scikit-learn-intelex 2024.1.0__py312-none-win_amd64.whl → 2025.1.0__py312-none-win_amd64.whl

This diff represents the content of publicly available package versions that have been released to one of the supported registries. The information contained in this diff is provided for informational purposes only and reflects changes between package versions as they appear in their respective public registries.

Potentially problematic release.


This version of scikit-learn-intelex might be problematic. Click here for more details.

Files changed (277) hide show
  1. scikit_learn_intelex-2025.1.0.data/data/Lib/site-packages/daal4py/__init__.py +73 -0
  2. scikit_learn_intelex-2025.1.0.data/data/Lib/site-packages/daal4py/__main__.py +58 -0
  3. scikit_learn_intelex-2025.1.0.data/data/Lib/site-packages/daal4py/_daal4py.cp312-win_amd64.pyd +0 -0
  4. scikit_learn_intelex-2025.1.0.data/data/Lib/site-packages/daal4py/doc/third-party-programs.txt +424 -0
  5. scikit_learn_intelex-2025.1.0.data/data/Lib/site-packages/daal4py/mb/__init__.py +19 -0
  6. scikit_learn_intelex-2025.1.0.data/data/Lib/site-packages/daal4py/mb/model_builders.py +377 -0
  7. scikit_learn_intelex-2025.1.0.data/data/Lib/site-packages/daal4py/mpi_transceiver.cp312-win_amd64.pyd +0 -0
  8. scikit_learn_intelex-2025.1.0.data/data/Lib/site-packages/daal4py/sklearn/__init__.py +40 -0
  9. scikit_learn_intelex-2025.1.0.data/data/Lib/site-packages/daal4py/sklearn/_n_jobs_support.py +248 -0
  10. scikit_learn_intelex-2025.1.0.data/data/Lib/site-packages/daal4py/sklearn/_utils.py +245 -0
  11. scikit_learn_intelex-2025.1.0.data/data/Lib/site-packages/daal4py/sklearn/cluster/__init__.py +20 -0
  12. scikit_learn_intelex-2025.1.0.data/data/Lib/site-packages/daal4py/sklearn/cluster/dbscan.py +165 -0
  13. scikit_learn_intelex-2025.1.0.data/data/Lib/site-packages/daal4py/sklearn/cluster/k_means.py +597 -0
  14. scikit_learn_intelex-2025.1.0.data/data/Lib/site-packages/daal4py/sklearn/cluster/tests/test_dbscan.py +109 -0
  15. {scikit_learn_intelex-2024.1.0.data/data/Lib/site-packages/sklearnex/preview/cluster → scikit_learn_intelex-2025.1.0.data/data/Lib/site-packages/daal4py/sklearn/decomposition}/__init__.py +3 -3
  16. scikit_learn_intelex-2025.1.0.data/data/Lib/site-packages/daal4py/sklearn/decomposition/_pca.py +524 -0
  17. scikit_learn_intelex-2025.1.0.data/data/Lib/site-packages/daal4py/sklearn/ensemble/AdaBoostClassifier.py +196 -0
  18. scikit_learn_intelex-2025.1.0.data/data/Lib/site-packages/daal4py/sklearn/ensemble/GBTDAAL.py +337 -0
  19. scikit_learn_intelex-2025.1.0.data/data/Lib/site-packages/daal4py/sklearn/ensemble/__init__.py +27 -0
  20. scikit_learn_intelex-2025.1.0.data/data/Lib/site-packages/daal4py/sklearn/ensemble/_forest.py +1397 -0
  21. scikit_learn_intelex-2025.1.0.data/data/Lib/site-packages/daal4py/sklearn/ensemble/tests/test_decision_forest.py +206 -0
  22. {scikit_learn_intelex-2024.1.0.data/data/Lib/site-packages/sklearnex → scikit_learn_intelex-2025.1.0.data/data/Lib/site-packages/daal4py/sklearn}/linear_model/__init__.py +29 -29
  23. scikit_learn_intelex-2025.1.0.data/data/Lib/site-packages/daal4py/sklearn/linear_model/_coordinate_descent.py +848 -0
  24. scikit_learn_intelex-2025.1.0.data/data/Lib/site-packages/daal4py/sklearn/linear_model/_linear.py +272 -0
  25. scikit_learn_intelex-2025.1.0.data/data/Lib/site-packages/daal4py/sklearn/linear_model/_ridge.py +325 -0
  26. scikit_learn_intelex-2024.1.0.data/data/Lib/site-packages/sklearnex/basic_statistics/basic_statistics.py → scikit_learn_intelex-2025.1.0.data/data/Lib/site-packages/daal4py/sklearn/linear_model/coordinate_descent.py +2 -2
  27. scikit_learn_intelex-2025.1.0.data/data/Lib/site-packages/daal4py/sklearn/linear_model/linear.py +17 -0
  28. scikit_learn_intelex-2025.1.0.data/data/Lib/site-packages/daal4py/sklearn/linear_model/logistic_loss.py +195 -0
  29. scikit_learn_intelex-2025.1.0.data/data/Lib/site-packages/daal4py/sklearn/linear_model/logistic_path.py +1026 -0
  30. scikit_learn_intelex-2025.1.0.data/data/Lib/site-packages/daal4py/sklearn/linear_model/ridge.py +17 -0
  31. scikit_learn_intelex-2025.1.0.data/data/Lib/site-packages/daal4py/sklearn/linear_model/tests/test_linear.py +208 -0
  32. scikit_learn_intelex-2025.1.0.data/data/Lib/site-packages/daal4py/sklearn/linear_model/tests/test_ridge.py +69 -0
  33. {scikit_learn_intelex-2024.1.0.data/data/Lib/site-packages/sklearnex/preview → scikit_learn_intelex-2025.1.0.data/data/Lib/site-packages/daal4py/sklearn/manifold}/__init__.py +4 -2
  34. scikit_learn_intelex-2025.1.0.data/data/Lib/site-packages/daal4py/sklearn/manifold/_t_sne.py +405 -0
  35. scikit_learn_intelex-2025.1.0.data/data/Lib/site-packages/daal4py/sklearn/metrics/__init__.py +20 -0
  36. scikit_learn_intelex-2025.1.0.data/data/Lib/site-packages/daal4py/sklearn/metrics/_pairwise.py +236 -0
  37. scikit_learn_intelex-2025.1.0.data/data/Lib/site-packages/daal4py/sklearn/metrics/_ranking.py +210 -0
  38. scikit_learn_intelex-2025.1.0.data/data/Lib/site-packages/daal4py/sklearn/model_selection/__init__.py +19 -0
  39. scikit_learn_intelex-2025.1.0.data/data/Lib/site-packages/daal4py/sklearn/model_selection/_split.py +309 -0
  40. scikit_learn_intelex-2025.1.0.data/data/Lib/site-packages/daal4py/sklearn/model_selection/tests/test_split.py +56 -0
  41. scikit_learn_intelex-2025.1.0.data/data/Lib/site-packages/daal4py/sklearn/monkeypatch/__init__.py +0 -0
  42. scikit_learn_intelex-2025.1.0.data/data/Lib/site-packages/daal4py/sklearn/monkeypatch/dispatcher.py +232 -0
  43. {scikit_learn_intelex-2024.1.0.data/data/Lib/site-packages/sklearnex → scikit_learn_intelex-2025.1.0.data/data/Lib/site-packages/daal4py/sklearn/monkeypatch}/tests/_models_info.py +13 -22
  44. scikit_learn_intelex-2025.1.0.data/data/Lib/site-packages/daal4py/sklearn/monkeypatch/tests/test_monkeypatch.py +71 -0
  45. {scikit_learn_intelex-2024.1.0.data/data/Lib/site-packages/sklearnex → scikit_learn_intelex-2025.1.0.data/data/Lib/site-packages/daal4py/sklearn/monkeypatch}/tests/test_patching.py +10 -42
  46. {scikit_learn_intelex-2024.1.0.data/data/Lib/site-packages/sklearnex → scikit_learn_intelex-2025.1.0.data/data/Lib/site-packages/daal4py/sklearn/monkeypatch}/tests/utils/_launch_algorithms.py +4 -5
  47. scikit_learn_intelex-2025.1.0.data/data/Lib/site-packages/daal4py/sklearn/neighbors/__init__.py +21 -0
  48. scikit_learn_intelex-2025.1.0.data/data/Lib/site-packages/daal4py/sklearn/neighbors/_base.py +503 -0
  49. scikit_learn_intelex-2025.1.0.data/data/Lib/site-packages/daal4py/sklearn/neighbors/_classification.py +139 -0
  50. scikit_learn_intelex-2025.1.0.data/data/Lib/site-packages/daal4py/sklearn/neighbors/_regression.py +74 -0
  51. scikit_learn_intelex-2025.1.0.data/data/Lib/site-packages/daal4py/sklearn/neighbors/_unsupervised.py +55 -0
  52. scikit_learn_intelex-2025.1.0.data/data/Lib/site-packages/daal4py/sklearn/neighbors/tests/test_kneighbors.py +113 -0
  53. scikit_learn_intelex-2025.1.0.data/data/Lib/site-packages/daal4py/sklearn/svm/__init__.py +19 -0
  54. scikit_learn_intelex-2025.1.0.data/data/Lib/site-packages/daal4py/sklearn/svm/svm.py +734 -0
