scikit-learn-intelex 2024.1.0__py310-none-manylinux1_x86_64.whl → 2024.2.0__py310-none-manylinux1_x86_64.whl
This diff represents the content of publicly available package versions that have been released to one of the supported registries. The information contained in this diff is provided for informational purposes only and reflects changes between package versions as they appear in their respective public registries.
Potentially problematic release.
This version of scikit-learn-intelex might be problematic. Click here for more details.
- {scikit_learn_intelex-2024.1.0.dist-info → scikit_learn_intelex-2024.2.0.dist-info}/METADATA +2 -2
- {scikit_learn_intelex-2024.1.0.dist-info → scikit_learn_intelex-2024.2.0.dist-info}/RECORD +38 -34
- sklearnex/cluster/dbscan.py +3 -3
- sklearnex/{preview/linear_model → covariance}/__init__.py +3 -3
- sklearnex/covariance/incremental_covariance.py +130 -0
- sklearnex/covariance/tests/test_incremental_covariance.py +143 -0
- sklearnex/dispatcher.py +19 -18
- sklearnex/ensemble/_forest.py +5 -10
- sklearnex/linear_model/__init__.py +1 -2
- sklearnex/linear_model/linear.py +3 -10
- sklearnex/{preview/linear_model → linear_model}/logistic_regression.py +19 -38
- sklearnex/linear_model/tests/test_logreg.py +70 -5
- sklearnex/neighbors/__init__.py +1 -1
- sklearnex/neighbors/_lof.py +167 -0
- sklearnex/neighbors/knn_classification.py +6 -9
- sklearnex/neighbors/knn_regression.py +6 -8
- sklearnex/neighbors/knn_unsupervised.py +5 -7
- sklearnex/neighbors/tests/test_neighbors.py +12 -11
- sklearnex/preview/__init__.py +1 -1
- sklearnex/preview/cluster/k_means.py +3 -8
- sklearnex/preview/covariance/covariance.py +46 -12
- sklearnex/preview/decomposition/pca.py +3 -5
- sklearnex/spmd/__init__.py +1 -0
- sklearnex/spmd/covariance/__init__.py +19 -0
- sklearnex/spmd/covariance/covariance.py +21 -0
- sklearnex/spmd/linear_model/__init__.py +2 -1
- sklearnex/spmd/linear_model/logistic_regression.py +21 -0
- sklearnex/svm/nusvc.py +5 -6
- sklearnex/svm/nusvr.py +3 -4
- sklearnex/svm/svc.py +5 -6
- sklearnex/svm/svr.py +3 -4
- sklearnex/tests/test_memory_usage.py +1 -4
- sklearnex/tests/test_monkeypatch.py +33 -20
- sklearnex/tests/test_n_jobs_support.py +71 -9
- sklearnex/tests/test_patching.py +19 -5
- sklearnex/neighbors/lof.py +0 -436
- sklearnex/preview/linear_model/tests/test_preview_logistic_regression.py +0 -59
- {scikit_learn_intelex-2024.1.0.dist-info → scikit_learn_intelex-2024.2.0.dist-info}/LICENSE.txt +0 -0
- {scikit_learn_intelex-2024.1.0.dist-info → scikit_learn_intelex-2024.2.0.dist-info}/WHEEL +0 -0
- {scikit_learn_intelex-2024.1.0.dist-info → scikit_learn_intelex-2024.2.0.dist-info}/top_level.txt +0 -0
{scikit_learn_intelex-2024.1.0.dist-info → scikit_learn_intelex-2024.2.0.dist-info}/METADATA
RENAMED
|
@@ -1,6 +1,6 @@
|
|
|
1
1
|
Metadata-Version: 2.1
|
|
2
2
|
Name: scikit-learn-intelex
|
|
3
|
-
Version: 2024.
|
|
3
|
+
Version: 2024.2.0
|
|
4
4
|
Summary: Intel(R) Extension for Scikit-learn is a seamless way to speed up your Scikit-learn application.
|
|
5
5
|
Home-page: https://github.com/intel/scikit-learn-intelex
|
|
6
6
|
Author: Intel Corporation
|
|
@@ -31,7 +31,7 @@ Classifier: Topic :: Software Development
|
|
|
31
31
|
Requires-Python: >=3.7
|
|
32
32
|
Description-Content-Type: text/markdown
|
|
33
33
|
License-File: LICENSE.txt
|
|
34
|
-
Requires-Dist: daal4py (==2024.
