scikit-learn-intelex 2024.1.0__py311-none-manylinux1_x86_64.whl → 2024.4.0__py311-none-manylinux1_x86_64.whl

This diff represents the content of publicly available package versions that have been released to one of the supported registries. The information contained in this diff is provided for informational purposes only and reflects changes between package versions as they appear in their respective public registries.

Potentially problematic release.


This version of scikit-learn-intelex might be problematic. Click here for more details.

Files changed (62) hide show
  1. {scikit_learn_intelex-2024.1.0.dist-info → scikit_learn_intelex-2024.4.0.dist-info}/METADATA +2 -2
  2. scikit_learn_intelex-2024.4.0.dist-info/RECORD +101 -0
  3. sklearnex/__init__.py +9 -7
  4. sklearnex/_device_offload.py +31 -4
  5. sklearnex/basic_statistics/__init__.py +2 -1
  6. sklearnex/basic_statistics/incremental_basic_statistics.py +288 -0
  7. sklearnex/basic_statistics/tests/test_incremental_basic_statistics.py +386 -0
  8. sklearnex/cluster/dbscan.py +6 -4
  9. sklearnex/conftest.py +63 -0
  10. sklearnex/{preview/decomposition → covariance}/__init__.py +19 -19
  11. sklearnex/covariance/incremental_covariance.py +130 -0
  12. sklearnex/covariance/tests/test_incremental_covariance.py +143 -0
  13. sklearnex/decomposition/pca.py +319 -1
  14. sklearnex/decomposition/tests/test_pca.py +34 -5
  15. sklearnex/dispatcher.py +93 -61
  16. sklearnex/ensemble/_forest.py +81 -97
  17. sklearnex/ensemble/tests/test_forest.py +15 -19
  18. sklearnex/linear_model/__init__.py +1 -2
  19. sklearnex/linear_model/linear.py +275 -347
  20. sklearnex/{preview/linear_model → linear_model}/logistic_regression.py +83 -50
  21. sklearnex/linear_model/tests/test_linear.py +40 -5
  22. sklearnex/linear_model/tests/test_logreg.py +70 -7
  23. sklearnex/neighbors/__init__.py +1 -1
  24. sklearnex/neighbors/_lof.py +221 -0
  25. sklearnex/neighbors/common.py +4 -1
  26. sklearnex/neighbors/knn_classification.py +47 -137
  27. sklearnex/neighbors/knn_regression.py +20 -132
  28. sklearnex/neighbors/knn_unsupervised.py +16 -93
  29. sklearnex/neighbors/tests/test_neighbors.py +12 -16
  30. sklearnex/preview/__init__.py +1 -1
  31. sklearnex/preview/cluster/k_means.py +8 -81
  32. sklearnex/preview/covariance/covariance.py +51 -16
  33. sklearnex/preview/covariance/tests/test_covariance.py +18 -5
  34. sklearnex/spmd/__init__.py +1 -0
  35. sklearnex/{preview/linear_model → spmd/covariance}/__init__.py +5 -5
  36. sklearnex/spmd/covariance/covariance.py +21 -0
  37. sklearnex/spmd/ensemble/forest.py +4 -12
  38. sklearnex/spmd/linear_model/__init__.py +2 -1
  39. sklearnex/spmd/linear_model/logistic_regression.py +21 -0
  40. sklearnex/svm/_common.py +4 -7
  41. sklearnex/svm/nusvc.py +74 -55
  42. sklearnex/svm/nusvr.py +9 -56
  43. sklearnex/svm/svc.py +74 -56
  44. sklearnex/svm/svr.py +6 -53
  45. sklearnex/tests/_utils.py +164 -0
  46. sklearnex/tests/test_memory_usage.py +9 -7
  47. sklearnex/tests/test_monkeypatch.py +179 -138
  48. sklearnex/tests/test_n_jobs_support.py +77 -9
  49. sklearnex/tests/test_parallel.py +6 -8
  50. sklearnex/tests/test_patching.py +338 -89
  51. sklearnex/utils/__init__.py +2 -1
  52. sklearnex/utils/_namespace.py +97 -0
  53. scikit_learn_intelex-2024.1.0.dist-info/RECORD +0 -97
  54. sklearnex/neighbors/lof.py +0 -436
  55. sklearnex/preview/decomposition/pca.py +0 -376
  56. sklearnex/preview/decomposition/tests/test_preview_pca.py +0 -42
  57. sklearnex/preview/linear_model/tests/test_preview_logistic_regression.py +0 -59
  58. sklearnex/tests/_models_info.py +0 -170
  59. sklearnex/tests/utils/_launch_algorithms.py +0 -118
  60. {scikit_learn_intelex-2024.1.0.dist-info → scikit_learn_intelex-2024.4.0.dist-info}/LICENSE.txt +0 -0
  61. {scikit_learn_intelex-2024.1.0.dist-info → scikit_learn_intelex-2024.4.0.dist-info}/WHEEL +0 -0
  62. {scikit_learn_intelex-2024.1.0.dist-info → scikit_learn_intelex-2024.4.0.dist-info}/top_level.txt +0 -0
@@ -0,0 +1,143 @@
1
+ # ===============================================================================
2
+ # Copyright 2024 Intel Corporation
3
+ #
4
+ # Licensed under the Apache License, Version 2.0 (the "License");
5
+ # you may not use this file except in compliance with the License.
