scikit-learn-intelex 2024.1.0__py311-none-win_amd64.whl → 2025.1.0__py311-none-win_amd64.whl
This diff represents the content of publicly available package versions that have been released to one of the supported registries. The information contained in this diff is provided for informational purposes only and reflects changes between package versions as they appear in their respective public registries.
Potentially problematic release.
This version of scikit-learn-intelex might be problematic. Click here for more details.
- scikit_learn_intelex-2025.1.0.data/data/Lib/site-packages/daal4py/__init__.py +73 -0
- scikit_learn_intelex-2025.1.0.data/data/Lib/site-packages/daal4py/__main__.py +58 -0
- scikit_learn_intelex-2025.1.0.data/data/Lib/site-packages/daal4py/_daal4py.cp311-win_amd64.pyd +0 -0
- scikit_learn_intelex-2025.1.0.data/data/Lib/site-packages/daal4py/doc/third-party-programs.txt +424 -0
- scikit_learn_intelex-2025.1.0.data/data/Lib/site-packages/daal4py/mb/__init__.py +19 -0
- scikit_learn_intelex-2025.1.0.data/data/Lib/site-packages/daal4py/mb/model_builders.py +377 -0
- scikit_learn_intelex-2025.1.0.data/data/Lib/site-packages/daal4py/mpi_transceiver.cp311-win_amd64.pyd +0 -0
- scikit_learn_intelex-2025.1.0.data/data/Lib/site-packages/daal4py/sklearn/__init__.py +40 -0
- scikit_learn_intelex-2025.1.0.data/data/Lib/site-packages/daal4py/sklearn/_n_jobs_support.py +248 -0
- scikit_learn_intelex-2025.1.0.data/data/Lib/site-packages/daal4py/sklearn/_utils.py +245 -0
- scikit_learn_intelex-2025.1.0.data/data/Lib/site-packages/daal4py/sklearn/cluster/__init__.py +20 -0
- scikit_learn_intelex-2025.1.0.data/data/Lib/site-packages/daal4py/sklearn/cluster/dbscan.py +165 -0
- scikit_learn_intelex-2025.1.0.data/data/Lib/site-packages/daal4py/sklearn/cluster/k_means.py +597 -0
- scikit_learn_intelex-2025.1.0.data/data/Lib/site-packages/daal4py/sklearn/cluster/tests/test_dbscan.py +109 -0
- {scikit_learn_intelex-2024.1.0.data/data/Lib/site-packages/sklearnex/preview/cluster → scikit_learn_intelex-2025.1.0.data/data/Lib/site-packages/daal4py/sklearn/decomposition}/__init__.py +3 -3
- scikit_learn_intelex-2025.1.0.data/data/Lib/site-packages/daal4py/sklearn/decomposition/_pca.py +524 -0
- scikit_learn_intelex-2025.1.0.data/data/Lib/site-packages/daal4py/sklearn/ensemble/AdaBoostClassifier.py +196 -0
- scikit_learn_intelex-2025.1.0.data/data/Lib/site-packages/daal4py/sklearn/ensemble/GBTDAAL.py +337 -0
- scikit_learn_intelex-2025.1.0.data/data/Lib/site-packages/daal4py/sklearn/ensemble/__init__.py +27 -0
- scikit_learn_intelex-2025.1.0.data/data/Lib/site-packages/daal4py/sklearn/ensemble/_forest.py +1397 -0
- scikit_learn_intelex-2025.1.0.data/data/Lib/site-packages/daal4py/sklearn/ensemble/tests/test_decision_forest.py +206 -0
- {scikit_learn_intelex-2024.1.0.data/data/Lib/site-packages/sklearnex → scikit_learn_intelex-2025.1.0.data/data/Lib/site-packages/daal4py/sklearn}/linear_model/__init__.py +29 -29
- scikit_learn_intelex-2025.1.0.data/data/Lib/site-packages/daal4py/sklearn/linear_model/_coordinate_descent.py +848 -0
- scikit_learn_intelex-2025.1.0.data/data/Lib/site-packages/daal4py/sklearn/linear_model/_linear.py +272 -0
- scikit_learn_intelex-2025.1.0.data/data/Lib/site-packages/daal4py/sklearn/linear_model/_ridge.py +325 -0
- scikit_learn_intelex-2024.1.0.data/data/Lib/site-packages/sklearnex/basic_statistics/basic_statistics.py → scikit_learn_intelex-2025.1.0.data/data/Lib/site-packages/daal4py/sklearn/linear_model/coordinate_descent.py +2 -2
- scikit_learn_intelex-2025.1.0.data/data/Lib/site-packages/daal4py/sklearn/linear_model/linear.py +17 -0
- scikit_learn_intelex-2025.1.0.data/data/Lib/site-packages/daal4py/sklearn/linear_model/logistic_loss.py +195 -0
- scikit_learn_intelex-2025.1.0.data/data/Lib/site-packages/daal4py/sklearn/linear_model/logistic_path.py +1026 -0
- scikit_learn_intelex-2025.1.0.data/data/Lib/site-packages/daal4py/sklearn/linear_model/ridge.py +17 -0
- scikit_learn_intelex-2025.1.0.data/data/Lib/site-packages/daal4py/sklearn/linear_model/tests/test_linear.py +208 -0
- scikit_learn_intelex-2025.1.0.data/data/Lib/site-packages/daal4py/sklearn/linear_model/tests/test_ridge.py +69 -0
- {scikit_learn_intelex-2024.1.0.data/data/Lib/site-packages/sklearnex/preview → scikit_learn_intelex-2025.1.0.data/data/Lib/site-packages/daal4py/sklearn/manifold}/__init__.py +4 -2
- scikit_learn_intelex-2025.1.0.data/data/Lib/site-packages/daal4py/sklearn/manifold/_t_sne.py +405 -0
- scikit_learn_intelex-2025.1.0.data/data/Lib/site-packages/daal4py/sklearn/metrics/__init__.py +20 -0
- scikit_learn_intelex-2025.1.0.data/data/Lib/site-packages/daal4py/sklearn/metrics/_pairwise.py +236 -0
- scikit_learn_intelex-2025.1.0.data/data/Lib/site-packages/daal4py/sklearn/metrics/_ranking.py +210 -0
- scikit_learn_intelex-2025.1.0.data/data/Lib/site-packages/daal4py/sklearn/model_selection/__init__.py +19 -0
- scikit_learn_intelex-2025.1.0.data/data/Lib/site-packages/daal4py/sklearn/model_selection/_split.py +309 -0
- scikit_learn_intelex-2025.1.0.data/data/Lib/site-packages/daal4py/sklearn/model_selection/tests/test_split.py +56 -0
- scikit_learn_intelex-2025.1.0.data/data/Lib/site-packages/daal4py/sklearn/monkeypatch/__init__.py +0 -0
- scikit_learn_intelex-2025.1.0.data/data/Lib/site-packages/daal4py/sklearn/monkeypatch/dispatcher.py +232 -0
- {scikit_learn_intelex-2024.1.0.data/data/Lib/site-packages/sklearnex → scikit_learn_intelex-2025.1.0.data/data/Lib/site-packages/daal4py/sklearn/monkeypatch}/tests/_models_info.py +13 -22
- scikit_learn_intelex-2025.1.0.data/data/Lib/site-packages/daal4py/sklearn/monkeypatch/tests/test_monkeypatch.py +71 -0
- {scikit_learn_intelex-2024.1.0.data/data/Lib/site-packages/sklearnex → scikit_learn_intelex-2025.1.0.data/data/Lib/site-packages/daal4py/sklearn/monkeypatch}/tests/test_patching.py +10 -42
- {scikit_learn_intelex-2024.1.0.data/data/Lib/site-packages/sklearnex → scikit_learn_intelex-2025.1.0.data/data/Lib/site-packages/daal4py/sklearn/monkeypatch}/tests/utils/_launch_algorithms.py +4 -5
- scikit_learn_intelex-2025.1.0.data/data/Lib/site-packages/daal4py/sklearn/neighbors/__init__.py +21 -0
- scikit_learn_intelex-2025.1.0.data/data/Lib/site-packages/daal4py/sklearn/neighbors/_base.py +503 -0
- scikit_learn_intelex-2025.1.0.data/data/Lib/site-packages/daal4py/sklearn/neighbors/_classification.py +139 -0
- scikit_learn_intelex-2025.1.0.data/data/Lib/site-packages/daal4py/sklearn/neighbors/_regression.py +74 -0
- scikit_learn_intelex-2025.1.0.data/data/Lib/site-packages/daal4py/sklearn/neighbors/_unsupervised.py +55 -0
- scikit_learn_intelex-2025.1.0.data/data/Lib/site-packages/daal4py/sklearn/neighbors/tests/test_kneighbors.py +113 -0
- scikit_learn_intelex-2025.1.0.data/data/Lib/site-packages/daal4py/sklearn/svm/__init__.py +19 -0
- scikit_learn_intelex-2025.1.0.data/data/Lib/site-packages/daal4py/sklearn/svm/svm.py +734 -0
- scikit_learn_intelex-2025.1.0.data/data/Lib/site-packages/daal4py/sklearn/utils/__init__.py +21 -0
- scikit_learn_intelex-2025.1.0.data/data/Lib/site-packages/daal4py/sklearn/utils/base.py +75 -0
- scikit_learn_intelex-2025.1.0.data/data/Lib/site-packages/daal4py/sklearn/utils/tests/test_utils.py +51 -0
- scikit_learn_intelex-2025.1.0.data/data/Lib/site-packages/daal4py/sklearn/utils/validation.py +693 -0
- scikit_learn_intelex-2025.1.0.data/data/Lib/site-packages/onedal/__init__.py +83 -0
- scikit_learn_intelex-2025.1.0.data/data/Lib/site-packages/onedal/_config.py +54 -0
- scikit_learn_intelex-2025.1.0.data/data/Lib/site-packages/onedal/_device_offload.py +222 -0
- scikit_learn_intelex-2025.1.0.data/data/Lib/site-packages/onedal/_onedal_py_dpc.cp311-win_amd64.pyd +0 -0
- scikit_learn_intelex-2025.1.0.data/data/Lib/site-packages/onedal/_onedal_py_host.cp311-win_amd64.pyd +0 -0
- scikit_learn_intelex-2025.1.0.data/data/Lib/site-packages/onedal/basic_statistics/__init__.py +20 -0
- scikit_learn_intelex-2025.1.0.data/data/Lib/site-packages/onedal/basic_statistics/basic_statistics.py +107 -0
- scikit_learn_intelex-2025.1.0.data/data/Lib/site-packages/onedal/basic_statistics/incremental_basic_statistics.py +160 -0
- scikit_learn_intelex-2025.1.0.data/data/Lib/site-packages/onedal/basic_statistics/tests/test_basic_statistics.py +298 -0
- scikit_learn_intelex-2025.1.0.data/data/Lib/site-packages/onedal/basic_statistics/tests/test_incremental_basic_statistics.py +196 -0
