scikit-learn-intelex 2024.2.0__py310-none-win_amd64.whl → 2024.3.0__py310-none-win_amd64.whl

This diff represents the content of publicly available package versions that have been released to one of the supported registries. The information contained in this diff is provided for informational purposes only and reflects changes between package versions as they appear in their respective public registries.

Potentially problematic release.


This version of scikit-learn-intelex might be problematic. Click here for more details.

Files changed (107) hide show
  1. {scikit_learn_intelex-2024.2.0.data → scikit_learn_intelex-2024.3.0.data}/data/Lib/site-packages/sklearnex/__init__.py +9 -7
  2. {scikit_learn_intelex-2024.2.0.data → scikit_learn_intelex-2024.3.0.data}/data/Lib/site-packages/sklearnex/cluster/dbscan.py +3 -1
  3. scikit_learn_intelex-2024.3.0.data/data/Lib/site-packages/sklearnex/conftest.py +63 -0
  4. scikit_learn_intelex-2024.3.0.data/data/Lib/site-packages/sklearnex/decomposition/pca.py +338 -0
  5. scikit_learn_intelex-2024.2.0.data/data/Lib/site-packages/sklearnex/preview/decomposition/tests/test_preview_pca.py → scikit_learn_intelex-2024.3.0.data/data/Lib/site-packages/sklearnex/decomposition/tests/test_pca.py +22 -8
  6. {scikit_learn_intelex-2024.2.0.data → scikit_learn_intelex-2024.3.0.data}/data/Lib/site-packages/sklearnex/dispatcher.py +72 -41
  7. {scikit_learn_intelex-2024.2.0.data → scikit_learn_intelex-2024.3.0.data}/data/Lib/site-packages/sklearnex/ensemble/_forest.py +10 -14
  8. {scikit_learn_intelex-2024.2.0.data → scikit_learn_intelex-2024.3.0.data}/data/Lib/site-packages/sklearnex/ensemble/tests/test_forest.py +15 -19
  9. {scikit_learn_intelex-2024.2.0.data → scikit_learn_intelex-2024.3.0.data}/data/Lib/site-packages/sklearnex/linear_model/logistic_regression.py +13 -2
  10. {scikit_learn_intelex-2024.2.0.data → scikit_learn_intelex-2024.3.0.data}/data/Lib/site-packages/sklearnex/linear_model/tests/test_logreg.py +0 -2
  11. {scikit_learn_intelex-2024.2.0.data → scikit_learn_intelex-2024.3.0.data}/data/Lib/site-packages/sklearnex/neighbors/_lof.py +39 -2
  12. {scikit_learn_intelex-2024.2.0.data → scikit_learn_intelex-2024.3.0.data}/data/Lib/site-packages/sklearnex/neighbors/knn_classification.py +7 -9
  13. {scikit_learn_intelex-2024.2.0.data → scikit_learn_intelex-2024.3.0.data}/data/Lib/site-packages/sklearnex/neighbors/knn_regression.py +6 -9
  14. {scikit_learn_intelex-2024.2.0.data → scikit_learn_intelex-2024.3.0.data}/data/Lib/site-packages/sklearnex/neighbors/knn_unsupervised.py +5 -8
  15. {scikit_learn_intelex-2024.2.0.data → scikit_learn_intelex-2024.3.0.data}/data/Lib/site-packages/sklearnex/neighbors/tests/test_neighbors.py +0 -5
  16. {scikit_learn_intelex-2024.2.0.data → scikit_learn_intelex-2024.3.0.data}/data/Lib/site-packages/sklearnex/preview/__init__.py +1 -1
  17. {scikit_learn_intelex-2024.2.0.data → scikit_learn_intelex-2024.3.0.data}/data/Lib/site-packages/sklearnex/spmd/ensemble/forest.py +4 -12
  18. {scikit_learn_intelex-2024.2.0.data → scikit_learn_intelex-2024.3.0.data}/data/Lib/site-packages/sklearnex/svm/nusvc.py +4 -0
  19. {scikit_learn_intelex-2024.2.0.data → scikit_learn_intelex-2024.3.0.data}/data/Lib/site-packages/sklearnex/svm/svc.py +4 -0
  20. scikit_learn_intelex-2024.3.0.data/data/Lib/site-packages/sklearnex/tests/_utils.py +155 -0
  21. {scikit_learn_intelex-2024.2.0.data → scikit_learn_intelex-2024.3.0.data}/data/Lib/site-packages/sklearnex/tests/test_memory_usage.py +8 -3
  22. scikit_learn_intelex-2024.3.0.data/data/Lib/site-packages/sklearnex/tests/test_monkeypatch.py +268 -0
  23. {scikit_learn_intelex-2024.2.0.data → scikit_learn_intelex-2024.3.0.data}/data/Lib/site-packages/sklearnex/tests/test_parallel.py +6 -8
  24. scikit_learn_intelex-2024.3.0.data/data/Lib/site-packages/sklearnex/tests/test_patching.py +361 -0
  25. {scikit_learn_intelex-2024.2.0.dist-info → scikit_learn_intelex-2024.3.0.dist-info}/METADATA +2 -2
  26. scikit_learn_intelex-2024.3.0.dist-info/RECORD +98 -0
  27. scikit_learn_intelex-2024.2.0.data/data/Lib/site-packages/sklearnex/decomposition/pca.py +0 -17
  28. scikit_learn_intelex-2024.2.0.data/data/Lib/site-packages/sklearnex/decomposition/tests/test_pca.py +0 -27
  29. scikit_learn_intelex-2024.2.0.data/data/Lib/site-packages/sklearnex/preview/decomposition/__init__.py +0 -19
  30. scikit_learn_intelex-2024.2.0.data/data/Lib/site-packages/sklearnex/preview/decomposition/pca.py +0 -374
  31. scikit_learn_intelex-2024.2.0.data/data/Lib/site-packages/sklearnex/tests/_models_info.py +0 -170
  32. scikit_learn_intelex-2024.2.0.data/data/Lib/site-packages/sklearnex/tests/test_monkeypatch.py +0 -240
  33. scikit_learn_intelex-2024.2.0.data/data/Lib/site-packages/sklearnex/tests/test_patching.py +0 -136
  34. scikit_learn_intelex-2024.2.0.data/data/Lib/site-packages/sklearnex/tests/utils/_launch_algorithms.py +0 -118
  35. scikit_learn_intelex-2024.2.0.dist-info/RECORD +0 -101
  36. {scikit_learn_intelex-2024.2.0.data → scikit_learn_intelex-2024.3.0.data}/data/Lib/site-packages/sklearnex/__main__.py +0 -0
  37. {scikit_learn_intelex-2024.2.0.data → scikit_learn_intelex-2024.3.0.data}/data/Lib/site-packages/sklearnex/_config.py +0 -0
  38. {scikit_learn_intelex-2024.2.0.data → scikit_learn_intelex-2024.3.0.data}/data/Lib/site-packages/sklearnex/_device_offload.py +0 -0
  39. {scikit_learn_intelex-2024.2.0.data → scikit_learn_intelex-2024.3.0.data}/data/Lib/site-packages/sklearnex/_utils.py +0 -0
  40. {scikit_learn_intelex-2024.2.0.data → scikit_learn_intelex-2024.3.0.data}/data/Lib/site-packages/sklearnex/basic_statistics/__init__.py +0 -0
  41. {scikit_learn_intelex-2024.2.0.data → scikit_learn_intelex-2024.3.0.data}/data/Lib/site-packages/sklearnex/basic_statistics/basic_statistics.py +0 -0
  42. {scikit_learn_intelex-2024.2.0.data → scikit_learn_intelex-2024.3.0.data}/data/Lib/site-packages/sklearnex/cluster/__init__.py +0 -0
  43. {scikit_learn_intelex-2024.2.0.data → scikit_learn_intelex-2024.3.0.data}/data/Lib/site-packages/sklearnex/cluster/k_means.py +0 -0
  44. {scikit_learn_intelex-2024.2.0.data → scikit_learn_intelex-2024.3.0.data}/data/Lib/site-packages/sklearnex/cluster/tests/test_dbscan.py +0 -0
