuPorQ,6692
52
+ scikit_learn_intelex-2024.4.0.data/data/Lib/site-packages/sklearnex/neighbors/knn_unsupervised.py,sha256=qkj-hSEq8QetYsWlofnik3PpFvo1iBUbIOhywo8wFWk,5362
53
+ scikit_learn_intelex-2024.4.0.data/data/Lib/site-packages/sklearnex/neighbors/tests/test_neighbors.py,sha256=gcJeJwDoT7wvyvk423k9TDGTGfbXUSTQETUT-VYQ74U,3409
54
+ scikit_learn_intelex-2024.4.0.data/data/Lib/site-packages/sklearnex/preview/__init__.py,sha256=OXC_k2kudA13rVesXb5ZlEC7_mKUS7uUra_BR-Tin30,780
55
+ scikit_learn_intelex-2024.4.0.data/data/Lib/site-packages/sklearnex/preview/cluster/__init__.py,sha256=FONzOuTGAb5NwdfFhLco99P_VccRk9NBkDHU3EKuAIs,794
56
+ scikit_learn_intelex-2024.4.0.data/data/Lib/site-packages/sklearnex/preview/cluster/_common.py,sha256=bgpzijxgyrAtdNCCHyCNsZ-N70KQYNwMuoCTNdUna6o,2718
57
+ scikit_learn_intelex-2024.4.0.data/data/Lib/site-packages/sklearnex/preview/cluster/k_means.py,sha256=RdF9mwgvZ1xgyeLhCQA2WaPvPsS1ndktXXcaNj6S460,10464
58
+ scikit_learn_intelex-2024.4.0.data/data/Lib/site-packages/sklearnex/preview/covariance/__init__.py,sha256=DPYTk8lwcVphtwU8J3CyUYH8Uz6Zr0Uz4S6nn-RY5iM,825
59
+ scikit_learn_intelex-2024.4.0.data/data/Lib/site-packages/sklearnex/preview/covariance/covariance.py,sha256=NjRTWLie7UbpfN16wGSxJSRHRhUnvTn03cPPc8PpPd8,5131
60
+ scikit_learn_intelex-2024.4.0.data/data/Lib/site-packages/sklearnex/preview/covariance/tests/test_covariance.py,sha256=FOgvhJxFQo9sNG4Uo-ebuw3ZXJ9tSxdk8qKm0ZJzTdc,2487
61
+ scikit_learn_intelex-2024.4.0.data/data/Lib/site-packages/sklearnex/spmd/__init__.py,sha256=ChQy2kEWlo4KGvs0RnbPoPEVhdgl8URV099B1rZtF5Y,889
62
+ scikit_learn_intelex-2024.4.0.data/data/Lib/site-packages/sklearnex/spmd/basic_statistics/__init__.py,sha256=NA5RGlwcp27UEeCgz0ngzYYd3MAIRpxlTy86uhM2-RE,821
63
+ scikit_learn_intelex-2024.4.0.data/data/Lib/site-packages/sklearnex/spmd/basic_statistics/basic_statistics.py,sha256=_dQ9mhVYxeuChATEpAmHpXDpgW3YvtK1qrG-kLr2MtI,886
64
+ scikit_learn_intelex-2024.4.0.data/data/Lib/site-packages/sklearnex/spmd/cluster/__init__.py,sha256=qBBfrCHh6_82EROLbu54XKk7SmmRwS1XJyCj0zwkoUw,1029
65
+ scikit_learn_intelex-2024.4.0.data/data/Lib/site-packages/sklearnex/spmd/cluster/dbscan.py,sha256=23YNzPhx4MZijU0md-E3ZkHpTkhUh5cmtS3loHe-KhI,1824
66
+ scikit_learn_intelex-2024.4.0.data/data/Lib/site-packages/sklearnex/spmd/cluster/kmeans.py,sha256=Rnb9tr9LXVto5vCAumk7ZJfa9BYYDhdD1qUWL-QK5bY,868
67
+ scikit_learn_intelex-2024.4.0.data/data/Lib/site-packages/sklearnex/spmd/covariance/__init__.py,sha256=5xeL1REMIxCv5M1ya99GGKaVjctUngboZ3uXgxcZ04o,823
68