- scikit_learn_intelex-2025.1.0.data/data/Lib/site-packages/onedal/cluster/__init__.py +27 -0
- scikit_learn_intelex-2025.1.0.data/data/Lib/site-packages/onedal/cluster/dbscan.py +110 -0
- scikit_learn_intelex-2025.1.0.data/data/Lib/site-packages/onedal/cluster/kmeans.py +564 -0
- scikit_learn_intelex-2025.1.0.data/data/Lib/site-packages/onedal/cluster/kmeans_init.py +115 -0
- scikit_learn_intelex-2025.1.0.data/data/Lib/site-packages/onedal/cluster/tests/test_dbscan.py +125 -0
- scikit_learn_intelex-2025.1.0.data/data/Lib/site-packages/onedal/cluster/tests/test_kmeans.py +88 -0
- scikit_learn_intelex-2025.1.0.data/data/Lib/site-packages/onedal/cluster/tests/test_kmeans_init.py +93 -0
- scikit_learn_intelex-2025.1.0.data/data/Lib/site-packages/onedal/common/_base.py +38 -0
- scikit_learn_intelex-2025.1.0.data/data/Lib/site-packages/onedal/common/_estimator_checks.py +47 -0
- scikit_learn_intelex-2025.1.0.data/data/Lib/site-packages/onedal/common/_mixin.py +62 -0
- scikit_learn_intelex-2025.1.0.data/data/Lib/site-packages/onedal/common/_policy.py +59 -0
- scikit_learn_intelex-2025.1.0.data/data/Lib/site-packages/onedal/common/_spmd_policy.py +30 -0
- scikit_learn_intelex-2025.1.0.data/data/Lib/site-packages/onedal/common/hyperparameters.py +125 -0
- scikit_learn_intelex-2025.1.0.data/data/Lib/site-packages/onedal/common/tests/test_policy.py +76 -0
- {scikit_learn_intelex-2024.1.0.data/data/Lib/site-packages/sklearnex/preview/linear_model → scikit_learn_intelex-2025.1.0.data/data/Lib/site-packages/onedal/covariance}/__init__.py +3 -2
- scikit_learn_intelex-2025.1.0.data/data/Lib/site-packages/onedal/covariance/covariance.py +125 -0
- scikit_learn_intelex-2025.1.0.data/data/Lib/site-packages/onedal/covariance/incremental_covariance.py +146 -0
- scikit_learn_intelex-2025.1.0.data/data/Lib/site-packages/onedal/covariance/tests/test_covariance.py +50 -0
- scikit_learn_intelex-2025.1.0.data/data/Lib/site-packages/onedal/covariance/tests/test_incremental_covariance.py +122 -0
- scikit_learn_intelex-2025.1.0.data/data/Lib/site-packages/onedal/datatypes/__init__.py +19 -0
- scikit_learn_intelex-2025.1.0.data/data/Lib/site-packages/onedal/datatypes/_data_conversion.py +154 -0
- scikit_learn_intelex-2025.1.0.data/data/Lib/site-packages/onedal/datatypes/tests/common.py +126 -0
- scikit_learn_intelex-2025.1.0.data/data/Lib/site-packages/onedal/datatypes/tests/test_data.py +414 -0
- {scikit_learn_intelex-2024.1.0.data/data/Lib/site-packages/sklearnex/basic_statistics → scikit_learn_intelex-2025.1.0.data/data/Lib/site-packages/onedal/decomposition}/__init__.py +3 -2
- scikit_learn_intelex-2025.1.0.data/data/Lib/site-packages/onedal/decomposition/incremental_pca.py +204 -0
- scikit_learn_intelex-2025.1.0.data/data/Lib/site-packages/onedal/decomposition/pca.py +186 -0
- scikit_learn_intelex-2025.1.0.data/data/Lib/site-packages/onedal/decomposition/tests/test_incremental_pca.py +198 -0
- scikit_learn_intelex-2025.1.0.data/data/Lib/site-packages/onedal/ensemble/__init__.py +29 -0
- scikit_learn_intelex-2025.1.0.data/data/Lib/site-packages/onedal/ensemble/forest.py +727 -0
- scikit_learn_intelex-2025.1.0.data/data/Lib/site-packages/onedal/ensemble/tests/test_random_forest.py +97 -0
- scikit_learn_intelex-2025.1.0.data/data/Lib/site-packages/onedal/linear_model/__init__.py +27 -0
- scikit_learn_intelex-2025.1.0.data/data/Lib/site-packages/onedal/linear_model/incremental_linear_model.py +258 -0
- scikit_learn_intelex-2025.1.0.data/data/Lib/site-packages/onedal/linear_model/linear_model.py +329 -0
- scikit_learn_intelex-2025.1.0.data/data/Lib/site-packages/onedal/linear_model/logistic_regression.py +249 -0
- scikit_learn_intelex-2025.1.0.data/data/Lib/site-packages/onedal/linear_model/tests/test_incremental_linear_regression.py +168 -0
- scikit_learn_intelex-2025.1.0.data/data/Lib/site-packages/onedal/linear_model/tests/test_incremental_ridge_regression.py +107 -0
- scikit_learn_intelex-2025.1.0.data/data/Lib/site-packages/onedal/linear_model/tests/test_linear_regression.py +250 -0
- scikit_learn_intelex-2025.1.0.data/data/Lib/site-packages/onedal/linear_model/tests/test_logistic_regression.py +95 -0
- scikit_learn_intelex-2025.1.0.data/data/Lib/site-packages/onedal/linear_model/tests/test_ridge.py +95 -0
- scikit_learn_intelex-2025.1.0.data/data/Lib/site-packages/onedal/neighbors/__init__.py +19 -0
- scikit_learn_intelex-2025.1.0.data/data/Lib/site-packages/onedal/neighbors/neighbors.py +767 -0
- scikit_learn_intelex-2025.1.0.data/data/Lib/site-packages/onedal/neighbors/tests/test_knn_classification.py +49 -0
- scikit_learn_intelex-2025.1.0.data/data/Lib/site-packages/onedal/primitives/__init__.py +27 -0
- scikit_learn_intelex-2025.1.0.data/data/Lib/site-packages/onedal/primitives/get_tree.py +25 -0
- scikit_learn_intelex-2025.1.0.data/data/Lib/site-packages/onedal/primitives/kernel_functions.py +153 -0
- scikit_learn_intelex-2025.1.0.data/data/Lib/site-packages/onedal/primitives/tests/test_kernel_functions.py +159 -0
- scikit_learn_intelex-2025.1.0.data/data/Lib/site-packages/onedal/svm/__init__.py +19 -0
- scikit_learn_intelex-2025.1.0.data/data/Lib/site-packages/onedal/svm/svm.py +556 -0
- scikit_learn_intelex-2025.1.0.data/data/Lib/site-packages/onedal/svm/tests/test_csr_svm.py +351 -0
- scikit_learn_intelex-2025.1.0.data/data/Lib/site-packages/onedal/svm/tests/test_nusvc.py +204 -0
- scikit_learn_intelex-2025.1.0.data/data/Lib/site-packages/onedal/svm/tests/test_nusvr.py +210 -0
- scikit_learn_intelex-2025.1.0.data/data/Lib/site-packages/onedal/svm/tests/test_svc.py +176 -0
- scikit_learn_intelex-2025.1.0.data/data/Lib/site-packages/onedal/svm/tests/test_svr.py +243 -0
- scikit_learn_intelex-2025.1.0.data/data/Lib/site-packages/onedal/tests/test_common.py +57 -0
- scikit_learn_intelex-2025.1.0.data/data/Lib/site-packages/onedal/tests/utils/_dataframes_support.py +162 -0
- scikit_learn_intelex-2025.1.0.data/data/Lib/site-packages/onedal/tests/utils/_device_selection.py +102 -0
- scikit_learn_intelex-2025.1.0.data/data/Lib/site-packages/onedal/utils/__init__.py +49 -0
- scikit_learn_intelex-2025.1.0.data/data/Lib/site-packages/onedal/utils/_array_api.py +81 -0
- scikit_learn_intelex-2025.1.0.data/data/Lib/site-packages/onedal/utils/_dpep_helpers.py +56 -0
- scikit_learn_intelex-2025.1.0.data/data/Lib/site-packages/onedal/utils/validation.py +440 -0
- {scikit_learn_intelex-2024.1.0.data → scikit_learn_intelex-2025.1.0.data}/data/Lib/site-packages/sklearnex/__init__.py +10 -7
- {scikit_learn_intelex-2024.1.0.data → scikit_learn_intelex-2025.1.0.data}/data/Lib/site-packages/sklearnex/_config.py +22 -16
- scikit_learn_intelex-2025.1.0.data/data/Lib/site-packages/sklearnex/_device_offload.py +126 -0
- {scikit_learn_intelex-2024.1.0.data → scikit_learn_intelex-2025.1.0.data}/data/Lib/site-packages/sklearnex/_utils.py +27 -4
- scikit_learn_intelex-2025.1.0.data/data/Lib/site-packages/sklearnex/basic_statistics/__init__.py +20 -0
- scikit_learn_intelex-2025.1.0.data/data/Lib/site-packages/sklearnex/basic_statistics/basic_statistics.py +230 -0
- scikit_learn_intelex-2025.1.0.data/data/Lib/site-packages/sklearnex/basic_statistics/incremental_basic_statistics.py +345 -0
- scikit_learn_intelex-2025.1.0.data/data/Lib/site-packages/sklearnex/basic_statistics/tests/test_basic_statistics.py +270 -0
- scikit_learn_intelex-2025.1.0.data/data/Lib/site-packages/sklearnex/basic_statistics/tests/test_incremental_basic_statistics.py +404 -0
- {scikit_learn_intelex-2024.1.0.data → scikit_learn_intelex-2025.1.0.data}/data/Lib/site-packages/sklearnex/cluster/__init__.py +1 -1
- {scikit_learn_intelex-2024.1.0.data → scikit_learn_intelex-2025.1.0.data}/data/Lib/site-packages/sklearnex/cluster/dbscan.py +19 -10
- scikit_learn_intelex-2025.1.0.data/data/Lib/site-packages/sklearnex/cluster/k_means.py +395 -0
- {scikit_learn_intelex-2024.1.0.data → scikit_learn_intelex-2025.1.0.data}/data/Lib/site-packages/sklearnex/cluster/tests/test_dbscan.py +8 -6
- scikit_learn_intelex-2025.1.0.data/data/Lib/site-packages/sklearnex/cluster/tests/test_kmeans.py +159 -0
- scikit_learn_intelex-2025.1.0.data/data/Lib/site-packages/sklearnex/conftest.py +82 -0
- scikit_learn_intelex-2025.1.0.data/data/Lib/site-packages/sklearnex/covariance/__init__.py +19 -0
- scikit_learn_intelex-2025.1.0.data/data/Lib/site-packages/sklearnex/covariance/incremental_covariance.py +398 -0