  55. scikit_learn_intelex-2025.1.0.data/data/Lib/site-packages/daal4py/sklearn/utils/__init__.py +21 -0
  56. scikit_learn_intelex-2025.1.0.data/data/Lib/site-packages/daal4py/sklearn/utils/base.py +75 -0
  57. scikit_learn_intelex-2025.1.0.data/data/Lib/site-packages/daal4py/sklearn/utils/tests/test_utils.py +51 -0
  58. scikit_learn_intelex-2025.1.0.data/data/Lib/site-packages/daal4py/sklearn/utils/validation.py +693 -0
  59. scikit_learn_intelex-2025.1.0.data/data/Lib/site-packages/onedal/__init__.py +83 -0
  60. scikit_learn_intelex-2025.1.0.data/data/Lib/site-packages/onedal/_config.py +54 -0
  61. scikit_learn_intelex-2025.1.0.data/data/Lib/site-packages/onedal/_device_offload.py +222 -0
  62. scikit_learn_intelex-2025.1.0.data/data/Lib/site-packages/onedal/_onedal_py_dpc.cp312-win_amd64.pyd +0 -0
  63. scikit_learn_intelex-2025.1.0.data/data/Lib/site-packages/onedal/_onedal_py_host.cp312-win_amd64.pyd +0 -0
  64. scikit_learn_intelex-2025.1.0.data/data/Lib/site-packages/onedal/basic_statistics/__init__.py +20 -0
  65. scikit_learn_intelex-2025.1.0.data/data/Lib/site-packages/onedal/basic_statistics/basic_statistics.py +107 -0
  66. scikit_learn_intelex-2025.1.0.data/data/Lib/site-packages/onedal/basic_statistics/incremental_basic_statistics.py +160 -0
  67. scikit_learn_intelex-2025.1.0.data/data/Lib/site-packages/onedal/basic_statistics/tests/test_basic_statistics.py +298 -0
  68. scikit_learn_intelex-2025.1.0.data/data/Lib/site-packages/onedal/basic_statistics/tests/test_incremental_basic_statistics.py +196 -0
  69. scikit_learn_intelex-2025.1.0.data/data/Lib/site-packages/onedal/cluster/__init__.py +27 -0
  70. scikit_learn_intelex-2025.1.0.data/data/Lib/site-packages/onedal/cluster/dbscan.py +110 -0
  71. scikit_learn_intelex-2025.1.0.data/data/Lib/site-packages/onedal/cluster/kmeans.py +564 -0
  72. scikit_learn_intelex-2025.1.0.data/data/Lib/site-packages/onedal/cluster/kmeans_init.py +115 -0
  73. scikit_learn_intelex-2025.1.0.data/data/Lib/site-packages/onedal/cluster/tests/test_dbscan.py +125 -0
  74. scikit_learn_intelex-2025.1.0.data/data/Lib/site-packages/onedal/cluster/tests/test_kmeans.py +88 -0
  75. scikit_learn_intelex-2025.1.0.data/data/Lib/site-packages/onedal/cluster/tests/test_kmeans_init.py +93 -0
  76. scikit_learn_intelex-2025.1.0.data/data/Lib/site-packages/onedal/common/_base.py +38 -0
  77. scikit_learn_intelex-2025.1.0.data/data/Lib/site-packages/onedal/common/_estimator_checks.py +47 -0
  78. scikit_learn_intelex-2025.1.0.data/data/Lib/site-packages/onedal/common/_mixin.py +62 -0
  79. scikit_learn_intelex-2025.1.0.data/data/Lib/site-packages/onedal/common/_policy.py +59 -0
  80. scikit_learn_intelex-2025.1.0.data/data/Lib/site-packages/onedal/common/_spmd_policy.py +30 -0
  81. scikit_learn_intelex-2025.1.0.data/data/Lib/site-packages/onedal/common/hyperparameters.py +125 -0
  82. scikit_learn_intelex-2025.1.0.data/data/Lib/site-packages/onedal/common/tests/test_policy.py +76 -0
  83. {scikit_learn_intelex-2024.1.0.data/data/Lib/site-packages/sklearnex/preview/linear_model → scikit_learn_intelex-2025.1.0.data/data/Lib/site-packages/onedal/covariance}/__init__.py +3 -2
  84. scikit_learn_intelex-2025.1.0.data/data/Lib/site-packages/onedal/covariance/covariance.py +125 -0
  85. scikit_learn_intelex-2025.1.0.data/data/Lib/site-packages/onedal/covariance/incremental_covariance.py +146 -0
  86. scikit_learn_intelex-2025.1.0.data/data/Lib/site-packages/onedal/covariance/tests/test_covariance.py +50 -0
  87. scikit_learn_intelex-2025.1.0.data/data/Lib/site-packages/onedal/covariance/tests/test_incremental_covariance.py +122 -0
  88. scikit_learn_intelex-2025.1.0.data/data/Lib/site-packages/onedal/datatypes/__init__.py +19 -0
  89. scikit_learn_intelex-2025.1.0.data/data/Lib/site-packages/onedal/datatypes/_data_conversion.py +154 -0
  90. scikit_learn_intelex-2025.1.0.data/data/Lib/site-packages/onedal/datatypes/tests/common.py +126 -0
  91. scikit_learn_intelex-2025.1.0.data/data/Lib/site-packages/onedal/datatypes/tests/test_data.py +414 -0
  92. {scikit_learn_intelex-2024.1.0.data/data/Lib/site-packages/sklearnex/basic_statistics → scikit_learn_intelex-2025.1.0.data/data/Lib/site-packages/onedal/decomposition}/__init__.py +3 -2
  93. scikit_learn_intelex-2025.1.0.data/data/Lib/site-packages/onedal/decomposition/incremental_pca.py +204 -0
  94. scikit_learn_intelex-2025.1.0.data/data/Lib/site-packages/onedal/decomposition/pca.py +186 -0
  95. scikit_learn_intelex-2025.1.0.data/data/Lib/site-packages/onedal/decomposition/tests/test_incremental_pca.py +198 -0
  96. scikit_learn_intelex-2025.1.0.data/data/Lib/site-packages/onedal/ensemble/__init__.py +29 -0
  97. scikit_learn_intelex-2025.1.0.data/data/Lib/site-packages/onedal/ensemble/forest.py +727 -0
  98. scikit_learn_intelex-2025.1.0.data/data/Lib/site-packages/onedal/ensemble/tests/test_random_forest.py +97 -0
  99. scikit_learn_intelex-2025.1.0.data/data/Lib/site-packages/onedal/linear_model/__init__.py +27 -0
  100. scikit_learn_intelex-2025.1.0.data/data/Lib/site-packages/onedal/linear_model/incremental_linear_model.py +258 -0
  101. scikit_learn_intelex-2025.1.0.data/data/Lib/site-packages/onedal/linear_model/linear_model.py +329 -0
  102. scikit_learn_intelex-2025.1.0.data/data/Lib/site-packages/onedal/linear_model/logistic_regression.py +249 -0
  103. scikit_learn_intelex-2025.1.0.data/data/Lib/site-packages/onedal/linear_model/tests/test_incremental_linear_regression.py +168 -0
  104. scikit_learn_intelex-2025.1.0.data/data/Lib/site-packages/onedal/linear_model/tests/test_incremental_ridge_regression.py +107 -0
  105. scikit_learn_intelex-2025.1.0.data/data/Lib/site-packages/onedal/linear_model/tests/test_linear_regression.py +250 -0
  106. scikit_learn_intelex-2025.1.0.data/data/Lib/site-packages/onedal/linear_model/tests/test_logistic_regression.py +95 -0
  107. scikit_learn_intelex-2025.1.0.data/data/Lib/site-packages/onedal/linear_model/tests/test_ridge.py +95 -0
  108. scikit_learn_intelex-2025.1.0.data/data/Lib/site-packages/onedal/neighbors/__init__.py +19 -0
  109. scikit_learn_intelex-2025.1.0.data/data/Lib/site-packages/onedal/neighbors/neighbors.py +767 -0
  110. scikit_learn_intelex-2025.1.0.data/data/Lib/site-packages/onedal/neighbors/tests/test_knn_classification.py +49 -0
  111. scikit_learn_intelex-2025.1.0.data/data/Lib/site-packages/onedal/primitives/__init__.py +27 -0
  112. scikit_learn_intelex-2025.1.0.data/data/Lib/site-packages/onedal/primitives/get_tree.py +25 -0
  113. scikit_learn_intelex-2025.1.0.data/data/Lib/site-packages/onedal/primitives/kernel_functions.py +153 -0
  114. scikit_learn_intelex-2025.1.0.data/data/Lib/site-packages/onedal/primitives/tests/test_kernel_functions.py +159 -0
  115. scikit_learn_intelex-2025.1.0.data/data/Lib/site-packages/onedal/svm/__init__.py +19 -0
  116. scikit_learn_intelex-2025.1.0.data/data/Lib/site-packages/onedal/svm/svm.py +556 -0
  117. scikit_learn_intelex-2025.1.0.data/data/Lib/site-packages/onedal/svm/tests/test_csr_svm.py +351 -0