  45. {scikit_learn_intelex-2024.2.0.data → scikit_learn_intelex-2024.3.0.data}/data/Lib/site-packages/sklearnex/cluster/tests/test_kmeans.py +0 -0
  46. {scikit_learn_intelex-2024.2.0.data → scikit_learn_intelex-2024.3.0.data}/data/Lib/site-packages/sklearnex/covariance/__init__.py +0 -0
  47. {scikit_learn_intelex-2024.2.0.data → scikit_learn_intelex-2024.3.0.data}/data/Lib/site-packages/sklearnex/covariance/incremental_covariance.py +0 -0
  48. {scikit_learn_intelex-2024.2.0.data → scikit_learn_intelex-2024.3.0.data}/data/Lib/site-packages/sklearnex/covariance/tests/test_incremental_covariance.py +0 -0
  49. {scikit_learn_intelex-2024.2.0.data → scikit_learn_intelex-2024.3.0.data}/data/Lib/site-packages/sklearnex/decomposition/__init__.py +0 -0
  50. {scikit_learn_intelex-2024.2.0.data → scikit_learn_intelex-2024.3.0.data}/data/Lib/site-packages/sklearnex/doc/third-party-programs.txt +0 -0
  51. {scikit_learn_intelex-2024.2.0.data → scikit_learn_intelex-2024.3.0.data}/data/Lib/site-packages/sklearnex/ensemble/__init__.py +0 -0
  52. {scikit_learn_intelex-2024.2.0.data → scikit_learn_intelex-2024.3.0.data}/data/Lib/site-packages/sklearnex/glob/__main__.py +0 -0
  53. {scikit_learn_intelex-2024.2.0.data → scikit_learn_intelex-2024.3.0.data}/data/Lib/site-packages/sklearnex/glob/dispatcher.py +0 -0
  54. {scikit_learn_intelex-2024.2.0.data → scikit_learn_intelex-2024.3.0.data}/data/Lib/site-packages/sklearnex/linear_model/__init__.py +0 -0
  55. {scikit_learn_intelex-2024.2.0.data → scikit_learn_intelex-2024.3.0.data}/data/Lib/site-packages/sklearnex/linear_model/coordinate_descent.py +0 -0
  56. {scikit_learn_intelex-2024.2.0.data → scikit_learn_intelex-2024.3.0.data}/data/Lib/site-packages/sklearnex/linear_model/linear.py +0 -0
  57. {scikit_learn_intelex-2024.2.0.data → scikit_learn_intelex-2024.3.0.data}/data/Lib/site-packages/sklearnex/linear_model/logistic_path.py +0 -0
  58. {scikit_learn_intelex-2024.2.0.data → scikit_learn_intelex-2024.3.0.data}/data/Lib/site-packages/sklearnex/linear_model/ridge.py +0 -0
  59. {scikit_learn_intelex-2024.2.0.data → scikit_learn_intelex-2024.3.0.data}/data/Lib/site-packages/sklearnex/linear_model/tests/test_linear.py +0 -0
  60. {scikit_learn_intelex-2024.2.0.data → scikit_learn_intelex-2024.3.0.data}/data/Lib/site-packages/sklearnex/manifold/__init__.py +0 -0
  61. {scikit_learn_intelex-2024.2.0.data → scikit_learn_intelex-2024.3.0.data}/data/Lib/site-packages/sklearnex/manifold/t_sne.py +0 -0
  62. {scikit_learn_intelex-2024.2.0.data → scikit_learn_intelex-2024.3.0.data}/data/Lib/site-packages/sklearnex/manifold/tests/test_tsne.py +0 -0
  63. {scikit_learn_intelex-2024.2.0.data → scikit_learn_intelex-2024.3.0.data}/data/Lib/site-packages/sklearnex/metrics/__init__.py +0 -0
  64. {scikit_learn_intelex-2024.2.0.data → scikit_learn_intelex-2024.3.0.data}/data/Lib/site-packages/sklearnex/metrics/pairwise.py +0 -0
  65. {scikit_learn_intelex-2024.2.0.data → scikit_learn_intelex-2024.3.0.data}/data/Lib/site-packages/sklearnex/metrics/ranking.py +0 -0
  66. {scikit_learn_intelex-2024.2.0.data → scikit_learn_intelex-2024.3.0.data}/data/Lib/site-packages/sklearnex/metrics/tests/test_metrics.py +0 -0
  67. {scikit_learn_intelex-2024.2.0.data → scikit_learn_intelex-2024.3.0.data}/data/Lib/site-packages/sklearnex/model_selection/__init__.py +0 -0
  68. {scikit_learn_intelex-2024.2.0.data → scikit_learn_intelex-2024.3.0.data}/data/Lib/site-packages/sklearnex/model_selection/split.py +0 -0
  69. {scikit_learn_intelex-2024.2.0.data → scikit_learn_intelex-2024.3.0.data}/data/Lib/site-packages/sklearnex/model_selection/tests/test_model_selection.py +0 -0
  70. {scikit_learn_intelex-2024.2.0.data → scikit_learn_intelex-2024.3.0.data}/data/Lib/site-packages/sklearnex/neighbors/__init__.py +0 -0
  71. {scikit_learn_intelex-2024.2.0.data → scikit_learn_intelex-2024.3.0.data}/data/Lib/site-packages/sklearnex/neighbors/common.py +0 -0
  72. {scikit_learn_intelex-2024.2.0.data → scikit_learn_intelex-2024.3.0.data}/data/Lib/site-packages/sklearnex/preview/cluster/__init__.py +0 -0
  73. {scikit_learn_intelex-2024.2.0.data → scikit_learn_intelex-2024.3.0.data}/data/Lib/site-packages/sklearnex/preview/cluster/_common.py +0 -0
  74. {scikit_learn_intelex-2024.2.0.data → scikit_learn_intelex-2024.3.0.data}/data/Lib/site-packages/sklearnex/preview/cluster/k_means.py +0 -0
  75. {scikit_learn_intelex-2024.2.0.data → scikit_learn_intelex-2024.3.0.data}/data/Lib/site-packages/sklearnex/preview/covariance/__init__.py +0 -0
  76. {scikit_learn_intelex-2024.2.0.data → scikit_learn_intelex-2024.3.0.data}/data/Lib/site-packages/sklearnex/preview/covariance/covariance.py +0 -0
  77. {scikit_learn_intelex-2024.2.0.data → scikit_learn_intelex-2024.3.0.data}/data/Lib/site-packages/sklearnex/preview/covariance/tests/test_covariance.py +0 -0
  78. {scikit_learn_intelex-2024.2.0.data → scikit_learn_intelex-2024.3.0.data}/data/Lib/site-packages/sklearnex/spmd/__init__.py +0 -0
  79. {scikit_learn_intelex-2024.2.0.data → scikit_learn_intelex-2024.3.0.data}/data/Lib/site-packages/sklearnex/spmd/basic_statistics/__init__.py +0 -0
  80. {scikit_learn_intelex-2024.2.0.data → scikit_learn_intelex-2024.3.0.data}/data/Lib/site-packages/sklearnex/spmd/basic_statistics/basic_statistics.py +0 -0
  81. {scikit_learn_intelex-2024.2.0.data → scikit_learn_intelex-2024.3.0.data}/data/Lib/site-packages/sklearnex/spmd/cluster/__init__.py +0 -0
  82. {scikit_learn_intelex-2024.2.0.data → scikit_learn_intelex-2024.3.0.data}/data/Lib/site-packages/sklearnex/spmd/cluster/dbscan.py +0 -0
  83. {scikit_learn_intelex-2024.2.0.data → scikit_learn_intelex-2024.3.0.data}/data/Lib/site-packages/sklearnex/spmd/cluster/kmeans.py +0 -0
  84. {scikit_learn_intelex-2024.2.0.data → scikit_learn_intelex-2024.3.0.data}/data/Lib/site-packages/sklearnex/spmd/covariance/__init__.py +0 -0
  85. {scikit_learn_intelex-2024.2.0.data → scikit_learn_intelex-2024.3.0.data}/data/Lib/site-packages/sklearnex/spmd/covariance/covariance.py +0 -0
  86. {scikit_learn_intelex-2024.2.0.data → scikit_learn_intelex-2024.3.0.data}/data/Lib/site-packages/sklearnex/spmd/decomposition/__init__.py +0 -0