+ scikit_learn_intelex-2024.4.0.data/data/Lib/site-packages/sklearnex/spmd/covariance/covariance.py,sha256=_oIlr1W1vqDHqIPnsCb04HcBCen5oBHQr5-_n9OSvIA,884
69
+ scikit_learn_intelex-2024.4.0.data/data/Lib/site-packages/sklearnex/spmd/decomposition/__init__.py,sha256=dBh0ZMIiaqdf3DKbt8FWNB2K9Iacs395m8OxaDFQg_M,784
70
+ scikit_learn_intelex-2024.4.0.data/data/Lib/site-packages/sklearnex/spmd/decomposition/pca.py,sha256=CUrsVD2jae-A9H8RB_emza_fe82CwnFa5PEy0fW_EZ8,871
71
+ scikit_learn_intelex-2024.4.0.data/data/Lib/site-packages/sklearnex/spmd/ensemble/__init__.py,sha256=B3yi7hWoVogMIiw0QRT_x5atsAFS-OO72YPLGeUQJ8M,873
72
+ scikit_learn_intelex-2024.4.0.data/data/Lib/site-packages/sklearnex/spmd/ensemble/forest.py,sha256=vIJJd10wIigFMtJMsiNDNLJ_PP2om-60zpQY_fd11-U,2909
73
+ scikit_learn_intelex-2024.4.0.data/data/Lib/site-packages/sklearnex/spmd/linear_model/__init__.py,sha256=WwqCr2DOyUnkSIHlP0yq0UI2yFDgSl5MHV7wu3QGJtA,893
74
+ scikit_learn_intelex-2024.4.0.data/data/Lib/site-packages/sklearnex/spmd/linear_model/linear_model.py,sha256=7QPCIQTWKBiZBTDZZbpZXi-REgxQCfRMt6rHPJAnc5E,883
75
+ scikit_learn_intelex-2024.4.0.data/data/Lib/site-packages/sklearnex/spmd/linear_model/logistic_regression.py,sha256=q_HkfWcg0RgFbk2t9FeV0ZY28HHAOtkGEnUj4tLuwt4,885
76
+ scikit_learn_intelex-2024.4.0.data/data/Lib/site-packages/sklearnex/spmd/neighbors/__init__.py,sha256=S16sH8N_18LN_8AgC_wGK5EDSNyuN-F-gI6GVlaiWVE,906
77
+ scikit_learn_intelex-2024.4.0.data/data/Lib/site-packages/sklearnex/spmd/neighbors/neighbors.py,sha256=SiKAS_RVt34MUcGytBS5pHnI_5vFNxJn8jqt1MOhDh8,940
78
+ scikit_learn_intelex-2024.4.0.data/data/Lib/site-packages/sklearnex/svm/__init__.py,sha256=f3e4ZFwZfx6MsXsn94VK1xVm6mWKT5XCiHczo6zNyAQ,1057
79
+ scikit_learn_intelex-2024.4.0.data/data/Lib/site-packages/sklearnex/svm/_common.py,sha256=52csEWTYWEVgUVWUm3RjX1VD_5VyyawXBvc7lBBp5qY,7010
80
+ scikit_learn_intelex-2024.4.0.data/data/Lib/site-packages/sklearnex/svm/nusvc.py,sha256=J4F_Tm9oYC-WK1Nf_CNqSnvuYEEZZ9xa3VY-x0G_2cw,9871
81
+ scikit_learn_intelex-2024.4.0.data/data/Lib/site-packages/sklearnex/svm/nusvr.py,sha256=ZFBnQzMgD4aRSk3BRIxwKfwErVyDJnNoR7vrIMm5WLk,3655
82
+ scikit_learn_intelex-2024.4.0.data/data/Lib/site-packages/sklearnex/svm/svc.py,sha256=u9wQ8dsvQvO4XP_3JSfYFBNJcuDyv3HVG5NY6jZqhZk,11125
83
+ scikit_learn_intelex-2024.4.0.data/data/Lib/site-packages/sklearnex/svm/svr.py,sha256=ldNWehrU4vgqX_0T8splmBjPsQln7w_h8L4XNpIgP6A,3655
84
+ scikit_learn_intelex-2024.4.0.data/data/Lib/site-packages/sklearnex/svm/tests/test_svm.py,sha256=Ru-aGNGCsRJts7SEEYbnKcVqUx-DqPyUtw-hEoMVpW8,4190
85
