scikit-learn-intelex 2024.1.0__py312-none-win_amd64.whl → 2024.2.0__py312-none-win_amd64.whl

This diff represents the content of publicly available package versions that have been released to one of the supported registries. The information contained in this diff is provided for informational purposes only and reflects changes between package versions as they appear in their respective public registries.

Potentially problematic release.


This version of scikit-learn-intelex might be problematic. Click here for more details.

Files changed (107) hide show
  1. {scikit_learn_intelex-2024.1.0.data → scikit_learn_intelex-2024.2.0.data}/data/Lib/site-packages/sklearnex/cluster/dbscan.py +3 -3
  2. scikit_learn_intelex-2024.2.0.data/data/Lib/site-packages/sklearnex/covariance/__init__.py +19 -0
  3. scikit_learn_intelex-2024.2.0.data/data/Lib/site-packages/sklearnex/covariance/incremental_covariance.py +130 -0
  4. scikit_learn_intelex-2024.2.0.data/data/Lib/site-packages/sklearnex/covariance/tests/test_incremental_covariance.py +143 -0
  5. {scikit_learn_intelex-2024.1.0.data → scikit_learn_intelex-2024.2.0.data}/data/Lib/site-packages/sklearnex/dispatcher.py +19 -18
  6. {scikit_learn_intelex-2024.1.0.data → scikit_learn_intelex-2024.2.0.data}/data/Lib/site-packages/sklearnex/ensemble/_forest.py +5 -10
  7. {scikit_learn_intelex-2024.1.0.data → scikit_learn_intelex-2024.2.0.data}/data/Lib/site-packages/sklearnex/linear_model/__init__.py +1 -2
  8. {scikit_learn_intelex-2024.1.0.data → scikit_learn_intelex-2024.2.0.data}/data/Lib/site-packages/sklearnex/linear_model/linear.py +3 -10
  9. {scikit_learn_intelex-2024.1.0.data/data/Lib/site-packages/sklearnex/preview → scikit_learn_intelex-2024.2.0.data/data/Lib/site-packages/sklearnex}/linear_model/logistic_regression.py +19 -38
  10. scikit_learn_intelex-2024.2.0.data/data/Lib/site-packages/sklearnex/linear_model/tests/test_logreg.py +93 -0
  11. {scikit_learn_intelex-2024.1.0.data → scikit_learn_intelex-2024.2.0.data}/data/Lib/site-packages/sklearnex/neighbors/__init__.py +1 -1
  12. scikit_learn_intelex-2024.2.0.data/data/Lib/site-packages/sklearnex/neighbors/_lof.py +167 -0
  13. {scikit_learn_intelex-2024.1.0.data → scikit_learn_intelex-2024.2.0.data}/data/Lib/site-packages/sklearnex/neighbors/knn_classification.py +6 -9
  14. {scikit_learn_intelex-2024.1.0.data → scikit_learn_intelex-2024.2.0.data}/data/Lib/site-packages/sklearnex/neighbors/knn_regression.py +6 -8
  15. {scikit_learn_intelex-2024.1.0.data → scikit_learn_intelex-2024.2.0.data}/data/Lib/site-packages/sklearnex/neighbors/knn_unsupervised.py +5 -7
  16. {scikit_learn_intelex-2024.1.0.data → scikit_learn_intelex-2024.2.0.data}/data/Lib/site-packages/sklearnex/neighbors/tests/test_neighbors.py +12 -11
  17. {scikit_learn_intelex-2024.1.0.data → scikit_learn_intelex-2024.2.0.data}/data/Lib/site-packages/sklearnex/preview/__init__.py +1 -1
  18. {scikit_learn_intelex-2024.1.0.data → scikit_learn_intelex-2024.2.0.data}/data/Lib/site-packages/sklearnex/preview/cluster/k_means.py +3 -8
  19. {scikit_learn_intelex-2024.1.0.data → scikit_learn_intelex-2024.2.0.data}/data/Lib/site-packages/sklearnex/preview/covariance/covariance.py +46 -12
  20. {scikit_learn_intelex-2024.1.0.data → scikit_learn_intelex-2024.2.0.data}/data/Lib/site-packages/sklearnex/preview/decomposition/pca.py +3 -5
  21. {scikit_learn_intelex-2024.1.0.data → scikit_learn_intelex-2024.2.0.data}/data/Lib/site-packages/sklearnex/spmd/__init__.py +1 -0
  22. scikit_learn_intelex-2024.2.0.data/data/Lib/site-packages/sklearnex/spmd/covariance/__init__.py +19 -0
  23. scikit_learn_intelex-2024.2.0.data/data/Lib/site-packages/sklearnex/spmd/covariance/covariance.py +21 -0
  24. {scikit_learn_intelex-2024.1.0.data → scikit_learn_intelex-2024.2.0.data}/data/Lib/site-packages/sklearnex/spmd/linear_model/__init__.py +2 -1
  25. scikit_learn_intelex-2024.2.0.data/data/Lib/site-packages/sklearnex/spmd/linear_model/logistic_regression.py +21 -0
  26. {scikit_learn_intelex-2024.1.0.data → scikit_learn_intelex-2024.2.0.data}/data/Lib/site-packages/sklearnex/svm/nusvc.py +5 -6
  27. {scikit_learn_intelex-2024.1.0.data → scikit_learn_intelex-2024.2.0.data}/data/Lib/site-packages/sklearnex/svm/nusvr.py +3 -4
  28. {scikit_learn_intelex-2024.1.0.data → scikit_learn_intelex-2024.2.0.data}/data/Lib/site-packages/sklearnex/svm/svc.py +5 -6
  29. {scikit_learn_intelex-2024.1.0.data → scikit_learn_intelex-2024.2.0.data}/data/Lib/site-packages/sklearnex/svm/svr.py +3 -4
  30. {scikit_learn_intelex-2024.1.0.data → scikit_learn_intelex-2024.2.0.data}/data/Lib/site-packages/sklearnex/tests/test_memory_usage.py +1 -4
  31. {scikit_learn_intelex-2024.1.0.data → scikit_learn_intelex-2024.2.0.data}/data/Lib/site-packages/sklearnex/tests/test_monkeypatch.py +33 -20
  32. scikit_learn_intelex-2024.2.0.data/data/Lib/site-packages/sklearnex/tests/test_n_jobs_support.py +93 -0
  33. {scikit_learn_intelex-2024.1.0.data → scikit_learn_intelex-2024.2.0.data}/data/Lib/site-packages/sklearnex/tests/test_patching.py +19 -5
  34. {scikit_learn_intelex-2024.1.0.dist-info → scikit_learn_intelex-2024.2.0.dist-info}/METADATA +2 -2
  35. scikit_learn_intelex-2024.2.0.dist-info/RECORD +101 -0
  36. scikit_learn_intelex-2024.1.0.data/data/Lib/site-packages/sklearnex/linear_model/tests/test_logreg.py +0 -28
  37. scikit_learn_intelex-2024.1.0.data/data/Lib/site-packages/sklearnex/neighbors/lof.py +0 -436
  38. scikit_learn_intelex-2024.1.0.data/data/Lib/site-packages/sklearnex/preview/linear_model/__init__.py +0 -19
  39. scikit_learn_intelex-2024.1.0.data/data/Lib/site-packages/sklearnex/preview/linear_model/tests/test_preview_logistic_regression.py +0 -59
  40. scikit_learn_intelex-2024.1.0.data/data/Lib/site-packages/sklearnex/tests/test_n_jobs_support.py +0 -31
  41. scikit_learn_intelex-2024.1.0.dist-info/RECORD +0 -97