  118. scikit_learn_intelex-2025.1.0.data/data/Lib/site-packages/onedal/svm/tests/test_nusvc.py +204 -0
  119. scikit_learn_intelex-2025.1.0.data/data/Lib/site-packages/onedal/svm/tests/test_nusvr.py +210 -0
  120. scikit_learn_intelex-2025.1.0.data/data/Lib/site-packages/onedal/svm/tests/test_svc.py +176 -0
  121. scikit_learn_intelex-2025.1.0.data/data/Lib/site-packages/onedal/svm/tests/test_svr.py +243 -0
  122. scikit_learn_intelex-2025.1.0.data/data/Lib/site-packages/onedal/tests/test_common.py +57 -0
  123. scikit_learn_intelex-2025.1.0.data/data/Lib/site-packages/onedal/tests/utils/_dataframes_support.py +162 -0
  124. scikit_learn_intelex-2025.1.0.data/data/Lib/site-packages/onedal/tests/utils/_device_selection.py +102 -0
  125. scikit_learn_intelex-2025.1.0.data/data/Lib/site-packages/onedal/utils/__init__.py +49 -0
  126. scikit_learn_intelex-2025.1.0.data/data/Lib/site-packages/onedal/utils/_array_api.py +81 -0
  127. scikit_learn_intelex-2025.1.0.data/data/Lib/site-packages/onedal/utils/_dpep_helpers.py +56 -0
  128. scikit_learn_intelex-2025.1.0.data/data/Lib/site-packages/onedal/utils/validation.py +440 -0
  129. {scikit_learn_intelex-2024.1.0.data → scikit_learn_intelex-2025.1.0.data}/data/Lib/site-packages/sklearnex/__init__.py +10 -7
  130. {scikit_learn_intelex-2024.1.0.data → scikit_learn_intelex-2025.1.0.data}/data/Lib/site-packages/sklearnex/_config.py +22 -16
  131. scikit_learn_intelex-2025.1.0.data/data/Lib/site-packages/sklearnex/_device_offload.py +126 -0
  132. {scikit_learn_intelex-2024.1.0.data → scikit_learn_intelex-2025.1.0.data}/data/Lib/site-packages/sklearnex/_utils.py +27 -4
  133. scikit_learn_intelex-2025.1.0.data/data/Lib/site-packages/sklearnex/basic_statistics/__init__.py +20 -0
  134. scikit_learn_intelex-2025.1.0.data/data/Lib/site-packages/sklearnex/basic_statistics/basic_statistics.py +230 -0
  135. scikit_learn_intelex-2025.1.0.data/data/Lib/site-packages/sklearnex/basic_statistics/incremental_basic_statistics.py +345 -0
  136. scikit_learn_intelex-2025.1.0.data/data/Lib/site-packages/sklearnex/basic_statistics/tests/test_basic_statistics.py +270 -0
  137. scikit_learn_intelex-2025.1.0.data/data/Lib/site-packages/sklearnex/basic_statistics/tests/test_incremental_basic_statistics.py +404 -0
  138. {scikit_learn_intelex-2024.1.0.data → scikit_learn_intelex-2025.1.0.data}/data/Lib/site-packages/sklearnex/cluster/__init__.py +1 -1
  139. {scikit_learn_intelex-2024.1.0.data → scikit_learn_intelex-2025.1.0.data}/data/Lib/site-packages/sklearnex/cluster/dbscan.py +19 -10
  140. scikit_learn_intelex-2025.1.0.data/data/Lib/site-packages/sklearnex/cluster/k_means.py +395 -0
  141. {scikit_learn_intelex-2024.1.0.data → scikit_learn_intelex-2025.1.0.data}/data/Lib/site-packages/sklearnex/cluster/tests/test_dbscan.py +8 -6
  142. scikit_learn_intelex-2025.1.0.data/data/Lib/site-packages/sklearnex/cluster/tests/test_kmeans.py +159 -0
  143. scikit_learn_intelex-2025.1.0.data/data/Lib/site-packages/sklearnex/conftest.py +82 -0
  144. scikit_learn_intelex-2025.1.0.data/data/Lib/site-packages/sklearnex/covariance/__init__.py +19 -0
  145. scikit_learn_intelex-2025.1.0.data/data/Lib/site-packages/sklearnex/covariance/incremental_covariance.py +398 -0
  146. scikit_learn_intelex-2025.1.0.data/data/Lib/site-packages/sklearnex/covariance/tests/test_incremental_covariance.py +237 -0
  147. scikit_learn_intelex-2025.1.0.data/data/Lib/site-packages/sklearnex/decomposition/pca.py +425 -0
  148. scikit_learn_intelex-2024.1.0.data/data/Lib/site-packages/sklearnex/preview/decomposition/tests/test_preview_pca.py → scikit_learn_intelex-2025.1.0.data/data/Lib/site-packages/sklearnex/decomposition/tests/test_pca.py +25 -9
  149. {scikit_learn_intelex-2024.1.0.data → scikit_learn_intelex-2025.1.0.data}/data/Lib/site-packages/sklearnex/dispatcher.py +241 -60
  150. {scikit_learn_intelex-2024.1.0.data → scikit_learn_intelex-2025.1.0.data}/data/Lib/site-packages/sklearnex/ensemble/_forest.py +250 -188
  151. {scikit_learn_intelex-2024.1.0.data → scikit_learn_intelex-2025.1.0.data}/data/Lib/site-packages/sklearnex/ensemble/tests/test_forest.py +39 -21
  152. {scikit_learn_intelex-2024.1.0.data → scikit_learn_intelex-2025.1.0.data}/data/Lib/site-packages/sklearnex/glob/dispatcher.py +16 -2
  153. scikit_learn_intelex-2025.1.0.data/data/Lib/site-packages/sklearnex/linear_model/__init__.py +32 -0
  154. {scikit_learn_intelex-2024.1.0.data → scikit_learn_intelex-2025.1.0.data}/data/Lib/site-packages/sklearnex/linear_model/coordinate_descent.py +13 -0
  155. scikit_learn_intelex-2025.1.0.data/data/Lib/site-packages/sklearnex/linear_model/incremental_linear.py +482 -0
  156. scikit_learn_intelex-2025.1.0.data/data/Lib/site-packages/sklearnex/linear_model/incremental_ridge.py +425 -0
  157. scikit_learn_intelex-2025.1.0.data/data/Lib/site-packages/sklearnex/linear_model/linear.py +341 -0
  158. {scikit_learn_intelex-2024.1.0.data/data/Lib/site-packages/sklearnex/preview → scikit_learn_intelex-2025.1.0.data/data/Lib/site-packages/sklearnex}/linear_model/logistic_regression.py +194 -133
  159. {scikit_learn_intelex-2024.1.0.data → scikit_learn_intelex-2025.1.0.data}/data/Lib/site-packages/sklearnex/linear_model/ridge.py +7 -0
  160. scikit_learn_intelex-2025.1.0.data/data/Lib/site-packages/sklearnex/linear_model/tests/test_incremental_linear.py +207 -0
  161. scikit_learn_intelex-2025.1.0.data/data/Lib/site-packages/sklearnex/linear_model/tests/test_incremental_ridge.py +153 -0
  162. scikit_learn_intelex-2025.1.0.data/data/Lib/site-packages/sklearnex/linear_model/tests/test_linear.py +167 -0
  163. scikit_learn_intelex-2025.1.0.data/data/Lib/site-packages/sklearnex/linear_model/tests/test_logreg.py +134 -0
  164. {scikit_learn_intelex-2024.1.0.data → scikit_learn_intelex-2025.1.0.data}/data/Lib/site-packages/sklearnex/manifold/t_sne.py +4 -0
  165. {scikit_learn_intelex-2024.1.0.data → scikit_learn_intelex-2025.1.0.data}/data/Lib/site-packages/sklearnex/metrics/pairwise.py +5 -0
  166. {scikit_learn_intelex-2024.1.0.data → scikit_learn_intelex-2025.1.0.data}/data/Lib/site-packages/sklearnex/metrics/ranking.py +3 -0
  167. {scikit_learn_intelex-2024.1.0.data → scikit_learn_intelex-2025.1.0.data}/data/Lib/site-packages/sklearnex/model_selection/split.py +5 -0
  168. {scikit_learn_intelex-2024.1.0.data → scikit_learn_intelex-2025.1.0.data}/data/Lib/site-packages/sklearnex/neighbors/__init__.py +1 -1
  169. scikit_learn_intelex-2025.1.0.data/data/Lib/site-packages/sklearnex/neighbors/_lof.py +236 -0
  170. {scikit_learn_intelex-2024.1.0.data → scikit_learn_intelex-2025.1.0.data}/data/Lib/site-packages/sklearnex/neighbors/common.py +53 -6
  171. {scikit_learn_intelex-2024.1.0.data → scikit_learn_intelex-2025.1.0.data}/data/Lib/site-packages/sklearnex/neighbors/knn_classification.py +51 -155
  172. {scikit_learn_intelex-2024.1.0.data → scikit_learn_intelex-2025.1.0.data}/data/Lib/site-packages/sklearnex/neighbors/knn_regression.py +46 -149
  173. {scikit_learn_intelex-2024.1.0.data → scikit_learn_intelex-2025.1.0.data}/data/Lib/site-packages/sklearnex/neighbors/knn_unsupervised.py +55 -100