+ scikit_learn_intelex-2024.4.0.data/data/Lib/site-packages/sklearnex/tests/_utils.py,sha256=hc3LxZDhlncONCGxqvWajQE7iVnSnt98Q9bem-KJDGI,5386
86
+ scikit_learn_intelex-2024.4.0.data/data/Lib/site-packages/sklearnex/tests/test_config.py,sha256=SnSJjxAAysISDyC3bYKSJiRHStkB9X-yjLeF11LpRog,1372
87
+ scikit_learn_intelex-2024.4.0.data/data/Lib/site-packages/sklearnex/tests/test_memory_usage.py,sha256=LwIuUgG7CUZ2kOk1XlxyaK7O3OlyoVwx40TgljaYs5Q,7327
88
+ scikit_learn_intelex-2024.4.0.data/data/Lib/site-packages/sklearnex/tests/test_monkeypatch.py,sha256=_9s_4jFvbttOf8uCuBrS4rn_AzQdFlKyRlthnGacUcU,9669
89
+ scikit_learn_intelex-2024.4.0.data/data/Lib/site-packages/sklearnex/tests/test_n_jobs_support.py,sha256=fNGlQz882qAJoJ56ymbID0hpIsO_7PHLmXxSew2JA_k,4124
90
+ scikit_learn_intelex-2024.4.0.data/data/Lib/site-packages/sklearnex/tests/test_parallel.py,sha256=0zzlh2VJZWcHw5W4QSUthtAygOb6K0Bg1ekNsrdGJQE,1770
91
+ scikit_learn_intelex-2024.4.0.data/data/Lib/site-packages/sklearnex/tests/test_patching.py,sha256=Gc4MChHY6lVUFkm3sgPF4RDd1uOqHQFfh9ac60d4vfQ,14299
92
+ scikit_learn_intelex-2024.4.0.data/data/Lib/site-packages/sklearnex/tests/test_run_to_run_stability_tests.py,sha256=4HDOeJruA1EDILbyQJtsHFmEXC0D1upSHuOT-KyTlEc,14008
93
+ scikit_learn_intelex-2024.4.0.data/data/Lib/site-packages/sklearnex/utils/__init__.py,sha256=FFlM8zc2qnSdPYpLjSt4Ma_9FjC8qk8wXJa-5B8hCs0,898
94
+ scikit_learn_intelex-2024.4.0.data/data/Lib/site-packages/sklearnex/utils/_namespace.py,sha256=lWzvzcObxq350A-Ms8JyTbaQStR8rgH4DgQYhWruHL4,3166
95
+ scikit_learn_intelex-2024.4.0.data/data/Lib/site-packages/sklearnex/utils/parallel.py,sha256=VBcS-KUdyq7XpJUN6ygmNjyWtYLroghbvCxQ8nVU3YI,2085
96
+ scikit_learn_intelex-2024.4.0.data/data/Lib/site-packages/sklearnex/utils/validation.py,sha256=fjfhQiKnBQnD7LCBlacMyvsrhGnlMLRXk5Q69uoZIP4,827
97
+ scikit_learn_intelex-2024.4.0.dist-info/LICENSE.txt,sha256=rVeK6nE7qRmAwbwjnG9ENguRsDgzEkFn5MZL2IU6QgY,10999
98
+ scikit_learn_intelex-2024.4.0.dist-info/METADATA,sha256=o67KC09tI-M1vRew0u70i6UExD3Vnzu3dYRrbLFSTAo,12448
99
+ scikit_learn_intelex-2024.4.0.dist-info/WHEEL,sha256=XoKki0KLAVNudIEzWXw23yrSNzEQs-OWXWdxw5aEl88,100
100
+ scikit_learn_intelex-2024.4.0.dist-info/top_level.txt,sha256=AbpHGcgLb-kRsJGnwFEktk7uzpZOCcBY74-YBdrKVGs,1
101
+ scikit_learn_intelex-2024.4.0.dist-info/RECORD,,
@@ -1,17 +0,0 @@
1
- # ===============================================================================
2
- # Copyright 2021 Intel Corporation
3
- #
4
- # Licensed under the Apache License, Version 2.0 (the "License");
5
- # you may not use this file except in compliance with the License.