  42. {scikit_learn_intelex-2024.1.0.data → scikit_learn_intelex-2024.2.0.data}/data/Lib/site-packages/sklearnex/__init__.py +0 -0
  43. {scikit_learn_intelex-2024.1.0.data → scikit_learn_intelex-2024.2.0.data}/data/Lib/site-packages/sklearnex/__main__.py +0 -0
  44. {scikit_learn_intelex-2024.1.0.data → scikit_learn_intelex-2024.2.0.data}/data/Lib/site-packages/sklearnex/_config.py +0 -0
  45. {scikit_learn_intelex-2024.1.0.data → scikit_learn_intelex-2024.2.0.data}/data/Lib/site-packages/sklearnex/_device_offload.py +0 -0
  46. {scikit_learn_intelex-2024.1.0.data → scikit_learn_intelex-2024.2.0.data}/data/Lib/site-packages/sklearnex/_utils.py +0 -0
  47. {scikit_learn_intelex-2024.1.0.data → scikit_learn_intelex-2024.2.0.data}/data/Lib/site-packages/sklearnex/basic_statistics/__init__.py +0 -0
  48. {scikit_learn_intelex-2024.1.0.data → scikit_learn_intelex-2024.2.0.data}/data/Lib/site-packages/sklearnex/basic_statistics/basic_statistics.py +0 -0
  49. {scikit_learn_intelex-2024.1.0.data → scikit_learn_intelex-2024.2.0.data}/data/Lib/site-packages/sklearnex/cluster/__init__.py +0 -0
  50. {scikit_learn_intelex-2024.1.0.data → scikit_learn_intelex-2024.2.0.data}/data/Lib/site-packages/sklearnex/cluster/k_means.py +0 -0
  51. {scikit_learn_intelex-2024.1.0.data → scikit_learn_intelex-2024.2.0.data}/data/Lib/site-packages/sklearnex/cluster/tests/test_dbscan.py +0 -0
  52. {scikit_learn_intelex-2024.1.0.data → scikit_learn_intelex-2024.2.0.data}/data/Lib/site-packages/sklearnex/cluster/tests/test_kmeans.py +0 -0
  53. {scikit_learn_intelex-2024.1.0.data → scikit_learn_intelex-2024.2.0.data}/data/Lib/site-packages/sklearnex/decomposition/__init__.py +0 -0
  54. {scikit_learn_intelex-2024.1.0.data → scikit_learn_intelex-2024.2.0.data}/data/Lib/site-packages/sklearnex/decomposition/pca.py +0 -0
  55. {scikit_learn_intelex-2024.1.0.data → scikit_learn_intelex-2024.2.0.data}/data/Lib/site-packages/sklearnex/decomposition/tests/test_pca.py +0 -0
  56. {scikit_learn_intelex-2024.1.0.data → scikit_learn_intelex-2024.2.0.data}/data/Lib/site-packages/sklearnex/doc/third-party-programs.txt +0 -0
  57. {scikit_learn_intelex-2024.1.0.data → scikit_learn_intelex-2024.2.0.data}/data/Lib/site-packages/sklearnex/ensemble/__init__.py +0 -0
  58. {scikit_learn_intelex-2024.1.0.data → scikit_learn_intelex-2024.2.0.data}/data/Lib/site-packages/sklearnex/ensemble/tests/test_forest.py +0 -0
  59. {scikit_learn_intelex-2024.1.0.data → scikit_learn_intelex-2024.2.0.data}/data/Lib/site-packages/sklearnex/glob/__main__.py +0 -0
  60. {scikit_learn_intelex-2024.1.0.data → scikit_learn_intelex-2024.2.0.data}/data/Lib/site-packages/sklearnex/glob/dispatcher.py +0 -0
  61. {scikit_learn_intelex-2024.1.0.data → scikit_learn_intelex-2024.2.0.data}/data/Lib/site-packages/sklearnex/linear_model/coordinate_descent.py +0 -0
  62. {scikit_learn_intelex-2024.1.0.data → scikit_learn_intelex-2024.2.0.data}/data/Lib/site-packages/sklearnex/linear_model/logistic_path.py +0 -0
  63. {scikit_learn_intelex-2024.1.0.data → scikit_learn_intelex-2024.2.0.data}/data/Lib/site-packages/sklearnex/linear_model/ridge.py +0 -0
  64. {scikit_learn_intelex-2024.1.0.data → scikit_learn_intelex-2024.2.0.data}/data/Lib/site-packages/sklearnex/linear_model/tests/test_linear.py +0 -0
  65. {scikit_learn_intelex-2024.1.0.data → scikit_learn_intelex-2024.2.0.data}/data/Lib/site-packages/sklearnex/manifold/__init__.py +0 -0
  66. {scikit_learn_intelex-2024.1.0.data → scikit_learn_intelex-2024.2.0.data}/data/Lib/site-packages/sklearnex/manifold/t_sne.py +0 -0
  67. {scikit_learn_intelex-2024.1.0.data → scikit_learn_intelex-2024.2.0.data}/data/Lib/site-packages/sklearnex/manifold/tests/test_tsne.py +0 -0
  68. {scikit_learn_intelex-2024.1.0.data → scikit_learn_intelex-2024.2.0.data}/data/Lib/site-packages/sklearnex/metrics/__init__.py +0 -0
  69. {scikit_learn_intelex-2024.1.0.data → scikit_learn_intelex-2024.2.0.data}/data/Lib/site-packages/sklearnex/metrics/pairwise.py +0 -0
  70. {scikit_learn_intelex-2024.1.0.data → scikit_learn_intelex-2024.2.0.data}/data/Lib/site-packages/sklearnex/metrics/ranking.py +0 -0
  71. {scikit_learn_intelex-2024.1.0.data → scikit_learn_intelex-2024.2.0.data}/data/Lib/site-packages/sklearnex/metrics/tests/test_metrics.py +0 -0
  72. {scikit_learn_intelex-2024.1.0.data → scikit_learn_intelex-2024.2.0.data}/data/Lib/site-packages/sklearnex/model_selection/__init__.py +0 -0
  73. {scikit_learn_intelex-2024.1.0.data → scikit_learn_intelex-2024.2.0.data}/data/Lib/site-packages/sklearnex/model_selection/split.py +0 -0
  74. {scikit_learn_intelex-2024.1.0.data → scikit_learn_intelex-2024.2.0.data}/data/Lib/site-packages/sklearnex/model_selection/tests/test_model_selection.py +0 -0
  75. {scikit_learn_intelex-2024.1.0.data → scikit_learn_intelex-2024.2.0.data}/data/Lib/site-packages/sklearnex/neighbors/common.py +0 -0
  76. {scikit_learn_intelex-2024.1.0.data → scikit_learn_intelex-2024.2.0.data}/data/Lib/site-packages/sklearnex/preview/cluster/__init__.py +0 -0
  77. {scikit_learn_intelex-2024.1.0.data → scikit_learn_intelex-2024.2.0.data}/data/Lib/site-packages/sklearnex/preview/cluster/_common.py +0 -0
  78. {scikit_learn_intelex-2024.1.0.data → scikit_learn_intelex-2024.2.0.data}/data/Lib/site-packages/sklearnex/preview/covariance/__init__.py +0 -0
  79. {scikit_learn_intelex-2024.1.0.data → scikit_learn_intelex-2024.2.0.data}/data/Lib/site-packages/sklearnex/preview/covariance/tests/test_covariance.py +0 -0
  80. {scikit_learn_intelex-2024.1.0.data → scikit_learn_intelex-2024.2.0.data}/data/Lib/site-packages/sklearnex/preview/decomposition/__init__.py +0 -0
  81. {scikit_learn_intelex-2024.1.0.data → scikit_learn_intelex-2024.2.0.data}/data/Lib/site-packages/sklearnex/preview/decomposition/tests/test_preview_pca.py +0 -0