- scikit_learn_intelex-2025.1.0.data/data/Lib/site-packages/sklearnex/covariance/tests/test_incremental_covariance.py +237 -0
- scikit_learn_intelex-2025.1.0.data/data/Lib/site-packages/sklearnex/decomposition/pca.py +425 -0
- scikit_learn_intelex-2024.1.0.data/data/Lib/site-packages/sklearnex/preview/decomposition/tests/test_preview_pca.py → scikit_learn_intelex-2025.1.0.data/data/Lib/site-packages/sklearnex/decomposition/tests/test_pca.py +25 -9
- {scikit_learn_intelex-2024.1.0.data → scikit_learn_intelex-2025.1.0.data}/data/Lib/site-packages/sklearnex/dispatcher.py +241 -60
- {scikit_learn_intelex-2024.1.0.data → scikit_learn_intelex-2025.1.0.data}/data/Lib/site-packages/sklearnex/ensemble/_forest.py +250 -188
- {scikit_learn_intelex-2024.1.0.data → scikit_learn_intelex-2025.1.0.data}/data/Lib/site-packages/sklearnex/ensemble/tests/test_forest.py +39 -21
- {scikit_learn_intelex-2024.1.0.data → scikit_learn_intelex-2025.1.0.data}/data/Lib/site-packages/sklearnex/glob/dispatcher.py +16 -2
- scikit_learn_intelex-2025.1.0.data/data/Lib/site-packages/sklearnex/linear_model/__init__.py +32 -0
- {scikit_learn_intelex-2024.1.0.data → scikit_learn_intelex-2025.1.0.data}/data/Lib/site-packages/sklearnex/linear_model/coordinate_descent.py +13 -0
- scikit_learn_intelex-2025.1.0.data/data/Lib/site-packages/sklearnex/linear_model/incremental_linear.py +482 -0
- scikit_learn_intelex-2025.1.0.data/data/Lib/site-packages/sklearnex/linear_model/incremental_ridge.py +425 -0
- scikit_learn_intelex-2025.1.0.data/data/Lib/site-packages/sklearnex/linear_model/linear.py +341 -0
- {scikit_learn_intelex-2024.1.0.data/data/Lib/site-packages/sklearnex/preview → scikit_learn_intelex-2025.1.0.data/data/Lib/site-packages/sklearnex}/linear_model/logistic_regression.py +194 -133
- {scikit_learn_intelex-2024.1.0.data → scikit_learn_intelex-2025.1.0.data}/data/Lib/site-packages/sklearnex/linear_model/ridge.py +7 -0
- scikit_learn_intelex-2025.1.0.data/data/Lib/site-packages/sklearnex/linear_model/tests/test_incremental_linear.py +207 -0
- scikit_learn_intelex-2025.1.0.data/data/Lib/site-packages/sklearnex/linear_model/tests/test_incremental_ridge.py +153 -0
- scikit_learn_intelex-2025.1.0.data/data/Lib/site-packages/sklearnex/linear_model/tests/test_linear.py +167 -0
- scikit_learn_intelex-2025.1.0.data/data/Lib/site-packages/sklearnex/linear_model/tests/test_logreg.py +134 -0
- {scikit_learn_intelex-2024.1.0.data → scikit_learn_intelex-2025.1.0.data}/data/Lib/site-packages/sklearnex/manifold/t_sne.py +4 -0
- {scikit_learn_intelex-2024.1.0.data → scikit_learn_intelex-2025.1.0.data}/data/Lib/site-packages/sklearnex/metrics/pairwise.py +5 -0
- {scikit_learn_intelex-2024.1.0.data → scikit_learn_intelex-2025.1.0.data}/data/Lib/site-packages/sklearnex/metrics/ranking.py +3 -0
- {scikit_learn_intelex-2024.1.0.data → scikit_learn_intelex-2025.1.0.data}/data/Lib/site-packages/sklearnex/model_selection/split.py +5 -0
- {scikit_learn_intelex-2024.1.0.data → scikit_learn_intelex-2025.1.0.data}/data/Lib/site-packages/sklearnex/neighbors/__init__.py +1 -1
- scikit_learn_intelex-2025.1.0.data/data/Lib/site-packages/sklearnex/neighbors/_lof.py +236 -0
- {scikit_learn_intelex-2024.1.0.data → scikit_learn_intelex-2025.1.0.data}/data/Lib/site-packages/sklearnex/neighbors/common.py +53 -6
- {scikit_learn_intelex-2024.1.0.data → scikit_learn_intelex-2025.1.0.data}/data/Lib/site-packages/sklearnex/neighbors/knn_classification.py +51 -155
- {scikit_learn_intelex-2024.1.0.data → scikit_learn_intelex-2025.1.0.data}/data/Lib/site-packages/sklearnex/neighbors/knn_regression.py +46 -149
- {scikit_learn_intelex-2024.1.0.data → scikit_learn_intelex-2025.1.0.data}/data/Lib/site-packages/sklearnex/neighbors/knn_unsupervised.py +55 -100
- {scikit_learn_intelex-2024.1.0.data → scikit_learn_intelex-2025.1.0.data}/data/Lib/site-packages/sklearnex/neighbors/tests/test_neighbors.py +16 -18
- {scikit_learn_intelex-2024.1.0.data/data/Lib/site-packages/sklearnex/spmd/decomposition → scikit_learn_intelex-2025.1.0.data/data/Lib/site-packages/sklearnex/preview}/__init__.py +1 -3
- scikit_learn_intelex-2025.1.0.data/data/Lib/site-packages/sklearnex/preview/covariance/covariance.py +138 -0
- {scikit_learn_intelex-2024.1.0.data → scikit_learn_intelex-2025.1.0.data}/data/Lib/site-packages/sklearnex/preview/covariance/tests/test_covariance.py +18 -5
- scikit_learn_intelex-2025.1.0.data/data/Lib/site-packages/sklearnex/preview/decomposition/__init__.py +19 -0
- scikit_learn_intelex-2025.1.0.data/data/Lib/site-packages/sklearnex/preview/decomposition/incremental_pca.py +233 -0
- scikit_learn_intelex-2025.1.0.data/data/Lib/site-packages/sklearnex/preview/decomposition/tests/test_incremental_pca.py +266 -0
- {scikit_learn_intelex-2024.1.0.data/data/Lib/site-packages/sklearnex/preview/decomposition → scikit_learn_intelex-2025.1.0.data/data/Lib/site-packages/sklearnex/preview/linear_model}/__init__.py +19 -19
- scikit_learn_intelex-2025.1.0.data/data/Lib/site-packages/sklearnex/preview/linear_model/ridge.py +424 -0
- scikit_learn_intelex-2025.1.0.data/data/Lib/site-packages/sklearnex/preview/linear_model/tests/test_ridge.py +102 -0
- {scikit_learn_intelex-2024.1.0.data → scikit_learn_intelex-2025.1.0.data}/data/Lib/site-packages/sklearnex/spmd/__init__.py +1 -0
- scikit_learn_intelex-2025.1.0.data/data/Lib/site-packages/sklearnex/spmd/basic_statistics/__init__.py +20 -0
- scikit_learn_intelex-2025.1.0.data/data/Lib/site-packages/sklearnex/spmd/basic_statistics/incremental_basic_statistics.py +30 -0
- scikit_learn_intelex-2025.1.0.data/data/Lib/site-packages/sklearnex/spmd/basic_statistics/tests/test_basic_statistics_spmd.py +107 -0
- scikit_learn_intelex-2025.1.0.data/data/Lib/site-packages/sklearnex/spmd/basic_statistics/tests/test_incremental_basic_statistics_spmd.py +307 -0
- scikit_learn_intelex-2025.1.0.data/data/Lib/site-packages/sklearnex/spmd/cluster/tests/test_dbscan_spmd.py +97 -0
- scikit_learn_intelex-2025.1.0.data/data/Lib/site-packages/sklearnex/spmd/cluster/tests/test_kmeans_spmd.py +172 -0
- scikit_learn_intelex-2025.1.0.data/data/Lib/site-packages/sklearnex/spmd/covariance/__init__.py +20 -0
- scikit_learn_intelex-2025.1.0.data/data/Lib/site-packages/sklearnex/spmd/covariance/covariance.py +21 -0
- scikit_learn_intelex-2025.1.0.data/data/Lib/site-packages/sklearnex/spmd/covariance/incremental_covariance.py +37 -0
- scikit_learn_intelex-2025.1.0.data/data/Lib/site-packages/sklearnex/spmd/covariance/tests/test_covariance_spmd.py +107 -0
- scikit_learn_intelex-2025.1.0.data/data/Lib/site-packages/sklearnex/spmd/covariance/tests/test_incremental_covariance_spmd.py +184 -0
- {scikit_learn_intelex-2024.1.0.data/data/Lib/site-packages/sklearnex/spmd/basic_statistics → scikit_learn_intelex-2025.1.0.data/data/Lib/site-packages/sklearnex/spmd/decomposition}/__init__.py +3 -2
- scikit_learn_intelex-2024.1.0.data/data/Lib/site-packages/sklearnex/tests/test_n_jobs_support.py → scikit_learn_intelex-2025.1.0.data/data/Lib/site-packages/sklearnex/spmd/decomposition/incremental_pca.py +11 -12
- scikit_learn_intelex-2025.1.0.data/data/Lib/site-packages/sklearnex/spmd/decomposition/tests/test_incremental_pca_spmd.py +269 -0
- scikit_learn_intelex-2025.1.0.data/data/Lib/site-packages/sklearnex/spmd/decomposition/tests/test_pca_spmd.py +128 -0
- {scikit_learn_intelex-2024.1.0.data → scikit_learn_intelex-2025.1.0.data}/data/Lib/site-packages/sklearnex/spmd/ensemble/forest.py +4 -12
- scikit_learn_intelex-2025.1.0.data/data/Lib/site-packages/sklearnex/spmd/ensemble/tests/test_forest_spmd.py +265 -0
- {scikit_learn_intelex-2024.1.0.data → scikit_learn_intelex-2025.1.0.data}/data/Lib/site-packages/sklearnex/spmd/linear_model/__init__.py +3 -1
- scikit_learn_intelex-2024.1.0.data/data/Lib/site-packages/sklearnex/tests/test_config.py → scikit_learn_intelex-2025.1.0.data/data/Lib/site-packages/sklearnex/spmd/linear_model/incremental_linear_model.py +14 -18
- scikit_learn_intelex-2025.1.0.data/data/Lib/site-packages/sklearnex/spmd/linear_model/logistic_regression.py +21 -0
- scikit_learn_intelex-2025.1.0.data/data/Lib/site-packages/sklearnex/spmd/linear_model/tests/test_incremental_linear_spmd.py +329 -0
- scikit_learn_intelex-2025.1.0.data/data/Lib/site-packages/sklearnex/spmd/linear_model/tests/test_linear_regression_spmd.py +145 -0