6
- # You may obtain a copy of the License at
7
- #
8
- # http://www.apache.org/licenses/LICENSE-2.0
9
- #
10
- # Unless required by applicable law or agreed to in writing, software
11
- # distributed under the License is distributed on an "AS IS" BASIS,
12
- # WITHOUT WARRANTIES OR CONDITIONS OF ANY KIND, either express or implied.
13
- # See the License for the specific language governing permissions and
14
- # limitations under the License.
15
- # ===============================================================================
16
-
17
- from daal4py.sklearn.decomposition import PCA
@@ -1,27 +0,0 @@
1
- # ===============================================================================
2
- # Copyright 2023 Intel Corporation
3
- #
4
- # Licensed under the Apache License, Version 2.0 (the "License");
5
- # you may not use this file except in compliance with the License.
6
- # You may obtain a copy of the License at
7
- #
8
- # http://www.apache.org/licenses/LICENSE-2.0
9
- #
10
- # Unless required by applicable law or agreed to in writing, software
11
- # distributed under the License is distributed on an "AS IS" BASIS,
12
- # WITHOUT WARRANTIES OR CONDITIONS OF ANY KIND, either express or implied.
13
- # See the License for the specific language governing permissions and
14
- # limitations under the License.
15
- # ===============================================================================
16
-
17
- import numpy as np
18
- from numpy.testing import assert_allclose
19
-
20
-
21
- def test_sklearnex_import():
22
- from sklearnex.decomposition import PCA
23
-
24
- X = np.array([[-1, -1], [-2, -1], [-3, -2], [1, 1], [2, 1], [3, 2]])
25
- pca = PCA(n_components=2, svd_solver="full").fit(X)
26
- assert "daal4py" in pca.__module__
27
- assert_allclose(pca.singular_values_, [6.30061232, 0.54980396])
@@ -1,381 +0,0 @@
1
- # ===============================================================================
2
- # Copyright 2023 Intel Corporation
3
- #
4
- # Licensed under the Apache License, Version 2.0 (the "License");
5
- # you may not use this file except in compliance with the License.
6
- # You may obtain a copy of the License at
7
- #
8
- # http://www.apache.org/licenses/LICENSE-2.0
9
- #
10
- # Unless required by applicable law or agreed to in writing, software
11
- # distributed under the License is distributed on an "AS IS" BASIS,
12
- # WITHOUT WARRANTIES OR CONDITIONS OF ANY KIND, either express or implied.
13
- # See the License for the specific language governing permissions and
14
- # limitations under the License.