  82. {scikit_learn_intelex-2024.1.0.data → scikit_learn_intelex-2024.2.0.data}/data/Lib/site-packages/sklearnex/spmd/basic_statistics/__init__.py +0 -0
  83. {scikit_learn_intelex-2024.1.0.data → scikit_learn_intelex-2024.2.0.data}/data/Lib/site-packages/sklearnex/spmd/basic_statistics/basic_statistics.py +0 -0
  84. {scikit_learn_intelex-2024.1.0.data → scikit_learn_intelex-2024.2.0.data}/data/Lib/site-packages/sklearnex/spmd/cluster/__init__.py +0 -0
  85. {scikit_learn_intelex-2024.1.0.data → scikit_learn_intelex-2024.2.0.data}/data/Lib/site-packages/sklearnex/spmd/cluster/dbscan.py +0 -0
  86. {scikit_learn_intelex-2024.1.0.data → scikit_learn_intelex-2024.2.0.data}/data/Lib/site-packages/sklearnex/spmd/cluster/kmeans.py +0 -0
  87. {scikit_learn_intelex-2024.1.0.data → scikit_learn_intelex-2024.2.0.data}/data/Lib/site-packages/sklearnex/spmd/decomposition/__init__.py +0 -0
  88. {scikit_learn_intelex-2024.1.0.data → scikit_learn_intelex-2024.2.0.data}/data/Lib/site-packages/sklearnex/spmd/decomposition/pca.py +0 -0
  89. {scikit_learn_intelex-2024.1.0.data → scikit_learn_intelex-2024.2.0.data}/data/Lib/site-packages/sklearnex/spmd/ensemble/__init__.py +0 -0
  90. {scikit_learn_intelex-2024.1.0.data → scikit_learn_intelex-2024.2.0.data}/data/Lib/site-packages/sklearnex/spmd/ensemble/forest.py +0 -0
  91. {scikit_learn_intelex-2024.1.0.data → scikit_learn_intelex-2024.2.0.data}/data/Lib/site-packages/sklearnex/spmd/linear_model/linear_model.py +0 -0
  92. {scikit_learn_intelex-2024.1.0.data → scikit_learn_intelex-2024.2.0.data}/data/Lib/site-packages/sklearnex/spmd/neighbors/__init__.py +0 -0
  93. {scikit_learn_intelex-2024.1.0.data → scikit_learn_intelex-2024.2.0.data}/data/Lib/site-packages/sklearnex/spmd/neighbors/neighbors.py +0 -0
  94. {scikit_learn_intelex-2024.1.0.data → scikit_learn_intelex-2024.2.0.data}/data/Lib/site-packages/sklearnex/svm/__init__.py +0 -0
  95. {scikit_learn_intelex-2024.1.0.data → scikit_learn_intelex-2024.2.0.data}/data/Lib/site-packages/sklearnex/svm/_common.py +0 -0
  96. {scikit_learn_intelex-2024.1.0.data → scikit_learn_intelex-2024.2.0.data}/data/Lib/site-packages/sklearnex/svm/tests/test_svm.py +0 -0
  97. {scikit_learn_intelex-2024.1.0.data → scikit_learn_intelex-2024.2.0.data}/data/Lib/site-packages/sklearnex/tests/_models_info.py +0 -0
  98. {scikit_learn_intelex-2024.1.0.data → scikit_learn_intelex-2024.2.0.data}/data/Lib/site-packages/sklearnex/tests/test_config.py +0 -0
  99. {scikit_learn_intelex-2024.1.0.data → scikit_learn_intelex-2024.2.0.data}/data/Lib/site-packages/sklearnex/tests/test_parallel.py +0 -0
  100. {scikit_learn_intelex-2024.1.0.data → scikit_learn_intelex-2024.2.0.data}/data/Lib/site-packages/sklearnex/tests/test_run_to_run_stability_tests.py +0 -0
  101. {scikit_learn_intelex-2024.1.0.data → scikit_learn_intelex-2024.2.0.data}/data/Lib/site-packages/sklearnex/tests/utils/_launch_algorithms.py +0 -0
  102. {scikit_learn_intelex-2024.1.0.data → scikit_learn_intelex-2024.2.0.data}/data/Lib/site-packages/sklearnex/utils/__init__.py +0 -0
  103. {scikit_learn_intelex-2024.1.0.data → scikit_learn_intelex-2024.2.0.data}/data/Lib/site-packages/sklearnex/utils/parallel.py +0 -0
  104. {scikit_learn_intelex-2024.1.0.data → scikit_learn_intelex-2024.2.0.data}/data/Lib/site-packages/sklearnex/utils/validation.py +0 -0
  105. {scikit_learn_intelex-2024.1.0.dist-info → scikit_learn_intelex-2024.2.0.dist-info}/LICENSE.txt +0 -0
  106. {scikit_learn_intelex-2024.1.0.dist-info → scikit_learn_intelex-2024.2.0.dist-info}/WHEEL +0 -0
  107. {scikit_learn_intelex-2024.1.0.dist-info → scikit_learn_intelex-2024.2.0.dist-info}/top_level.txt +0 -0
@@ -0,0 +1,101 @@
1
+ scikit_learn_intelex-2024.2.0.data/data/Lib/site-packages/sklearnex/__init__.py,sha256=ScbLh27pOsTushgVj4zxZsNOLLYct65-7XrD_96Pu94,1648
2
+ scikit_learn_intelex-2024.2.0.data/data/Lib/site-packages/sklearnex/__main__.py,sha256=Le9BJq6aLEGSSoZwJLsOADxsV89ynBfA8BcoJHk9F24,1921
3
+ scikit_learn_intelex-2024.2.0.data/data/Lib/site-packages/sklearnex/_config.py,sha256=6WS3UuS4-0DxIJyGn7yQMosj-mGkLybLQrg3W7dED5o,3928
4
+ scikit_learn_intelex-2024.2.0.data/data/Lib/site-packages/sklearnex/_device_offload.py,sha256=J0tZqj6tfvIFonWR01PadtTLgloQk_QEfXeCoqEvJlk,7710
5
+ scikit_learn_intelex-2024.2.0.data/data/Lib/site-packages/sklearnex/_utils.py,sha256=EV4jC3plVdndsgrfPBsJZTzggrRdYWLwOpoIRWtTXt4,3812
6
+ scikit_learn_intelex-2024.2.0.data/data/Lib/site-packages/sklearnex/dispatcher.py,sha256=89QQ508iMt6qxoCIHt4woLvz_-KBOR6UvvhJJeC77hE,12878
7
+ scikit_learn_intelex-2024.2.0.data/data/Lib/site-packages/sklearnex/basic_statistics/__init__.py,sha256=NA5RGlwcp27UEeCgz0ngzYYd3MAIRpxlTy86uhM2-RE,821
8
+ scikit_learn_intelex-2024.2.0.data/data/Lib/site-packages/sklearnex/basic_statistics/basic_statistics.py,sha256=j5jBZ3DgXjoyjCBEFfYQHyl3LgLXEWWFnNHwInThdZw,796
9
+ scikit_learn_intelex-2024.2.0.data/data/Lib/site-packages/sklearnex/cluster/__init__.py,sha256=TsDzdbKzEubaP86iY8a7mSW0ZQzgjzGYuPkhc5lZmlQ,853
10
+ scikit_learn_intelex-2024.2.0.data/data/Lib/site-packages/sklearnex/cluster/dbscan.py,sha256=EegSXIFHKNhaKLoe_G8dsC5t2SXRdu3tDzsHbcubdDM,6706
11
+ scikit_learn_intelex-2024.2.0.data/data/Lib/site-packages/sklearnex/cluster/k_means.py,sha256=1QKcFUQcnycu8kSD8uYSaDIuedHbxZsV_gvUfcEwVAM,806
12
+ scikit_learn_intelex-2024.2.0.data/data/Lib/site-packages/sklearnex/cluster/tests/test_dbscan.py,sha256=AgFoKwXFVyLKLvEtJVs0qlbBs1Ci3PcRft7f-6_ENOU,1464
13
+ scikit_learn_intelex-2024.2.0.data/data/Lib/site-packages/sklearnex/cluster/tests/test_kmeans.py,sha256=H3a9NSHRRSASo0Eceo44Kjq6GwEoMqMzcubaNt1s1QQ,1213
14
+ scikit_learn_intelex-2024.2.0.data/data/Lib/site-packages/sklearnex/covariance/__init__.py,sha256=_c86wiKDGBH50ofN-_tn7lO4M2YVEWO5AHhJIfimUDk,859
15
+ scikit_learn_intelex-2024.2.0.data/data/Lib/site-packages/sklearnex/covariance/incremental_covariance.py,sha256=3s9gmLP48DPhlhnFcg2JB7RQ2sliSZdNroJkv8-1sIA,4526