  87. {scikit_learn_intelex-2024.2.0.data → scikit_learn_intelex-2024.3.0.data}/data/Lib/site-packages/sklearnex/spmd/decomposition/pca.py +0 -0
  88. {scikit_learn_intelex-2024.2.0.data → scikit_learn_intelex-2024.3.0.data}/data/Lib/site-packages/sklearnex/spmd/ensemble/__init__.py +0 -0
  89. {scikit_learn_intelex-2024.2.0.data → scikit_learn_intelex-2024.3.0.data}/data/Lib/site-packages/sklearnex/spmd/linear_model/__init__.py +0 -0
  90. {scikit_learn_intelex-2024.2.0.data → scikit_learn_intelex-2024.3.0.data}/data/Lib/site-packages/sklearnex/spmd/linear_model/linear_model.py +0 -0
  91. {scikit_learn_intelex-2024.2.0.data → scikit_learn_intelex-2024.3.0.data}/data/Lib/site-packages/sklearnex/spmd/linear_model/logistic_regression.py +0 -0
  92. {scikit_learn_intelex-2024.2.0.data → scikit_learn_intelex-2024.3.0.data}/data/Lib/site-packages/sklearnex/spmd/neighbors/__init__.py +0 -0
  93. {scikit_learn_intelex-2024.2.0.data → scikit_learn_intelex-2024.3.0.data}/data/Lib/site-packages/sklearnex/spmd/neighbors/neighbors.py +0 -0
  94. {scikit_learn_intelex-2024.2.0.data → scikit_learn_intelex-2024.3.0.data}/data/Lib/site-packages/sklearnex/svm/__init__.py +0 -0
  95. {scikit_learn_intelex-2024.2.0.data → scikit_learn_intelex-2024.3.0.data}/data/Lib/site-packages/sklearnex/svm/_common.py +0 -0
  96. {scikit_learn_intelex-2024.2.0.data → scikit_learn_intelex-2024.3.0.data}/data/Lib/site-packages/sklearnex/svm/nusvr.py +3 -3
  97. {scikit_learn_intelex-2024.2.0.data → scikit_learn_intelex-2024.3.0.data}/data/Lib/site-packages/sklearnex/svm/svr.py +0 -0
  98. {scikit_learn_intelex-2024.2.0.data → scikit_learn_intelex-2024.3.0.data}/data/Lib/site-packages/sklearnex/svm/tests/test_svm.py +0 -0
  99. {scikit_learn_intelex-2024.2.0.data → scikit_learn_intelex-2024.3.0.data}/data/Lib/site-packages/sklearnex/tests/test_config.py +0 -0
  100. {scikit_learn_intelex-2024.2.0.data → scikit_learn_intelex-2024.3.0.data}/data/Lib/site-packages/sklearnex/tests/test_n_jobs_support.py +0 -0
  101. {scikit_learn_intelex-2024.2.0.data → scikit_learn_intelex-2024.3.0.data}/data/Lib/site-packages/sklearnex/tests/test_run_to_run_stability_tests.py +0 -0
  102. {scikit_learn_intelex-2024.2.0.data → scikit_learn_intelex-2024.3.0.data}/data/Lib/site-packages/sklearnex/utils/__init__.py +0 -0
  103. {scikit_learn_intelex-2024.2.0.data → scikit_learn_intelex-2024.3.0.data}/data/Lib/site-packages/sklearnex/utils/parallel.py +0 -0
  104. {scikit_learn_intelex-2024.2.0.data → scikit_learn_intelex-2024.3.0.data}/data/Lib/site-packages/sklearnex/utils/validation.py +0 -0
  105. {scikit_learn_intelex-2024.2.0.dist-info → scikit_learn_intelex-2024.3.0.dist-info}/LICENSE.txt +0 -0
  106. {scikit_learn_intelex-2024.2.0.dist-info → scikit_learn_intelex-2024.3.0.dist-info}/WHEEL +0 -0
  107. {scikit_learn_intelex-2024.2.0.dist-info → scikit_learn_intelex-2024.3.0.dist-info}/top_level.txt +0 -0
@@ -0,0 +1,361 @@
1
+ # ==============================================================================
2
+ # Copyright 2021 Intel Corporation
3
+ #
4
+ # Licensed under the Apache License, Version 2.0 (the "License");
5
+ # you may not use this file except in compliance with the License.
6
+ # You may obtain a copy of the License at
7
+ #
8
+ # http://www.apache.org/licenses/LICENSE-2.0
9
+ #
10
+ # Unless required by applicable law or agreed to in writing, software
11
+ # distributed under the License is distributed on an "AS IS" BASIS,
12
+ # WITHOUT WARRANTIES OR CONDITIONS OF ANY KIND, either express or implied.
13
+ # See the License for the specific language governing permissions and
14
+ # limitations under the License.
15
+ # ==============================================================================
16
+
17
+
18
+ import importlib
19
+ import inspect
20
+ import logging
21
+ import os
22
+ import re
23
+ import sys
24
+ from inspect import signature
25
+
26
+ import numpy as np
27
+ import numpy.random as nprnd
28
+ import pytest
29
+ from _utils import (
30
+ DTYPES,
31
+ PATCHED_FUNCTIONS,
32
+ PATCHED_MODELS,
33
+ SPECIAL_INSTANCES,
34
+ UNPATCHED_FUNCTIONS,
35
+ UNPATCHED_MODELS,
36
+ gen_dataset,
37
+ gen_models_info,
38
+ )
39
+ from sklearn.base import (
40
+ BaseEstimator,
41
+ ClassifierMixin,
42
+ ClusterMixin,
43
+ OutlierMixin,
44
+ RegressorMixin,
45
+ TransformerMixin,
46
+ )
47
+
48
+ from daal4py.sklearn._utils import sklearn_check_version
49
+ from onedal.tests.utils._dataframes_support import (
50
+ _convert_to_dataframe,
51
+ get_dataframes_and_queues,
52
+ )
53
+ from sklearnex import is_patched_instance
54
+ from sklearnex.dispatcher import _is_preview_enabled
55
+ from sklearnex.metrics import pairwise_distances, roc_auc_score
56
+
57
+
58
+ @pytest.mark.parametrize("dtype", DTYPES)
59
+ @pytest.mark.parametrize(
60
+ "dataframe, queue", get_dataframes_and_queues(dataframe_filter_="numpy")
61
+ )
62
+ @pytest.mark.parametrize("metric", ["cosine", "correlation"])
63
+ def test_pairwise_distances_patching(caplog, dataframe, queue, dtype, metric):
64
+ with caplog.at_level(logging.WARNING, logger="sklearnex"):
65
+ rng = nprnd.default_rng()
66
+ X = _convert_to_dataframe(
67
+ rng.random(size=1000), sycl_queue=queue, target_df=dataframe, dtype=dtype
68
+ )
69
+
70
+ _ = pairwise_distances(X.reshape(1, -1), metric=metric)
71
+ assert all(
72
+ [
73
+ "running accelerated version" in i.message
74
+ or "fallback to original Scikit-learn" in i.message
75
+ for i in caplog.records
76
+ ]
77
+ ), f"sklearnex patching issue in pairwise_distances with log: \n{caplog.text}"
78
+
79
+
80
+ @pytest.mark.parametrize(
81
+ "dtype", [i for i in DTYPES if "32" in i.__name__ or "64" in i.__name__]
82
+ )
83
+ @pytest.mark.parametrize(
84
+ "dataframe, queue", get_dataframes_and_queues(dataframe_filter_="numpy")
85
+ )
86
+ def test_roc_auc_score_patching(caplog, dataframe, queue, dtype):
87
+ if dtype in [np.uint32, np.uint64] and sys.platform == "win32":
88
+ pytest.skip("Windows issue with unsigned ints")
89
+ with caplog.at_level(logging.WARNING, logger="sklearnex"):
90
+ rng = nprnd.default_rng()
91
+ X = _convert_to_dataframe(
92
+ rng.integers(2, size=1000),
93
+ sycl_queue=queue,
94
+ target_df=dataframe,
95
+ dtype=dtype,
96
+ )
97
+ y = _convert_to_dataframe(
98
+ rng.integers(2, size=1000),
99