15
- # ===============================================================================
16
-
17
- import logging
18
- from abc import ABC
19
-
20
- from daal4py.sklearn._utils import daal_check_version
21
-
22
-
23
- def get_coef(self):
24
- return self._coef_
25
-
26
-
27
- def set_coef(self, value):
28
- self._coef_ = value
29
- if hasattr(self, "_onedal_estimator"):
30
- self._onedal_estimator.coef_ = value
31
- if not self._is_in_fit:
32
- del self._onedal_estimator._onedal_model
33
-
34
-
35
- def get_intercept(self):
36
- return self._intercept_
37
-
38
-
39
- def set_intercept(self, value):
40
- self._intercept_ = value
41
- if hasattr(self, "_onedal_estimator"):
42
- self._onedal_estimator.intercept_ = value
43
- if not self._is_in_fit:
44
- del self._onedal_estimator._onedal_model
45
-
46
-
47
- class BaseLinearRegression(ABC):
48
- def _save_attributes(self):
49
- self.n_features_in_ = self._onedal_estimator.n_features_in_
50
- self.fit_status_ = 0
51
- self._coef_ = self._onedal_estimator.coef_
52
- self._intercept_ = self._onedal_estimator.intercept_
53
- self._sparse = False
54
-
55
- self.coef_ = property(get_coef, set_coef)
56
- self.intercept_ = property(get_intercept, set_intercept)
57
-
58
- self._is_in_fit = True
59
- self.coef_ = self._coef_
60
- self.intercept_ = self._intercept_
61
- self._is_in_fit = False
62
-
63
-
64
- if daal_check_version((2023, "P", 100)):
65
- import numpy as np
66
- from sklearn.linear_model import LinearRegression as sklearn_LinearRegression
67
-
68
- from daal4py.sklearn._n_jobs_support import control_n_jobs
69
- from daal4py.sklearn._utils import get_dtype, make2d, sklearn_check_version
70
-
71
- from .._device_offload import dispatch, wrap_output_data
72
- from .._utils import (
73
- PatchingConditionsChain,
74
- get_patch_message,
75
- register_hyperparameters,
76
- )
77
- from ..utils.validation import _assert_all_finite
78
-
79
- if sklearn_check_version("1.0") and not sklearn_check_version("1.2"):
80
- from sklearn.linear_model._base import _deprecate_normalize
81
-
82
- from scipy.sparse import issparse
83
- from sklearn.exceptions import NotFittedError
84
- from sklearn.utils.validation import _deprecate_positional_args, check_X_y
85
-
86
- from onedal.common.hyperparameters import get_hyperparameters
87
- from onedal.linear_model import LinearRegression as onedal_LinearRegression
88
- from onedal.utils import _num_features, _num_samples
89
-
90
- @register_hyperparameters({"fit": get_hyperparameters("linear_regression", "train")})
91
- @control_n_jobs(decorated_methods=["fit", "predict"])
92
- class LinearRegression(sklearn_LinearRegression, BaseLinearRegression):
93
- __doc__ = sklearn_LinearRegression.__doc__
94
- intercept_, coef_ = None, None
95
-
96
- if sklearn_check_version("1.2"):
97
- _parameter_constraints: dict = {
98
- **sklearn_LinearRegression._parameter_constraints
99
- }
100
-
101
- def __init__(
102
- self,
103
- fit_intercept=True,
104
- copy_X=True,
105
- n_jobs=None,
106
- positive=False,
107
- ):
108
- super().__init__(
109
- fit_intercept=fit_intercept,
110
- copy_X=copy_X,
111
- n_jobs=n_jobs,
112
- positive=positive,
113
- )
114
-
115
- elif sklearn_check_version("0.24"):
116
-
117
- def __init__(
118
- self,
119
- fit_intercept=True,
120
- normalize="deprecated" if sklearn_check_version("1.0") else False,
121
- copy_X=True,
122
- n_jobs=None,
123
- positive=False,
124
- ):
125
- super().__init__(
126
- fit_intercept=fit_intercept,
127
- normalize=normalize,
128
- copy_X=copy_X,
129
- n_jobs=n_jobs,
130
- positive=positive,
131
- )
132
-
133
- else:
134
-
135
- def __init__(
136
- self,
137
- fit_intercept=True,
138
- normalize=False,
139
- copy_X=True,
140
- n_jobs=None,
141
- ):
142
- super().__init__(
143
- fit_intercept=fit_intercept,
144
- normalize=normalize,
145
- copy_X=copy_X,
146
- n_jobs=n_jobs,
147
- )
148
-
149
- def fit(self, X, y, sample_weight=None):
150
- """
151
- Fit linear model.