6
+ # You may obtain a copy of the License at
7
+ #
8
+ # http://www.apache.org/licenses/LICENSE-2.0
9
+ #
10
+ # Unless required by applicable law or agreed to in writing, software
11
+ # distributed under the License is distributed on an "AS IS" BASIS,
12
+ # WITHOUT WARRANTIES OR CONDITIONS OF ANY KIND, either express or implied.
13
+ # See the License for the specific language governing permissions and
14
+ # limitations under the License.
15
+ # ===============================================================================
16
+
17
+ import numpy as np
18
+ import pytest
19
+ from numpy.testing import assert_allclose
20
+
21
+ from onedal.tests.utils._dataframes_support import (
22
+ _convert_to_dataframe,
23
+ get_dataframes_and_queues,
24
+ )
25
+
26
+
27
+ @pytest.mark.parametrize("dataframe,queue", get_dataframes_and_queues())
28
+ @pytest.mark.parametrize("dtype", [np.float32, np.float64])
29
+ def test_sklearnex_partial_fit_on_gold_data(dataframe, queue, dtype):
30
+ from sklearnex.covariance import IncrementalEmpiricalCovariance
31
+
32
+ X = np.array([[0, 1], [0, 1]])
33
+ X = X.astype(dtype)
34
+ X_split = np.array_split(X, 2)
35
+ inccov = IncrementalEmpiricalCovariance()
36
+
37
+ for i in range(2):
38
+ X_split_df = _convert_to_dataframe(
39
+ X_split[i], sycl_queue=queue, target_df=dataframe
40
+ )
41
+ result = inccov.partial_fit(X_split_df)
42
+
43
+ expected_covariance = np.array([[0, 0], [0, 0]])
44
+ expected_means = np.array([0, 1])
45
+
46
+ assert_allclose(expected_covariance, result.covariance_)
47
+ assert_allclose(expected_means, result.location_)
48
+
49
+ X = np.array([[1, 2], [3, 6]])
50
+ X = X.astype(dtype)
51
+ X_split = np.array_split(X, 2)
52
+ inccov = IncrementalEmpiricalCovariance()
53
+
54
+ for i in range(2):
55
+ X_split_df = _convert_to_dataframe(
56
+ X_split[i], sycl_queue=queue, target_df=dataframe
57
+ )
58
+ result = inccov.partial_fit(X_split_df)
59
+
60
+ expected_covariance = np.array([[1, 2], [2, 4]])
61
+ expected_means = np.array([2, 4])
62
+
63
+ assert_allclose(expected_covariance, result.covariance_)
64
+ assert_allclose(expected_means, result.location_)
65
+
66
+
67
+ @pytest.mark.parametrize("dataframe,queue", get_dataframes_and_queues())
68
+ @pytest.mark.parametrize("batch_size", [2, 4])
69
+ @pytest.mark.parametrize("dtype", [np.float32, np.float64])
70
+ def test_sklearnex_fit_on_gold_data(dataframe, queue, batch_size, dtype):
71
+ from sklearnex.covariance import IncrementalEmpiricalCovariance
72
+
73
+ X = np.array([[0, 1, 2, 3], [0, -1, -2, -3], [0, 1, 2, 3], [0, 1, 2, 3]])
74
+ X = X.astype(dtype)
75
+ X_df = _convert_to_dataframe(X, sycl_queue=queue, target_df=dataframe)
76
+ inccov = IncrementalEmpiricalCovariance(batch_size=batch_size)