+ sycl_queue=queue,
100
+ target_df=dataframe,
101
+ dtype=dtype,
102
+ )
103
+
104
+ _ = roc_auc_score(X, y)
105
+ assert all(
106
+ [
107
+ "running accelerated version" in i.message
108
+ or "fallback to original Scikit-learn" in i.message
109
+ for i in caplog.records
110
+ ]
111
+ ), f"sklearnex patching issue in roc_auc_score with log: \n{caplog.text}"
112
+
113
+
114
+ @pytest.mark.parametrize("dtype", DTYPES)
115
+ @pytest.mark.parametrize(
116
+ "dataframe, queue", get_dataframes_and_queues(dataframe_filter_="numpy")
117
+ )
118
+ @pytest.mark.parametrize("estimator, method", gen_models_info(PATCHED_MODELS))
119
+ def test_standard_estimator_patching(caplog, dataframe, queue, dtype, estimator, method):
120
+ with caplog.at_level(logging.WARNING, logger="sklearnex"):
121
+ est = PATCHED_MODELS[estimator]()
122
+
123
+ if estimator == "TSNE" and method == "fit_transform":
124
+ pytest.skip("TSNE.fit_transform is too slow for common testing")
125
+ elif (
126
+ estimator == "Ridge"
127
+ and method in ["predict", "score"]
128
+ and sys.platform == "win32"
129
+ and dtype in [np.uint32, np.uint64]
130
+ ):
131
+ pytest.skip("Windows segmentation fault for Ridge.predict for unsigned ints")
132
+ elif not hasattr(est, method):
133
+ pytest.skip(f"sklearn available_if prevents testing {estimator}.{method}")
134
+ X, y = gen_dataset(est, queue=queue, target_df=dataframe, dtype=dtype)
135
+ est.fit(X, y)
136
+
137
+ if method != "score":
138
+ getattr(est, method)(X)
139
+ else:
140
+ est.score(X, y)
141
+ assert all(
142
+ [
143
+ "running accelerated version" in i.message
144
+ or "fallback to original Scikit-learn" in i.message
145
+ for i in caplog.records
146
+ ]
147
+ ), f"sklearnex patching issue in {estimator}.{method} with log: \n{caplog.text}"
148
+
149
+
150
+ @pytest.mark.parametrize("dtype", DTYPES)
151
+ @pytest.mark.parametrize(
152
+ "dataframe, queue", get_dataframes_and_queues(dataframe_filter_="numpy")
153
+ )
154
+ @pytest.mark.parametrize("estimator, method", gen_models_info(SPECIAL_INSTANCES))
155
+ def test_special_estimator_patching(caplog, dataframe, queue, dtype, estimator, method):
156
+ # prepare logging
157
+
158
+ with caplog.at_level(logging.WARNING, logger="sklearnex"):
159
+ est = SPECIAL_INSTANCES[estimator]
160
+
161
+ X, y = gen_dataset(est, queue=queue, target_df=dataframe, dtype=dtype)
162
+ est.fit(X, y)
163
+
164
+ if not hasattr(est, method):
165
+ pytest.skip(f"sklearn available_if prevents testing {estimator}.{method}")
166
+ if method != "score":
167
+ getattr(est, method)(X)
168
+ else:
169
+ est.score(X, y)
170
+ assert all(
171
+ [
172
+ "running accelerated version" in i.message
173
+ or "fallback to original Scikit-learn" in i.message
174
+ for i in caplog.records
175
+ ]
176
+ ), f"sklearnex patching issue in {estimator}.{method} with log: \n{caplog.text}"
177
+
178
+
179
+ @pytest.mark.parametrize("estimator", UNPATCHED_MODELS.keys())
180
+ def test_standard_estimator_signatures(estimator):
181
+ est = PATCHED_MODELS[estimator]()
182
+ unpatched_est = UNPATCHED_MODELS[estimator]()
183
+
184
+ # all public sklearn methods should have signature matches in sklearnex
185
+
186
+ unpatched_est_methods = [
187
+ i
188
+ for i in dir(unpatched_est)
189
+ if not i.startswith("_") and not i.endswith("_") and hasattr(unpatched_est, i)
190
+ ]
191
+ for method in unpatched_est_methods:
192
+ est_method = getattr(est, method)
193
+ unpatched_est_method = getattr(unpatched_est, method)
194
+ if callable(unpatched_est_method):
195
+ regex = rf"(?:sklearn|daal4py)\S*{estimator}" # needed due to differences in module structure
196
+ patched_sig = re.sub(regex, estimator, str(signature(est_method)))
197
+ unpatched_sig = re.sub(regex, estimator, str(signature(unpatched_est_method)))
198
+ assert (
199
+ patched_sig == unpatched_sig
200
+ ), f"Signature of {estimator}.{method} does not match sklearn"
201
+
202
+
203
+ @pytest.mark.parametrize("estimator", UNPATCHED_MODELS.keys())
204
+ def test_standard_estimator_init_signatures(estimator):
205
+ # Several estimators have additional parameters that are user-accessible
206
+ # which are sklearnex-specific. They will fail and are removed from tests.
207
+ # remove n_jobs due to estimator patching for sklearnex (known deviation)
208
+ patched_sig = str(signature(PATCHED_MODELS[estimator].__init__))
209
+ unpatched_sig = str(signature(UNPATCHED_MODELS[estimator].__init__))
210
+
211
+ # Sklearnex allows for positional kwargs and n_jobs, when sklearn doesn't
212
+ for kwarg in ["n_jobs=None", "*"]:
213
+ patched_sig = patched_sig.replace(", " + kwarg, "")
214
+ unpatched_sig = unpatched_sig.replace(", " + kwarg, "")
215
+
216
+ # Special sklearnex-specific kwargs are removed from signatures here
217
+ if estimator in [
218
+ "RandomForestRegressor",
219
+ "RandomForestClassifier",
220
+ "ExtraTreesRegressor",
221
+ "ExtraTreesClassifier",
222
+ ]:
223
+ for kwarg in ["min_bin_size=1", "max_bins=256"]:
224
+ patched_sig = patched_sig.replace(", " + kwarg, "")
225
+
226
+ assert (
227
+ patched_sig == unpatched_sig
228
+ ), f"Signature of {estimator}.__init__ does not match sklearn"
229
+
230
+
231
+ @pytest.mark.parametrize(
232
+ "function",
233
+ [
234
+ i
235
+ for i in UNPATCHED_FUNCTIONS.keys()
236
+ if i not in ["train_test_split", "set_config", "config_context"]
237
+ ],
238
+ )
239
+ def test_patched_function_signatures(function):
240
+ # certain functions are dropped from the test
241
+ # as they add functionality to the underlying sklearn function
242
+ if not sklearn_check_version("1.1") and function == "_assert_all_finite":
243
+ pytest.skip("Sklearn versioning not added to _assert_all_finite")
244
+ func = PATCHED_FUNCTIONS[function]
245
+ unpatched_func = UNPATCHED_FUNCTIONS[function]
246
+
247
+ if callable(unpatched_func):
248
+ assert str(signature(func)) == str(
249
+ signature(unpatched_func)
250
+ ), f"Signature of {func} does not match sklearn"
251
+
252
+
253
+ def test_patch_map_match():
254
+ # This rule applies to functions and classes which are out of preview.
255
+ # Items listed in a matching submodule's __all__ attribute should be
256
+ # in get_patch_map. There should not be any missing or additional elements.