|
|
34
|
+
Requires-Dist: daal4py (==2024.2.0)
|
|
35
35
|
Requires-Dist: scikit-learn (>=0.22)
|
|
36
36
|
|
|
37
37
|
|
|
@@ -3,30 +3,34 @@ sklearnex/__main__.py,sha256=Le9BJq6aLEGSSoZwJLsOADxsV89ynBfA8BcoJHk9F24,1921
|
|
|
3
3
|
sklearnex/_config.py,sha256=6WS3UuS4-0DxIJyGn7yQMosj-mGkLybLQrg3W7dED5o,3928
|
|
4
4
|
sklearnex/_device_offload.py,sha256=J0tZqj6tfvIFonWR01PadtTLgloQk_QEfXeCoqEvJlk,7710
|
|
5
5
|
sklearnex/_utils.py,sha256=EV4jC3plVdndsgrfPBsJZTzggrRdYWLwOpoIRWtTXt4,3812
|
|
6
|
-
sklearnex/dispatcher.py,sha256=
|
|
6
|
+
sklearnex/dispatcher.py,sha256=89QQ508iMt6qxoCIHt4woLvz_-KBOR6UvvhJJeC77hE,12878
|
|
7
7
|
sklearnex/basic_statistics/__init__.py,sha256=NA5RGlwcp27UEeCgz0ngzYYd3MAIRpxlTy86uhM2-RE,821
|
|
8
8
|
sklearnex/basic_statistics/basic_statistics.py,sha256=j5jBZ3DgXjoyjCBEFfYQHyl3LgLXEWWFnNHwInThdZw,796
|
|
9
9
|
sklearnex/cluster/__init__.py,sha256=TsDzdbKzEubaP86iY8a7mSW0ZQzgjzGYuPkhc5lZmlQ,853
|
|
10
|
-
sklearnex/cluster/dbscan.py,sha256=
|
|
10
|
+
sklearnex/cluster/dbscan.py,sha256=EegSXIFHKNhaKLoe_G8dsC5t2SXRdu3tDzsHbcubdDM,6706
|
|
11
11
|
sklearnex/cluster/k_means.py,sha256=1QKcFUQcnycu8kSD8uYSaDIuedHbxZsV_gvUfcEwVAM,806
|
|
12
12
|
sklearnex/cluster/tests/test_dbscan.py,sha256=AgFoKwXFVyLKLvEtJVs0qlbBs1Ci3PcRft7f-6_ENOU,1464
|
|
13
13
|
sklearnex/cluster/tests/test_kmeans.py,sha256=H3a9NSHRRSASo0Eceo44Kjq6GwEoMqMzcubaNt1s1QQ,1213
|
|
14
|
+
sklearnex/covariance/__init__.py,sha256=_c86wiKDGBH50ofN-_tn7lO4M2YVEWO5AHhJIfimUDk,859
|
|
15
|
+
sklearnex/covariance/incremental_covariance.py,sha256=3s9gmLP48DPhlhnFcg2JB7RQ2sliSZdNroJkv8-1sIA,4526
|
|
16
|
+
sklearnex/covariance/tests/test_incremental_covariance.py,sha256=JIa4p-1_RYvU2ZVLx27iz0OKp0Nwrl9sYCsT0Dlyi2I,5402
|
|
14
17
|
sklearnex/decomposition/__init__.py,sha256=RJBYDWyvnn5DA-j5r4IqVdXLp6H4mdPySsSjnXhlv-U,805
|
|
15
18
|
sklearnex/decomposition/pca.py,sha256=68ksLxTP5fMOUhRmiIq9QNm0YzQanBNzxsq-zA8DKaY,809
|
|
16
19
|
sklearnex/decomposition/tests/test_pca.py,sha256=aP4gxjML38CFpknwNVIkZLQCc8t2rqYGlWVo03vsMfE,1146
|
|
17
20
|
sklearnex/doc/third-party-programs.txt,sha256=qA1XbOqYkMRnp29p8VxXjfcH0kHE8NSO5s2heea83-8,21773
|
|
18
21
|
sklearnex/ensemble/__init__.py,sha256=2xB2KfG7l7uJv0p3kfVhrs4KLM174SCsigZhYqwSYAA,1035
|
|
19
|
-
sklearnex/ensemble/_forest.py,sha256=