16
+ scikit_learn_intelex-2024.2.0.data/data/Lib/site-packages/sklearnex/covariance/tests/test_incremental_covariance.py,sha256=JIa4p-1_RYvU2ZVLx27iz0OKp0Nwrl9sYCsT0Dlyi2I,5402
17
+ scikit_learn_intelex-2024.2.0.data/data/Lib/site-packages/sklearnex/decomposition/__init__.py,sha256=RJBYDWyvnn5DA-j5r4IqVdXLp6H4mdPySsSjnXhlv-U,805
18
+ scikit_learn_intelex-2024.2.0.data/data/Lib/site-packages/sklearnex/decomposition/pca.py,sha256=68ksLxTP5fMOUhRmiIq9QNm0YzQanBNzxsq-zA8DKaY,809
19
+ scikit_learn_intelex-2024.2.0.data/data/Lib/site-packages/sklearnex/decomposition/tests/test_pca.py,sha256=aP4gxjML38CFpknwNVIkZLQCc8t2rqYGlWVo03vsMfE,1146
20
+ scikit_learn_intelex-2024.2.0.data/data/Lib/site-packages/sklearnex/doc/third-party-programs.txt,sha256=qA1XbOqYkMRnp29p8VxXjfcH0kHE8NSO5s2heea83-8,21773
21
+ scikit_learn_intelex-2024.2.0.data/data/Lib/site-packages/sklearnex/ensemble/__init__.py,sha256=2xB2KfG7l7uJv0p3kfVhrs4KLM174SCsigZhYqwSYAA,1035
22
+ scikit_learn_intelex-2024.2.0.data/data/Lib/site-packages/sklearnex/ensemble/_forest.py,sha256=nw_aUdgyjxKWc6yZ-8DBaqNqDODhx5uEy13GbpM7C18,70561
23
+ scikit_learn_intelex-2024.2.0.data/data/Lib/site-packages/sklearnex/ensemble/tests/test_forest.py,sha256=KoETKE1sSpKgp38s9bepAujJjcG21eFX5RyYINcHCUo,4516
24
+ scikit_learn_intelex-2024.2.0.data/data/Lib/site-packages/sklearnex/glob/__main__.py,sha256=--FAjkhh5E6a1TFOGu6_BM3MHe78jP8oSpl0xKiRtTI,2531
25
+ scikit_learn_intelex-2024.2.0.data/data/Lib/site-packages/sklearnex/glob/dispatcher.py,sha256=IEEPhAOCVzC2JDFvYtijbiPAbaUY5RrCAhFLRjMMe1w,3018
26
+ scikit_learn_intelex-2024.2.0.data/data/Lib/site-packages/sklearnex/linear_model/__init__.py,sha256=5XZDZh8R0SmT8D8ZtSjW7-MKRO7l1jOZ8CUnt_OzHe4,1047
27
+ scikit_learn_intelex-2024.2.0.data/data/Lib/site-packages/sklearnex/linear_model/coordinate_descent.py,sha256=uZOHIKfFlHoMlNXZCh2MAnZE30fRZlmtcF7UsZQ3Vq4,822
28
+ scikit_learn_intelex-2024.2.0.data/data/Lib/site-packages/sklearnex/linear_model/linear.py,sha256=ed7pNKKnRkwa-wC0haUCOGHQoPkA4AuFhKNMzmRL6Fw,13832
29
+ scikit_learn_intelex-2024.2.0.data/data/Lib/site-packages/sklearnex/linear_model/logistic_path.py,sha256=Nq3JPXSzE4bjamnP3gGQtsMKks2v7s6bSiuYRnFqrRw,849
30
+ scikit_learn_intelex-2024.2.0.data/data/Lib/site-packages/sklearnex/linear_model/logistic_regression.py,sha256=ezW717qpPM4EC6uvmKbvxZZZwkooLuc8mfddAu5ebJM,12547
31
+ scikit_learn_intelex-2024.2.0.data/data/Lib/site-packages/sklearnex/linear_model/ridge.py,sha256=0oxlM5McYYvl0KxK9OIGJKM6lOADuFSPTdfx-efJNTI,810
32
+ scikit_learn_intelex-2024.2.0.data/data/Lib/site-packages/sklearnex/linear_model/tests/test_linear.py,sha256=li9LLWgap6YCwvNiHQ9yHduvUIsK1lpXfuVNR3dLwig,3200
33
+ scikit_learn_intelex-2024.2.0.data/data/Lib/site-packages/sklearnex/linear_model/tests/test_logreg.py,sha256=iH6pxRJ5Nh6RzO_ohFLlt-TpJpQmzKh2QMU81SnPwv4,3346
34
+ scikit_learn_intelex-2024.2.0.data/data/Lib/site-packages/sklearnex/manifold/__init__.py,sha256=3FU5fY1YvHAyNeSlUHsZfPnAbvlAUtZpum0Obmok2KE,809
35
+ scikit_learn_intelex-2024.2.0.data/data/Lib/site-packages/sklearnex/manifold/t_sne.py,sha256=U6F_dGB6taVuEJvTnVBWD-sri3x3m0Khu3HI4wXidhg,805
36
+ scikit_learn_intelex-2024.2.0.data/data/Lib/site-packages/sklearnex/manifold/tests/test_tsne.py,sha256=SNqe1yg45mL4qIsxpX5hDpBsIyrv9r__6wfrerjp3yU,1063
37
+ scikit_learn_intelex-2024.2.0.data/data/Lib/site-packages/sklearnex/metrics/__init__.py,sha256=EHOCTU9RERa0Rrkr4dgmyO9ippbN5kjH_FwK3BqIROc,907
38
+ scikit_learn_intelex-2024.2.0.data/data/Lib/site-packages/sklearnex/metrics/pairwise.py,sha256=5T_Vcbiadzi7oo0hq6vLl_BHQzXOmDsn5pHaMCPSHd8,818
39
+ scikit_learn_intelex-2024.2.0.data/data/Lib/site-packages/sklearnex/metrics/ranking.py,sha256=rjJxQntblbegSZRwDsOOy2ntIYBqlnV8NM46IAc0MiE,813
40
+ scikit_learn_intelex-2024.2.0.data/data/Lib/site-packages/sklearnex/metrics/tests/test_metrics.py,sha256=Nwfz8UV4V4fKLLY7f9P9eg8uY09xLXaFx1GC49TOiA8,1579
41
+ scikit_learn_intelex-2024.2.0.data/data/Lib/site-packages/sklearnex/model_selection/__init__.py,sha256=64045Y-nzLDBepO6IRjt88LhL2DM3KdvpCF2vvj_RpA,842
42
+ scikit_learn_intelex-2024.2.0.data/data/Lib/site-packages/sklearnex/model_selection/split.py,sha256=qjmy8sRf_QEG8LhT0ivn_tICMCYmt7ffZZV1-rLQnko,824
43
+ scikit_learn_intelex-2024.2.0.data/data/Lib/site-packages/sklearnex/model_selection/tests/test_model_selection.py,sha256=3kZIq8kba8SW93DBWXupoRymNStR1_mGGYSErQRnwME,1338
44
+ scikit_learn_intelex-2024.2.0.data/data/Lib/site-packages/sklearnex/neighbors/__init__.py,sha256=_GMJ2L-6YechRYI2fOFwHjy0kebUncE81z4FmdXUlb8,1078
45
+ scikit_learn_intelex-2024.2.0.data/data/Lib/site-packages/sklearnex/neighbors/_lof.py,sha256=HddPA9VdHEKCENr260qEAWoaB3KdqVYqHE-BssSuWPY,6605
46
+ scikit_learn_intelex-2024.2.0.data/data/Lib/site-packages/sklearnex/neighbors/common.py,sha256=iia-EUIRUIohDCIGpHbVx2PeDlwUvz4Mj1Tn169jidA,10781
47
+ scikit_learn_intelex-2024.2.0.data/data/Lib/site-packages/sklearnex/neighbors/knn_classification.py,sha256=C0jqL9qRQwt31JTIxjjWQWJuiy_D1I5Am1_W6ek8beY,11077
48
+ scikit_learn_intelex-2024.2.0.data/data/Lib/site-packages/sklearnex/neighbors/knn_regression.py,sha256=7ihpIl5SKSYDGvXtsUC0vNaOTj6_NNpXAAsu3uiQuaQ,9978
49
+ scikit_learn_intelex-2024.2.0.data/data/Lib/site-packages/sklearnex/neighbors/knn_unsupervised.py,sha256=Stw63vAKiaHnPQ2cfnXWD1Omf-QssT4BqhFPCMmyVCs,7620
50
+ scikit_learn_intelex-2024.2.0.data/data/Lib/site-packages/sklearnex/neighbors/tests/test_neighbors.py,sha256=s4jip1Ntrhp5Zu9-pHVbeIoNdNFsq03ABY-N-iF_UL8,3437
51
+ scikit_learn_intelex-2024.2.0.data/data/Lib/site-packages/sklearnex/preview/__init__.py,sha256=1QcbV6xCSP7QCXRxYLVPc_b4lxE0cQiyTrMm4xOnosM,797
52
+ scikit_learn_intelex-2024.2.0.data/data/Lib/site-packages/sklearnex/preview/cluster/__init__.py,sha256=FONzOuTGAb5NwdfFhLco99P_VccRk9NBkDHU3EKuAIs,794
53