257
+
258
+ def list_all_attr(string):
259
+ try:
260
+ modules = set(importlib.import_module(string).__all__)
261
+ except ModuleNotFoundError:
262
+ modules = set([None])
263
+ return modules
264
+
265
+ if _is_preview_enabled():
266
+ pytest.skip("preview sklearnex has been activated")
267
+ patched = {**PATCHED_MODELS, **PATCHED_FUNCTIONS}
268
+
269
+ sklearnex__all__ = list_all_attr("sklearnex")
270
+ sklearn__all__ = list_all_attr("sklearn")
271
+
272
+ module_map = {i: i for i in sklearnex__all__.intersection(sklearn__all__)}
273
+
274
+ # _assert_all_finite patches an internal sklearn function which isn't
275
+ # exposed via __all__ in sklearn. It is a special case where this rule
276
+ # is not applied (e.g. it is grandfathered in).
277
+ del patched["_assert_all_finite"]
278
+
279
+ # remove all scikit-learn-intelex-only estimators
280
+ for i in patched.copy():
281
+ if i not in UNPATCHED_MODELS and i not in UNPATCHED_FUNCTIONS:
282
+ del patched[i]
283
+
284
+ for module in module_map:
285
+ sklearn_module__all__ = list_all_attr("sklearn." + module_map[module])
286
+ sklearnex_module__all__ = list_all_attr("sklearnex." + module)
287
+ intersect = sklearnex_module__all__.intersection(sklearn_module__all__)
288
+
289
+ for i in intersect:
290
+ if i:
291
+ del patched[i]
292
+ else:
293
+ del patched[module]
294
+ assert patched == {}, f"{patched.keys()} were not properly patched"
295
+
296
+
297
+ @pytest.mark.parametrize("estimator", UNPATCHED_MODELS.keys())
298
+ def test_is_patched_instance(estimator):
299
+ patched = PATCHED_MODELS[estimator]
300
+ unpatched = UNPATCHED_MODELS[estimator]
301
+ assert is_patched_instance(patched), f"{patched} is a patched instance"
302
+ assert not is_patched_instance(unpatched), f"{unpatched} is an unpatched instance"
303
+
304
+
305
+ @pytest.mark.parametrize("estimator", PATCHED_MODELS.keys())
306
+ def test_if_estimator_inherits_sklearn(estimator):
307
+ est = PATCHED_MODELS[estimator]
308
+ if estimator in UNPATCHED_MODELS:
309
+ assert issubclass(
310
+ est, UNPATCHED_MODELS[estimator]
311
+ ), f"{estimator} does not inherit from the patched sklearn estimator"
312
+ else:
313
+ assert issubclass(est, BaseEstimator)
314
+ assert any(
315
+ [
316
+ issubclass(est, i)
317
+ for i in [
318
+ ClassifierMixin,
319
+ ClusterMixin,
320
+ OutlierMixin,
321
+ RegressorMixin,
322
+ TransformerMixin,
323
+ ]
324
+ ]
325
+ ), f"{estimator} does not inherit a sklearn Mixin"
326
+
327
+
328
+ @pytest.mark.parametrize("estimator", UNPATCHED_MODELS.keys())
329
+ def test_docstring_patching_match(estimator):
330
+ patched = PATCHED_MODELS[estimator]
331
+ unpatched = UNPATCHED_MODELS[estimator]
332
+ patched_docstrings = {
333
+ i: getattr(patched, i).__doc__
334
+ for i in dir(patched)
335
+ if not i.startswith("_") and not i.endswith("_") and hasattr(patched, i)
336
+ }
337
+ unpatched_docstrings = {
338
+ i: getattr(unpatched, i).__doc__
339
+ for i in dir(unpatched)
340
+ if not i.startswith("_") and not i.endswith("_") and hasattr(unpatched, i)
341
+ }
342
+
343
+ # check class docstring match if a docstring is available
344
+
345
+ assert (patched.__doc__ is None) == (unpatched.__doc__ is None)
346
+
347
+ # check class attribute docstrings
348
+
349
+ for i in unpatched_docstrings:
350
+ assert (patched_docstrings[i] is None) == (unpatched_docstrings[i] is None)
351
+
352
+
353
+ @pytest.mark.parametrize("member", ["_onedal_cpu_supported", "_onedal_gpu_supported"])
354
+ @pytest.mark.parametrize(
355
+ "name",
356
+ [i for i in PATCHED_MODELS.keys() if "sklearnex" in PATCHED_MODELS[i].__module__],
357
+ )
358
+ def test_onedal_supported_member(name, member):
359
+ patched = PATCHED_MODELS[name]
360
+ sig = str(inspect.signature(getattr(patched, member)))
361
+ assert "(self, method_name, *data)" == sig
@@ -1,6 +1,6 @@
1
1
  Metadata-Version: 2.1
2
2
  Name: scikit-learn-intelex
3
- Version: 2024.2.0
3
+ Version: 2024.3.0
4
4
  Summary: Intel(R) Extension for Scikit-learn is a seamless way to speed up your Scikit-learn application.
5
5
  Home-page: https://github.com/intel/scikit-learn-intelex
6
6
  Author: Intel Corporation
@@ -31,7 +31,7 @@ Classifier: Topic :: Software Development
31
31
  Requires-Python: >=3.7
32
32
  Description-Content-Type: text/markdown
33
33
  License-File: LICENSE.txt
34
- Requires-Dist: daal4py (==2024.2.0)
34
+ Requires-Dist: daal4py (==2024.3.0)
35
35
  Requires-Dist: scikit-learn (>=0.22)
36
36
 
37
37
 
@@ -0,0 +1,98 @@
1
+ scikit_learn_intelex-2024.3.0.data/data/Lib/site-packages/sklearnex/__init__.py,sha256=DVpGCMMQcUlrOGj_iy1jk3ZhCfa0_TFISYLqaUDRqC0,1780
2
+ scikit_learn_intelex-2024.3.0.data/data/Lib/site-packages/sklearnex/__main__.py,sha256=Le9BJq6aLEGSSoZwJLsOADxsV89ynBfA8BcoJHk9F24,1921
3
+ scikit_learn_intelex-2024.3.0.data/data/Lib/site-packages/sklearnex/_config.py,sha256=6WS3UuS4-0DxIJyGn7yQMosj-mGkLybLQrg3W7dED5o,3928
4
+ scikit_learn_intelex-2024.3.0.data/data/Lib/site-packages/sklearnex/_device_offload.py,sha256=J0tZqj6tfvIFonWR01PadtTLgloQk_QEfXeCoqEvJlk,7710
5
+ scikit_learn_intelex-2024.3.0.data/data/Lib/site-packages/sklearnex/_utils.py,sha256=EV4jC3plVdndsgrfPBsJZTzggrRdYWLwOpoIRWtTXt4,3812
6
+ scikit_learn_intelex-2024.3.0.data/data/Lib/site-packages/sklearnex/conftest.py,sha256=ZvcfQljZNBa3zlE1iITvuacHblugVtK6X80LwNXrnWI,2130
7
+ scikit_learn_intelex-2024.3.0.data/data/Lib/site-packages/sklearnex/dispatcher.py,sha256=9NPax55jPByCK0zzIvvE4wtmEJ7pCMrDh7IPeP2-vZ8,14389
8
+ scikit_learn_intelex-2024.3.0.data/data/Lib/site-packages/sklearnex/basic_statistics/__init__.py,sha256=NA5RGlwcp27UEeCgz0ngzYYd3MAIRpxlTy86uhM2-RE,821