152
- Parameters
153
- ----------
154
- X : {array-like, sparse matrix} of shape (n_samples, n_features)
155
- Training data.
156
- y : array-like of shape (n_samples,) or (n_samples, n_targets)
157
- Target values. Will be cast to X's dtype if necessary.
158
- sample_weight : array-like of shape (n_samples,), default=None
159
- Individual weights for each sample.
160
- .. versionadded:: 0.17
161
- parameter *sample_weight* support to LinearRegression.
162
- Returns
163
- -------
164
- self : object
165
- Fitted Estimator.
166
- """
167
- if sklearn_check_version("1.0"):
168
- self._check_feature_names(X, reset=True)
169
- if sklearn_check_version("1.2"):
170
- self._validate_params()
171
-
172
- dispatch(
173
- self,
174
- "fit",
175
- {
176
- "onedal": self.__class__._onedal_fit,
177
- "sklearn": sklearn_LinearRegression.fit,
178
- },
179
- X,
180
- y,
181
- sample_weight,
182
- )
183
- return self
184
-
185
- @wrap_output_data
186
- def predict(self, X):
187
- """
188
- Predict using the linear model.
189
- Parameters
190
- ----------
191
- X : array-like or sparse matrix, shape (n_samples, n_features)
192
- Samples.
193
- Returns
194
- -------
195
- C : array, shape (n_samples, n_targets)
196
- Returns predicted values.
197
- """
198
- if sklearn_check_version("1.0"):
199
- self._check_feature_names(X, reset=False)
200
- return dispatch(
201
- self,
202
- "predict",
203
- {
204
- "onedal": self.__class__._onedal_predict,
205
- "sklearn": sklearn_LinearRegression.predict,
206
- },
207
- X,
208
- )
209
-
210
- def _test_type_and_finiteness(self, X_in):
211
- X = X_in if isinstance(X_in, np.ndarray) else np.asarray(X_in)
212
-
213
- dtype = X.dtype
214
- if "complex" in str(type(dtype)):
215
- return False
216
-
217
- try:
218
- _assert_all_finite(X)
219
- except BaseException:
220
- return False
221
- return True
222
-
223
- def _onedal_fit_supported(self, method_name, *data):
224
- assert method_name == "fit"
225
- assert len(data) == 3
226
- X, y, sample_weight = data
227
-
228
- class_name = self.__class__.__name__
229
- patching_status = PatchingConditionsChain(
230
- f"sklearn.linear_model.{class_name}.fit"
231
- )
232
-
233
- normalize_is_set = (
234
- hasattr(self, "normalize")
235
- and self.normalize
236
- and self.normalize != "deprecated"
237
- )
238
- positive_is_set = hasattr(self, "positive") and self.positive
239
-
240
- n_samples = _num_samples(X)
241
- n_features = _num_features(X, fallback_1d=True)
242
-
243
- # Check if equations are well defined
244
- is_good_for_onedal = n_samples > (n_features + int(self.fit_intercept))
245
-
246
- dal_ready = patching_status.and_conditions(
247
- [
248
- (sample_weight is None, "Sample weight is not supported."),
249
- (
250
- not issparse(X) and not issparse(y),
251
- "Sparse input is not supported.",
252
- ),
253
- (not normalize_is_set, "Normalization is not supported."),
254
- (
255
- not positive_is_set,
256
- "Forced positive coefficients are not supported.",
257
- ),
258
- (
259
- is_good_for_onedal,
260
- "The shape of X (fitting) does not satisfy oneDAL requirements:."
261
- "Number of features + 1 >= number of samples.",
262
- ),
263
- ]
264
- )
265
- if not dal_ready:
266
- return patching_status
267
-
268
- if not patching_status.and_condition(
269
- self._test_type_and_finiteness(X), "Input X is not supported."
270
- ):
271
- return patching_status
272
-
273
- patching_status.and_condition(
274
- self._test_type_and_finiteness(y), "Input y is not supported."