+ scikit_learn_intelex-2024.2.0.data/data/Lib/site-packages/sklearnex/preview/cluster/_common.py,sha256=bgpzijxgyrAtdNCCHyCNsZ-N70KQYNwMuoCTNdUna6o,2718
54
+ scikit_learn_intelex-2024.2.0.data/data/Lib/site-packages/sklearnex/preview/cluster/k_means.py,sha256=jSuU8E6r4fdbbBnxBpWp4ybBa62kCnbBx7zDXyUr0Cs,13007
55
+ scikit_learn_intelex-2024.2.0.data/data/Lib/site-packages/sklearnex/preview/covariance/__init__.py,sha256=DPYTk8lwcVphtwU8J3CyUYH8Uz6Zr0Uz4S6nn-RY5iM,825
56
+ scikit_learn_intelex-2024.2.0.data/data/Lib/site-packages/sklearnex/preview/covariance/covariance.py,sha256=LrNrGP62FEhTSBVaO-EOYAaq-Rszc1VS2B2IqMgh4oo,4938
57
+ scikit_learn_intelex-2024.2.0.data/data/Lib/site-packages/sklearnex/preview/covariance/tests/test_covariance.py,sha256=GYI4bMIhGnjmOXpt8J7R0JQmpm9eOvDjIphugRa4kD8,2140
58
+ scikit_learn_intelex-2024.2.0.data/data/Lib/site-packages/sklearnex/preview/decomposition/__init__.py,sha256=uRenwBGf7hHQqwAVYbBw3clUQB_HWUqJGOAKTuCnrcM,805
59
+ scikit_learn_intelex-2024.2.0.data/data/Lib/site-packages/sklearnex/preview/decomposition/pca.py,sha256=S8g5GhLdnUAb1FifNx6gnrwA8AWv8ddZtLY1Er83BkY,14342
60
+ scikit_learn_intelex-2024.2.0.data/data/Lib/site-packages/sklearnex/preview/decomposition/tests/test_preview_pca.py,sha256=xcllHM-jDIq33rAWTeh_gjhS2qfCNbUIAI5KeLPA8aY,1790
61
+ scikit_learn_intelex-2024.2.0.data/data/Lib/site-packages/sklearnex/spmd/__init__.py,sha256=ChQy2kEWlo4KGvs0RnbPoPEVhdgl8URV099B1rZtF5Y,889
62
+ scikit_learn_intelex-2024.2.0.data/data/Lib/site-packages/sklearnex/spmd/basic_statistics/__init__.py,sha256=NA5RGlwcp27UEeCgz0ngzYYd3MAIRpxlTy86uhM2-RE,821
63
+ scikit_learn_intelex-2024.2.0.data/data/Lib/site-packages/sklearnex/spmd/basic_statistics/basic_statistics.py,sha256=_dQ9mhVYxeuChATEpAmHpXDpgW3YvtK1qrG-kLr2MtI,886
64
+ scikit_learn_intelex-2024.2.0.data/data/Lib/site-packages/sklearnex/spmd/cluster/__init__.py,sha256=qBBfrCHh6_82EROLbu54XKk7SmmRwS1XJyCj0zwkoUw,1029
65
+ scikit_learn_intelex-2024.2.0.data/data/Lib/site-packages/sklearnex/spmd/cluster/dbscan.py,sha256=23YNzPhx4MZijU0md-E3ZkHpTkhUh5cmtS3loHe-KhI,1824
66
+ scikit_learn_intelex-2024.2.0.data/data/Lib/site-packages/sklearnex/spmd/cluster/kmeans.py,sha256=Rnb9tr9LXVto5vCAumk7ZJfa9BYYDhdD1qUWL-QK5bY,868
67
+ scikit_learn_intelex-2024.2.0.data/data/Lib/site-packages/sklearnex/spmd/covariance/__init__.py,sha256=5xeL1REMIxCv5M1ya99GGKaVjctUngboZ3uXgxcZ04o,823
68
+ scikit_learn_intelex-2024.2.0.data/data/Lib/site-packages/sklearnex/spmd/covariance/covariance.py,sha256=_oIlr1W1vqDHqIPnsCb04HcBCen5oBHQr5-_n9OSvIA,884
69
+ scikit_learn_intelex-2024.2.0.data/data/Lib/site-packages/sklearnex/spmd/decomposition/__init__.py,sha256=dBh0ZMIiaqdf3DKbt8FWNB2K9Iacs395m8OxaDFQg_M,784
70
+ scikit_learn_intelex-2024.2.0.data/data/Lib/site-packages/sklearnex/spmd/decomposition/pca.py,sha256=CUrsVD2jae-A9H8RB_emza_fe82CwnFa5PEy0fW_EZ8,871
71
+ scikit_learn_intelex-2024.2.0.data/data/Lib/site-packages/sklearnex/spmd/ensemble/__init__.py,sha256=B3yi7hWoVogMIiw0QRT_x5atsAFS-OO72YPLGeUQJ8M,873
72
+ scikit_learn_intelex-2024.2.0.data/data/Lib/site-packages/sklearnex/spmd/ensemble/forest.py,sha256=ao6lyzcxoRW-RG9xIYwtDFyM7JIjlF8wmQKpOv_oSRQ,3113
73
+ scikit_learn_intelex-2024.2.0.data/data/Lib/site-packages/sklearnex/spmd/linear_model/__init__.py,sha256=WwqCr2DOyUnkSIHlP0yq0UI2yFDgSl5MHV7wu3QGJtA,893
74
+ scikit_learn_intelex-2024.2.0.data/data/Lib/site-packages/sklearnex/spmd/linear_model/linear_model.py,sha256=7QPCIQTWKBiZBTDZZbpZXi-REgxQCfRMt6rHPJAnc5E,883
75
+ scikit_learn_intelex-2024.2.0.data/data/Lib/site-packages/sklearnex/spmd/linear_model/logistic_regression.py,sha256=q_HkfWcg0RgFbk2t9FeV0ZY28HHAOtkGEnUj4tLuwt4,885
76
+ scikit_learn_intelex-2024.2.0.data/data/Lib/site-packages/sklearnex/spmd/neighbors/__init__.py,sha256=S16sH8N_18LN_8AgC_wGK5EDSNyuN-F-gI6GVlaiWVE,906
77
+ scikit_learn_intelex-2024.2.0.data/data/Lib/site-packages/sklearnex/spmd/neighbors/neighbors.py,sha256=SiKAS_RVt34MUcGytBS5pHnI_5vFNxJn8jqt1MOhDh8,940
78
+ scikit_learn_intelex-2024.2.0.data/data/Lib/site-packages/sklearnex/svm/__init__.py,sha256=f3e4ZFwZfx6MsXsn94VK1xVm6mWKT5XCiHczo6zNyAQ,1057
79
+ scikit_learn_intelex-2024.2.0.data/data/Lib/site-packages/sklearnex/svm/_common.py,sha256=Dt1Iyz1g04zOW6hn9cHa9ruzM_MHAIq0ZEEIxh5s7nI,7167
80
+ scikit_learn_intelex-2024.2.0.data/data/Lib/site-packages/sklearnex/svm/nusvc.py,sha256=Bvs_FmC1CYH23tXyrQE3Ti1h3BqK0YeX-_PBTZMRM0k,9008
81
+ scikit_learn_intelex-2024.2.0.data/data/Lib/site-packages/sklearnex/svm/nusvr.py,sha256=XHlDAGwnx1NVkkt8c9EUST8zVRLQY7Mwu335TPCcuRk,5237
82
+ scikit_learn_intelex-2024.2.0.data/data/Lib/site-packages/sklearnex/svm/svc.py,sha256=4f-vJlPGeAcquz7nkSCeu0LJTTXCbdU2M54HkT49TeQ,10288
83
+ scikit_learn_intelex-2024.2.0.data/data/Lib/site-packages/sklearnex/svm/svr.py,sha256=fmYi0dghOmmyFFVI59COX9-tyouQnSDfHIbs8GY8AHs,5241
84
+ scikit_learn_intelex-2024.2.0.data/data/Lib/site-packages/sklearnex/svm/tests/test_svm.py,sha256=Ru-aGNGCsRJts7SEEYbnKcVqUx-DqPyUtw-hEoMVpW8,4190
85
+ scikit_learn_intelex-2024.2.0.data/data/Lib/site-packages/sklearnex/tests/_models_info.py,sha256=xhjvnU3TvQg8J5Cih2hphWAOSsT8DnKmCyYbtwa0Qvs,4785
86
+ scikit_learn_intelex-2024.2.0.data/data/Lib/site-packages/sklearnex/tests/test_config.py,sha256=SnSJjxAAysISDyC3bYKSJiRHStkB9X-yjLeF11LpRog,1372
87
+ scikit_learn_intelex-2024.2.0.data/data/Lib/site-packages/sklearnex/tests/test_memory_usage.py,sha256=lwm63gSyRR82n3LGBdsophU_NvZK5RHkxAoTDZ2AcWI,7309
88
+ scikit_learn_intelex-2024.2.0.data/data/Lib/site-packages/sklearnex/tests/test_monkeypatch.py,sha256=wmtEeDNGoiPBlAh4Vmts86eFQLk8Wbzjbj6Busf6V3o,8663
89
+ scikit_learn_intelex-2024.2.0.data/data/Lib/site-packages/sklearnex/tests/test_n_jobs_support.py,sha256=ynfCSdCMnR3yEq1YEf_cilVD7zSe0sS-ZQ9jC0hHo8M,3903
90
+ scikit_learn_intelex-2024.2.0.data/data/Lib/site-packages/sklearnex/tests/test_parallel.py,sha256=bMu22noUvGiDX4oyxKIHPiOEoBP9lRQQUq6wq8ZD730,1776