9
+ scikit_learn_intelex-2024.3.0.data/data/Lib/site-packages/sklearnex/basic_statistics/basic_statistics.py,sha256=j5jBZ3DgXjoyjCBEFfYQHyl3LgLXEWWFnNHwInThdZw,796
10
+ scikit_learn_intelex-2024.3.0.data/data/Lib/site-packages/sklearnex/cluster/__init__.py,sha256=TsDzdbKzEubaP86iY8a7mSW0ZQzgjzGYuPkhc5lZmlQ,853
11
+ scikit_learn_intelex-2024.3.0.data/data/Lib/site-packages/sklearnex/cluster/dbscan.py,sha256=JJaNVhV4dVK0xte9xzQpCAka80xVu3M7_SzmvD3k-EY,6736
12
+ scikit_learn_intelex-2024.3.0.data/data/Lib/site-packages/sklearnex/cluster/k_means.py,sha256=1QKcFUQcnycu8kSD8uYSaDIuedHbxZsV_gvUfcEwVAM,806
13
+ scikit_learn_intelex-2024.3.0.data/data/Lib/site-packages/sklearnex/cluster/tests/test_dbscan.py,sha256=AgFoKwXFVyLKLvEtJVs0qlbBs1Ci3PcRft7f-6_ENOU,1464
14
+ scikit_learn_intelex-2024.3.0.data/data/Lib/site-packages/sklearnex/cluster/tests/test_kmeans.py,sha256=H3a9NSHRRSASo0Eceo44Kjq6GwEoMqMzcubaNt1s1QQ,1213
15
+ scikit_learn_intelex-2024.3.0.data/data/Lib/site-packages/sklearnex/covariance/__init__.py,sha256=_c86wiKDGBH50ofN-_tn7lO4M2YVEWO5AHhJIfimUDk,859
16
+ scikit_learn_intelex-2024.3.0.data/data/Lib/site-packages/sklearnex/covariance/incremental_covariance.py,sha256=3s9gmLP48DPhlhnFcg2JB7RQ2sliSZdNroJkv8-1sIA,4526
17
+ scikit_learn_intelex-2024.3.0.data/data/Lib/site-packages/sklearnex/covariance/tests/test_incremental_covariance.py,sha256=JIa4p-1_RYvU2ZVLx27iz0OKp0Nwrl9sYCsT0Dlyi2I,5402
18
+ scikit_learn_intelex-2024.3.0.data/data/Lib/site-packages/sklearnex/decomposition/__init__.py,sha256=RJBYDWyvnn5DA-j5r4IqVdXLp6H4mdPySsSjnXhlv-U,805
19
+ scikit_learn_intelex-2024.3.0.data/data/Lib/site-packages/sklearnex/decomposition/pca.py,sha256=XLUUM-bGeXiFXc81uUxNEIYwQ6e5edmjQ94wqnLt_xg,12829
20
+ scikit_learn_intelex-2024.3.0.data/data/Lib/site-packages/sklearnex/decomposition/tests/test_pca.py,sha256=FJYMosxpQpdOo71QD0jVx47oWEhvVNdut_5EOxTyT_0,2201
21
+ scikit_learn_intelex-2024.3.0.data/data/Lib/site-packages/sklearnex/doc/third-party-programs.txt,sha256=qA1XbOqYkMRnp29p8VxXjfcH0kHE8NSO5s2heea83-8,21773
22
+ scikit_learn_intelex-2024.3.0.data/data/Lib/site-packages/sklearnex/ensemble/__init__.py,sha256=2xB2KfG7l7uJv0p3kfVhrs4KLM174SCsigZhYqwSYAA,1035
23
+ scikit_learn_intelex-2024.3.0.data/data/Lib/site-packages/sklearnex/ensemble/_forest.py,sha256=kOtLig8WVipa2VbgMgTQAkHkbSd5UHcz05uMJCtJ8AE,70553
24
+ scikit_learn_intelex-2024.3.0.data/data/Lib/site-packages/sklearnex/ensemble/tests/test_forest.py,sha256=r1GSPQuVVuWYoNB3ZLiGKfMSwq3lp5i6k-Rgr7InonQ,4456
25
+ scikit_learn_intelex-2024.3.0.data/data/Lib/site-packages/sklearnex/glob/__main__.py,sha256=--FAjkhh5E6a1TFOGu6_BM3MHe78jP8oSpl0xKiRtTI,2531
26
+ scikit_learn_intelex-2024.3.0.data/data/Lib/site-packages/sklearnex/glob/dispatcher.py,sha256=IEEPhAOCVzC2JDFvYtijbiPAbaUY5RrCAhFLRjMMe1w,3018
27
+ scikit_learn_intelex-2024.3.0.data/data/Lib/site-packages/sklearnex/linear_model/__init__.py,sha256=5XZDZh8R0SmT8D8ZtSjW7-MKRO7l1jOZ8CUnt_OzHe4,1047
28
+ scikit_learn_intelex-2024.3.0.data/data/Lib/site-packages/sklearnex/linear_model/coordinate_descent.py,sha256=uZOHIKfFlHoMlNXZCh2MAnZE30fRZlmtcF7UsZQ3Vq4,822
29
+ scikit_learn_intelex-2024.3.0.data/data/Lib/site-packages/sklearnex/linear_model/linear.py,sha256=ed7pNKKnRkwa-wC0haUCOGHQoPkA4AuFhKNMzmRL6Fw,13832
30
+ scikit_learn_intelex-2024.3.0.data/data/Lib/site-packages/sklearnex/linear_model/logistic_path.py,sha256=Nq3JPXSzE4bjamnP3gGQtsMKks2v7s6bSiuYRnFqrRw,849
31
+ scikit_learn_intelex-2024.3.0.data/data/Lib/site-packages/sklearnex/linear_model/logistic_regression.py,sha256=KgQ97a7-4ywoRakCUlqPxp-0s4EMZr2XTah-NupKUUY,12990
32
+ scikit_learn_intelex-2024.3.0.data/data/Lib/site-packages/sklearnex/linear_model/ridge.py,sha256=0oxlM5McYYvl0KxK9OIGJKM6lOADuFSPTdfx-efJNTI,810
33
+ scikit_learn_intelex-2024.3.0.data/data/Lib/site-packages/sklearnex/linear_model/tests/test_linear.py,sha256=li9LLWgap6YCwvNiHQ9yHduvUIsK1lpXfuVNR3dLwig,3200
34
+ scikit_learn_intelex-2024.3.0.data/data/Lib/site-packages/sklearnex/linear_model/tests/test_logreg.py,sha256=mUYDwTDUekERlzxjnVeOeCUcNv4KJAXdTIiELZNSaDc,3283
35
+ scikit_learn_intelex-2024.3.0.data/data/Lib/site-packages/sklearnex/manifold/__init__.py,sha256=3FU5fY1YvHAyNeSlUHsZfPnAbvlAUtZpum0Obmok2KE,809
36
+ scikit_learn_intelex-2024.3.0.data/data/Lib/site-packages/sklearnex/manifold/t_sne.py,sha256=U6F_dGB6taVuEJvTnVBWD-sri3x3m0Khu3HI4wXidhg,805
37
+ scikit_learn_intelex-2024.3.0.data/data/Lib/site-packages/sklearnex/manifold/tests/test_tsne.py,sha256=SNqe1yg45mL4qIsxpX5hDpBsIyrv9r__6wfrerjp3yU,1063
38
+ scikit_learn_intelex-2024.3.0.data/data/Lib/site-packages/sklearnex/metrics/__init__.py,sha256=EHOCTU9RERa0Rrkr4dgmyO9ippbN5kjH_FwK3BqIROc,907
39
+ scikit_learn_intelex-2024.3.0.data/data/Lib/site-packages/sklearnex/metrics/pairwise.py,sha256=5T_Vcbiadzi7oo0hq6vLl_BHQzXOmDsn5pHaMCPSHd8,818
40
+ scikit_learn_intelex-2024.3.0.data/data/Lib/site-packages/sklearnex/metrics/ranking.py,sha256=rjJxQntblbegSZRwDsOOy2ntIYBqlnV8NM46IAc0MiE,813
41
+ scikit_learn_intelex-2024.3.0.data/data/Lib/site-packages/sklearnex/metrics/tests/test_metrics.py,sha256=Nwfz8UV4V4fKLLY7f9P9eg8uY09xLXaFx1GC49TOiA8,1579
42
+ scikit_learn_intelex-2024.3.0.data/data/Lib/site-packages/sklearnex/model_selection/__init__.py,sha256=64045Y-nzLDBepO6IRjt88LhL2DM3KdvpCF2vvj_RpA,842
43
+ scikit_learn_intelex-2024.3.0.data/data/Lib/site-packages/sklearnex/model_selection/split.py,sha256=qjmy8sRf_QEG8LhT0ivn_tICMCYmt7ffZZV1-rLQnko,824
44
