scikit-learn-intelex 2024.1.0__py310-none-manylinux1_x86_64.whl → 2024.3.0__py310-none-manylinux1_x86_64.whl

This diff represents the content of publicly available package versions that have been released to one of the supported registries. The information contained in this diff is provided for informational purposes only and reflects changes between package versions as they appear in their respective public registries.

Potentially problematic release.


This version of scikit-learn-intelex might be problematic. Click here for more details.

Files changed (51) hide show
  1. {scikit_learn_intelex-2024.1.0.dist-info → scikit_learn_intelex-2024.3.0.dist-info}/METADATA +2 -2
  2. {scikit_learn_intelex-2024.1.0.dist-info → scikit_learn_intelex-2024.3.0.dist-info}/RECORD +45 -44
  3. sklearnex/__init__.py +9 -7
  4. sklearnex/cluster/dbscan.py +6 -4
  5. sklearnex/conftest.py +63 -0
  6. sklearnex/{preview/decomposition → covariance}/__init__.py +19 -19
  7. sklearnex/covariance/incremental_covariance.py +130 -0
  8. sklearnex/covariance/tests/test_incremental_covariance.py +143 -0
  9. sklearnex/decomposition/pca.py +322 -1
  10. sklearnex/decomposition/tests/test_pca.py +34 -5
  11. sklearnex/dispatcher.py +91 -59
  12. sklearnex/ensemble/_forest.py +15 -24
  13. sklearnex/ensemble/tests/test_forest.py +15 -19
  14. sklearnex/linear_model/__init__.py +1 -2
  15. sklearnex/linear_model/linear.py +3 -10
  16. sklearnex/{preview/linear_model → linear_model}/logistic_regression.py +32 -40
  17. sklearnex/linear_model/tests/test_logreg.py +70 -7
  18. sklearnex/neighbors/__init__.py +1 -1
  19. sklearnex/neighbors/_lof.py +204 -0
  20. sklearnex/neighbors/knn_classification.py +13 -18
  21. sklearnex/neighbors/knn_regression.py +12 -17
  22. sklearnex/neighbors/knn_unsupervised.py +10 -15
  23. sklearnex/neighbors/tests/test_neighbors.py +12 -16
  24. sklearnex/preview/__init__.py +1 -1
  25. sklearnex/preview/cluster/k_means.py +3 -8
  26. sklearnex/preview/covariance/covariance.py +46 -12
  27. sklearnex/spmd/__init__.py +1 -0
  28. sklearnex/{preview/linear_model → spmd/covariance}/__init__.py +5 -5
  29. sklearnex/spmd/covariance/covariance.py +21 -0
  30. sklearnex/spmd/ensemble/forest.py +4 -12
  31. sklearnex/spmd/linear_model/__init__.py +2 -1
  32. sklearnex/spmd/linear_model/logistic_regression.py +21 -0
  33. sklearnex/svm/nusvc.py +9 -6
  34. sklearnex/svm/nusvr.py +6 -7
  35. sklearnex/svm/svc.py +9 -6
  36. sklearnex/svm/svr.py +3 -4
  37. sklearnex/tests/_utils.py +155 -0
  38. sklearnex/tests/test_memory_usage.py +9 -7
  39. sklearnex/tests/test_monkeypatch.py +179 -138
  40. sklearnex/tests/test_n_jobs_support.py +71 -9
  41. sklearnex/tests/test_parallel.py +6 -8
  42. sklearnex/tests/test_patching.py +321 -82
  43. sklearnex/neighbors/lof.py +0 -436
  44. sklearnex/preview/decomposition/pca.py +0 -376
  45. sklearnex/preview/decomposition/tests/test_preview_pca.py +0 -42
  46. sklearnex/preview/linear_model/tests/test_preview_logistic_regression.py +0 -59
  47. sklearnex/tests/_models_info.py +0 -170
  48. sklearnex/tests/utils/_launch_algorithms.py +0 -118
  49. {scikit_learn_intelex-2024.1.0.dist-info → scikit_learn_intelex-2024.3.0.dist-info}/LICENSE.txt +0 -0
  50. {scikit_learn_intelex-2024.1.0.dist-info → scikit_learn_intelex-2024.3.0.dist-info}/WHEEL +0 -0
  51. {scikit_learn_intelex-2024.1.0.dist-info → scikit_learn_intelex-2024.3.0.dist-info}/top_level.txt +0 -0
@@ -1,118 +0,0 @@
1
- # ==============================================================================
2
- # Copyright 2021 Intel Corporation
3
- #
4