|
|
22
|
+
sklearnex/ensemble/_forest.py,sha256=nw_aUdgyjxKWc6yZ-8DBaqNqDODhx5uEy13GbpM7C18,70561
|
|
20
23
|
sklearnex/ensemble/tests/test_forest.py,sha256=KoETKE1sSpKgp38s9bepAujJjcG21eFX5RyYINcHCUo,4516
|
|
21
24
|
sklearnex/glob/__main__.py,sha256=--FAjkhh5E6a1TFOGu6_BM3MHe78jP8oSpl0xKiRtTI,2531
|
|
22
25
|
sklearnex/glob/dispatcher.py,sha256=IEEPhAOCVzC2JDFvYtijbiPAbaUY5RrCAhFLRjMMe1w,3018
|
|
23
|
-
sklearnex/linear_model/__init__.py,sha256=
|
|
26
|
+
sklearnex/linear_model/__init__.py,sha256=5XZDZh8R0SmT8D8ZtSjW7-MKRO7l1jOZ8CUnt_OzHe4,1047
|
|
24
27
|
sklearnex/linear_model/coordinate_descent.py,sha256=uZOHIKfFlHoMlNXZCh2MAnZE30fRZlmtcF7UsZQ3Vq4,822
|
|
25
|
-
sklearnex/linear_model/linear.py,sha256=
|
|
28
|
+
sklearnex/linear_model/linear.py,sha256=ed7pNKKnRkwa-wC0haUCOGHQoPkA4AuFhKNMzmRL6Fw,13832
|
|
26
29
|
sklearnex/linear_model/logistic_path.py,sha256=Nq3JPXSzE4bjamnP3gGQtsMKks2v7s6bSiuYRnFqrRw,849
|
|
30
|
+
sklearnex/linear_model/logistic_regression.py,sha256=ezW717qpPM4EC6uvmKbvxZZZwkooLuc8mfddAu5ebJM,12547
|
|
27
31
|
sklearnex/linear_model/ridge.py,sha256=0oxlM5McYYvl0KxK9OIGJKM6lOADuFSPTdfx-efJNTI,810
|
|
28
32
|
sklearnex/linear_model/tests/test_linear.py,sha256=li9LLWgap6YCwvNiHQ9yHduvUIsK1lpXfuVNR3dLwig,3200
|
|
29
|
-
sklearnex/linear_model/tests/test_logreg.py,sha256=
|
|
33
|
+
sklearnex/linear_model/tests/test_logreg.py,sha256=iH6pxRJ5Nh6RzO_ohFLlt-TpJpQmzKh2QMU81SnPwv4,3346
|
|
30
34
|
sklearnex/manifold/__init__.py,sha256=3FU5fY1YvHAyNeSlUHsZfPnAbvlAUtZpum0Obmok2KE,809
|
|
31
35
|
sklearnex/manifold/t_sne.py,sha256=U6F_dGB6taVuEJvTnVBWD-sri3x3m0Khu3HI4wXidhg,805
|
|
32
36
|
sklearnex/manifold/tests/test_tsne.py,sha256=SNqe1yg45mL4qIsxpX5hDpBsIyrv9r__6wfrerjp3yU,1063
|
|
@@ -37,61 +41,61 @@ sklearnex/metrics/tests/test_metrics.py,sha256=Nwfz8UV4V4fKLLY7f9P9eg8uY09xLXaFx
|
|
|
37
41
|
sklearnex/model_selection/__init__.py,sha256=64045Y-nzLDBepO6IRjt88LhL2DM3KdvpCF2vvj_RpA,842
|
|
38
42
|
sklearnex/model_selection/split.py,sha256=qjmy8sRf_QEG8LhT0ivn_tICMCYmt7ffZZV1-rLQnko,824
|
|
39
43
|
sklearnex/model_selection/tests/test_model_selection.py,sha256=3kZIq8kba8SW93DBWXupoRymNStR1_mGGYSErQRnwME,1338
|
|
40
|
-
sklearnex/neighbors/__init__.py,sha256=
|
|
44
|
+
sklearnex/neighbors/__init__.py,sha256=_GMJ2L-6YechRYI2fOFwHjy0kebUncE81z4FmdXUlb8,1078