275
- )
276
-
277
- return patching_status
278
-
279
- def _onedal_predict_supported(self, method_name, *data):
280
- assert method_name == "predict"
281
- assert len(data) == 1
282
-
283
- class_name = self.__class__.__name__
284
- patching_status = PatchingConditionsChain(
285
- f"sklearn.linear_model.{class_name}.predict"
286
- )
287
-
288
- n_samples = _num_samples(*data)
289
- model_is_sparse = issparse(self.coef_) or (
290
- self.fit_intercept and issparse(self.intercept_)
291
- )
292
- dal_ready = patching_status.and_conditions(
293
- [
294
- (n_samples > 0, "Number of samples is less than 1."),
295
- (not issparse(*data), "Sparse input is not supported."),
296
- (not model_is_sparse, "Sparse coefficients are not supported."),
297
- (hasattr(self, "_onedal_estimator"), "oneDAL model was not trained."),
298
- ]
299
- )
300
- if not dal_ready:
301
- return patching_status
302
-
303
- patching_status.and_condition(
304
- self._test_type_and_finiteness(*data), "Input X is not supported."
305
- )
306
-
307
- return patching_status
308
-
309
- def _onedal_supported(self, method_name, *data):
310
- if method_name == "fit":
311
- return self._onedal_fit_supported(method_name, *data)
312
- if method_name == "predict":
313
- return self._onedal_predict_supported(method_name, *data)
314
- raise RuntimeError(
315
- f"Unknown method {method_name} in {self.__class__.__name__}"
316
- )
317
-
318
- def _onedal_gpu_supported(self, method_name, *data):
319
- return self._onedal_supported(method_name, *data)
320
-
321
- def _onedal_cpu_supported(self, method_name, *data):
322
- return self._onedal_supported(method_name, *data)
323
-
324
- def _initialize_onedal_estimator(self):
325
- onedal_params = {"fit_intercept": self.fit_intercept, "copy_X": self.copy_X}
326
- self._onedal_estimator = onedal_LinearRegression(**onedal_params)
327
-
328
- def _onedal_fit(self, X, y, sample_weight, queue=None):
329
- assert sample_weight is None
330
-
331
- check_params = {
332
- "X": X,
333
- "y": y,
334
- "dtype": [np.float64, np.float32],
335
- "accept_sparse": ["csr", "csc", "coo"],
336
- "y_numeric": True,
337
- "multi_output": True,
338
- "force_all_finite": False,
339
- }
340
- if sklearn_check_version("1.2"):
341
- X, y = self._validate_data(**check_params)
342
- else:
343
- X, y = check_X_y(**check_params)
344
-
345
- if sklearn_check_version("1.0") and not sklearn_check_version("1.2"):
346
- self._normalize = _deprecate_normalize(
347
- self.normalize,
348
- default=False,
349
- estimator_name=self.__class__.__name__,
350
- )
351
-
352
- self._initialize_onedal_estimator()
353
- try:
354
- self._onedal_estimator.fit(X, y, queue=queue)
355
- self._save_attributes()
356
-
357
- except RuntimeError:
358
- logging.getLogger("sklearnex").info(
359
- f"{self.__class__.__name__}.fit "
360
- + get_patch_message("sklearn_after_onedal")
361
- )
362
-
363
- del self._onedal_estimator
364
- super().fit(X, y)
365
-
366
- def _onedal_predict(self, X, queue=None):
367
- X = self._validate_data(X, accept_sparse=False, reset=False)
368
- if not hasattr(self, "_onedal_estimator"):
369
- self._initialize_onedal_estimator()
370
- self._onedal_estimator.coef_ = self.coef_
371
- self._onedal_estimator.intercept_ = self.intercept_
372
-
373
- return self._onedal_estimator.predict(X, queue=queue)
374
-
375
- else:
376
- from daal4py.sklearn.linear_model import LinearRegression
377
-
378
- logging.warning(
379
- "Sklearnex LinearRegression requires oneDAL version >= 2023.1 "
380
- "but it was not found"
381
- )