  174. {scikit_learn_intelex-2024.1.0.data → scikit_learn_intelex-2025.1.0.data}/data/Lib/site-packages/sklearnex/neighbors/tests/test_neighbors.py +16 -18
  175. {scikit_learn_intelex-2024.1.0.data/data/Lib/site-packages/sklearnex/spmd/decomposition → scikit_learn_intelex-2025.1.0.data/data/Lib/site-packages/sklearnex/preview}/__init__.py +1 -3
  176. scikit_learn_intelex-2025.1.0.data/data/Lib/site-packages/sklearnex/preview/covariance/covariance.py +138 -0
  177. {scikit_learn_intelex-2024.1.0.data → scikit_learn_intelex-2025.1.0.data}/data/Lib/site-packages/sklearnex/preview/covariance/tests/test_covariance.py +18 -5
  178. scikit_learn_intelex-2025.1.0.data/data/Lib/site-packages/sklearnex/preview/decomposition/__init__.py +19 -0
  179. scikit_learn_intelex-2025.1.0.data/data/Lib/site-packages/sklearnex/preview/decomposition/incremental_pca.py +233 -0
  180. scikit_learn_intelex-2025.1.0.data/data/Lib/site-packages/sklearnex/preview/decomposition/tests/test_incremental_pca.py +266 -0
  181. {scikit_learn_intelex-2024.1.0.data/data/Lib/site-packages/sklearnex/preview/decomposition → scikit_learn_intelex-2025.1.0.data/data/Lib/site-packages/sklearnex/preview/linear_model}/__init__.py +19 -19
  182. scikit_learn_intelex-2025.1.0.data/data/Lib/site-packages/sklearnex/preview/linear_model/ridge.py +424 -0
  183. scikit_learn_intelex-2025.1.0.data/data/Lib/site-packages/sklearnex/preview/linear_model/tests/test_ridge.py +102 -0
  184. {scikit_learn_intelex-2024.1.0.data → scikit_learn_intelex-2025.1.0.data}/data/Lib/site-packages/sklearnex/spmd/__init__.py +1 -0
  185. scikit_learn_intelex-2025.1.0.data/data/Lib/site-packages/sklearnex/spmd/basic_statistics/__init__.py +20 -0
  186. scikit_learn_intelex-2025.1.0.data/data/Lib/site-packages/sklearnex/spmd/basic_statistics/incremental_basic_statistics.py +30 -0
  187. scikit_learn_intelex-2025.1.0.data/data/Lib/site-packages/sklearnex/spmd/basic_statistics/tests/test_basic_statistics_spmd.py +107 -0
  188. scikit_learn_intelex-2025.1.0.data/data/Lib/site-packages/sklearnex/spmd/basic_statistics/tests/test_incremental_basic_statistics_spmd.py +307 -0
  189. scikit_learn_intelex-2025.1.0.data/data/Lib/site-packages/sklearnex/spmd/cluster/tests/test_dbscan_spmd.py +97 -0
  190. scikit_learn_intelex-2025.1.0.data/data/Lib/site-packages/sklearnex/spmd/cluster/tests/test_kmeans_spmd.py +172 -0
  191. scikit_learn_intelex-2025.1.0.data/data/Lib/site-packages/sklearnex/spmd/covariance/__init__.py +20 -0
  192. scikit_learn_intelex-2025.1.0.data/data/Lib/site-packages/sklearnex/spmd/covariance/covariance.py +21 -0
  193. scikit_learn_intelex-2025.1.0.data/data/Lib/site-packages/sklearnex/spmd/covariance/incremental_covariance.py +37 -0
  194. scikit_learn_intelex-2025.1.0.data/data/Lib/site-packages/sklearnex/spmd/covariance/tests/test_covariance_spmd.py +107 -0
  195. scikit_learn_intelex-2025.1.0.data/data/Lib/site-packages/sklearnex/spmd/covariance/tests/test_incremental_covariance_spmd.py +184 -0
  196. {scikit_learn_intelex-2024.1.0.data/data/Lib/site-packages/sklearnex/spmd/basic_statistics → scikit_learn_intelex-2025.1.0.data/data/Lib/site-packages/sklearnex/spmd/decomposition}/__init__.py +3 -2
  197. scikit_learn_intelex-2024.1.0.data/data/Lib/site-packages/sklearnex/tests/test_n_jobs_support.py → scikit_learn_intelex-2025.1.0.data/data/Lib/site-packages/sklearnex/spmd/decomposition/incremental_pca.py +11 -12
  198. scikit_learn_intelex-2025.1.0.data/data/Lib/site-packages/sklearnex/spmd/decomposition/tests/test_incremental_pca_spmd.py +269 -0
  199. scikit_learn_intelex-2025.1.0.data/data/Lib/site-packages/sklearnex/spmd/decomposition/tests/test_pca_spmd.py +128 -0
  200. {scikit_learn_intelex-2024.1.0.data → scikit_learn_intelex-2025.1.0.data}/data/Lib/site-packages/sklearnex/spmd/ensemble/forest.py +4 -12
  201. scikit_learn_intelex-2025.1.0.data/data/Lib/site-packages/sklearnex/spmd/ensemble/tests/test_forest_spmd.py +265 -0
  202. {scikit_learn_intelex-2024.1.0.data → scikit_learn_intelex-2025.1.0.data}/data/Lib/site-packages/sklearnex/spmd/linear_model/__init__.py +3 -1
  203. scikit_learn_intelex-2024.1.0.data/data/Lib/site-packages/sklearnex/tests/test_config.py → scikit_learn_intelex-2025.1.0.data/data/Lib/site-packages/sklearnex/spmd/linear_model/incremental_linear_model.py +14 -18
  204. scikit_learn_intelex-2025.1.0.data/data/Lib/site-packages/sklearnex/spmd/linear_model/logistic_regression.py +21 -0
  205. scikit_learn_intelex-2025.1.0.data/data/Lib/site-packages/sklearnex/spmd/linear_model/tests/test_incremental_linear_spmd.py +329 -0
  206. scikit_learn_intelex-2025.1.0.data/data/Lib/site-packages/sklearnex/spmd/linear_model/tests/test_linear_regression_spmd.py +145 -0
  207. scikit_learn_intelex-2025.1.0.data/data/Lib/site-packages/sklearnex/spmd/linear_model/tests/test_logistic_regression_spmd.py +162 -0
  208. scikit_learn_intelex-2025.1.0.data/data/Lib/site-packages/sklearnex/spmd/neighbors/tests/test_neighbors_spmd.py +288 -0
  209. scikit_learn_intelex-2025.1.0.data/data/Lib/site-packages/sklearnex/svm/_common.py +339 -0
  210. {scikit_learn_intelex-2024.1.0.data → scikit_learn_intelex-2025.1.0.data}/data/Lib/site-packages/sklearnex/svm/nusvc.py +172 -78
  211. {scikit_learn_intelex-2024.1.0.data → scikit_learn_intelex-2025.1.0.data}/data/Lib/site-packages/sklearnex/svm/nusvr.py +74 -70
  212. {scikit_learn_intelex-2024.1.0.data → scikit_learn_intelex-2025.1.0.data}/data/Lib/site-packages/sklearnex/svm/svc.py +170 -77
  213. {scikit_learn_intelex-2024.1.0.data → scikit_learn_intelex-2025.1.0.data}/data/Lib/site-packages/sklearnex/svm/svr.py +66 -66
  214. {scikit_learn_intelex-2024.1.0.data → scikit_learn_intelex-2025.1.0.data}/data/Lib/site-packages/sklearnex/svm/tests/test_svm.py +12 -20
  215. scikit_learn_intelex-2025.1.0.data/data/Lib/site-packages/sklearnex/tests/test_common.py +390 -0
  216. scikit_learn_intelex-2025.1.0.data/data/Lib/site-packages/sklearnex/tests/test_config.py +123 -0
  217. scikit_learn_intelex-2025.1.0.data/data/Lib/site-packages/sklearnex/tests/test_memory_usage.py +379 -0
  218. scikit_learn_intelex-2025.1.0.data/data/Lib/site-packages/sklearnex/tests/test_monkeypatch.py +276 -0
  219. scikit_learn_intelex-2025.1.0.data/data/Lib/site-packages/sklearnex/tests/test_n_jobs_support.py +108 -0
  220. {scikit_learn_intelex-2024.1.0.data → scikit_learn_intelex-2025.1.0.data}/data/Lib/site-packages/sklearnex/tests/test_parallel.py +6 -8
  221. scikit_learn_intelex-2025.1.0.data/data/Lib/site-packages/sklearnex/tests/test_patching.py +385 -0
  222. scikit_learn_intelex-2025.1.0.data/data/Lib/site-packages/sklearnex/tests/test_run_to_run_stability.py +321 -0
  223. scikit_learn_intelex-2025.1.0.data/data/Lib/site-packages/sklearnex/tests/utils/__init__.py +44 -0
  224. scikit_learn_intelex-2025.1.0.data/data/Lib/site-packages/sklearnex/tests/utils/base.py +371 -0
  225. scikit_learn_intelex-2025.1.0.data/data/Lib/site-packages/sklearnex/tests/utils/spmd.py +198 -0
  226. scikit_learn_intelex-2025.1.0.data/data/Lib/site-packages/sklearnex/utils/_array_api.py +82 -0