- scikit_learn_intelex-2025.1.0.data/data/Lib/site-packages/sklearnex/spmd/linear_model/tests/test_logistic_regression_spmd.py +162 -0
- scikit_learn_intelex-2025.1.0.data/data/Lib/site-packages/sklearnex/spmd/neighbors/tests/test_neighbors_spmd.py +288 -0
- scikit_learn_intelex-2025.1.0.data/data/Lib/site-packages/sklearnex/svm/_common.py +339 -0
- {scikit_learn_intelex-2024.1.0.data → scikit_learn_intelex-2025.1.0.data}/data/Lib/site-packages/sklearnex/svm/nusvc.py +172 -78
- {scikit_learn_intelex-2024.1.0.data → scikit_learn_intelex-2025.1.0.data}/data/Lib/site-packages/sklearnex/svm/nusvr.py +74 -70
- {scikit_learn_intelex-2024.1.0.data → scikit_learn_intelex-2025.1.0.data}/data/Lib/site-packages/sklearnex/svm/svc.py +170 -77
- {scikit_learn_intelex-2024.1.0.data → scikit_learn_intelex-2025.1.0.data}/data/Lib/site-packages/sklearnex/svm/svr.py +66 -66
- {scikit_learn_intelex-2024.1.0.data → scikit_learn_intelex-2025.1.0.data}/data/Lib/site-packages/sklearnex/svm/tests/test_svm.py +12 -20
- scikit_learn_intelex-2025.1.0.data/data/Lib/site-packages/sklearnex/tests/test_common.py +390 -0
- scikit_learn_intelex-2025.1.0.data/data/Lib/site-packages/sklearnex/tests/test_config.py +123 -0
- scikit_learn_intelex-2025.1.0.data/data/Lib/site-packages/sklearnex/tests/test_memory_usage.py +379 -0
- scikit_learn_intelex-2025.1.0.data/data/Lib/site-packages/sklearnex/tests/test_monkeypatch.py +276 -0
- scikit_learn_intelex-2025.1.0.data/data/Lib/site-packages/sklearnex/tests/test_n_jobs_support.py +108 -0
- {scikit_learn_intelex-2024.1.0.data → scikit_learn_intelex-2025.1.0.data}/data/Lib/site-packages/sklearnex/tests/test_parallel.py +6 -8
- scikit_learn_intelex-2025.1.0.data/data/Lib/site-packages/sklearnex/tests/test_patching.py +385 -0
- scikit_learn_intelex-2025.1.0.data/data/Lib/site-packages/sklearnex/tests/test_run_to_run_stability.py +321 -0
- scikit_learn_intelex-2025.1.0.data/data/Lib/site-packages/sklearnex/tests/utils/__init__.py +44 -0
- scikit_learn_intelex-2025.1.0.data/data/Lib/site-packages/sklearnex/tests/utils/base.py +371 -0
- scikit_learn_intelex-2025.1.0.data/data/Lib/site-packages/sklearnex/tests/utils/spmd.py +198 -0
- scikit_learn_intelex-2025.1.0.data/data/Lib/site-packages/sklearnex/utils/_array_api.py +82 -0
- scikit_learn_intelex-2025.1.0.data/data/Lib/site-packages/sklearnex/utils/tests/test_finite.py +89 -0
- {scikit_learn_intelex-2024.1.0.dist-info → scikit_learn_intelex-2025.1.0.dist-info}/METADATA +231 -230
- scikit_learn_intelex-2025.1.0.dist-info/RECORD +257 -0
- {scikit_learn_intelex-2024.1.0.dist-info → scikit_learn_intelex-2025.1.0.dist-info}/WHEEL +1 -1
- scikit_learn_intelex-2024.1.0.data/data/Lib/site-packages/sklearnex/_device_offload.py +0 -223
- scikit_learn_intelex-2024.1.0.data/data/Lib/site-packages/sklearnex/cluster/k_means.py +0 -17
- scikit_learn_intelex-2024.1.0.data/data/Lib/site-packages/sklearnex/cluster/tests/test_kmeans.py +0 -30
- scikit_learn_intelex-2024.1.0.data/data/Lib/site-packages/sklearnex/decomposition/pca.py +0 -17
- scikit_learn_intelex-2024.1.0.data/data/Lib/site-packages/sklearnex/decomposition/tests/test_pca.py +0 -27
- scikit_learn_intelex-2024.1.0.data/data/Lib/site-packages/sklearnex/linear_model/linear.py +0 -388
- scikit_learn_intelex-2024.1.0.data/data/Lib/site-packages/sklearnex/linear_model/logistic_path.py +0 -17
- scikit_learn_intelex-2024.1.0.data/data/Lib/site-packages/sklearnex/linear_model/tests/test_linear.py +0 -82
- scikit_learn_intelex-2024.1.0.data/data/Lib/site-packages/sklearnex/linear_model/tests/test_logreg.py +0 -28
- scikit_learn_intelex-2024.1.0.data/data/Lib/site-packages/sklearnex/neighbors/lof.py +0 -436
- scikit_learn_intelex-2024.1.0.data/data/Lib/site-packages/sklearnex/preview/cluster/_common.py +0 -84
- scikit_learn_intelex-2024.1.0.data/data/Lib/site-packages/sklearnex/preview/cluster/k_means.py +0 -376
- scikit_learn_intelex-2024.1.0.data/data/Lib/site-packages/sklearnex/preview/covariance/covariance.py +0 -98
- scikit_learn_intelex-2024.1.0.data/data/Lib/site-packages/sklearnex/preview/decomposition/pca.py +0 -376
- scikit_learn_intelex-2024.1.0.data/data/Lib/site-packages/sklearnex/preview/linear_model/tests/test_preview_logistic_regression.py +0 -59
- scikit_learn_intelex-2024.1.0.data/data/Lib/site-packages/sklearnex/svm/_common.py +0 -188
- scikit_learn_intelex-2024.1.0.data/data/Lib/site-packages/sklearnex/tests/test_memory_usage.py +0 -225
- scikit_learn_intelex-2024.1.0.data/data/Lib/site-packages/sklearnex/tests/test_monkeypatch.py +0 -227
- scikit_learn_intelex-2024.1.0.data/data/Lib/site-packages/sklearnex/tests/test_run_to_run_stability_tests.py +0 -428
- scikit_learn_intelex-2024.1.0.dist-info/RECORD +0 -97
- {scikit_learn_intelex-2024.1.0.data → scikit_learn_intelex-2025.1.0.data}/data/Lib/site-packages/sklearnex/__main__.py +0 -0
- {scikit_learn_intelex-2024.1.0.data → scikit_learn_intelex-2025.1.0.data}/data/Lib/site-packages/sklearnex/decomposition/__init__.py +0 -0
- {scikit_learn_intelex-2024.1.0.data → scikit_learn_intelex-2025.1.0.data}/data/Lib/site-packages/sklearnex/doc/third-party-programs.txt +0 -0
- {scikit_learn_intelex-2024.1.0.data → scikit_learn_intelex-2025.1.0.data}/data/Lib/site-packages/sklearnex/ensemble/__init__.py +0 -0
- {scikit_learn_intelex-2024.1.0.data → scikit_learn_intelex-2025.1.0.data}/data/Lib/site-packages/sklearnex/glob/__main__.py +0 -0
- {scikit_learn_intelex-2024.1.0.data → scikit_learn_intelex-2025.1.0.data}/data/Lib/site-packages/sklearnex/manifold/__init__.py +0 -0
- {scikit_learn_intelex-2024.1.0.data → scikit_learn_intelex-2025.1.0.data}/data/Lib/site-packages/sklearnex/manifold/tests/test_tsne.py +0 -0
- {scikit_learn_intelex-2024.1.0.data → scikit_learn_intelex-2025.1.0.data}/data/Lib/site-packages/sklearnex/metrics/__init__.py +0 -0
- {scikit_learn_intelex-2024.1.0.data → scikit_learn_intelex-2025.1.0.data}/data/Lib/site-packages/sklearnex/metrics/tests/test_metrics.py +0 -0
- {scikit_learn_intelex-2024.1.0.data → scikit_learn_intelex-2025.1.0.data}/data/Lib/site-packages/sklearnex/model_selection/__init__.py +0 -0
- {scikit_learn_intelex-2024.1.0.data → scikit_learn_intelex-2025.1.0.data}/data/Lib/site-packages/sklearnex/model_selection/tests/test_model_selection.py +0 -0
- {scikit_learn_intelex-2024.1.0.data → scikit_learn_intelex-2025.1.0.data}/data/Lib/site-packages/sklearnex/preview/covariance/__init__.py +0 -0
- {scikit_learn_intelex-2024.1.0.data → scikit_learn_intelex-2025.1.0.data}/data/Lib/site-packages/sklearnex/spmd/basic_statistics/basic_statistics.py +0 -0
- {scikit_learn_intelex-2024.1.0.data → scikit_learn_intelex-2025.1.0.data}/data/Lib/site-packages/sklearnex/spmd/cluster/__init__.py +0 -0
- {scikit_learn_intelex-2024.1.0.data → scikit_learn_intelex-2025.1.0.data}/data/Lib/site-packages/sklearnex/spmd/cluster/dbscan.py +0 -0
- {scikit_learn_intelex-2024.1.0.data → scikit_learn_intelex-2025.1.0.data}/data/Lib/site-packages/sklearnex/spmd/cluster/kmeans.py +0 -0
- {scikit_learn_intelex-2024.1.0.data → scikit_learn_intelex-2025.1.0.data}/data/Lib/site-packages/sklearnex/spmd/decomposition/pca.py +0 -0
- {scikit_learn_intelex-2024.1.0.data → scikit_learn_intelex-2025.1.0.data}/data/Lib/site-packages/sklearnex/spmd/ensemble/__init__.py +0 -0
- {scikit_learn_intelex-2024.1.0.data → scikit_learn_intelex-2025.1.0.data}/data/Lib/site-packages/sklearnex/spmd/linear_model/linear_model.py +0 -0
- {scikit_learn_intelex-2024.1.0.data → scikit_learn_intelex-2025.1.0.data}/data/Lib/site-packages/sklearnex/spmd/neighbors/__init__.py +0 -0
- {scikit_learn_intelex-2024.1.0.data → scikit_learn_intelex-2025.1.0.data}/data/Lib/site-packages/sklearnex/spmd/neighbors/neighbors.py +0 -0
- {scikit_learn_intelex-2024.1.0.data → scikit_learn_intelex-2025.1.0.data}/data/Lib/site-packages/sklearnex/svm/__init__.py +0 -0
- {scikit_learn_intelex-2024.1.0.data → scikit_learn_intelex-2025.1.0.data}/data/Lib/site-packages/sklearnex/utils/__init__.py +0 -0
- {scikit_learn_intelex-2024.1.0.data → scikit_learn_intelex-2025.1.0.data}/data/Lib/site-packages/sklearnex/utils/parallel.py +0 -0
- {scikit_learn_intelex-2024.1.0.data → scikit_learn_intelex-2025.1.0.data}/data/Lib/site-packages/sklearnex/utils/validation.py +0 -0
- {scikit_learn_intelex-2024.1.0.dist-info → scikit_learn_intelex-2025.1.0.dist-info}/LICENSE.txt +0 -0
- {scikit_learn_intelex-2024.1.0.dist-info → scikit_learn_intelex-2025.1.0.dist-info}/top_level.txt +0 -0