- # Licensed under the Apache License, Version 2.0 (the "License");
5
- # you may not use this file except in compliance with the License.
6
- # You may obtain a copy of the License at
7
- #
8
- # http://www.apache.org/licenses/LICENSE-2.0
9
- #
10
- # Unless required by applicable law or agreed to in writing, software
11
- # distributed under the License is distributed on an "AS IS" BASIS,
12
- # WITHOUT WARRANTIES OR CONDITIONS OF ANY KIND, either express or implied.
13
- # See the License for the specific language governing permissions and
14
- # limitations under the License.
15
- # ==============================================================================
16
-
17
- import logging
18
- import random
19
-
20
- import numpy as np
21
-
22
- from sklearnex import patch_sklearn
23
-
24
- patch_sklearn()
25
-
26
- import pathlib
27
- import sys
28
-
29
- from sklearn.datasets import load_diabetes, load_iris, make_regression
30
- from sklearn.metrics import pairwise_distances, roc_auc_score
31
-
32
- absolute_path = str(pathlib.Path(__file__).parent.absolute())
33
- sys.path.append(absolute_path + "/../")
34
- from _models_info import MODELS_INFO, TYPES
35
-
36
-
37
- def get_class_name(x):
38
- return x.__class__.__name__
39
-
40
-
41
- def generate_dataset(name, dtype, model_name):
42
- if model_name == "LinearRegression":
43
- X, y = make_regression(n_samples=1000, n_features=5)
44
- elif name in ["blobs", "classifier"]:
45
- X, y = load_iris(return_X_y=True)
46
- elif name == "regression":
47
- X, y = load_diabetes(return_X_y=True)
48
- else:
49
- raise ValueError("Unknown dataset type")
50
- X = np.array(X, dtype=dtype)
51
- y = np.array(y, dtype=dtype)
52
- return (X, y)
53
-
54
-
55
- def run_patch(model_info, dtype):
56
- print(get_class_name(model_info["model"]), dtype.__name__)
57
- X, y = generate_dataset(
58
- model_info["dataset"], dtype, get_class_name(model_info["model"])
59
- )
60
- model = model_info["model"]
61
- model.fit(X, y)
62
- logging.info("fit")
63
- for i in model_info["methods"]:
64
- if i == "predict":
65
- model.predict(X)
66
- elif i == "predict_proba":
67
- model.predict_proba(X)
68
- elif i == "predict_log_proba":
69
- model.predict_log_proba(X)
70
- elif i == "decision_function":
71
- model.decision_function(X)
72
- elif i == "fit_predict":
73
- model.fit_predict(X)
74
- elif i == "transform":
75
- model.transform(X)
76
- elif i == "fit_transform":
77
- model.fit_transform(X)
78
- elif i == "kneighbors":
79
- model.kneighbors(X)
80
- elif i == "score":
81
- model.score(X, y)
82
- else:
83
- raise ValueError(i + " is wrong method")
84
- logging.info(i)
85
-
86
-
87
- def run_algotithms():
88
- for info in MODELS_INFO:
89
- for t in TYPES:
90
- model_name = get_class_name(info["model"])
91
- if model_name in ["Ridge", "LinearRegression"] and t.__name__ == "uint32":
92
- continue
93
- run_patch(info, t)
94
-
95
-
96
- def run_utils():
97
- # pairwise_distances
98
- for metric in ["cosine", "correlation"]:
99
- for t in TYPES:
100
- X = np.random.rand(1000)
101
- X = np.array(X, dtype=t)
102
- print("pairwise_distances", t.__name__)
103
- _ = pairwise_distances(X.reshape(1, -1), metric=metric)
104
- logging.info("pairwise_distances")
105
- # roc_auc_score
106
- for t in [np.float32, np.float64]:
107
- a = [random.randint(0, 1) for i in range(1000)]
108
- b = [random.randint(0, 1) for i in range(1000)]
109
- a = np.array(a, dtype=t)
110
- b = np.array(b, dtype=t)
111
- print("roc_auc_score", t.__name__)
112
- _ = roc_auc_score(a, b)
113
- logging.info("roc_auc_score")
114
-
115
-
116
- if __name__ == "__main__":
117
- run_algotithms()
118
- run_utils()