  227. scikit_learn_intelex-2025.1.0.data/data/Lib/site-packages/sklearnex/utils/tests/test_finite.py +89 -0
  228. {scikit_learn_intelex-2024.1.0.dist-info → scikit_learn_intelex-2025.1.0.dist-info}/METADATA +231 -230
  229. scikit_learn_intelex-2025.1.0.dist-info/RECORD +257 -0
  230. {scikit_learn_intelex-2024.1.0.dist-info → scikit_learn_intelex-2025.1.0.dist-info}/WHEEL +1 -1
  231. scikit_learn_intelex-2024.1.0.data/data/Lib/site-packages/sklearnex/_device_offload.py +0 -223
  232. scikit_learn_intelex-2024.1.0.data/data/Lib/site-packages/sklearnex/cluster/k_means.py +0 -17
  233. scikit_learn_intelex-2024.1.0.data/data/Lib/site-packages/sklearnex/cluster/tests/test_kmeans.py +0 -30
  234. scikit_learn_intelex-2024.1.0.data/data/Lib/site-packages/sklearnex/decomposition/pca.py +0 -17
  235. scikit_learn_intelex-2024.1.0.data/data/Lib/site-packages/sklearnex/decomposition/tests/test_pca.py +0 -27
  236. scikit_learn_intelex-2024.1.0.data/data/Lib/site-packages/sklearnex/linear_model/linear.py +0 -388
  237. scikit_learn_intelex-2024.1.0.data/data/Lib/site-packages/sklearnex/linear_model/logistic_path.py +0 -17
  238. scikit_learn_intelex-2024.1.0.data/data/Lib/site-packages/sklearnex/linear_model/tests/test_linear.py +0 -82
  239. scikit_learn_intelex-2024.1.0.data/data/Lib/site-packages/sklearnex/linear_model/tests/test_logreg.py +0 -28
  240. scikit_learn_intelex-2024.1.0.data/data/Lib/site-packages/sklearnex/neighbors/lof.py +0 -436
  241. scikit_learn_intelex-2024.1.0.data/data/Lib/site-packages/sklearnex/preview/cluster/_common.py +0 -84
  242. scikit_learn_intelex-2024.1.0.data/data/Lib/site-packages/sklearnex/preview/cluster/k_means.py +0 -376
  243. scikit_learn_intelex-2024.1.0.data/data/Lib/site-packages/sklearnex/preview/covariance/covariance.py +0 -98
  244. scikit_learn_intelex-2024.1.0.data/data/Lib/site-packages/sklearnex/preview/decomposition/pca.py +0 -376
  245. scikit_learn_intelex-2024.1.0.data/data/Lib/site-packages/sklearnex/preview/linear_model/tests/test_preview_logistic_regression.py +0 -59
  246. scikit_learn_intelex-2024.1.0.data/data/Lib/site-packages/sklearnex/svm/_common.py +0 -188
  247. scikit_learn_intelex-2024.1.0.data/data/Lib/site-packages/sklearnex/tests/test_memory_usage.py +0 -225
  248. scikit_learn_intelex-2024.1.0.data/data/Lib/site-packages/sklearnex/tests/test_monkeypatch.py +0 -227
  249. scikit_learn_intelex-2024.1.0.data/data/Lib/site-packages/sklearnex/tests/test_run_to_run_stability_tests.py +0 -428
  250. scikit_learn_intelex-2024.1.0.dist-info/RECORD +0 -97
  251. {scikit_learn_intelex-2024.1.0.data → scikit_learn_intelex-2025.1.0.data}/data/Lib/site-packages/sklearnex/__main__.py +0 -0
  252. {scikit_learn_intelex-2024.1.0.data → scikit_learn_intelex-2025.1.0.data}/data/Lib/site-packages/sklearnex/decomposition/__init__.py +0 -0
  253. {scikit_learn_intelex-2024.1.0.data → scikit_learn_intelex-2025.1.0.data}/data/Lib/site-packages/sklearnex/doc/third-party-programs.txt +0 -0
  254. {scikit_learn_intelex-2024.1.0.data → scikit_learn_intelex-2025.1.0.data}/data/Lib/site-packages/sklearnex/ensemble/__init__.py +0 -0
  255. {scikit_learn_intelex-2024.1.0.data → scikit_learn_intelex-2025.1.0.data}/data/Lib/site-packages/sklearnex/glob/__main__.py +0 -0
  256. {scikit_learn_intelex-2024.1.0.data → scikit_learn_intelex-2025.1.0.data}/data/Lib/site-packages/sklearnex/manifold/__init__.py +0 -0
  257. {scikit_learn_intelex-2024.1.0.data → scikit_learn_intelex-2025.1.0.data}/data/Lib/site-packages/sklearnex/manifold/tests/test_tsne.py +0 -0
  258. {scikit_learn_intelex-2024.1.0.data → scikit_learn_intelex-2025.1.0.data}/data/Lib/site-packages/sklearnex/metrics/__init__.py +0 -0
  259. {scikit_learn_intelex-2024.1.0.data → scikit_learn_intelex-2025.1.0.data}/data/Lib/site-packages/sklearnex/metrics/tests/test_metrics.py +0 -0
  260. {scikit_learn_intelex-2024.1.0.data → scikit_learn_intelex-2025.1.0.data}/data/Lib/site-packages/sklearnex/model_selection/__init__.py +0 -0
  261. {scikit_learn_intelex-2024.1.0.data → scikit_learn_intelex-2025.1.0.data}/data/Lib/site-packages/sklearnex/model_selection/tests/test_model_selection.py +0 -0
  262. {scikit_learn_intelex-2024.1.0.data → scikit_learn_intelex-2025.1.0.data}/data/Lib/site-packages/sklearnex/preview/covariance/__init__.py +0 -0
  263. {scikit_learn_intelex-2024.1.0.data → scikit_learn_intelex-2025.1.0.data}/data/Lib/site-packages/sklearnex/spmd/basic_statistics/basic_statistics.py +0 -0
  264. {scikit_learn_intelex-2024.1.0.data → scikit_learn_intelex-2025.1.0.data}/data/Lib/site-packages/sklearnex/spmd/cluster/__init__.py +0 -0
  265. {scikit_learn_intelex-2024.1.0.data → scikit_learn_intelex-2025.1.0.data}/data/Lib/site-packages/sklearnex/spmd/cluster/dbscan.py +0 -0
  266. {scikit_learn_intelex-2024.1.0.data → scikit_learn_intelex-2025.1.0.data}/data/Lib/site-packages/sklearnex/spmd/cluster/kmeans.py +0 -0
  267. {scikit_learn_intelex-2024.1.0.data → scikit_learn_intelex-2025.1.0.data}/data/Lib/site-packages/sklearnex/spmd/decomposition/pca.py +0 -0
  268. {scikit_learn_intelex-2024.1.0.data → scikit_learn_intelex-2025.1.0.data}/data/Lib/site-packages/sklearnex/spmd/ensemble/__init__.py +0 -0
  269. {scikit_learn_intelex-2024.1.0.data → scikit_learn_intelex-2025.1.0.data}/data/Lib/site-packages/sklearnex/spmd/linear_model/linear_model.py +0 -0
  270. {scikit_learn_intelex-2024.1.0.data → scikit_learn_intelex-2025.1.0.data}/data/Lib/site-packages/sklearnex/spmd/neighbors/__init__.py +0 -0
  271. {scikit_learn_intelex-2024.1.0.data → scikit_learn_intelex-2025.1.0.data}/data/Lib/site-packages/sklearnex/spmd/neighbors/neighbors.py +0 -0
  272. {scikit_learn_intelex-2024.1.0.data → scikit_learn_intelex-2025.1.0.data}/data/Lib/site-packages/sklearnex/svm/__init__.py +0 -0
  273. {scikit_learn_intelex-2024.1.0.data → scikit_learn_intelex-2025.1.0.data}/data/Lib/site-packages/sklearnex/utils/__init__.py +0 -0
  274. {scikit_learn_intelex-2024.1.0.data → scikit_learn_intelex-2025.1.0.data}/data/Lib/site-packages/sklearnex/utils/parallel.py +0 -0
  275. {scikit_learn_intelex-2024.1.0.data → scikit_learn_intelex-2025.1.0.data}/data/Lib/site-packages/sklearnex/utils/validation.py +0 -0
  276. {scikit_learn_intelex-2024.1.0.dist-info → scikit_learn_intelex-2025.1.0.dist-info}/LICENSE.txt +0 -0
  277. {scikit_learn_intelex-2024.1.0.dist-info → scikit_learn_intelex-2025.1.0.dist-info}/top_level.txt +0 -0
@@ -0,0 +1,270 @@
1
+ # ==============================================================================
2
+ # Copyright 2023 Intel Corporation
3
+ #
4
+ # Licensed under the Apache License, Version 2.0 (the "License");
5
+ # you may not use this file except in compliance with the License.
6
+ # You may obtain a copy of the License at
7
+ #
8
+ # http://www.apache.org/licenses/LICENSE-2.0
9
+ #
10
+ # Unless required by applicable law or agreed to in writing, software
11
+ # distributed under the License is distributed on an "AS IS" BASIS,
12
+ # WITHOUT WARRANTIES OR CONDITIONS OF ANY KIND, either express or implied.
13
+ # See the License for the specific language governing permissions and
14
+ # limitations under the License.