|
@@ -0,0 +1,207 @@
|
|
|
1
|
+
# ===============================================================================
|
|
2
|
+
# Copyright 2024 Intel Corporation
|
|
3
|
+
#
|
|
4
|
+
# Licensed under the Apache License, Version 2.0 (the "License");
|
|
5
|
+
# you may not use this file except in compliance with the License.
|
|
6
|
+
# You may obtain a copy of the License at
|
|
7
|
+
#
|
|
8
|
+
# http://www.apache.org/licenses/LICENSE-2.0
|
|
9
|
+
#
|
|
10
|
+
# Unless required by applicable law or agreed to in writing, software
|
|
11
|
+
# distributed under the License is distributed on an "AS IS" BASIS,
|
|
12
|
+
# WITHOUT WARRANTIES OR CONDITIONS OF ANY KIND, either express or implied.
|
|
13
|
+
# See the License for the specific language governing permissions and
|
|
14
|
+
# limitations under the License.
|
|
15
|
+
# ===============================================================================
|
|
16
|
+
|
|
17
|
+
import numpy as np
|
|
18
|
+
import pytest
|
|
19
|
+
from numpy.testing import assert_allclose
|
|
20
|
+
|
|
21
|
+
from onedal.tests.utils._dataframes_support import (
|
|
22
|
+
_as_numpy,
|
|
23
|
+
_convert_to_dataframe,
|
|
24
|
+
get_dataframes_and_queues,
|
|
25
|
+
)
|
|
26
|
+
from sklearnex.linear_model import IncrementalLinearRegression
|
|
27
|
+
from sklearnex.tests.utils import _IS_INTEL
|
|
28
|
+
|
|
29
|
+
|
|
30
|
+
@pytest.mark.parametrize("dataframe,queue", get_dataframes_and_queues())
|
|
31
|
+
@pytest.mark.parametrize("fit_intercept", [True, False])
|
|
32
|
+
@pytest.mark.parametrize("macro_block", [None, 1024])
|
|
33
|
+
@pytest.mark.parametrize("dtype", [np.float32, np.float64])
|
|
34
|
+
def test_sklearnex_fit_on_gold_data(dataframe, queue, fit_intercept, macro_block, dtype):
|
|
35
|
+
X = np.array([[1], [2]])
|
|
36
|
+
X = X.astype(dtype=dtype)
|
|
37
|
+
X_df = _convert_to_dataframe(X, sycl_queue=queue, target_df=dataframe)
|
|
38
|
+
y = np.array([[1], [2]])
|
|
39
|
+
y = y.astype(dtype=dtype)
|
|
40
|
+
y_df = _convert_to_dataframe(y, sycl_queue=queue, target_df=dataframe)
|
|
41
|
+
|
|
42
|
+
inclin = IncrementalLinearRegression(fit_intercept=fit_intercept)
|
|
43
|
+
if macro_block is not None:
|
|
44
|
+
hparams = inclin.get_hyperparameters("fit")
|
|
45
|
+
hparams.cpu_macro_block = macro_block
|
|
46
|
+
hparams.gpu_macro_block = macro_block
|
|
47
|
+
inclin.fit(X_df, y_df)
|
|
48
|
+
|
|
49
|
+
y_pred = inclin.predict(X_df)
|
|
50
|
+
np_y_pred = _as_numpy(y_pred)
|
|
51
|
+
|
|
52
|
+
tol = 2e-6 if dtype == np.float32 else 1e-7
|
|
53
|
+
assert_allclose(inclin.coef_, [1], atol=tol)
|
|
54
|
+
if fit_intercept:
|
|
55
|
+
assert_allclose(inclin.intercept_, [0], atol=tol)
|
|
56
|
+
assert_allclose(np_y_pred, y, atol=tol)
|
|
57
|
+
|
|
58
|
+
|
|
59
|
+
@pytest.mark.parametrize("dataframe,queue", get_dataframes_and_queues())
|
|
60
|
+
@pytest.mark.parametrize("fit_intercept", [True, False])
|
|
61
|
+
@pytest.mark.parametrize("macro_block", [None, 1024])
|
|
62
|
+
@pytest.mark.parametrize("dtype", [np.float32, np.float64])
|
|
63
|
+
def test_sklearnex_partial_fit_on_gold_data(
|
|
64
|
+
dataframe, queue, fit_intercept, macro_block, dtype
|
|
65
|
+
):
|
|
66
|
+
X = np.array([[1], [2], [3], [4]])
|
|
67
|
+
X = X.astype(dtype=dtype)
|
|
68
|
+
y = X + 3
|
|
69
|
+
y = y.astype(dtype=dtype)
|
|
70
|
+
X_split = np.array_split(X, 2)
|
|
71
|
+
y_split = np.array_split(y, 2)
|
|
72
|
+
|
|
73
|
+
inclin = IncrementalLinearRegression()
|
|
74
|
+
if macro_block is not None:
|
|
75
|
+
hparams = inclin.get_hyperparameters("fit")
|
|
76
|
+
hparams.cpu_macro_block = macro_block
|
|
77
|
+
hparams.gpu_macro_block = macro_block
|
|
78
|
+
for i in range(2):
|
|
79
|
+
X_split_df = _convert_to_dataframe(
|
|
80
|
+
X_split[i], sycl_queue=queue, target_df=dataframe
|
|
81
|
+
)
|
|
82
|
+
y_split_df = _convert_to_dataframe(
|
|
83
|
+
y_split[i], sycl_queue=queue, target_df=dataframe
|
|
84
|
+
)
|
|
85
|
+
inclin.partial_fit(X_split_df, y_split_df)
|
|
86
|
+
|
|
87
|
+
X_df = _convert_to_dataframe(X, sycl_queue=queue, target_df=dataframe)
|
|
88
|
+
y_pred = inclin.predict(X_df)
|
|
89
|
+
np_y_pred = _as_numpy(y_pred)
|
|
90
|
+
|
|
91
|
+
assert inclin.n_features_in_ == 1
|
|
92
|
+
tol = 1e-5 if dtype == np.float32 else 1e-7
|
|
93
|
+
assert_allclose(inclin.coef_, [[1]], atol=tol)
|
|
94
|
+
if fit_intercept:
|
|
95
|
+
assert_allclose(inclin.intercept_, 3, atol=tol)
|
|
96
|
+
|
|
97
|
+
assert_allclose(np_y_pred, y, atol=tol)
|
|
98
|
+
|
|
99
|
+
|
|
100
|
+
@pytest.mark.parametrize("dataframe,queue", get_dataframes_and_queues())
|
|
101
|
+
@pytest.mark.parametrize("fit_intercept", [True, False])
|
|
102
|
+
@pytest.mark.parametrize("macro_block", [None, 1024])
|
|
103
|
+
@pytest.mark.parametrize("dtype", [np.float32, np.float64])
|
|
104
|
+
def test_sklearnex_partial_fit_multitarget_on_gold_data(
|
|
105
|
+
dataframe, queue, fit_intercept, macro_block, dtype
|
|
106
|
+
):
|
|
107
|
+
X = np.array([[1, 1], [1, 2], [2, 2], [2, 3]])
|
|
108
|
+
X = X.astype(dtype=dtype)
|
|
109
|
+
y = np.dot(X, [1, 2]) + 3
|
|
110
|
+
y = y.astype(dtype=dtype)
|
|
111
|
+
X_split = np.array_split(X, 2)
|
|
112
|
+
y_split = np.array_split(y, 2)
|
|
113
|
+
|
|
114
|
+
inclin = IncrementalLinearRegression()
|
|
115
|
+
if macro_block is not None:
|
|
116
|
+
hparams = inclin.get_hyperparameters("fit")
|
|
117
|
+
hparams.cpu_macro_block = macro_block
|
|
118
|
+
hparams.gpu_macro_block = macro_block
|
|
119
|
+
for i in range(2):
|
|
120
|
+
X_split_df = _convert_to_dataframe(
|
|
121
|
+
X_split[i], sycl_queue=queue, target_df=dataframe
|
|
122
|
+
)
|
|
123
|
+
y_split_df = _convert_to_dataframe(
|
|
124
|
+
y_split[i], sycl_queue=queue, target_df=dataframe
|
|
125
|
+
)
|
|
126
|
+
inclin.partial_fit(X_split_df, y_split_df)
|
|
127
|
+
|
|
128
|
+
X_df = _convert_to_dataframe(X, sycl_queue=queue, target_df=dataframe)
|
|
129
|
+
y_pred = inclin.predict(X_df)
|
|
130
|
+
np_y_pred = _as_numpy(y_pred)
|
|
131
|
+
|
|
132
|
+
assert inclin.n_features_in_ == 2
|
|
133
|
+
tol = 1e-7
|
|
134
|
+
if dtype == np.float32:
|
|
135
|
+
tol = 7e-6 if _IS_INTEL else 2e-5
|
|
136
|
+
|
|
137
|
+
assert_allclose(inclin.coef_, [1.0, 2.0], atol=tol)
|
|
138
|
+
if fit_intercept:
|
|
139
|
+
assert_allclose(inclin.intercept_, 3.0, atol=tol)
|
|
140
|
+
|
|
141
|
+
assert_allclose(np_y_pred, y, atol=tol)
|
|
142
|
+
|
|
143
|
+
|
|
144
|
+
@pytest.mark.parametrize("dataframe,queue", get_dataframes_and_queues())
|
|
145
|
+
@pytest.mark.parametrize("fit_intercept", [True, False])
|
|
146
|
+
@pytest.mark.parametrize("num_samples", [100, 1000])
|
|
147
|
+
@pytest.mark.parametrize("num_features", [5, 10])
|
|
148
|
+
@pytest.mark.parametrize("num_targets", [1, 2])
|
|
149
|
+
@pytest.mark.parametrize("num_blocks", [1, 10])
|
|
150
|
+
@pytest.mark.parametrize("macro_block", [None, 1024])
|
|
151
|
+
@pytest.mark.parametrize("dtype", [np.float32, np.float64])
|
|
152
|
+
def test_sklearnex_partial_fit_on_random_data(
|
|
153
|
+
dataframe,
|
|
154
|
+
queue,
|
|
155
|
+
fit_intercept,
|
|
156
|
+
num_samples,
|
|
157
|
+
num_features,
|
|
158
|
+
num_targets,
|
|
159
|
+
num_blocks,
|
|
160
|
+
macro_block,
|
|
161
|
+
dtype,
|
|
162
|
+
):
|
|
163
|
+
seed = 42
|
|
164
|
+
gen = np.random.default_rng(seed)
|
|
165
|
+
intercept = gen.random(size=num_targets, dtype=dtype)
|
|
166
|
+
coef = gen.random(size=(num_targets, num_features), dtype=dtype).T
|
|
167
|
+
|
|
168
|
+
X = gen.random(size=(num_samples, num_features), dtype=dtype)
|
|
169
|
+
if fit_intercept:
|
|
170
|
+
y = X @ coef + intercept[np.newaxis, :]
|
|
171
|
+
else:
|
|
172
|
+
y = X @ coef
|
|
173
|
+
|
|
174
|
+
X_split = np.array_split(X, num_blocks)
|
|
175
|
+
y_split = np.array_split(y, num_blocks)
|
|
176
|
+
|
|
177
|
+
inclin = IncrementalLinearRegression(fit_intercept=fit_intercept)
|
|
178
|
+
if macro_block is not None:
|
|
179
|
+
hparams = inclin.get_hyperparameters("fit")
|
|
180
|
+
hparams.cpu_macro_block = macro_block
|
|
181
|
+
hparams.gpu_macro_block = macro_block
|
|
182
|
+
for i in range(num_blocks):
|
|
183
|
+
X_split_df = _convert_to_dataframe(
|
|
184
|
+
X_split[i], sycl_queue=queue, target_df=dataframe
|
|
185
|
+
)
|
|
186
|
+
y_split_df = _convert_to_dataframe(
|
|
187
|
+
y_split[i], sycl_queue=queue, target_df=dataframe
|
|
188
|
+
)
|
|
189
|
+
inclin.partial_fit(X_split_df, y_split_df)
|
|
190
|
+
|
|
191
|
+
tol = 1e-4 if inclin.coef_.dtype == np.float32 else 1e-7
|
|
192
|
+
assert_allclose(coef.T.squeeze(), inclin.coef_, atol=tol)
|
|
193
|
+
|
|
194
|
+
if fit_intercept:
|
|
195
|
+
assert_allclose(intercept, inclin.intercept_, atol=tol)
|
|
196
|
+
|
|
197
|
+
X_test = gen.random(size=(num_samples, num_features), dtype=dtype)
|
|
198
|
+
if fit_intercept:
|
|
199
|
+
expected_y_pred = (X_test @ coef + intercept[np.newaxis, :]).squeeze()
|
|
200
|
+
else:
|
|
201
|
+
expected_y_pred = (X_test @ coef).squeeze()
|
|
202
|
+
|
|
203
|
+
X_test_df = _convert_to_dataframe(X_test, sycl_queue=queue, target_df=dataframe)
|
|
204
|
+
|
|
205
|
+
y_pred = inclin.predict(X_test_df)
|
|
206
|
+
|
|
207
|
+
assert_allclose(expected_y_pred, _as_numpy(y_pred), atol=tol)