+ scikit_learn_intelex-2024.3.0.data/data/Lib/site-packages/sklearnex/model_selection/tests/test_model_selection.py,sha256=3kZIq8kba8SW93DBWXupoRymNStR1_mGGYSErQRnwME,1338
45
+ scikit_learn_intelex-2024.3.0.data/data/Lib/site-packages/sklearnex/neighbors/__init__.py,sha256=_GMJ2L-6YechRYI2fOFwHjy0kebUncE81z4FmdXUlb8,1078
46
+ scikit_learn_intelex-2024.3.0.data/data/Lib/site-packages/sklearnex/neighbors/_lof.py,sha256=5ze0t8_0EXMwsayKux70zJ0Cl4ndDjzv3Fkr2iUXMUc,8109
47
+ scikit_learn_intelex-2024.3.0.data/data/Lib/site-packages/sklearnex/neighbors/common.py,sha256=iia-EUIRUIohDCIGpHbVx2PeDlwUvz4Mj1Tn169jidA,10781
48
+ scikit_learn_intelex-2024.3.0.data/data/Lib/site-packages/sklearnex/neighbors/knn_classification.py,sha256=eS_uUEdhlBITAUfsaUsAQRh85g01ltsDAug2Rog4gEQ,11161
49
+ scikit_learn_intelex-2024.3.0.data/data/Lib/site-packages/sklearnex/neighbors/knn_regression.py,sha256=76eLRvngIy56RyNa4e6-Hz_OqeXiulm6CEkwO7ICuUA,9977
50
+ scikit_learn_intelex-2024.3.0.data/data/Lib/site-packages/sklearnex/neighbors/knn_unsupervised.py,sha256=j9YsD5RzawcKWytr7UR3qNlNni5wkAh3vVZWRBSA7sQ,7542
51
+ scikit_learn_intelex-2024.3.0.data/data/Lib/site-packages/sklearnex/neighbors/tests/test_neighbors.py,sha256=gcJeJwDoT7wvyvk423k9TDGTGfbXUSTQETUT-VYQ74U,3409
52
+ scikit_learn_intelex-2024.3.0.data/data/Lib/site-packages/sklearnex/preview/__init__.py,sha256=OXC_k2kudA13rVesXb5ZlEC7_mKUS7uUra_BR-Tin30,780
53
+ scikit_learn_intelex-2024.3.0.data/data/Lib/site-packages/sklearnex/preview/cluster/__init__.py,sha256=FONzOuTGAb5NwdfFhLco99P_VccRk9NBkDHU3EKuAIs,794
54
+ scikit_learn_intelex-2024.3.0.data/data/Lib/site-packages/sklearnex/preview/cluster/_common.py,sha256=bgpzijxgyrAtdNCCHyCNsZ-N70KQYNwMuoCTNdUna6o,2718
55
+ scikit_learn_intelex-2024.3.0.data/data/Lib/site-packages/sklearnex/preview/cluster/k_means.py,sha256=jSuU8E6r4fdbbBnxBpWp4ybBa62kCnbBx7zDXyUr0Cs,13007
56
+ scikit_learn_intelex-2024.3.0.data/data/Lib/site-packages/sklearnex/preview/covariance/__init__.py,sha256=DPYTk8lwcVphtwU8J3CyUYH8Uz6Zr0Uz4S6nn-RY5iM,825
57
+ scikit_learn_intelex-2024.3.0.data/data/Lib/site-packages/sklearnex/preview/covariance/covariance.py,sha256=LrNrGP62FEhTSBVaO-EOYAaq-Rszc1VS2B2IqMgh4oo,4938
58
+ scikit_learn_intelex-2024.3.0.data/data/Lib/site-packages/sklearnex/preview/covariance/tests/test_covariance.py,sha256=GYI4bMIhGnjmOXpt8J7R0JQmpm9eOvDjIphugRa4kD8,2140
59
+ scikit_learn_intelex-2024.3.0.data/data/Lib/site-packages/sklearnex/spmd/__init__.py,sha256=ChQy2kEWlo4KGvs0RnbPoPEVhdgl8URV099B1rZtF5Y,889
60
+ scikit_learn_intelex-2024.3.0.data/data/Lib/site-packages/sklearnex/spmd/basic_statistics/__init__.py,sha256=NA5RGlwcp27UEeCgz0ngzYYd3MAIRpxlTy86uhM2-RE,821
61
+ scikit_learn_intelex-2024.3.0.data/data/Lib/site-packages/sklearnex/spmd/basic_statistics/basic_statistics.py,sha256=_dQ9mhVYxeuChATEpAmHpXDpgW3YvtK1qrG-kLr2MtI,886
62
+ scikit_learn_intelex-2024.3.0.data/data/Lib/site-packages/sklearnex/spmd/cluster/__init__.py,sha256=qBBfrCHh6_82EROLbu54XKk7SmmRwS1XJyCj0zwkoUw,1029
63
+ scikit_learn_intelex-2024.3.0.data/data/Lib/site-packages/sklearnex/spmd/cluster/dbscan.py,sha256=23YNzPhx4MZijU0md-E3ZkHpTkhUh5cmtS3loHe-KhI,1824
64
+ scikit_learn_intelex-2024.3.0.data/data/Lib/site-packages/sklearnex/spmd/cluster/kmeans.py,sha256=Rnb9tr9LXVto5vCAumk7ZJfa9BYYDhdD1qUWL-QK5bY,868
65
+ scikit_learn_intelex-2024.3.0.data/data/Lib/site-packages/sklearnex/spmd/covariance/__init__.py,sha256=5xeL1REMIxCv5M1ya99GGKaVjctUngboZ3uXgxcZ04o,823
66
+ scikit_learn_intelex-2024.3.0.data/data/Lib/site-packages/sklearnex/spmd/covariance/covariance.py,sha256=_oIlr1W1vqDHqIPnsCb04HcBCen5oBHQr5-_n9OSvIA,884
67
+ scikit_learn_intelex-2024.3.0.data/data/Lib/site-packages/sklearnex/spmd/decomposition/__init__.py,sha256=dBh0ZMIiaqdf3DKbt8FWNB2K9Iacs395m8OxaDFQg_M,784
68
+ scikit_learn_intelex-2024.3.0.data/data/Lib/site-packages/sklearnex/spmd/decomposition/pca.py,sha256=CUrsVD2jae-A9H8RB_emza_fe82CwnFa5PEy0fW_EZ8,871
69
+ scikit_learn_intelex-2024.3.0.data/data/Lib/site-packages/sklearnex/spmd/ensemble/__init__.py,sha256=B3yi7hWoVogMIiw0QRT_x5atsAFS-OO72YPLGeUQJ8M,873
70
+ scikit_learn_intelex-2024.3.0.data/data/Lib/site-packages/sklearnex/spmd/ensemble/forest.py,sha256=vIJJd10wIigFMtJMsiNDNLJ_PP2om-60zpQY_fd11-U,2909
71
+ scikit_learn_intelex-2024.3.0.data/data/Lib/site-packages/sklearnex/spmd/linear_model/__init__.py,sha256=WwqCr2DOyUnkSIHlP0yq0UI2yFDgSl5MHV7wu3QGJtA,893
72
+ scikit_learn_intelex-2024.3.0.data/data/Lib/site-packages/sklearnex/spmd/linear_model/linear_model.py,sha256=7QPCIQTWKBiZBTDZZbpZXi-REgxQCfRMt6rHPJAnc5E,883
73
+ scikit_learn_intelex-2024.3.0.data/data/Lib/site-packages/sklearnex/spmd/linear_model/logistic_regression.py,sha256=q_HkfWcg0RgFbk2t9FeV0ZY28HHAOtkGEnUj4tLuwt4,885
74
+ scikit_learn_intelex-2024.3.0.data/data/Lib/site-packages/sklearnex/spmd/neighbors/__init__.py,sha256=S16sH8N_18LN_8AgC_wGK5EDSNyuN-F-gI6GVlaiWVE,906
75
+ scikit_learn_intelex-2024.3.0.data/data/Lib/site-packages/sklearnex/spmd/neighbors/neighbors.py,sha256=SiKAS_RVt34MUcGytBS5pHnI_5vFNxJn8jqt1MOhDh8,940
76
+ scikit_learn_intelex-2024.3.0.data/data/Lib/site-packages/sklearnex/svm/__init__.py,sha256=f3e4ZFwZfx6MsXsn94VK1xVm6mWKT5XCiHczo6zNyAQ,1057
77
+ scikit_learn_intelex-2024.3.0.data/data/Lib/site-packages/sklearnex/svm/_common.py,sha256=Dt1Iyz1g04zOW6hn9cHa9ruzM_MHAIq0ZEEIxh5s7nI,7167
78
+ scikit_learn_intelex-2024.3.0.data/data/Lib/site-packages/sklearnex/svm/nusvc.py,sha256=-KMGIanTxVwT9ovvdvGuGBGoMMFQQpAyn1uCoz4CmXA,9150
79
+ scikit_learn_intelex-2024.3.0.data/data/Lib/site-packages/sklearnex/svm/nusvr.py,sha256=bkLU8HRlpnnZGxdL6t44Uo-idw1KQOeq2shKBIXf24g,5237
80