|
|
45
|
+
sklearnex/neighbors/_lof.py,sha256=HddPA9VdHEKCENr260qEAWoaB3KdqVYqHE-BssSuWPY,6605
|
|
41
46
|
sklearnex/neighbors/common.py,sha256=iia-EUIRUIohDCIGpHbVx2PeDlwUvz4Mj1Tn169jidA,10781
|
|
42
|
-
sklearnex/neighbors/knn_classification.py,sha256=
|
|
43
|
-
sklearnex/neighbors/knn_regression.py,sha256=
|
|
44
|
-
sklearnex/neighbors/knn_unsupervised.py,sha256=
|
|
45
|
-
sklearnex/neighbors/
|
|
46
|
-
sklearnex/
|
|
47
|
-
sklearnex/preview/__init__.py,sha256=hZfIgTkkkUVaQ-SKaqI-S_SiXCkUzCUYxpSnbrhhEJU,813
|
|
47
|
+
sklearnex/neighbors/knn_classification.py,sha256=C0jqL9qRQwt31JTIxjjWQWJuiy_D1I5Am1_W6ek8beY,11077
|
|
48
|
+
sklearnex/neighbors/knn_regression.py,sha256=7ihpIl5SKSYDGvXtsUC0vNaOTj6_NNpXAAsu3uiQuaQ,9978
|
|
49
|
+
sklearnex/neighbors/knn_unsupervised.py,sha256=Stw63vAKiaHnPQ2cfnXWD1Omf-QssT4BqhFPCMmyVCs,7620
|
|
50
|
+
sklearnex/neighbors/tests/test_neighbors.py,sha256=s4jip1Ntrhp5Zu9-pHVbeIoNdNFsq03ABY-N-iF_UL8,3437
|
|
51
|
+
sklearnex/preview/__init__.py,sha256=1QcbV6xCSP7QCXRxYLVPc_b4lxE0cQiyTrMm4xOnosM,797
|
|
48
52
|
sklearnex/preview/cluster/__init__.py,sha256=FONzOuTGAb5NwdfFhLco99P_VccRk9NBkDHU3EKuAIs,794
|
|
49
53
|
sklearnex/preview/cluster/_common.py,sha256=bgpzijxgyrAtdNCCHyCNsZ-N70KQYNwMuoCTNdUna6o,2718
|
|
50
|
-
sklearnex/preview/cluster/k_means.py,sha256=
|
|
54
|
+
sklearnex/preview/cluster/k_means.py,sha256=jSuU8E6r4fdbbBnxBpWp4ybBa62kCnbBx7zDXyUr0Cs,13007
|
|
51
55
|
sklearnex/preview/covariance/__init__.py,sha256=DPYTk8lwcVphtwU8J3CyUYH8Uz6Zr0Uz4S6nn-RY5iM,825
|
|
52
|
-
sklearnex/preview/covariance/covariance.py,sha256=
|
|
56
|
+
sklearnex/preview/covariance/covariance.py,sha256=LrNrGP62FEhTSBVaO-EOYAaq-Rszc1VS2B2IqMgh4oo,4938
|
|
53
57
|
sklearnex/preview/covariance/tests/test_covariance.py,sha256=GYI4bMIhGnjmOXpt8J7R0JQmpm9eOvDjIphugRa4kD8,2140
|
|
54
58
|
sklearnex/preview/decomposition/__init__.py,sha256=uRenwBGf7hHQqwAVYbBw3clUQB_HWUqJGOAKTuCnrcM,805
|
|
55
|
-
sklearnex/preview/decomposition/pca.py,sha256=
|
|
59
|
+
sklearnex/preview/decomposition/pca.py,sha256=S8g5GhLdnUAb1FifNx6gnrwA8AWv8ddZtLY1Er83BkY,14342
|
|
56
60
|
sklearnex/preview/decomposition/tests/test_preview_pca.py,sha256=xcllHM-jDIq33rAWTeh_gjhS2qfCNbUIAI5KeLPA8aY,1790
|
|
57
|
-
sklearnex/
|
|
58
|
-