77
+
78
+ result = inccov.fit(X_df)
79
+
80
+ expected_covariance = np.array(
81
+ [[0, 0, 0, 0], [0, 0.75, 1.5, 2.25], [0, 1.5, 3, 4.5], [0, 2.25, 4.5, 6.75]]
82
+ )
83
+ expected_means = np.array([0, 0.5, 1, 1.5])
84
+
85
+ assert_allclose(expected_covariance, result.covariance_)
86
+ assert_allclose(expected_means, result.location_)
87
+
88
+
89
+ @pytest.mark.parametrize("dataframe,queue", get_dataframes_and_queues())
90
+ @pytest.mark.parametrize("num_batches", [2, 4, 6, 8, 10])
91
+ @pytest.mark.parametrize("row_count", [100, 1000, 2000])
92
+ @pytest.mark.parametrize("column_count", [10, 100, 200])
93
+ @pytest.mark.parametrize("dtype", [np.float32, np.float64])
94
+ def test_sklearnex_partial_fit_on_random_data(
95
+ dataframe, queue, num_batches, row_count, column_count, dtype
96
+ ):
97
+ from sklearnex.covariance import IncrementalEmpiricalCovariance
98
+
99
+ seed = 77
100
+ gen = np.random.default_rng(seed)
101
+ X = gen.uniform(low=-0.3, high=+0.7, size=(row_count, column_count))
102
+ X = X.astype(dtype)
103
+ X_split = np.array_split(X, num_batches)
104
+ inccov = IncrementalEmpiricalCovariance()
105
+
106
+ for i in range(num_batches):
107
+ X_split_df = _convert_to_dataframe(
108
+ X_split[i], sycl_queue=queue, target_df=dataframe
109
+ )
110
+ result = inccov.partial_fit(X_split_df)
111
+
112
+ expected_covariance = np.cov(X.T, bias=1)
113
+ expected_means = np.mean(X, axis=0)
114
+
115
+ assert_allclose(expected_covariance, result.covariance_, atol=1e-6)
116
+ assert_allclose(expected_means, result.location_, atol=1e-6)
117
+
118
+
119
+ @pytest.mark.parametrize("dataframe,queue", get_dataframes_and_queues())
120
+ @pytest.mark.parametrize("num_batches", [2, 4, 6, 8, 10])
121
+ @pytest.mark.parametrize("row_count", [100, 1000, 2000])
122
+ @pytest.mark.parametrize("column_count", [10, 100, 200])
123
+ @pytest.mark.parametrize("dtype", [np.float32, np.float64])
124
+ def test_sklearnex_fit_on_random_data(
125
+ dataframe, queue, num_batches, row_count, column_count, dtype
126
+ ):
127
+ from sklearnex.covariance import IncrementalEmpiricalCovariance
128
+
129
+ seed = 77
130
+ gen = np.random.default_rng(seed)
131
+ X = gen.uniform(low=-0.3, high=+0.7, size=(row_count, column_count))
132
+ X = X.astype(dtype)
133
+ X_df = _convert_to_dataframe(X, sycl_queue=queue, target_df=dataframe)
134
+ batch_size = row_count // num_batches
135
+ inccov = IncrementalEmpiricalCovariance(batch_size=batch_size)
136
+
137
+ result = inccov.fit(X_df)
138
+
139
+ expected_covariance = np.cov(X.T, bias=1)
140
+ expected_means = np.mean(X, axis=0)
141
+
142
+ assert_allclose(expected_covariance, result.covariance_, atol=1e-6)
143
+ assert_allclose(expected_means, result.location_, atol=1e-6)