91
+ scikit_learn_intelex-2024.2.0.data/data/Lib/site-packages/sklearnex/tests/test_patching.py,sha256=IySMpMdWVgoAZgs1cRKvdJeb8RXElFwjjNdHcE4jJz0,4247
92
+ scikit_learn_intelex-2024.2.0.data/data/Lib/site-packages/sklearnex/tests/test_run_to_run_stability_tests.py,sha256=4HDOeJruA1EDILbyQJtsHFmEXC0D1upSHuOT-KyTlEc,14008
93
+ scikit_learn_intelex-2024.2.0.data/data/Lib/site-packages/sklearnex/tests/utils/_launch_algorithms.py,sha256=pJT5tAW9rWvk7GT37R-B0-e8SLz8e9FSZw8yu4LWNJ4,3724
94
+ scikit_learn_intelex-2024.2.0.data/data/Lib/site-packages/sklearnex/utils/__init__.py,sha256=I8mbJQ3Zsm_F3sCLAhJQb7tUrG30kVsQ-wZoqA8vDdA,842
95
+ scikit_learn_intelex-2024.2.0.data/data/Lib/site-packages/sklearnex/utils/parallel.py,sha256=VBcS-KUdyq7XpJUN6ygmNjyWtYLroghbvCxQ8nVU3YI,2085
96
+ scikit_learn_intelex-2024.2.0.data/data/Lib/site-packages/sklearnex/utils/validation.py,sha256=fjfhQiKnBQnD7LCBlacMyvsrhGnlMLRXk5Q69uoZIP4,827
97
+ scikit_learn_intelex-2024.2.0.dist-info/LICENSE.txt,sha256=rVeK6nE7qRmAwbwjnG9ENguRsDgzEkFn5MZL2IU6QgY,10999
98
+ scikit_learn_intelex-2024.2.0.dist-info/METADATA,sha256=yUEG8voZbX3yS6WqASjdCJ23B3xLFxgOM9gA0501bHw,12448
99
+ scikit_learn_intelex-2024.2.0.dist-info/WHEEL,sha256=G27LerVAsJMtVEJpFfuoxcZMbwZpIab_g-fyc0T6CrM,100
100
+ scikit_learn_intelex-2024.2.0.dist-info/top_level.txt,sha256=AbpHGcgLb-kRsJGnwFEktk7uzpZOCcBY74-YBdrKVGs,1
101
+ scikit_learn_intelex-2024.2.0.dist-info/RECORD,,
@@ -1,28 +0,0 @@
1
- # ===============================================================================
2
- # Copyright 2021 Intel Corporation
3
- #
4
- # Licensed under the Apache License, Version 2.0 (the "License");
5
- # you may not use this file except in compliance with the License.
6
- # You may obtain a copy of the License at
7
- #
8
- # http://www.apache.org/licenses/LICENSE-2.0
9
- #
10
- # Unless required by applicable law or agreed to in writing, software
11
- # distributed under the License is distributed on an "AS IS" BASIS,
12
- # WITHOUT WARRANTIES OR CONDITIONS OF ANY KIND, either express or implied.
13
- # See the License for the specific language governing permissions and
14
- # limitations under the License.
15
- # ===============================================================================
16
-
17
- import numpy as np
18
- from numpy.testing import assert_allclose
19
- from sklearn.datasets import load_iris
20
-
21
-
22
- def test_sklearnex_import():
23
- from sklearnex.linear_model import LogisticRegression
24
-
25
- X, y = load_iris(return_X_y=True)
26
- logreg = LogisticRegression(random_state=0, max_iter=200).fit(X, y)
27
- assert "daal4py" in logreg.__module__
28
- assert_allclose(logreg.score(X, y), 0.9733, atol=1e-3)
@@ -1,436 +0,0 @@
1
- # ===============================================================================
2
- # Copyright 2023 Intel Corporation
3
- #
4
- # Licensed under the Apache License, Version 2.0 (the "License");
5
- # you may not use this file except in compliance with the License.
6
- # You may obtain a copy of the License at
7
- #
8
- # http://www.apache.org/licenses/LICENSE-2.0
9
- #
10
- # Unless required by applicable law or agreed to in writing, software
11
- # distributed under the License is distributed on an "AS IS" BASIS,
12
- # WITHOUT WARRANTIES OR CONDITIONS OF ANY KIND, either express or implied.
13
- # See the License for the specific language governing permissions and
14
- # limitations under the License.
15
- # ===============================================================================
16
-
17
- import warnings
18
-
19
- import numpy as np
20
- from sklearn.neighbors._lof import LocalOutlierFactor as sklearn_LocalOutlierFactor
21
-
22
- from .knn_unsupervised import NearestNeighbors
23
-
24
- try:
25
- from sklearn.utils.metaestimators import available_if
26
- except ImportError:
27
- pass
28
-
29
- from sklearn.utils import check_array
30
- from sklearn.utils.validation import check_is_fitted
31
-
32
- from daal4py.sklearn._utils import sklearn_check_version
33
-
34
- from .._config import config_context
35
- from .._device_offload import dispatch, wrap_output_data
36
- from .._utils import PatchingConditionsChain
37
-
38
- if sklearn_check_version("1.0"):
39
-
40
- class LocalOutlierFactor(sklearn_LocalOutlierFactor):
41
- if sklearn_check_version("1.2"):
42
- _parameter_constraints: dict = {
43
- **sklearn_LocalOutlierFactor._parameter_constraints
44
- }
45
-
46
- def __init__(
47
- self,
48
- n_neighbors=20,
49
- *,
50
- algorithm="auto",
51
- leaf_size=30,
52
- metric="minkowski",
53
- p=2,
54
- metric_params=None,
55
- contamination="auto",
56
- novelty=False,
57
- n_jobs=None,
58
- ):
59
- super().__init__(
60
- n_neighbors=n_neighbors,
61
- algorithm=algorithm,
62
- leaf_size=leaf_size,
63
- metric=metric,
64
- p=p,
65
- metric_params=metric_params,
66
- n_jobs=n_jobs,
67
- contamination=contamination,
68
- novelty=novelty,
69
- )
70
-
71
- def _fit(self, X, y, queue=None):
72
- with config_context(target_offload=queue):
73
- if sklearn_check_version("1.2"):
74
- self._validate_params()
75
- self._knn = NearestNeighbors(
76
- n_neighbors=self.n_neighbors,
77
- algorithm=self.algorithm,
78
- leaf_size=self.leaf_size,
79
- metric=self.metric,
80
- p=self.p,
81
- metric_params=self.metric_params,
82
- n_jobs=self.n_jobs,
83
- )
84
- self._knn.fit(X)
85
-
86
- if self.contamination != "auto":
87
- if not (0.0 < self.contamination <= 0.5):
88
- raise ValueError(
89
- "contamination must be in (0, 0.5], "
90
- "got: %f" % self.contamination
91
- )
92
-
93
- n_samples = self._knn.n_samples_fit_
94
-
95
- if self.n_neighbors > n_samples:
96
- warnings.warn(
97
- "n_neighbors (%s) is greater than the "
98
- "total number of samples (%s). n_neighbors "
99
- "will be set to (n_samples - 1) for estimation."