15
+ # ==============================================================================
16
+
17
+ import numpy as np
18
+ import pytest
19
+ from numpy.testing import assert_allclose
20
+
21
+ from daal4py.sklearn._utils import daal_check_version
22
+ from onedal.basic_statistics.tests.test_basic_statistics import (
23
+ expected_max,
24
+ expected_mean,
25
+ expected_sum,
26
+ options_and_tests,
27
+ )
28
+ from onedal.tests.utils._dataframes_support import (
29
+ _convert_to_dataframe,
30
+ get_dataframes_and_queues,
31
+ )
32
+ from sklearnex.basic_statistics import BasicStatistics
33
+
34
+
35
+ @pytest.mark.parametrize("dataframe,queue", get_dataframes_and_queues())
36
+ def test_sklearnex_import_basic_statistics(dataframe, queue):
37
+ X = np.array([[0, 0], [1, 1]])
38
+ X_df = _convert_to_dataframe(X, sycl_queue=queue, target_df=dataframe)
39
+
40
+ weights = np.array([1, 0.5])
41
+ weights_df = _convert_to_dataframe(weights, sycl_queue=queue, target_df=dataframe)
42
+
43
+ result = BasicStatistics().fit(X_df)
44
+
45
+ expected_mean = np.array([0.5, 0.5])
46
+ expected_min = np.array([0, 0])
47
+ expected_max = np.array([1, 1])
48
+
49
+ assert_allclose(expected_mean, result.mean)
50
+ assert_allclose(expected_max, result.max)
51
+ assert_allclose(expected_min, result.min)
52
+
53
+ result = BasicStatistics().fit(X_df, sample_weight=weights_df)
54
+
55
+ expected_weighted_mean = np.array([0.25, 0.25])
56
+ expected_weighted_min = np.array([0, 0])
57
+ expected_weighted_max = np.array([0.5, 0.5])
58
+
59
+ assert_allclose(expected_weighted_mean, result.mean)
60
+ assert_allclose(expected_weighted_min, result.min)
61
+ assert_allclose(expected_weighted_max, result.max)
62
+
63
+
64
+ @pytest.mark.parametrize("dataframe,queue", get_dataframes_and_queues())
65
+ @pytest.mark.parametrize("weighted", [True, False])
66
+ @pytest.mark.parametrize("dtype", [np.float32, np.float64])
67
+ def test_multiple_options_on_gold_data(dataframe, queue, weighted, dtype):
68
+ X = np.array([[0, 0], [1, 1]])
69
+ X = X.astype(dtype=dtype)
70
+ X_df = _convert_to_dataframe(X, sycl_queue=queue, target_df=dataframe)
71
+ if weighted:
72
+ weights = np.array([1, 0.5])
73
+ weights = weights.astype(dtype=dtype)
74
+ weights_df = _convert_to_dataframe(weights, sycl_queue=queue, target_df=dataframe)
75
+ basicstat = BasicStatistics()
76
+
77
+ if weighted:
78
+ result = basicstat.fit(X_df, sample_weight=weights_df)
79
+ else:
80
+ result = basicstat.fit(X_df)
81
+
82
+ if weighted:
83
+ expected_weighted_mean = np.array([0.25, 0.25])
84
+ expected_weighted_min = np.array([0, 0])
85
+ expected_weighted_max = np.array([0.5, 0.5])
86
+ assert_allclose(expected_weighted_mean, result.mean)
87
+ assert_allclose(expected_weighted_max, result.max)
88
+ assert_allclose(expected_weighted_min, result.min)
89
+ else:
90
+ expected_mean = np.array([0.5, 0.5])
91
+ expected_min = np.array([0, 0])
92
+ expected_max = np.array([1, 1])
93
+ assert_allclose(expected_mean, result.mean)
94
+ assert_allclose(expected_max, result.max)
95
+ assert_allclose(expected_min, result.min)
96
+
97
+
98
+ @pytest.mark.parametrize("dataframe,queue", get_dataframes_and_queues())
99
+ @pytest.mark.parametrize("option", options_and_tests)
100
+ @pytest.mark.parametrize("row_count", [100, 1000])
101
+ @pytest.mark.parametrize("column_count", [10, 100])
102
+ @pytest.mark.parametrize("weighted", [True, False])
103
+ @pytest.mark.parametrize("dtype", [np.float32, np.float64])
104
+ def test_single_option_on_random_data(
105
+ dataframe, queue, option, row_count, column_count, weighted, dtype
106
+ ):
107
+ result_option, function, tols = option
108
+ fp32tol, fp64tol = tols
109
+ seed = 77
110
+ gen = np.random.default_rng(seed)
111
+ X = gen.uniform(low=-0.3, high=+0.7, size=(row_count, column_count))
112
+ X = X.astype(dtype=dtype)
113
+ X_df = _convert_to_dataframe(X, sycl_queue=queue, target_df=dataframe)
114
+ if weighted:
115
+ weights = gen.uniform(low=-0.5, high=1.0, size=row_count)
116
+ weights = weights.astype(dtype=dtype)
117
+ weights_df = _convert_to_dataframe(weights, sycl_queue=queue, target_df=dataframe)
118
+ basicstat = BasicStatistics(result_options=result_option)
119
+
120
+ if weighted:
121
+ result = basicstat.fit(X_df, sample_weight=weights_df)
122
+ else:
123
+ result = basicstat.fit(X_df)
124
+
125
+ res = getattr(result, result_option)
126
+ if weighted:
127
+ weighted_data = np.diag(weights) @ X
128
+ gtr = function(weighted_data)
129
+ else:
130
+ gtr = function(X)
131
+
132
+ tol = fp32tol if res.dtype == np.float32 else fp64tol
133
+ assert_allclose(gtr, res, atol=tol)
134
+
135
+
136
+ @pytest.mark.parametrize("dataframe,queue", get_dataframes_and_queues())
137
+ @pytest.mark.parametrize("row_count", [100, 1000])
138
+ @pytest.mark.parametrize("column_count", [10, 100])
139
+ @pytest.mark.parametrize("weighted", [True, False])
140
+ @pytest.mark.parametrize("dtype", [np.float32, np.float64])
141
+ def test_multiple_options_on_random_data(
142
+ dataframe, queue, row_count, column_count, weighted, dtype
143
+ ):
144
+ seed = 77
145
+ gen = np.random.default_rng(seed)
146
+ X = gen.uniform(low=-0.3, high=+0.7, size=(row_count, column_count))
147
+ X = X.astype(dtype=dtype)
148
+ X_df = _convert_to_dataframe(X, sycl_queue=queue, target_df=dataframe)
149
+ if weighted:
150
+ weights = gen.uniform(low=-0.5, high=1.0, size=row_count)
151
+ weights = weights.astype(dtype=dtype)
152
+ weights_df = _convert_to_dataframe(weights, sycl_queue=queue, target_df=dataframe)
153
+ basicstat = BasicStatistics(result_options=["mean", "max", "sum"])
154
+
155
+ if weighted:
156
+ result = basicstat.fit(X_df, sample_weight=weights_df)
157
+ else:
158
+ result = basicstat.fit(X_df)
159
+
160
+ res_mean, res_max, res_sum = result.mean, result.max, result.sum
161
+ if weighted:
162
+ weighted_data = np.diag(weights) @ X
163
+ gtr_mean, gtr_max, gtr_sum = (
164
+ expected_mean(weighted_data),
165
+ expected_max(weighted_data),
166
+ expected_sum(weighted_data),
167
+ )
168
+ else:
169
+ gtr_mean, gtr_max, gtr_sum = (
170
+ expected_mean(X),
171
+ expected_max(X),
172
+ expected_sum(X),
173
+ )
174
+
175
+ tol = 5e-4 if res_mean.dtype == np.float32 else 1e-7
176
+ assert_allclose(gtr_mean, res_mean, atol=tol)
177
+ assert_allclose(gtr_max, res_max, atol=tol)
178
+ assert_allclose(gtr_sum, res_sum, atol=tol)
179
+
180
+
181
+ @pytest.mark.parametrize("dataframe,queue", get_dataframes_and_queues())
182
+ @pytest.mark.parametrize("row_count", [100, 1000])
183
+ @pytest.mark.parametrize("column_count", [10, 100])
184
+ @pytest.mark.parametrize("weighted", [True, False])
185
+ @pytest.mark.parametrize("dtype", [np.float32, np.float64])
186
+ def test_all_option_on_random_data(
187
+ dataframe, queue, row_count, column_count, weighted, dtype
188
+ ):
189
+ seed = 77
190
+ gen = np.random.default_rng(seed)
191
+ X = gen.uniform(low=-0.3, high=+0.7, size=(row_count, column_count))
192
+ X = X.astype(dtype=dtype)
193
+ X_df = _convert_to_dataframe(X, sycl_queue=queue, target_df=dataframe)
194
+ if weighted:
195
+ weights = gen.uniform(low=-0.5, high=+1.0, size=row_count)
196
+ weights = weights.astype(dtype=dtype)
197
+ weights_df = _convert_to_dataframe(weights, sycl_queue=queue, target_df=dataframe)
198
+ basicstat = BasicStatistics(result_options="all")
199
+
200
+ if weighted:
201
+ result = basicstat.fit(X_df, sample_weight=weights_df)
202
+ else:
203
+ result = basicstat.fit(X_df)
204
+
205
+ if weighted:
206
+ weighted_data = np.diag(weights) @ X
207
+
208
+ for option in options_and_tests:
209
+ result_option, function, tols = option
210
+ fp32tol, fp64tol = tols
211
+ res = getattr(result, result_option)
212
+ if weighted:
213
+ gtr = function(weighted_data)
214
+ else:
215
+ gtr = function(X)
216
+ tol = fp32tol if res.dtype == np.float32 else fp64tol
217
+ assert_allclose(gtr, res, atol=tol)
218
+
219
+
220
+ @pytest.mark.parametrize("dataframe,queue", get_dataframes_and_queues())
221
+ @pytest.mark.parametrize("option", options_and_tests)
222
+ @pytest.mark.parametrize("data_size", [100, 1000])
223
+ @pytest.mark.parametrize("weighted", [True, False])
224
+ @pytest.mark.parametrize("dtype", [np.float32, np.float64])
225
+ def test_1d_input_on_random_data(dataframe, queue, option, data_size, weighted, dtype):
226
+ result_option, function, tols = option
227
+ fp32tol, fp64tol = tols
228
+ seed = 77
229
+ gen = np.random.default_rng(seed)
230
+ X = gen.uniform(low=-0.3, high=+0.7, size=data_size)
231
+ X = X.astype(dtype=dtype)
232
+ X_df = _convert_to_dataframe(X, sycl_queue=queue, target_df=dataframe)
233
+ if weighted:
234
+ weights = gen.uniform(low=-0.5, high=1.0, size=data_size)
235
+ weights = weights.astype(dtype=dtype)
236
+ weights_df = _convert_to_dataframe(weights, sycl_queue=queue, target_df=dataframe)
237
+ basicstat = BasicStatistics(result_options=result_option)
238
+
239
+ if weighted:
240
+ result = basicstat.fit(X_df, sample_weight=weights_df)
241
+ else:
242
+ result = basicstat.fit(X_df)
243
+
244
+ res = getattr(result, result_option)
245
+ if weighted:
246
+ weighted_data = weights * X
247
+ gtr = function(weighted_data)
248
+ else:
249
+ gtr = function(X)
250
+
251
+ tol = fp32tol if res.dtype == np.float32 else fp64tol
252
+ assert_allclose(gtr, res, atol=tol)
253
+
254
+
255
+ def test_warning():
256
+ basicstat = BasicStatistics("all")
257
+ data = np.array([0, 1])
258
+
259
+ basicstat.fit(data)
260
+ for i in basicstat._onedal_estimator.get_all_result_options():
261
+ with pytest.warns(
262
+ UserWarning,
263
+ match="Result attributes without a trailing underscore were deprecated in version 2025.1 and will be removed in 2026.0",
264
+ ) as warn_record:
265
+ getattr(basicstat, i)
266
+
267
+ if daal_check_version((2026, "P", 0)):
268
+ assert len(warn_record) == 0, i
269
+ else:
270
+ assert len(warn_record) == 1, i
@@ -0,0 +1,404 @@
1
+ # ===============================================================================
2
+ # Copyright 2024 Intel Corporation
3
+ #
4
+ # Licensed under the Apache License, Version 2.0 (the "License");
5
+ # you may not use this file except in compliance with the License.