@@ -14,4 +14,322 @@
14
14
  # limitations under the License.
15
15
  # ===============================================================================
16
16
 
17
- from daal4py.sklearn.decomposition import PCA
17
+ import logging
18
+
19
+ from daal4py.sklearn._utils import daal_check_version
20
+
21
+ if daal_check_version((2024, "P", 100)):
22
+ import numbers
23
+ from math import sqrt
24
+
25
+ import numpy as np
26
+ from scipy.sparse import issparse
27
+ from sklearn.utils.validation import check_is_fitted
28
+
29
+ from daal4py.sklearn._n_jobs_support import control_n_jobs
30
+ from daal4py.sklearn._utils import sklearn_check_version
31
+
32
+ from .._device_offload import dispatch, wrap_output_data
33
+ from .._utils import PatchingConditionsChain
34
+
35
+ if sklearn_check_version("1.1") and not sklearn_check_version("1.2"):
36
+ from sklearn.utils import check_scalar
37
+
38
+ from sklearn.decomposition import PCA as sklearn_PCA
39
+
40
+ from onedal.decomposition import PCA as onedal_PCA
41
+
42
+ @control_n_jobs(decorated_methods=["fit", "transform", "fit_transform"])
43
+ class PCA(sklearn_PCA):
44
+ __doc__ = sklearn_PCA.__doc__
45
+
46
+ if sklearn_check_version("1.2"):
47
+ _parameter_constraints: dict = {**sklearn_PCA._parameter_constraints}
48
+
49
+ if sklearn_check_version("1.1"):
50
+
51
+ def __init__(
52
+ self,
53
+ n_components=None,
54
+ *,
55
+ copy=True,
56
+ whiten=False,
57
+ svd_solver="auto",
58
+ tol=0.0,
59
+ iterated_power="auto",
60
+ n_oversamples=10,
61
+ power_iteration_normalizer="auto",
62
+ random_state=None,
63
+ ):
64
+ self.n_components = n_components
65
+ self.copy = copy
66
+ self.whiten = whiten
67
+ self.svd_solver = svd_solver
68
+ self.tol = tol
69
+ self.iterated_power = iterated_power
70
+ self.n_oversamples = n_oversamples
71
+ self.power_iteration_normalizer = power_iteration_normalizer
72
+ self.random_state = random_state
73
+
74
+ else:
75
+
76
+ def __init__(
77
+ self,
78
+ n_components=None,
79
+ copy=True,
80
+ whiten=False,
81
+ svd_solver="auto",
82
+ tol=0.0,
83
+ iterated_power="auto",
84
+ random_state=None,
85
+ ):
86
+ self.n_components = n_components
87
+ self.copy = copy
88
+ self.whiten = whiten
89
+ self.svd_solver = svd_solver
90
+ self.tol = tol
91
+ self.iterated_power = iterated_power
92
+ self.random_state = random_state
93
+
94
+ def fit(self, X, y=None):
95
+ self._fit(X)
96
+ return self
97
+
98
+ @wrap_output_data
99
+ def _fit(self, X):
100
+ if sklearn_check_version("1.2"):
101
+ self._validate_params()
102
+ elif sklearn_check_version("1.1"):
103
+ check_scalar(
104
+ self.n_oversamples,
105
+ "n_oversamples",
106
+ min_val=1,
107
+ target_type=numbers.Integral,
108
+ )
109
+
110
+ U, S, Vt = dispatch(
111
+ self,
112
+ "fit",
113
+ {
114
+ "onedal": self.__class__._onedal_fit,
115
+ "sklearn": sklearn_PCA._fit,
116
+ },
117
+ X,
118
+ )
119
+ return U, S, Vt
120
+
121
+ def _onedal_fit(self, X, queue=None):
122
+ X = self._validate_data(
123
+ X,
124
+ dtype=[np.float64, np.float32],
125
+ ensure_2d=True,
126
+ copy=self.copy,
127
+ )
128
+
129
+ onedal_params = {
130
+ "n_components": self.n_components,
131
+ "is_deterministic": True,
132
+ "method": "cov",
133
+ "whiten": self.whiten,
134
+ }
135
+ self._onedal_estimator = onedal_PCA(**onedal_params)
136
+ self._onedal_estimator.fit(X, queue=queue)
137
+ self._save_attributes()
138
+
139
+ U = None
140
+ S = self.singular_values_
141
+ Vt = self.components_
142
+
143
+ return U, S, Vt
144
+
145
+ @wrap_output_data
146
+ def transform(self, X):
147
+ return dispatch(
148
+ self,
149
+ "transform",
150
+ {
151
+ "onedal": self.__class__._onedal_transform,
152
+ "sklearn": sklearn_PCA.transform,
153
+ },
154
+ X,
155
+ )
156
+
157