100
- % (self.n_neighbors, n_samples)
101
- )
102
- self.n_neighbors_ = max(1, min(self.n_neighbors, n_samples - 1))
103
-
104
- self._distances_fit_X_, _neighbors_indices_fit_X_ = self._knn.kneighbors(
105
- n_neighbors=self.n_neighbors_
106
- )
107
-
108
- self._lrd = self._local_reachability_density(
109
- self._distances_fit_X_, _neighbors_indices_fit_X_
110
- )
111
-
112
- # Compute lof score over training samples to define offset_:
113
- lrd_ratios_array = (
114
- self._lrd[_neighbors_indices_fit_X_] / self._lrd[:, np.newaxis]
115
- )
116
-
117
- self.negative_outlier_factor_ = -np.mean(lrd_ratios_array, axis=1)
118
-
119
- if self.contamination == "auto":
120
- # inliers score around -1 (the higher, the less abnormal).
121
- self.offset_ = -1.5
122
- else:
123
- self.offset_ = np.percentile(
124
- self.negative_outlier_factor_, 100.0 * self.contamination
125
- )
126
-
127
- for knn_prop_name in self._knn.__dict__.keys():
128
- if knn_prop_name not in self.__dict__.keys():
129
- setattr(self, knn_prop_name, self._knn.__dict__[knn_prop_name])
130
-
131
- return self
132
-
133
- def fit(self, X, y=None):
134
- return dispatch(
135
- self,
136
- "neighbors.LocalOutlierFactor.fit",
137
- {
138
- "onedal": self.__class__._fit,
139
- "sklearn": None,
140
- },
141
- X,
142
- y,
143
- )
144
-
145
- def _onedal_predict(self, X, queue=None):
146
- with config_context(target_offload=queue):
147
- check_is_fitted(self)
148
-
149
- if X is not None:
150
- X = check_array(X, accept_sparse="csr")
151
- is_inlier = np.ones(X.shape[0], dtype=int)
152
- is_inlier[self.decision_function(X) < 0] = -1
153
- else:
154
- is_inlier = np.ones(self._knn.n_samples_fit_, dtype=int)
155
- is_inlier[self.negative_outlier_factor_ < self.offset_] = -1
156
-
157
- return is_inlier
158
-
159
- @wrap_output_data
160
- def _predict(self, X=None):
161
- return dispatch(
162
- self,
163
- "neighbors.LocalOutlierFactor.predict",
164
- {
165
- "onedal": self.__class__._onedal_predict,
166
- "sklearn": None,
167
- },
168
- X,
169
- )
170
-
171
- def _score_samples(self, X, queue=None):
172
- with config_context(target_offload=queue):
173
- check_is_fitted(self)
174
- X = check_array(X, accept_sparse="csr")
175
-
176
- distances_X, neighbors_indices_X = self._knn.kneighbors(
177
- X, n_neighbors=self.n_neighbors_
178
- )
179
- X_lrd = self._local_reachability_density(distances_X, neighbors_indices_X)
180
-
181
- lrd_ratios_array = self._lrd[neighbors_indices_X] / X_lrd[:, np.newaxis]
182
-
183
- # as bigger is better:
184
- return -np.mean(lrd_ratios_array, axis=1)
185
-
186
- def _check_novelty_score_samples(self):
187
- if not self.novelty:
188
- msg = (
189
- "score_samples is not available when novelty=False. The "
190
- "scores of the training samples are always available "
191
- "through the negative_outlier_factor_ attribute. Use "
192
- "novelty=True if you want to use LOF for novelty detection "
193
- "and compute score_samples for new unseen data."
194
- )
195
- raise AttributeError(msg)
196
- return True
197
-
198
- @available_if(_check_novelty_score_samples)
199
- @wrap_output_data
200
- def score_samples(self, X):
201
- return dispatch(
202
- self,
203
- "neighbors.LocalOutlierFactor.score_samples",
204
- {
205
- "onedal": self.__class__._score_samples,
206
- "sklearn": None,
207
- },
208
- X,
209
- )
210
-
211
- def _check_novelty_fit_predict(self):
212
- if self.novelty:
213
- msg = (
214
- "fit_predict is not available when novelty=True. Use "
215
- "novelty=False if you want to predict on the training set."
216
- )
217
- raise AttributeError(msg)
218
- return True
219
-
220
- def _fit_predict(self, X, y, queue=None):
221
- with config_context(target_offload=queue):
222
- return self.fit(X)._predict()
223
-
224
- @available_if(_check_novelty_fit_predict)
225
- @wrap_output_data
226
- def fit_predict(self, X, y=None):
227
- return dispatch(
228
- self,
229
- "neighbors.LocalOutlierFactor.fit_predict",
230
- {
231
- "onedal": self.__class__._fit_predict,
232
- "sklearn": None,
233
- },
234
- X,
235
- y,
236
- )
237
-
238
- def _onedal_gpu_supported(self, method_name, *data):
239
- class_name = self.__class__.__name__
240
- patching_status = PatchingConditionsChain(
241
- f"sklearn.neighbors.{class_name}.{method_name}"
242
- )
243
- return patching_status
244
-
245
- def _onedal_cpu_supported(self, method_name, *data):
246
- class_name = self.__class__.__name__
247
- patching_status = PatchingConditionsChain(
248
- f"sklearn.neighbors.{class_name}.{method_name}"
249
- )
250
- return patching_status
251
-
252
- else:
253
-
254
- class LocalOutlierFactor(sklearn_LocalOutlierFactor):
255
- def __init__(
256
- self,
257
- n_neighbors=20,
258
- *,
259
- algorithm="auto",
260
- leaf_size=30,
261
- metric="minkowski",
262
- p=2,
263
- metric_params=None,
264
- contamination="auto",
265
- novelty=False,
266
- n_jobs=None,
267
- ):
268
- super().__init__(
269
- n_neighbors=n_neighbors,
270
- algorithm=algorithm,
271
- leaf_size=leaf_size,
272
- metric=metric,
273
- p=p,
274
- metric_params=metric_params,
275
- n_jobs=n_jobs,
276
- contamination=contamination,
277
- novelty=novelty,
278
- )
279
-
280
- def _fit(self, X, y=None, queue=None):
281
- with config_context(target_offload=queue):
282
- self._knn = NearestNeighbors(
283
- n_neighbors=self.n_neighbors,
284
- algorithm=self.algorithm,
285
- leaf_size=self.leaf_size,
286
- metric=self.metric,
287
- p=self.p,
288
- metric_params=self.metric_params,
289
- n_jobs=self.n_jobs,
290
- )
291
- self._knn.fit(X)
292
-
293
- if self.contamination != "auto":
294
- if not (0.0 < self.contamination <= 0.5):
295
- raise ValueError(
296
- "contamination must be in (0, 0.5], "
297
- "got: %f" % self.contamination
298
- )
299
-
300
- n_samples = self._knn.n_samples_fit_
301
-
302
- if self.n_neighbors > n_samples:
303
- warnings.warn(
304
- "n_neighbors (%s) is greater than the "
305
- "total number of samples (%s). n_neighbors "
306
- "will be set to (n_samples - 1) for estimation."