|
|
@@ -0,0 +1,153 @@
|
|
|
1
|
+
# ===============================================================================
|
|
2
|
+
# Copyright 2024 Intel Corporation
|
|
3
|
+
#
|
|
4
|
+
# Licensed under the Apache License, Version 2.0 (the "License");
|
|
5
|
+
# you may not use this file except in compliance with the License.
|
|
6
|
+
# You may obtain a copy of the License at
|
|
7
|
+
#
|
|
8
|
+
# http://www.apache.org/licenses/LICENSE-2.0
|
|
9
|
+
#
|
|
10
|
+
# Unless required by applicable law or agreed to in writing, software
|
|
11
|
+
# distributed under the License is distributed on an "AS IS" BASIS,
|
|
12
|
+
# WITHOUT WARRANTIES OR CONDITIONS OF ANY KIND, either express or implied.
|
|
13
|
+
# See the License for the specific language governing permissions and
|
|
14
|
+
# limitations under the License.
|
|
15
|
+
# ===============================================================================
|
|
16
|
+
|
|
17
|
+
from daal4py.sklearn._utils import daal_check_version
|
|
18
|
+
|
|
19
|
+
if daal_check_version((2024, "P", 600)):
|
|
20
|
+
import numpy as np
|
|
21
|
+
import pytest
|
|
22
|
+
from numpy.testing import assert_allclose
|
|
23
|
+
from sklearn.exceptions import NotFittedError
|
|
24
|
+
|
|
25
|
+
from onedal.tests.utils._dataframes_support import (
|
|
26
|
+
_as_numpy,
|
|
27
|
+
_convert_to_dataframe,
|
|
28
|
+
get_dataframes_and_queues,
|
|
29
|
+
)
|
|
30
|
+
from sklearnex.linear_model import IncrementalRidge
|
|
31
|
+
|
|
32
|
+
def _compute_ridge_coefficients(X, y, alpha, fit_intercept):
|
|
33
|
+
coefficients_manual, intercept_manual = None, None
|
|
34
|
+
if fit_intercept:
|
|
35
|
+
X_mean = np.mean(X, axis=0)
|
|
36
|
+
y_mean = np.mean(y)
|
|
37
|
+
X_centered = X - X_mean
|
|
38
|
+
y_centered = y - y_mean
|
|
39
|
+
|
|
40
|
+
X_with_intercept = np.hstack([np.ones((X.shape[0], 1)), X_centered])
|
|
41
|
+
lambda_identity = alpha * np.eye(X_with_intercept.shape[1])
|
|
42
|
+
inverse_term = np.linalg.inv(
|
|
43
|
+
np.dot(X_with_intercept.T, X_with_intercept) + lambda_identity
|
|
44
|
+
)
|
|
45
|
+
xt_y = np.dot(X_with_intercept.T, y_centered)
|
|
46
|
+
coefficients_manual = np.dot(inverse_term, xt_y)
|
|
47
|
+
|
|
48
|
+
intercept_manual = y_mean - np.dot(X_mean, coefficients_manual[1:])
|
|
49
|
+
coefficients_manual = coefficients_manual[1:]
|
|
50
|
+
else:
|
|
51
|
+
lambda_identity = alpha * np.eye(X.shape[1])
|
|
52
|
+
inverse_term = np.linalg.inv(np.dot(X.T, X) + lambda_identity)
|
|
53
|
+
xt_y = np.dot(X.T, y)
|
|
54
|
+
coefficients_manual = np.dot(inverse_term, xt_y)
|
|
55
|
+
|
|
56
|
+
return coefficients_manual, intercept_manual
|
|
57
|
+
|
|
58
|
+
@pytest.mark.parametrize("dataframe,queue", get_dataframes_and_queues())
|
|
59
|
+
@pytest.mark.parametrize("batch_size", [10, 100, 1000])
|
|
60
|
+
@pytest.mark.parametrize("alpha", [0.1, 0.5, 1.0])
|
|
61
|
+
@pytest.mark.parametrize("fit_intercept", [True, False])
|
|
62
|
+
def test_inc_ridge_fit_coefficients(
|
|
63
|
+
dataframe, queue, alpha, batch_size, fit_intercept
|
|
64
|
+
):
|
|
65
|
+
sample_size, feature_size = 1000, 50
|
|
66
|
+
X = np.random.rand(sample_size, feature_size)
|
|
67
|
+
y = np.random.rand(sample_size)
|
|
68
|
+
X_c = _convert_to_dataframe(X, sycl_queue=queue, target_df=dataframe)
|
|
69
|
+
y_c = _convert_to_dataframe(y, sycl_queue=queue, target_df=dataframe)
|
|
70
|
+
|
|
71
|
+
inc_ridge = IncrementalRidge(
|
|
72
|
+
fit_intercept=fit_intercept, alpha=alpha, batch_size=batch_size
|
|
73
|
+
)
|
|
74
|
+
inc_ridge.fit(X_c, y_c)
|
|
75
|
+
|
|
76
|
+
coefficients_manual, intercept_manual = _compute_ridge_coefficients(
|
|
77
|
+
X, y, alpha, fit_intercept
|
|
78
|
+
)
|
|
79
|
+
if fit_intercept:
|
|
80
|
+
assert_allclose(inc_ridge.intercept_, intercept_manual, rtol=1e-6, atol=1e-6)
|
|
81
|
+
|
|
82
|
+
assert_allclose(inc_ridge.coef_, coefficients_manual, rtol=1e-6, atol=1e-6)
|
|
83
|
+
|
|
84
|
+
@pytest.mark.parametrize("dataframe,queue", get_dataframes_and_queues())
|
|
85
|
+
@pytest.mark.parametrize("batch_size", [2, 5])
|
|
86
|
+
@pytest.mark.parametrize("alpha", [0.1, 0.5, 1.0])
|
|
87
|
+
def test_inc_ridge_partial_fit_coefficients(dataframe, queue, alpha, batch_size):
|
|
88
|
+
sample_size, feature_size = 1000, 50
|
|
89
|
+
X = np.random.rand(sample_size, feature_size)
|
|
90
|
+
y = np.random.rand(sample_size)
|
|
91
|
+
X_split = np.array_split(X, batch_size)
|
|
92
|
+
y_split = np.array_split(y, batch_size)
|
|
93
|
+
|
|
94
|
+
inc_ridge = IncrementalRidge(fit_intercept=False, alpha=alpha)
|
|
95
|
+
|
|
96
|
+
for batch_index in range(len(X_split)):
|
|
97
|
+
X_c = _convert_to_dataframe(
|
|
98
|
+
X_split[batch_index], sycl_queue=queue, target_df=dataframe
|
|
99
|
+
)
|
|
100
|
+
y_c = _convert_to_dataframe(
|
|
101
|
+
y_split[batch_index], sycl_queue=queue, target_df=dataframe
|
|
102
|
+
)
|
|
103
|
+
inc_ridge.partial_fit(X_c, y_c)
|
|
104
|
+
|
|
105
|
+
lambda_identity = alpha * np.eye(X.shape[1])
|
|
106
|
+
inverse_term = np.linalg.inv(np.dot(X.T, X) + lambda_identity)
|
|
107
|
+
xt_y = np.dot(X.T, y)
|
|
108
|
+
coefficients_manual = np.dot(inverse_term, xt_y)
|
|
109
|
+
|
|
110
|
+
assert_allclose(inc_ridge.coef_, coefficients_manual, rtol=1e-6, atol=1e-6)
|
|
111
|
+
|
|
112
|
+
def test_inc_ridge_score_before_fit():
|
|
113
|
+
X = np.array([[1, 1], [1, 2], [2, 2], [2, 3]])
|
|
114
|
+
y = np.dot(X, np.array([1, 2])) + 3
|
|
115
|
+
inc_ridge = IncrementalRidge(alpha=0.5)
|
|
116
|
+
with pytest.raises(NotFittedError):
|
|
117
|
+
inc_ridge.score(X, y)
|
|
118
|
+
|
|
119
|
+
def test_inc_ridge_predict_before_fit():
|
|
120
|
+
X = np.array([[1, 1], [1, 2], [2, 2], [2, 3]])
|
|
121
|
+
inc_ridge = IncrementalRidge(alpha=0.5)
|
|
122
|
+
with pytest.raises(NotFittedError):
|
|
123
|
+
inc_ridge.predict(X)
|
|
124
|
+
|
|
125
|
+
def test_inc_ridge_score_after_fit():
|
|
126
|
+
X = np.array([[1, 1], [1, 2], [2, 2], [2, 3]])
|
|
127
|
+
y = np.dot(X, np.array([1, 2])) + 3
|
|
128
|
+
inc_ridge = IncrementalRidge(alpha=0.5)
|
|
129
|
+
inc_ridge.fit(X, y)
|
|
130
|
+
assert inc_ridge.score(X, y) >= 0.97
|
|
131
|
+
|
|
132
|
+
@pytest.mark.parametrize("dataframe,queue", get_dataframes_and_queues())
|
|
133
|
+
@pytest.mark.parametrize("fit_intercept", [True, False])
|
|
134
|
+
def test_inc_ridge_predict_after_fit(dataframe, queue, fit_intercept):
|
|
135
|
+
sample_size, feature_size = 1000, 50
|
|
136
|
+
X = np.random.rand(sample_size, feature_size)
|
|
137
|
+
y = np.random.rand(sample_size)
|
|
138
|
+
X_c = _convert_to_dataframe(X, sycl_queue=queue, target_df=dataframe)
|
|
139
|
+
y_c = _convert_to_dataframe(y, sycl_queue=queue, target_df=dataframe)
|
|
140
|
+
|
|
141
|
+
inc_ridge = IncrementalRidge(fit_intercept=fit_intercept, alpha=0.5)
|
|
142
|
+
inc_ridge.fit(X_c, y_c)
|
|
143
|
+
|
|
144
|
+
y_pred = inc_ridge.predict(X_c)
|
|
145
|
+
|
|
146
|
+
coefficients_manual, intercept_manual = _compute_ridge_coefficients(
|
|
147
|
+
X, y, 0.5, fit_intercept
|
|
148
|
+
)
|
|
149
|
+
y_pred_manual = np.dot(X, coefficients_manual)
|
|
150
|
+
if fit_intercept:
|
|
151
|
+
y_pred_manual += intercept_manual
|
|
152
|
+
|
|
153
|
+
assert_allclose(_as_numpy(y_pred), y_pred_manual, rtol=1e-6, atol=1e-6)