+ def _onedal_transform(self, X, queue=None):
158
+ check_is_fitted(self)
159
+ X = self._validate_data(
160
+ X,
161
+ dtype=[np.float64, np.float32],
162
+ reset=False,
163
+ )
164
+ self._validate_n_features_in_after_fitting(X)
165
+ if sklearn_check_version("1.0"):
166
+ self._check_feature_names(X, reset=False)
167
+
168
+ return self._onedal_estimator.predict(X, queue=queue)
169
+
170
+ def fit_transform(self, X, y=None):
171
+ U, S, Vt = self._fit(X)
172
+ if U is None:
173
+ # oneDAL PCA was fit
174
+ return self.transform(X)
175
+ else:
176
+ # Scikit-learn PCA was fit
177
+ U = U[:, : self.n_components_]
178
+
179
+ if self.whiten:
180
+ U *= sqrt(X.shape[0] - 1)
181
+ else:
182
+ U *= S[: self.n_components_]
183
+
184
+ return U
185
+
186
+ def _onedal_supported(self, method_name, X):
187
+ class_name = self.__class__.__name__
188
+ patching_status = PatchingConditionsChain(
189
+ f"sklearn.decomposition.{class_name}.{method_name}"
190
+ )
191
+
192
+ if method_name == "fit":
193
+ shape_tuple, _is_shape_compatible = self._get_shape_compatibility(X)
194
+ patching_status.and_conditions(
195
+ [
196
+ (
197
+ _is_shape_compatible,
198
+ "Data shape is not compatible.",
199
+ ),
200
+ (
201
+ self._is_solver_compatible_with_onedal(shape_tuple),
202
+ f"Only 'full' svd solver is supported.",
203
+ ),
204
+ (not issparse(X), "oneDAL PCA does not support sparse data"),
205
+ ]
206
+ )
207
+ return patching_status
208
+
209
+ if method_name == "transform":
210
+ patching_status.and_conditions(
211
+ [
212
+ (
213
+ hasattr(self, "_onedal_estimator"),
214
+ "oneDAL model was not trained",
215
+ ),
216
+ ]
217
+ )
218
+ return patching_status
219
+
220
+ raise RuntimeError(
221
+ f"Unknown method {method_name} in {self.__class__.__name__}"
222
+ )
223
+
224
+ def _onedal_cpu_supported(self, method_name, *data):
225
+ return self._onedal_supported(method_name, *data)
226
+
227
+ def _onedal_gpu_supported(self, method_name, *data):
228
+ return self._onedal_supported(method_name, *data)
229
+
230
+ def _get_shape_compatibility(self, X):
231
+ _is_shape_compatible = False
232
+ _empty_shape = (0, 0)
233
+ if hasattr(X, "shape"):
234
+ shape_tuple = X.shape
235
+ if len(shape_tuple) == 1:
236
+ shape_tuple = (1, shape_tuple[0])
237
+ elif isinstance(X, list):
238
+ if np.ndim(X) == 1:
239
+ shape_tuple = (1, len(X))
240
+ elif np.ndim(X) == 2:
241
+ shape_tuple = (len(X), len(X[0]))
242
+ else:
243
+ return _empty_shape, _is_shape_compatible
244
+
245
+ if shape_tuple[0] > 0 and shape_tuple[1] > 0 and len(shape_tuple) == 2:
246
+ _is_shape_compatible = shape_tuple[1] / shape_tuple[0] < 2
247
+
248
+ return shape_tuple, _is_shape_compatible
249
+
250
+ def _is_solver_compatible_with_onedal(self, shape_tuple):
251
+ self._fit_svd_solver = self.svd_solver
252
+ n_sf_min = min(shape_tuple)
253
+ n_components = n_sf_min if self.n_components is None else self.n_components
254
+
255
+ if self._fit_svd_solver == "auto":
256
+ if sklearn_check_version("1.1"):
257
+ if max(shape_tuple) <= 500 or n_components == "mle":
258
+ self._fit_svd_solver = "full"
259
+ elif 1 <= n_components < 0.8 * n_sf_min:
260
+ self._fit_svd_solver = "randomized"
261
+ else:
262
+ self._fit_svd_solver = "full"
263
+ else:
264
+ if n_components == "mle":
265
+ self._fit_svd_solver = "full"
266
+ else:
267
+ # check if sklearnex is faster than randomized sklearn
268
+ # Refer to daal4py
269
+ regression_coefs = np.array(
270
+ [
271
+ [
272
+ 9.779873e-11,
273
+ shape_tuple[0] * shape_tuple[1] * n_components,
274
+ ],
275
+ [
276
+ -1.122062e-11,
277
+ shape_tuple[0] * shape_tuple[1] * shape_tuple[1],
278
+ ],
279
+ [1.127905e-09, shape_tuple[0] ** 2],
280
+ ]
281
+ )
282
+ if (
283
+ n_components >= 1