307
- % (self.n_neighbors, n_samples)
308
- )
309
- self.n_neighbors_ = max(1, min(self.n_neighbors, n_samples - 1))
310
-
311
- self._distances_fit_X_, _neighbors_indices_fit_X_ = self._knn.kneighbors(
312
- n_neighbors=self.n_neighbors_
313
- )
314
-
315
- self._lrd = self._local_reachability_density(
316
- self._distances_fit_X_, _neighbors_indices_fit_X_
317
- )
318
-
319
- # Compute lof score over training samples to define offset_:
320
- lrd_ratios_array = (
321
- self._lrd[_neighbors_indices_fit_X_] / self._lrd[:, np.newaxis]
322
- )
323
-
324
- self.negative_outlier_factor_ = -np.mean(lrd_ratios_array, axis=1)
325
-
326
- if self.contamination == "auto":
327
- # inliers score around -1 (the higher, the less abnormal).
328
- self.offset_ = -1.5
329
- else:
330
- self.offset_ = np.percentile(
331
- self.negative_outlier_factor_, 100.0 * self.contamination
332
- )
333
-
334
- for knn_prop_name in self._knn.__dict__.keys():
335
- if knn_prop_name not in self.__dict__.keys():
336
- setattr(self, knn_prop_name, self._knn.__dict__[knn_prop_name])
337
-
338
- return self
339
-
340
- def fit(self, X, y=None):
341
- return dispatch(
342
- self,
343
- "neighbors.LocalOutlierFactor.fit",
344
- {
345
- "onedal": self.__class__._fit,
346
- "sklearn": None,
347
- },
348
- X,
349
- y,
350
- )
351
-
352
- def _onedal_predict(self, X, queue=None):
353
- with config_context(target_offload=queue):
354
- check_is_fitted(self)
355
-
356
- if X is not None:
357
- X = check_array(X, accept_sparse="csr")
358
- is_inlier = np.ones(X.shape[0], dtype=int)
359
- is_inlier[self.decision_function(X) < 0] = -1
360
- else:
361
- is_inlier = np.ones(self._knn.n_samples_fit_, dtype=int)
362
- is_inlier[self.negative_outlier_factor_ < self.offset_] = -1
363
-
364
- return is_inlier
365
-
366
- @wrap_output_data
367
- def _predict(self, X=None):
368
- return dispatch(
369
- self,
370
- "neighbors.LocalOutlierFactor.predict",
371
- {
372
- "onedal": self.__class__._onedal_predict,
373
- "sklearn": None,
374
- },
375
- X,
376
- )
377
-
378
- def _onedal_score_samples(self, X, queue=None):
379
- with config_context(target_offload=queue):
380
- check_is_fitted(self)
381
- X = check_array(X, accept_sparse="csr")
382
-
383
- distances_X, neighbors_indices_X = self._knn.kneighbors(
384
- X, n_neighbors=self.n_neighbors_
385
- )
386
- X_lrd = self._local_reachability_density(distances_X, neighbors_indices_X)
387
-
388
- lrd_ratios_array = self._lrd[neighbors_indices_X] / X_lrd[:, np.newaxis]
389
-
390
- # as bigger is better:
391
- return -np.mean(lrd_ratios_array, axis=1)
392
-
393
- @wrap_output_data
394
- def _score_samples(self, X):
395
- if not self.novelty:
396
- msg = (
397
- "score_samples is not available when novelty=False. The "
398
- "scores of the training samples are always available "
399
- "through the negative_outlier_factor_ attribute. Use "
400
- "novelty=True if you want to use LOF for novelty detection "
401
- "and compute score_samples for new unseen data."
402
- )
403
- raise AttributeError(msg)
404
-
405
- return dispatch(
406
- self,
407
- "neighbors.LocalOutlierFactor.score_samples",
408
- {
409
- "onedal": self.__class__._onedal_score_samples,
410
- "sklearn": None,
411
- },
412
- X,
413
- )
414
-
415
- def _onedal_fit_predict(self, X, y, queue=None):
416
- with config_context(target_offload=queue):
417
- return self.fit(X)._predict()
418
-
419
- @wrap_output_data
420
- def _fit_predict(self, X, y=None):
421
- return dispatch(
422
- self,
423
- "neighbors.LocalOutlierFactor._onedal_fit_predict",
424
- {
425
- "onedal": self.__class__._onedal_fit_predict,
426
- "sklearn": None,
427
- },
428
- X,
429
- y,
430
- )
431
-
432
- def _onedal_gpu_supported(self, method_name, *data):
433
- return True
434
-
435
- def _onedal_cpu_supported(self, method_name, *data):
436
- return True
@@ -1,19 +0,0 @@
1
- # ===============================================================================
2
- # Copyright 2023 Intel Corporation
3
- #
4
- # Licensed under the Apache License, Version 2.0 (the "License");
5
- # you may not use this file except in compliance with the License.
6
- # You may obtain a copy of the License at
7
- #
8
- # http://www.apache.org/licenses/LICENSE-2.0
9
- #
10
- # Unless required by applicable law or agreed to in writing, software
11
- # distributed under the License is distributed on an "AS IS" BASIS,
12
- # WITHOUT WARRANTIES OR CONDITIONS OF ANY KIND, either express or implied.
13
- # See the License for the specific language governing permissions and
14
- # limitations under the License.
15
- # ===============================================================================
16
-
17
- from .logistic_regression import LogisticRegression
18
-
19
- __all__ = ["LogisticRegression"]
@@ -1,59 +0,0 @@
1
- # ===============================================================================
2
- # Copyright 2023 Intel Corporation
3
- #
4
- # Licensed under the Apache License, Version 2.0 (the "License");
5
- # you may not use this file except in compliance with the License.
6
- # You may obtain a copy of the License at
7
- #
8
- # http://www.apache.org/licenses/LICENSE-2.0
9
- #
10
- # Unless required by applicable law or agreed to in writing, software
11
- # distributed under the License is distributed on an "AS IS" BASIS,
12
- # WITHOUT WARRANTIES OR CONDITIONS OF ANY KIND, either express or implied.
13
- # See the License for the specific language governing permissions and
14
- # limitations under the License.
15
- # ===============================================================================
16
-
17
- import numpy as np
18
- import pytest
19
- from numpy.testing import assert_allclose
20
- from sklearn.datasets import load_breast_cancer
21
- from sklearn.metrics import accuracy_score
22
- from sklearn.model_selection import train_test_split
23
-
24
- from daal4py.sklearn._utils import daal_check_version
25
- from onedal.tests.utils._dataframes_support import (
26
- _as_numpy,
27
- _convert_to_dataframe,
28
- get_dataframes_and_queues,
29
- )
30
- from sklearnex import config_context
31
-
32
-
33
- @pytest.mark.parametrize(
34
- "dataframe,queue",
35
- get_dataframes_and_queues(dataframe_filter_="dpnp,dpctl", device_filter_="gpu"),
36
- )
37
- def test_sklearnex_import(dataframe, queue):
38
- from sklearnex.preview.linear_model import LogisticRegression
39
-
40
- X, y = load_breast_cancer(return_X_y=True)
41
- X_train, X_test, y_train, y_test = train_test_split(
42
- X, y, train_size=0.8, random_state=42
43
- )
44
- X_train = _convert_to_dataframe(X_train, sycl_queue=queue, target_df=dataframe)
45
- y_train = _convert_to_dataframe(y_train, sycl_queue=queue, target_df=dataframe)
46
- X_test = _convert_to_dataframe(X_test, sycl_queue=queue, target_df=dataframe)
47
-
48
- model = LogisticRegression(fit_intercept=True, solver="newton-cg")
49
- model.fit(X_train, y_train)
50
- y_pred = _as_numpy(model.predict(X_test))
51
- if daal_check_version((2024, "P", 1)):
52
- assert "sklearnex" in model.__module__
53
- else:
54
- assert "daal4py" in model.__module__
55
- # in case dataframe='numpy' algorithm should fallback to sklearn
56
- # as cpu method is not implemented in onedal
57
- if dataframe != "numpy" and daal_check_version((2024, "P", 1)):
58
- assert hasattr(model, "_onedal_estimator")
59
- assert accuracy_score(y_test, y_pred) > 0.95