6
+ # You may obtain a copy of the License at
7
+ #
8
+ # http://www.apache.org/licenses/LICENSE-2.0
9
+ #
10
+ # Unless required by applicable law or agreed to in writing, software
11
+ # distributed under the License is distributed on an "AS IS" BASIS,
12
+ # WITHOUT WARRANTIES OR CONDITIONS OF ANY KIND, either express or implied.
13
+ # See the License for the specific language governing permissions and
14
+ # limitations under the License.
15
+ # ===============================================================================
16
+
17
+ import numpy as np
18
+ import pytest
19
+ from numpy.testing import assert_allclose
20
+
21
+ from daal4py.sklearn._utils import daal_check_version
22
+ from onedal.basic_statistics.tests.test_basic_statistics import (
23
+ expected_max,
24
+ expected_mean,
25
+ expected_sum,
26
+ options_and_tests,
27
+ )
28
+ from onedal.tests.utils._dataframes_support import (
29
+ _convert_to_dataframe,
30
+ get_dataframes_and_queues,
31
+ )
32
+ from sklearnex.basic_statistics import IncrementalBasicStatistics
33
+
34
+
35
+ @pytest.mark.parametrize("dataframe,queue", get_dataframes_and_queues())
36
+ @pytest.mark.parametrize("weighted", [True, False])
37
+ @pytest.mark.parametrize("dtype", [np.float32, np.float64])
38
+ def test_partial_fit_multiple_options_on_gold_data(dataframe, queue, weighted, dtype):
39
+ X = np.array([[0, 0], [1, 1]])
40
+ X = X.astype(dtype=dtype)
41
+ X_split = np.array_split(X, 2)
42
+ if weighted:
43
+ weights = np.array([1, 0.5])
44
+ weights = weights.astype(dtype=dtype)
45
+ weights_split = np.array_split(weights, 2)
46
+
47
+ incbs = IncrementalBasicStatistics()
48
+ for i in range(2):
49
+ X_split_df = _convert_to_dataframe(
50
+ X_split[i], sycl_queue=queue, target_df=dataframe
51
+ )
52
+ if weighted:
53
+ weights_split_df = _convert_to_dataframe(
54
+ weights_split[i], sycl_queue=queue, target_df=dataframe
55
+ )
56
+ result = incbs.partial_fit(X_split_df, sample_weight=weights_split_df)
57
+ else:
58
+ result = incbs.partial_fit(X_split_df)
59
+
60
+ if weighted:
61
+ expected_weighted_mean = np.array([0.25, 0.25])
62
+ expected_weighted_min = np.array([0, 0])
63
+ expected_weighted_max = np.array([0.5, 0.5])
64
+ assert_allclose(expected_weighted_mean, result.mean)
65
+ assert_allclose(expected_weighted_max, result.max)
66
+ assert_allclose(expected_weighted_min, result.min)
67
+ else:
68
+ expected_mean = np.array([0.5, 0.5])
69
+ expected_min = np.array([0, 0])
70
+ expected_max = np.array([1, 1])
71
+ assert_allclose(expected_mean, result.mean)
72
+ assert_allclose(expected_max, result.max)
73
+ assert_allclose(expected_min, result.min)
74
+
75
+
76
+ @pytest.mark.parametrize("dataframe,queue", get_dataframes_and_queues())
77
+ @pytest.mark.parametrize("num_batches", [2, 10])
78
+ @pytest.mark.parametrize("option", options_and_tests)
79
+ @pytest.mark.parametrize("row_count", [100, 1000])
80
+ @pytest.mark.parametrize("column_count", [10, 100])
81
+ @pytest.mark.parametrize("weighted", [True, False])
82
+ @pytest.mark.parametrize("dtype", [np.float32, np.float64])
83
+ def test_partial_fit_single_option_on_random_data(
84
+ dataframe, queue, num_batches, option, row_count, column_count, weighted, dtype
85
+ ):
86
+ result_option, function, tols = option
87
+ fp32tol, fp64tol = tols
88
+ seed = 77
89
+ gen = np.random.default_rng(seed)
90
+ X = gen.uniform(low=-0.3, high=+0.7, size=(row_count, column_count))
91
+ X = X.astype(dtype=dtype)
92
+ X_split = np.array_split(X, num_batches)
93
+ if weighted:
94
+ weights = gen.uniform(low=-0.5, high=+1.0, size=row_count)
95
+ weights = weights.astype(dtype=dtype)
96
+ weights_split = np.array_split(weights, num_batches)
97
+ incbs = IncrementalBasicStatistics(result_options=result_option)
98
+
99
+ for i in range(num_batches):
100
+ X_split_df = _convert_to_dataframe(
101
+ X_split[i], sycl_queue=queue, target_df=dataframe
102
+ )
103
+ if weighted:
104
+ weights_split_df = _convert_to_dataframe(
105
+ weights_split[i], sycl_queue=queue, target_df=dataframe
106
+ )
107
+ result = incbs.partial_fit(X_split_df, sample_weight=weights_split_df)
108
+ else:
109
+ result = incbs.partial_fit(X_split_df)
110
+
111
+ res = getattr(result, result_option)
112
+ if weighted:
113
+ weighted_data = np.diag(weights) @ X
114
+ gtr = function(weighted_data)
115
+ else:
116
+ gtr = function(X)
117
+
118
+ tol = fp32tol if res.dtype == np.float32 else fp64tol
119
+ assert_allclose(gtr, res, atol=tol)
120
+
121
+
122
+ @pytest.mark.parametrize("dataframe,queue", get_dataframes_and_queues())
123
+ @pytest.mark.parametrize("num_batches", [2, 10])
124
+ @pytest.mark.parametrize("row_count", [100, 1000])
125
+ @pytest.mark.parametrize("column_count", [10, 100])
126
+ @pytest.mark.parametrize("weighted", [True, False])
127
+ @pytest.mark.parametrize("dtype", [np.float32, np.float64])
128
+ def test_partial_fit_multiple_options_on_random_data(
129
+ dataframe, queue, num_batches, row_count, column_count, weighted, dtype
130
+ ):
131
+ seed = 42
132
+ gen = np.random.default_rng(seed)
133
+ X = gen.uniform(low=-0.3, high=+0.7, size=(row_count, column_count))
134
+ X = X.astype(dtype=dtype)
135
+ X_split = np.array_split(X, num_batches)
136
+ if weighted:
137
+ weights = gen.uniform(low=-0.5, high=+1.0, size=row_count)
138
+ weights = weights.astype(dtype=dtype)
139
+ weights_split = np.array_split(weights, num_batches)
140
+ incbs = IncrementalBasicStatistics(result_options=["mean", "max", "sum"])
141
+
142
+ for i in range(num_batches):
143
+ X_split_df = _convert_to_dataframe(
144
+ X_split[i], sycl_queue=queue, target_df=dataframe
145
+ )
146
+ if weighted:
147
+ weights_split_df = _convert_to_dataframe(
148
+ weights_split[i], sycl_queue=queue, target_df=dataframe
149
+ )
150
+ result = incbs.partial_fit(X_split_df, sample_weight=weights_split_df)
151
+ else:
152
+ result = incbs.partial_fit(X_split_df)
153
+
154
+ res_mean, res_max, res_sum = result.mean, result.max, result.sum
155
+ if weighted:
156
+ weighted_data = np.diag(weights) @ X
157
+ gtr_mean, gtr_max, gtr_sum = (
158
+ expected_mean(weighted_data),
159
+ expected_max(weighted_data),
160
+ expected_sum(weighted_data),
161
+ )
162
+ else:
163
+ gtr_mean, gtr_max, gtr_sum = (
164
+ expected_mean(X),
165
+ expected_max(X),
166
+ expected_sum(X),
167
+ )
168
+
169
+ tol = 3e-4 if res_mean.dtype == np.float32 else 1e-7
170
+ assert_allclose(gtr_mean, res_mean, atol=tol)
171
+ assert_allclose(gtr_max, res_max, atol=tol)
172
+ assert_allclose(gtr_sum, res_sum, atol=tol)
173
+
174
+
175
+ @pytest.mark.parametrize("dataframe,queue", get_dataframes_and_queues())
176
+ @pytest.mark.parametrize("num_batches", [2, 10])
177
+ @pytest.mark.parametrize("row_count", [100, 1000])
178
+ @pytest.mark.parametrize("column_count", [10, 100])
179
+ @pytest.mark.parametrize("weighted", [True, False])
180
+ @pytest.mark.parametrize("dtype", [np.float32, np.float64])
181
+ def test_partial_fit_all_option_on_random_data(
182
+ dataframe, queue, num_batches, row_count, column_count, weighted, dtype
183
+ ):
184
+ seed = 77
185
+ gen = np.random.default_rng(seed)
186
+ X = gen.uniform(low=-0.3, high=+0.7, size=(row_count, column_count))
187
+ X = X.astype(dtype=dtype)
188
+ X_split = np.array_split(X, num_batches)
189
+ if weighted:
190
+ weights = gen.uniform(low=-0.5, high=+1.0, size=row_count)
191
+ weights = weights.astype(dtype=dtype)
192
+ weights_split = np.array_split(weights, num_batches)
193
+ incbs = IncrementalBasicStatistics(result_options="all")
194
+
195
+ for i in range(num_batches):
196
+ X_split_df = _convert_to_dataframe(
197
+ X_split[i], sycl_queue=queue, target_df=dataframe
198
+ )
199
+ if weighted:
200
+ weights_split_df = _convert_to_dataframe(
201
+ weights_split[i], sycl_queue=queue, target_df=dataframe
202
+ )
203
+ result = incbs.partial_fit(X_split_df, sample_weight=weights_split_df)
204
+ else:
205
+ result = incbs.partial_fit(X_split_df)