|
|
@@ -0,0 +1,167 @@
|
|
|
1
|
+
# ===============================================================================
|
|
2
|
+
# Copyright 2021 Intel Corporation
|
|
3
|
+
#
|
|
4
|
+
# Licensed under the Apache License, Version 2.0 (the "License");
|
|
5
|
+
# you may not use this file except in compliance with the License.
|
|
6
|
+
# You may obtain a copy of the License at
|
|
7
|
+
#
|
|
8
|
+
# http://www.apache.org/licenses/LICENSE-2.0
|
|
9
|
+
#
|
|
10
|
+
# Unless required by applicable law or agreed to in writing, software
|
|
11
|
+
# distributed under the License is distributed on an "AS IS" BASIS,
|
|
12
|
+
# WITHOUT WARRANTIES OR CONDITIONS OF ANY KIND, either express or implied.
|
|
13
|
+
# See the License for the specific language governing permissions and
|
|
14
|
+
# limitations under the License.
|
|
15
|
+
# ===============================================================================
|
|
16
|
+
|
|
17
|
+
import numpy as np
|
|
18
|
+
import pytest
|
|
19
|
+
from numpy.testing import assert_allclose
|
|
20
|
+
from scipy.linalg import lstsq
|
|
21
|
+
from sklearn.datasets import make_regression
|
|
22
|
+
|
|
23
|
+
from daal4py.sklearn._utils import daal_check_version
|
|
24
|
+
from daal4py.sklearn.linear_model.tests.test_ridge import (
|
|
25
|
+
_test_multivariate_ridge_alpha_shape,
|
|
26
|
+
_test_multivariate_ridge_coefficients,
|
|
27
|
+
)
|
|
28
|
+
from onedal.tests.utils._dataframes_support import (
|
|
29
|
+
_as_numpy,
|
|
30
|
+
_convert_to_dataframe,
|
|
31
|
+
get_dataframes_and_queues,
|
|
32
|
+
)
|
|
33
|
+
from sklearnex.tests.utils import _IS_INTEL
|
|
34
|
+
|
|
35
|
+
|
|
36
|
+
@pytest.mark.parametrize("dataframe,queue", get_dataframes_and_queues())
|
|
37
|
+
@pytest.mark.parametrize("dtype", [np.float32, np.float64])
|
|
38
|
+
@pytest.mark.parametrize("macro_block", [None, 1024])
|
|
39
|
+
@pytest.mark.parametrize("overdetermined", [False, True])
|
|
40
|
+
@pytest.mark.parametrize("multi_output", [False, True])
|
|
41
|
+
def test_sklearnex_import_linear(
|
|
42
|
+
dataframe, queue, dtype, macro_block, overdetermined, multi_output
|
|
43
|
+
):
|
|
44
|
+
if (overdetermined or multi_output) and not daal_check_version((2025, "P", 1)):
|
|
45
|
+
pytest.skip()
|
|
46
|
+
if overdetermined and queue and queue.sycl_device.is_gpu:
|
|
47
|
+
pytest.skip()
|
|
48
|
+
|
|
49
|
+
from sklearnex.linear_model import LinearRegression
|
|
50
|
+
|
|
51
|
+
rng = np.random.default_rng(seed=123)
|
|
52
|
+
X = rng.standard_normal(size=(10, 20) if overdetermined else (20, 5))
|
|
53
|
+
y = rng.standard_normal(size=(X.shape[0], 3) if multi_output else X.shape[0])
|
|
54
|
+
|
|
55
|
+
Xi = np.c_[X, np.ones((X.shape[0], 1))]
|
|
56
|
+
expected_coefs = lstsq(Xi, y)[0]
|
|
57
|
+
expected_intercept = expected_coefs[-1]
|
|
58
|
+
expected_coefs = expected_coefs[: X.shape[1]]
|
|
59
|
+
if multi_output:
|
|
60
|
+
expected_coefs = expected_coefs.T
|
|
61
|
+
|
|
62
|
+
linreg = LinearRegression()
|
|
63
|
+
if daal_check_version((2024, "P", 0)) and macro_block is not None:
|
|
64
|
+
hparams = linreg.get_hyperparameters("fit")
|
|
65
|
+
hparams.cpu_macro_block = macro_block
|
|
66
|
+
hparams.gpu_macro_block = macro_block
|
|
67
|
+
|
|
68
|
+
X = X.astype(dtype=dtype)
|
|
69
|
+
y = y.astype(dtype=dtype)
|
|
70
|
+
y_list = y.tolist()
|
|
71
|
+
X = _convert_to_dataframe(X, sycl_queue=queue, target_df=dataframe)
|
|
72
|
+
y = _convert_to_dataframe(y, sycl_queue=queue, target_df=dataframe)
|
|
73
|
+
linreg.fit(X, y)
|
|
74
|
+
|
|
75
|
+
assert hasattr(linreg, "_onedal_estimator")
|
|
76
|
+
assert "sklearnex" in linreg.__module__
|
|
77
|
+
|
|
78
|
+
rtol = 1e-3 if dtype == np.float32 else 1e-5
|
|
79
|
+
assert_allclose(_as_numpy(linreg.coef_), expected_coefs, rtol=rtol)
|
|
80
|
+
assert_allclose(_as_numpy(linreg.intercept_), expected_intercept, rtol=rtol)
|
|
81
|
+
|
|
82
|
+
# check that it also works with lists
|
|
83
|
+
if isinstance(X, np.ndarray):
|
|
84
|
+
linreg_list = LinearRegression().fit(X, y_list)
|
|
85
|
+
assert_allclose(linreg_list.coef_, linreg.coef_)
|
|
86
|
+
assert_allclose(linreg_list.intercept_, linreg.intercept_)
|
|
87
|
+
|
|
88
|
+
|
|
89
|
+
@pytest.mark.parametrize("dataframe,queue", get_dataframes_and_queues())
|
|
90
|
+
def test_sklearnex_import_ridge(dataframe, queue):
|
|
91
|
+
from sklearnex.linear_model import Ridge
|
|
92
|
+
|
|
93
|
+
X = np.array([[1, 1], [1, 2], [2, 2], [2, 3]])
|
|
94
|
+
y = np.dot(X, np.array([1, 2])) + 3
|
|
95
|
+
X = _convert_to_dataframe(X, sycl_queue=queue, target_df=dataframe)
|
|
96
|
+
y = _convert_to_dataframe(y, sycl_queue=queue, target_df=dataframe)
|
|
97
|
+
ridgereg = Ridge().fit(X, y)
|
|
98
|
+
assert "daal4py" in ridgereg.__module__
|
|
99
|
+
assert_allclose(ridgereg.intercept_, 4.5)
|
|
100
|
+
assert_allclose(ridgereg.coef_, [0.8, 1.4])
|
|
101
|
+
|
|
102
|
+
|
|
103
|
+
@pytest.mark.parametrize("dataframe,queue", get_dataframes_and_queues())
|
|
104
|
+
def test_sklearnex_import_lasso(dataframe, queue):
|
|
105
|
+
from sklearnex.linear_model import Lasso
|
|
106
|
+
|
|
107
|
+
X = [[0, 0], [1, 1], [2, 2]]
|
|
108
|
+
y = [0, 1, 2]
|
|
109
|
+
X = _convert_to_dataframe(X, sycl_queue=queue, target_df=dataframe)
|
|
110
|
+
y = _convert_to_dataframe(y, sycl_queue=queue, target_df=dataframe)
|
|
111
|
+
lasso = Lasso(alpha=0.1).fit(X, y)
|
|
112
|
+
assert "daal4py" in lasso.__module__
|
|
113
|
+
assert_allclose(lasso.intercept_, 0.15)
|
|
114
|
+
assert_allclose(lasso.coef_, [0.85, 0.0])
|
|
115
|
+
|
|
116
|
+
|
|
117
|
+
@pytest.mark.parametrize("dataframe,queue", get_dataframes_and_queues())
|
|
118
|
+
def test_sklearnex_import_elastic(dataframe, queue):
|
|
119
|
+
from sklearnex.linear_model import ElasticNet
|
|
120
|
+
|
|
121
|
+
X, y = make_regression(n_features=2, random_state=0)
|
|
122
|
+
X = _convert_to_dataframe(X, sycl_queue=queue, target_df=dataframe)
|
|
123
|
+
y = _convert_to_dataframe(y, sycl_queue=queue, target_df=dataframe)
|
|
124
|
+
elasticnet = ElasticNet(random_state=0).fit(X, y)
|
|
125
|
+
assert "daal4py" in elasticnet.__module__
|
|
126
|
+
assert_allclose(elasticnet.intercept_, 1.451, atol=1e-3)
|
|
127
|
+
assert_allclose(elasticnet.coef_, [18.838, 64.559], atol=1e-3)
|
|
128
|
+
|
|
129
|
+
|
|
130
|
+
@pytest.mark.parametrize("dataframe,queue", get_dataframes_and_queues())
|
|
131
|
+
@pytest.mark.parametrize("dtype", [np.float32, np.float64])
|
|
132
|
+
def test_sklearnex_reconstruct_model(dataframe, queue, dtype):
|
|
133
|
+
from sklearnex.linear_model import LinearRegression
|
|
134
|
+
|
|
135
|
+
seed = 42
|
|
136
|
+
num_samples = 3500
|
|
137
|
+
num_features, num_targets = 14, 9
|
|
138
|
+
|
|
139
|
+
gen = np.random.default_rng(seed)
|
|
140
|
+
intercept = gen.random(size=num_targets, dtype=dtype)
|
|
141
|
+
coef = gen.random(size=(num_targets, num_features), dtype=dtype).T
|
|
142
|
+
|
|
143
|
+
X = gen.random(size=(num_samples, num_features), dtype=dtype)
|
|
144
|
+
gtr = X @ coef + intercept[np.newaxis, :]
|
|
145
|
+
|
|
146
|
+
X = _convert_to_dataframe(X, sycl_queue=queue, target_df=dataframe)
|
|
147
|
+
|
|
148
|
+
linreg = LinearRegression(fit_intercept=True)
|
|
149
|
+
linreg.coef_ = coef.T
|
|
150
|
+
linreg.intercept_ = intercept
|
|
151
|
+
|
|
152
|
+
y_pred = linreg.predict(X)
|
|
153
|
+
|
|
154
|
+
tol = 1e-5 if _as_numpy(y_pred).dtype == np.float32 else 1e-7
|
|
155
|
+
assert_allclose(gtr, _as_numpy(y_pred), rtol=tol)
|
|
156
|
+
|
|
157
|
+
|
|
158
|
+
def test_sklearnex_multivariate_ridge_coefs():
|
|
159
|
+
from sklearnex.linear_model import Ridge
|
|
160
|
+
|
|
161
|
+
_test_multivariate_ridge_coefficients(Ridge, random_state=0)
|
|
162
|
+
|
|
163
|
+
|
|
164
|
+
def test_sklearnex_multivariate_ridge_alpha_shape():
|
|
165
|
+
from sklearnex.linear_model import Ridge
|
|
166
|
+
|
|
167
|
+
_test_multivariate_ridge_alpha_shape(Ridge, random_state=0)