+ scikit_learn_intelex-2024.3.0.data/data/Lib/site-packages/sklearnex/svm/svc.py,sha256=2wa6gNGMLE1b-sPapP_i89P9fiALDamo8nRIo8H6VS4,10426
81
+ scikit_learn_intelex-2024.3.0.data/data/Lib/site-packages/sklearnex/svm/svr.py,sha256=fmYi0dghOmmyFFVI59COX9-tyouQnSDfHIbs8GY8AHs,5241
82
+ scikit_learn_intelex-2024.3.0.data/data/Lib/site-packages/sklearnex/svm/tests/test_svm.py,sha256=Ru-aGNGCsRJts7SEEYbnKcVqUx-DqPyUtw-hEoMVpW8,4190
83
+ scikit_learn_intelex-2024.3.0.data/data/Lib/site-packages/sklearnex/tests/_utils.py,sha256=XYWbUlcdzFDc2DKgHCBdScFrzarsWQrs9GKsTlJsqPs,5059
84
+ scikit_learn_intelex-2024.3.0.data/data/Lib/site-packages/sklearnex/tests/test_config.py,sha256=SnSJjxAAysISDyC3bYKSJiRHStkB9X-yjLeF11LpRog,1372
85
+ scikit_learn_intelex-2024.3.0.data/data/Lib/site-packages/sklearnex/tests/test_memory_usage.py,sha256=LwIuUgG7CUZ2kOk1XlxyaK7O3OlyoVwx40TgljaYs5Q,7327
86
+ scikit_learn_intelex-2024.3.0.data/data/Lib/site-packages/sklearnex/tests/test_monkeypatch.py,sha256=_9s_4jFvbttOf8uCuBrS4rn_AzQdFlKyRlthnGacUcU,9669
87
+ scikit_learn_intelex-2024.3.0.data/data/Lib/site-packages/sklearnex/tests/test_n_jobs_support.py,sha256=ynfCSdCMnR3yEq1YEf_cilVD7zSe0sS-ZQ9jC0hHo8M,3903
88
+ scikit_learn_intelex-2024.3.0.data/data/Lib/site-packages/sklearnex/tests/test_parallel.py,sha256=0zzlh2VJZWcHw5W4QSUthtAygOb6K0Bg1ekNsrdGJQE,1770
89
+ scikit_learn_intelex-2024.3.0.data/data/Lib/site-packages/sklearnex/tests/test_patching.py,sha256=eZQRz4GsUkm9yMZj_LgT62hMbUNVdTJg88_UccezoJA,13187
90
+ scikit_learn_intelex-2024.3.0.data/data/Lib/site-packages/sklearnex/tests/test_run_to_run_stability_tests.py,sha256=4HDOeJruA1EDILbyQJtsHFmEXC0D1upSHuOT-KyTlEc,14008
91
+ scikit_learn_intelex-2024.3.0.data/data/Lib/site-packages/sklearnex/utils/__init__.py,sha256=I8mbJQ3Zsm_F3sCLAhJQb7tUrG30kVsQ-wZoqA8vDdA,842
92
+ scikit_learn_intelex-2024.3.0.data/data/Lib/site-packages/sklearnex/utils/parallel.py,sha256=VBcS-KUdyq7XpJUN6ygmNjyWtYLroghbvCxQ8nVU3YI,2085
93
+ scikit_learn_intelex-2024.3.0.data/data/Lib/site-packages/sklearnex/utils/validation.py,sha256=fjfhQiKnBQnD7LCBlacMyvsrhGnlMLRXk5Q69uoZIP4,827
94
+ scikit_learn_intelex-2024.3.0.dist-info/LICENSE.txt,sha256=rVeK6nE7qRmAwbwjnG9ENguRsDgzEkFn5MZL2IU6QgY,10999
95
+ scikit_learn_intelex-2024.3.0.dist-info/METADATA,sha256=0WSz-4idn3UE38QlXnefqViBLjgDL00C_41LO1LVEXo,12448
96
+ scikit_learn_intelex-2024.3.0.dist-info/WHEEL,sha256=XoKki0KLAVNudIEzWXw23yrSNzEQs-OWXWdxw5aEl88,100
97
+ scikit_learn_intelex-2024.3.0.dist-info/top_level.txt,sha256=AbpHGcgLb-kRsJGnwFEktk7uzpZOCcBY74-YBdrKVGs,1
98
+ scikit_learn_intelex-2024.3.0.dist-info/RECORD,,
@@ -1,17 +0,0 @@
1
- # ===============================================================================
2
- # Copyright 2021 Intel Corporation
3
- #
4
- # Licensed under the Apache License, Version 2.0 (the "License");
5
- # you may not use this file except in compliance with the License.
6
- # You may obtain a copy of the License at
7
- #
8
- # http://www.apache.org/licenses/LICENSE-2.0
9
- #
10
- # Unless required by applicable law or agreed to in writing, software
11
- # distributed under the License is distributed on an "AS IS" BASIS,
12
- # WITHOUT WARRANTIES OR CONDITIONS OF ANY KIND, either express or implied.
13
- # See the License for the specific language governing permissions and
14
- # limitations under the License.
15
- # ===============================================================================
16
-
17
- from daal4py.sklearn.decomposition import PCA
@@ -1,27 +0,0 @@
1
- # ===============================================================================
2
- # Copyright 2023 Intel Corporation
3
- #
4
- # Licensed under the Apache License, Version 2.0 (the "License");
5
- # you may not use this file except in compliance with the License.
6
- # You may obtain a copy of the License at
7
- #
8
- # http://www.apache.org/licenses/LICENSE-2.0
9
- #
10
- # Unless required by applicable law or agreed to in writing, software
11
- # distributed under the License is distributed on an "AS IS" BASIS,
12
- # WITHOUT WARRANTIES OR CONDITIONS OF ANY KIND, either express or implied.
13
- # See the License for the specific language governing permissions and
14
- # limitations under the License.
15
- # ===============================================================================
16
-
17
- import numpy as np
18
- from numpy.testing import assert_allclose
19
-
20
-
21
- def test_sklearnex_import():
22
- from sklearnex.decomposition import PCA
23
-
24
- X = np.array([[-1, -1], [-2, -1], [-3, -2], [1, 1], [2, 1], [3, 2]])
25
- pca = PCA(n_components=2, svd_solver="full").fit(X)
26
- assert "daal4py" in pca.__module__
27
- assert_allclose(pca.singular_values_, [6.30061232, 0.54980396])
@@ -1,19 +0,0 @@
1
- # ===============================================================================
2
- # Copyright 2023 Intel Corporation
3
- #
4
- # Licensed under the Apache License, Version 2.0 (the "License");
5
- # you may not use this file except in compliance with the License.
6
- # You may obtain a copy of the License at
7
- #
8
- # http://www.apache.org/licenses/LICENSE-2.0
9
- #
10
- # Unless required by applicable law or agreed to in writing, software
11
- # distributed under the License is distributed on an "AS IS" BASIS,
12
- # WITHOUT WARRANTIES OR CONDITIONS OF ANY KIND, either express or implied.
13
- # See the License for the specific language governing permissions and
14
- # limitations under the License.
15
- # ===============================================================================
16
-
17
- from .pca import PCA
18
-
19
- __all__ = ["PCA"]