284
+ and np.dot(regression_coefs[:, 0], regression_coefs[:, 1])
285
+ <= 0
286
+ ):
287
+ self._fit_svd_solver = "randomized"
288
+ else:
289
+ self._fit_svd_solver = "full"
290
+
291
+ if self._fit_svd_solver == "full":
292
+ return True
293
+ else:
294
+ return False
295
+
296
+ def _save_attributes(self):
297
+ self.n_samples_ = self._onedal_estimator.n_samples_
298
+ if sklearn_check_version("1.2"):
299
+ self.n_features_in_ = self._onedal_estimator.n_features_
300
+ else:
301
+ self.n_features_ = self._onedal_estimator.n_features_
302
+ self.n_features_in_ = self._onedal_estimator.n_features_
303
+ self.n_components_ = self._onedal_estimator.n_components_
304
+ self.components_ = self._onedal_estimator.components_
305
+ self.mean_ = self._onedal_estimator.mean_
306
+ self.singular_values_ = self._onedal_estimator.singular_values_
307
+ self.explained_variance_ = self._onedal_estimator.explained_variance_.ravel()
308
+ self.explained_variance_ratio_ = (
309
+ self._onedal_estimator.explained_variance_ratio_
310
+ )
311
+ self.noise_variance_ = self._onedal_estimator.noise_variance_
312
+
313
+ def _validate_n_features_in_after_fitting(self, X):
314
+ if sklearn_check_version("1.2"):
315
+ expected_n_features = self.n_features_in_
316
+ else:
317
+ expected_n_features = self.n_features_
318
+ if X.shape[1] != expected_n_features:
319
+ raise ValueError(
320
+ (
321
+ f"X has {X.shape[1]} features, "
322
+ f"but PCA is expecting {expected_n_features} features as input"
323
+ )
324
+ )
325
+
326
+ fit.__doc__ = sklearn_PCA.fit.__doc__
327
+ transform.__doc__ = sklearn_PCA.transform.__doc__
328
+ fit_transform.__doc__ = sklearn_PCA.fit_transform.__doc__
329
+
330
+ else:
331
+ from daal4py.sklearn.decomposition import PCA
332
+
333
+ logging.warning(
334
+ "Sklearnex PCA requires oneDAL version >= 2024.1.0 but it was not found"
335
+ )
@@ -15,13 +15,42 @@
15
15
  # ===============================================================================
16
16
 
17
17
  import numpy as np
18
+ import pytest
18
19
  from numpy.testing import assert_allclose
19
20
 
21
+ from daal4py.sklearn._utils import daal_check_version
22
+ from onedal.tests.utils._dataframes_support import (
23
+ _as_numpy,
24
+ _convert_to_dataframe,
25
+ get_dataframes_and_queues,
26
+ )
20
27
 
21
- def test_sklearnex_import():
28
+
29
+ @pytest.mark.parametrize("dataframe,queue", get_dataframes_and_queues())
30
+ def test_sklearnex_import(dataframe, queue):
22
31
  from sklearnex.decomposition import PCA
23
32
 
24
- X = np.array([[-1, -1], [-2, -1], [-3, -2], [1, 1], [2, 1], [3, 2]])
25
- pca = PCA(n_components=2, svd_solver="full").fit(X)
26
- assert "daal4py" in pca.__module__
27
- assert_allclose(pca.singular_values_, [6.30061232, 0.54980396])
33
+ X = [[-1, -1], [-2, -1], [-3, -2], [1, 1], [2, 1], [3, 2]]
34
+ X = _convert_to_dataframe(X, sycl_queue=queue, target_df=dataframe)
35
+ X_transformed_expected = [
36
+ [-1.38340578, -0.2935787],
37
+ [-2.22189802, 0.25133484],
38
+ [-3.6053038, -0.04224385],
39
+ [1.38340578, 0.2935787],
40
+ [2.22189802, -0.25133484],
41
+ [3.6053038, 0.04224385],
42
+ ]
43
+
44
+ pca = PCA(n_components=2, svd_solver="full")
45
+ pca.fit(X)
46
+ X_transformed = pca.transform(X)
47
+ X_fit_transformed = PCA(n_components=2, svd_solver="full").fit_transform(X)
48
+
49
+ if daal_check_version((2024, "P", 100)):
50
+ assert "sklearnex" in pca.__module__
51
+ assert hasattr(pca, "_onedal_estimator")
52
+ else:
53
+ assert "daal4py" in pca.__module__
54
+ assert_allclose([6.30061232, 0.54980396], _as_numpy(pca.singular_values_))
55
+ assert_allclose(X_transformed_expected, _as_numpy(X_transformed))
56
+ assert_allclose(X_transformed_expected, _as_numpy(X_fit_transformed))