|
|
@@ -0,0 +1,134 @@
|
|
|
1
|
+
# ===============================================================================
|
|
2
|
+
# Copyright 2021 Intel Corporation
|
|
3
|
+
#
|
|
4
|
+
# Licensed under the Apache License, Version 2.0 (the "License");
|
|
5
|
+
# you may not use this file except in compliance with the License.
|
|
6
|
+
# You may obtain a copy of the License at
|
|
7
|
+
#
|
|
8
|
+
# http://www.apache.org/licenses/LICENSE-2.0
|
|
9
|
+
#
|
|
10
|
+
# Unless required by applicable law or agreed to in writing, software
|
|
11
|
+
# distributed under the License is distributed on an "AS IS" BASIS,
|
|
12
|
+
# WITHOUT WARRANTIES OR CONDITIONS OF ANY KIND, either express or implied.
|
|
13
|
+
# See the License for the specific language governing permissions and
|
|
14
|
+
# limitations under the License.
|
|
15
|
+
# ===============================================================================
|
|
16
|
+
|
|
17
|
+
import numpy as np
|
|
18
|
+
import pytest
|
|
19
|
+
from numpy.testing import assert_allclose, assert_array_equal
|
|
20
|
+
from scipy.sparse import csr_matrix
|
|
21
|
+
from sklearn.datasets import load_breast_cancer, load_iris, make_classification
|
|
22
|
+
from sklearn.metrics import accuracy_score
|
|
23
|
+
from sklearn.model_selection import train_test_split
|
|
24
|
+
|
|
25
|
+
from daal4py.sklearn._utils import daal_check_version
|
|
26
|
+
from onedal.tests.utils._dataframes_support import (
|
|
27
|
+
_as_numpy,
|
|
28
|
+
_convert_to_dataframe,
|
|
29
|
+
get_dataframes_and_queues,
|
|
30
|
+
get_queues,
|
|
31
|
+
)
|
|
32
|
+
from sklearnex import config_context
|
|
33
|
+
|
|
34
|
+
|
|
35
|
+
def prepare_input(X, y, dataframe, queue):
|
|
36
|
+
X_train, X_test, y_train, y_test = train_test_split(
|
|
37
|
+
X, y, train_size=0.8, random_state=42
|
|
38
|
+
)
|
|
39
|
+
X_train = _convert_to_dataframe(X_train, sycl_queue=queue, target_df=dataframe)
|
|
40
|
+
y_train = _convert_to_dataframe(y_train, sycl_queue=queue, target_df=dataframe)
|
|
41
|
+
X_test = _convert_to_dataframe(X_test, sycl_queue=queue, target_df=dataframe)
|
|
42
|
+
return X_train, X_test, y_train, y_test
|
|
43
|
+
|
|
44
|
+
|
|
45
|
+
@pytest.mark.parametrize(
|
|
46
|
+
"dataframe,queue", get_dataframes_and_queues(device_filter_="cpu")
|
|
47
|
+
)
|
|
48
|
+
def test_sklearnex_multiclass_classification(dataframe, queue):
|
|
49
|
+
from sklearnex.linear_model import LogisticRegression
|
|
50
|
+
|
|
51
|
+
X, y = load_iris(return_X_y=True)
|
|
52
|
+
X_train, X_test, y_train, y_test = prepare_input(X, y, dataframe, queue)
|
|
53
|
+
|
|
54
|
+
logreg = LogisticRegression(fit_intercept=True, solver="lbfgs", max_iter=200).fit(
|
|
55
|
+
X_train, y_train
|
|
56
|
+
)
|
|
57
|
+
|
|
58
|
+
if daal_check_version((2024, "P", 1)):
|
|
59
|
+
assert "sklearnex" in logreg.__module__
|
|
60
|
+
else:
|
|
61
|
+
assert "daal4py" in logreg.__module__
|
|
62
|
+
|
|
63
|
+
y_pred = _as_numpy(logreg.predict(X_test))
|
|
64
|
+
assert accuracy_score(y_test, y_pred) > 0.99
|
|
65
|
+
|
|
66
|
+
|
|
67
|
+
@pytest.mark.parametrize(
|
|
68
|
+
"dataframe,queue",
|
|
69
|
+
get_dataframes_and_queues(),
|
|
70
|
+
)
|
|
71
|
+
def test_sklearnex_binary_classification(dataframe, queue):
|
|
72
|
+
from sklearnex.linear_model import LogisticRegression
|
|
73
|
+
|
|
74
|
+
X, y = load_breast_cancer(return_X_y=True)
|
|
75
|
+
X_train, X_test, y_train, y_test = prepare_input(X, y, dataframe, queue)
|
|
76
|
+
|
|
77
|
+
logreg = LogisticRegression(fit_intercept=True, solver="newton-cg", max_iter=100).fit(
|
|
78
|
+
X_train, y_train
|
|
79
|
+
)
|
|
80
|
+
|
|
81
|
+
if daal_check_version((2024, "P", 1)):
|
|
82
|
+
assert "sklearnex" in logreg.__module__
|
|
83
|
+
else:
|
|
84
|
+
assert "daal4py" in logreg.__module__
|
|
85
|
+
if (
|
|
86
|
+
dataframe != "numpy"
|
|
87
|
+
and queue is not None
|
|
88
|
+
and queue.sycl_device.is_gpu
|
|
89
|
+
and daal_check_version((2024, "P", 1))
|
|
90
|
+
):
|
|
91
|
+
# fit was done on gpu
|
|
92
|
+
assert hasattr(logreg, "_onedal_estimator")
|
|
93
|
+
|
|
94
|
+
y_pred = _as_numpy(logreg.predict(X_test))
|
|
95
|
+
assert accuracy_score(y_test, y_pred) > 0.95
|
|
96
|
+
|
|
97
|
+
|
|
98
|
+
if daal_check_version((2024, "P", 700)):
|
|
99
|
+
|
|
100
|
+
@pytest.mark.parametrize("queue", get_queues("gpu"))
|
|
101
|
+
@pytest.mark.parametrize("dtype", [np.float32, np.float64])
|
|
102
|
+
@pytest.mark.parametrize(
|
|
103
|
+
"dims", [(3007, 17, 0.05), (50000, 100, 0.01), (512, 10, 0.5)]
|
|
104
|
+
)
|
|
105
|
+
def test_csr(queue, dtype, dims):
|
|
106
|
+
from sklearnex.linear_model import LogisticRegression
|
|
107
|
+
|
|
108
|
+
n, p, density = dims
|
|
109
|
+
|
|
110
|
+
# Create sparse dataset for classification
|
|
111
|
+
X, y = make_classification(n, p, random_state=42)
|
|
112
|
+
X = X.astype(dtype)
|
|
113
|
+
y = y.astype(dtype)
|
|
114
|
+
np.random.seed(2007 + n + p)
|
|
115
|
+
mask = np.random.binomial(1, density, (n, p))
|
|
116
|
+
X = X * mask
|
|
117
|
+
X_sp = csr_matrix(X)
|
|
118
|
+
|
|
119
|
+
model = LogisticRegression(fit_intercept=True, solver="newton-cg")
|
|
120
|
+
model_sp = LogisticRegression(fit_intercept=True, solver="newton-cg")
|
|
121
|
+
|
|
122
|
+
with config_context(target_offload="gpu:0"):
|
|
123
|
+
model.fit(X, y)
|
|
124
|
+
pred = model.predict(X)
|
|
125
|
+
prob = model.predict_proba(X)
|
|
126
|
+
model_sp.fit(X_sp, y)
|
|
127
|
+
pred_sp = model_sp.predict(X_sp)
|
|
128
|
+
prob_sp = model_sp.predict_proba(X_sp)
|
|
129
|
+
|
|
130
|
+
rtol = 2e-4
|
|
131
|
+
assert_allclose(pred, pred_sp, rtol=rtol)
|
|
132
|
+
assert_allclose(prob, prob_sp, rtol=rtol)
|
|
133
|
+
assert_allclose(model.coef_, model_sp.coef_, rtol=rtol)
|
|
134
|
+
assert_allclose(model.intercept_, model_sp.intercept_, rtol=rtol)
|
|
@@ -15,3 +15,7 @@
|
|
|
15
15
|
# ===============================================================================
|
|
16
16
|
|
|
17
17
|
from daal4py.sklearn.manifold import TSNE
|
|
18
|
+
from onedal._device_offload import support_input_format
|
|
19
|
+
|
|
20
|
+
TSNE.fit = support_input_format(queue_param=False)(TSNE.fit)
|
|
21
|
+
TSNE.fit_transform = support_input_format(queue_param=False)(TSNE.fit_transform)
|
|
@@ -15,3 +15,8 @@
|
|
|
15
15
|
# ===============================================================================
|
|
16
16
|
|
|
17
17
|
from daal4py.sklearn.metrics import pairwise_distances
|
|
18
|
+
from onedal._device_offload import support_input_format
|
|
19
|
+
|
|
20
|
+
pairwise_distances = support_input_format(freefunc=True, queue_param=False)(
|
|
21
|
+
pairwise_distances
|
|
22
|
+
)
|
|
@@ -15,3 +15,6 @@
|
|
|
15
15
|
# ===============================================================================
|
|
16
16
|
|
|
17
17
|
from daal4py.sklearn.metrics import roc_auc_score
|
|
18
|
+
from onedal._device_offload import support_input_format
|
|
19
|
+
|
|
20
|
+
roc_auc_score = support_input_format(freefunc=True, queue_param=False)(roc_auc_score)
|