sklearnex/preview/linear_model/logistic_regression.py,sha256=KIqpboN15BFV4BOyEokc5LF9eiqwBetlx2i27WBNIK0,13377
|
|
59
|
-
sklearnex/preview/linear_model/tests/test_preview_logistic_regression.py,sha256=UjHXFhlea2P7feUKC64uHGNOhJpEaM2EZoAK0JJbz3I,2422
|
|
60
|
-
sklearnex/spmd/__init__.py,sha256=8cxQy-oCFy1TJto0qoRf4lt98siPx2c-YV99YC-sk6s,871
|
|
61
|
+
sklearnex/spmd/__init__.py,sha256=ChQy2kEWlo4KGvs0RnbPoPEVhdgl8URV099B1rZtF5Y,889
|
|
61
62
|
sklearnex/spmd/basic_statistics/__init__.py,sha256=NA5RGlwcp27UEeCgz0ngzYYd3MAIRpxlTy86uhM2-RE,821
|
|
62
63
|
sklearnex/spmd/basic_statistics/basic_statistics.py,sha256=_dQ9mhVYxeuChATEpAmHpXDpgW3YvtK1qrG-kLr2MtI,886
|
|
63
64
|
sklearnex/spmd/cluster/__init__.py,sha256=qBBfrCHh6_82EROLbu54XKk7SmmRwS1XJyCj0zwkoUw,1029
|
|
64
65
|
sklearnex/spmd/cluster/dbscan.py,sha256=23YNzPhx4MZijU0md-E3ZkHpTkhUh5cmtS3loHe-KhI,1824
|
|
65
66
|
sklearnex/spmd/cluster/kmeans.py,sha256=Rnb9tr9LXVto5vCAumk7ZJfa9BYYDhdD1qUWL-QK5bY,868
|
|
67
|
+
sklearnex/spmd/covariance/__init__.py,sha256=5xeL1REMIxCv5M1ya99GGKaVjctUngboZ3uXgxcZ04o,823
|
|
68
|
+
sklearnex/spmd/covariance/covariance.py,sha256=_oIlr1W1vqDHqIPnsCb04HcBCen5oBHQr5-_n9OSvIA,884
|
|
66
69
|
sklearnex/spmd/decomposition/__init__.py,sha256=dBh0ZMIiaqdf3DKbt8FWNB2K9Iacs395m8OxaDFQg_M,784
|
|
67
70
|
sklearnex/spmd/decomposition/pca.py,sha256=CUrsVD2jae-A9H8RB_emza_fe82CwnFa5PEy0fW_EZ8,871
|
|
68
71
|
sklearnex/spmd/ensemble/__init__.py,sha256=B3yi7hWoVogMIiw0QRT_x5atsAFS-OO72YPLGeUQJ8M,873
|
|
69
72
|
sklearnex/spmd/ensemble/forest.py,sha256=ao6lyzcxoRW-RG9xIYwtDFyM7JIjlF8wmQKpOv_oSRQ,3113
|
|
70
|
-
sklearnex/spmd/linear_model/__init__.py,sha256=
|
|
73
|
+
sklearnex/spmd/linear_model/__init__.py,sha256=WwqCr2DOyUnkSIHlP0yq0UI2yFDgSl5MHV7wu3QGJtA,893
|
|
71
74
|
sklearnex/spmd/linear_model/linear_model.py,sha256=7QPCIQTWKBiZBTDZZbpZXi-REgxQCfRMt6rHPJAnc5E,883
|
|
75
|
+
sklearnex/spmd/linear_model/logistic_regression.py,sha256=q_HkfWcg0RgFbk2t9FeV0ZY28HHAOtkGEnUj4tLuwt4,885
|
|
72
76
|
sklearnex/spmd/neighbors/__init__.py,sha256=S16sH8N_18LN_8AgC_wGK5EDSNyuN-F-gI6GVlaiWVE,906
|
|
73
77
|
sklearnex/spmd/neighbors/neighbors.py,sha256=SiKAS_RVt34MUcGytBS5pHnI_5vFNxJn8jqt1MOhDh8,940
|
|
74
78
|
sklearnex/svm/__init__.py,sha256=f3e4ZFwZfx6MsXsn94VK1xVm6mWKT5XCiHczo6zNyAQ,1057