206
+
207
+ if weighted:
208
+ weighted_data = np.diag(weights) @ X
209
+
210
+ for option in options_and_tests:
211
+ result_option, function, tols = option
212
+ fp32tol, fp64tol = tols
213
+ res = getattr(result, result_option)
214
+ if weighted:
215
+ gtr = function(weighted_data)
216
+ else:
217
+ gtr = function(X)
218
+ tol = fp32tol if res.dtype == np.float32 else fp64tol
219
+ assert_allclose(gtr, res, atol=tol)
220
+
221
+
222
+ @pytest.mark.parametrize("dataframe,queue", get_dataframes_and_queues())
223
+ @pytest.mark.parametrize("weighted", [True, False])
224
+ @pytest.mark.parametrize("dtype", [np.float32, np.float64])
225
+ def test_fit_multiple_options_on_gold_data(dataframe, queue, weighted, dtype):
226
+ X = np.array([[0, 0], [1, 1]])
227
+ X = X.astype(dtype=dtype)
228
+ X_df = _convert_to_dataframe(X, sycl_queue=queue, target_df=dataframe)
229
+ if weighted:
230
+ weights = np.array([1, 0.5])
231
+ weights = weights.astype(dtype=dtype)
232
+ weights_df = _convert_to_dataframe(weights, sycl_queue=queue, target_df=dataframe)
233
+ incbs = IncrementalBasicStatistics(batch_size=1)
234
+
235
+ if weighted:
236
+ result = incbs.fit(X_df, sample_weight=weights_df)
237
+ else:
238
+ result = incbs.fit(X_df)
239
+
240
+ if weighted:
241
+ expected_weighted_mean = np.array([0.25, 0.25])
242
+ expected_weighted_min = np.array([0, 0])
243
+ expected_weighted_max = np.array([0.5, 0.5])
244
+ assert_allclose(expected_weighted_mean, result.mean)
245
+ assert_allclose(expected_weighted_max, result.max)
246
+ assert_allclose(expected_weighted_min, result.min)
247
+ else:
248
+ expected_mean = np.array([0.5, 0.5])
249
+ expected_min = np.array([0, 0])
250
+ expected_max = np.array([1, 1])
251
+ assert_allclose(expected_mean, result.mean)
252
+ assert_allclose(expected_max, result.max)
253
+ assert_allclose(expected_min, result.min)
254
+
255
+
256
+ @pytest.mark.parametrize("dataframe,queue", get_dataframes_and_queues())
257
+ @pytest.mark.parametrize("num_batches", [2, 10])
258
+ @pytest.mark.parametrize("option", options_and_tests)
259
+ @pytest.mark.parametrize("row_count", [100, 1000])
260
+ @pytest.mark.parametrize("column_count", [10, 100])
261
+ @pytest.mark.parametrize("weighted", [True, False])
262
+ @pytest.mark.parametrize("dtype", [np.float32, np.float64])
263
+ def test_fit_single_option_on_random_data(
264
+ dataframe, queue, num_batches, option, row_count, column_count, weighted, dtype
265
+ ):
266
+ result_option, function, tols = option
267
+ fp32tol, fp64tol = tols
268
+ seed = 77
269
+ gen = np.random.default_rng(seed)
270
+ batch_size = row_count // num_batches
271
+ X = gen.uniform(low=-0.3, high=+0.7, size=(row_count, column_count))
272
+ X = X.astype(dtype=dtype)
273
+ X_df = _convert_to_dataframe(X, sycl_queue=queue, target_df=dataframe)
274
+ if weighted:
275
+ weights = gen.uniform(low=-0.5, high=1.0, size=row_count)
276
+ weights = weights.astype(dtype=dtype)
277
+ weights_df = _convert_to_dataframe(weights, sycl_queue=queue, target_df=dataframe)
278
+ incbs = IncrementalBasicStatistics(
279
+ result_options=result_option, batch_size=batch_size
280
+ )
281
+
282
+ if weighted:
283
+ result = incbs.fit(X_df, sample_weight=weights_df)
284
+ else:
285
+ result = incbs.fit(X_df)
286
+
287
+ res = getattr(result, result_option)
288
+ if weighted:
289
+ weighted_data = np.diag(weights) @ X
290
+ gtr = function(weighted_data)
291
+ else:
292
+ gtr = function(X)
293
+
294
+ tol = fp32tol if res.dtype == np.float32 else fp64tol
295
+ assert_allclose(gtr, res, atol=tol)
296
+
297
+
298
+ @pytest.mark.parametrize("dataframe,queue", get_dataframes_and_queues())
299
+ @pytest.mark.parametrize("num_batches", [2, 10])
300
+ @pytest.mark.parametrize("row_count", [100, 1000])
301
+ @pytest.mark.parametrize("column_count", [10, 100])
302
+ @pytest.mark.parametrize("weighted", [True, False])
303
+ @pytest.mark.parametrize("dtype", [np.float32, np.float64])
304
+ def test_fit_multiple_options_on_random_data(
305
+ dataframe, queue, num_batches, row_count, column_count, weighted, dtype
306
+ ):
307
+ seed = 77
308
+ gen = np.random.default_rng(seed)
309
+ batch_size = row_count // num_batches
310
+ X = gen.uniform(low=-0.3, high=+0.7, size=(row_count, column_count))
311
+ X = X.astype(dtype=dtype)
312
+ X_df = _convert_to_dataframe(X, sycl_queue=queue, target_df=dataframe)
313
+ if weighted:
314
+ weights = gen.uniform(low=-0.5, high=1.0, size=row_count)
315
+ weights = weights.astype(dtype=dtype)
316
+ weights_df = _convert_to_dataframe(weights, sycl_queue=queue, target_df=dataframe)
317
+ incbs = IncrementalBasicStatistics(
318
+ result_options=["mean", "max", "sum"], batch_size=batch_size
319
+ )
320
+
321
+ if weighted:
322
+ result = incbs.fit(X_df, sample_weight=weights_df)
323
+ else:
324
+ result = incbs.fit(X_df)
325
+
326
+ res_mean, res_max, res_sum = result.mean, result.max, result.sum
327
+ if weighted:
328
+ weighted_data = np.diag(weights) @ X
329
+ gtr_mean, gtr_max, gtr_sum = (
330
+ expected_mean(weighted_data),
331
+ expected_max(weighted_data),
332
+ expected_sum(weighted_data),
333
+ )
334
+ else:
335
+ gtr_mean, gtr_max, gtr_sum = (
336
+ expected_mean(X),
337
+ expected_max(X),
338
+ expected_sum(X),
339
+ )
340
+
341
+ tol = 3e-4 if res_mean.dtype == np.float32 else 1e-7
342
+ assert_allclose(gtr_mean, res_mean, atol=tol)
343
+ assert_allclose(gtr_max, res_max, atol=tol)
344
+ assert_allclose(gtr_sum, res_sum, atol=tol)
345
+
346
+
347
+ @pytest.mark.parametrize("dataframe,queue", get_dataframes_and_queues())
348
+ @pytest.mark.parametrize("num_batches", [2, 10])
349
+ @pytest.mark.parametrize("row_count", [100, 1000])
350
+ @pytest.mark.parametrize("column_count", [10, 100])
351
+ @pytest.mark.parametrize("weighted", [True, False])
352
+ @pytest.mark.parametrize("dtype", [np.float32, np.float64])
353
+ def test_fit_all_option_on_random_data(
354
+ dataframe, queue, num_batches, row_count, column_count, weighted, dtype
355
+ ):
356
+ seed = 77
357
+ gen = np.random.default_rng(seed)
358
+ batch_size = row_count // num_batches
359
+ X = gen.uniform(low=-0.3, high=+0.7, size=(row_count, column_count))
360
+ X = X.astype(dtype=dtype)
361
+ X_df = _convert_to_dataframe(X, sycl_queue=queue, target_df=dataframe)
362
+ if weighted:
363
+ weights = gen.uniform(low=-0.5, high=+1.0, size=row_count)
364
+ weights = weights.astype(dtype=dtype)
365
+ weights_df = _convert_to_dataframe(weights, sycl_queue=queue, target_df=dataframe)
366
+ incbs = IncrementalBasicStatistics(result_options="all", batch_size=batch_size)
367
+
368
+ if weighted:
369
+ result = incbs.fit(X_df, sample_weight=weights_df)
370
+ else:
371
+ result = incbs.fit(X_df)
372
+
373
+ if weighted:
374
+ weighted_data = np.diag(weights) @ X
375
+
376
+ for option in options_and_tests:
377
+ result_option, function, tols = option
378
+ fp32tol, fp64tol = tols
379
+ res = getattr(result, result_option)
380
+ if weighted:
381
+ gtr = function(weighted_data)
382
+ else:
383
+ gtr = function(X)
384
+ tol = fp32tol if res.dtype == np.float32 else fp64tol
385
+ assert_allclose(gtr, res, atol=tol)
386
+
387
+
388
+ def test_warning():
389
+ basicstat = IncrementalBasicStatistics("all")
390
+ # Only 2d inputs supported into IncrementalBasicStatistics
391
+ data = np.array([[0.0], [1.0]])
392
+
393
+ basicstat.fit(data)
394
+ for i in basicstat._onedal_estimator.get_all_result_options():
395
+ with pytest.warns(
396
+ UserWarning,
397
+ match="Result attributes without a trailing underscore were deprecated in version 2025.1 and will be removed in 2026.0",
398
+ ) as warn_record:
399
+ getattr(basicstat, i)
400
+
401
+ if daal_check_version((2026, "P", 0)):
402
+ assert len(warn_record) == 0, i
403
+ else:
404
+ assert len(warn_record) == 1, i
@@ -17,4 +17,4 @@
17
17
  from .dbscan import DBSCAN
18
18
  from .k_means import KMeans
19
19
 
20
- __all__ = ["KMeans", "DBSCAN"]
20
+ __all__ = ["DBSCAN", "KMeans"]