|
|
75
79
|
sklearnex/svm/_common.py,sha256=Dt1Iyz1g04zOW6hn9cHa9ruzM_MHAIq0ZEEIxh5s7nI,7167
|
|
76
|
-
sklearnex/svm/nusvc.py,sha256=
|
|
77
|
-
sklearnex/svm/nusvr.py,sha256=
|
|
78
|
-
sklearnex/svm/svc.py,sha256=
|
|
79
|
-
sklearnex/svm/svr.py,sha256=
|
|
80
|
+
sklearnex/svm/nusvc.py,sha256=Bvs_FmC1CYH23tXyrQE3Ti1h3BqK0YeX-_PBTZMRM0k,9008
|
|
81
|
+
sklearnex/svm/nusvr.py,sha256=XHlDAGwnx1NVkkt8c9EUST8zVRLQY7Mwu335TPCcuRk,5237
|
|
82
|
+
sklearnex/svm/svc.py,sha256=4f-vJlPGeAcquz7nkSCeu0LJTTXCbdU2M54HkT49TeQ,10288
|
|
83
|
+
sklearnex/svm/svr.py,sha256=fmYi0dghOmmyFFVI59COX9-tyouQnSDfHIbs8GY8AHs,5241
|
|
80
84
|
sklearnex/svm/tests/test_svm.py,sha256=Ru-aGNGCsRJts7SEEYbnKcVqUx-DqPyUtw-hEoMVpW8,4190
|
|
81
85
|
sklearnex/tests/_models_info.py,sha256=xhjvnU3TvQg8J5Cih2hphWAOSsT8DnKmCyYbtwa0Qvs,4785
|
|
82
86
|
sklearnex/tests/test_config.py,sha256=SnSJjxAAysISDyC3bYKSJiRHStkB9X-yjLeF11LpRog,1372
|
|
83
|
-
sklearnex/tests/test_memory_usage.py,sha256
|
|
84
|
-
sklearnex/tests/test_monkeypatch.py,sha256=
|
|
85
|
-
sklearnex/tests/test_n_jobs_support.py,sha256=
|
|
87
|
+
sklearnex/tests/test_memory_usage.py,sha256=lwm63gSyRR82n3LGBdsophU_NvZK5RHkxAoTDZ2AcWI,7309
|
|
88
|
+
sklearnex/tests/test_monkeypatch.py,sha256=wmtEeDNGoiPBlAh4Vmts86eFQLk8Wbzjbj6Busf6V3o,8663
|
|
89
|
+
sklearnex/tests/test_n_jobs_support.py,sha256=ynfCSdCMnR3yEq1YEf_cilVD7zSe0sS-ZQ9jC0hHo8M,3903
|
|
86
90
|
sklearnex/tests/test_parallel.py,sha256=bMu22noUvGiDX4oyxKIHPiOEoBP9lRQQUq6wq8ZD730,1776
|
|
87
|
-
sklearnex/tests/test_patching.py,sha256=
|
|
91
|
+
sklearnex/tests/test_patching.py,sha256=IySMpMdWVgoAZgs1cRKvdJeb8RXElFwjjNdHcE4jJz0,4247
|
|
88
92
|
sklearnex/tests/test_run_to_run_stability_tests.py,sha256=4HDOeJruA1EDILbyQJtsHFmEXC0D1upSHuOT-KyTlEc,14008
|
|
89
93
|
sklearnex/tests/utils/_launch_algorithms.py,sha256=pJT5tAW9rWvk7GT37R-B0-e8SLz8e9FSZw8yu4LWNJ4,3724
|
|
90
94
|
sklearnex/utils/__init__.py,sha256=I8mbJQ3Zsm_F3sCLAhJQb7tUrG30kVsQ-wZoqA8vDdA,842
|
|
91
95
|
sklearnex/utils/parallel.py,sha256=VBcS-KUdyq7XpJUN6ygmNjyWtYLroghbvCxQ8nVU3YI,2085
|
|
92
96
|
sklearnex/utils/validation.py,sha256=fjfhQiKnBQnD7LCBlacMyvsrhGnlMLRXk5Q69uoZIP4,827
|
|
93
|
-
scikit_learn_intelex-2024.
|
|
94
|
-
scikit_learn_intelex-2024.
|
|
95
|
-
scikit_learn_intelex-2024.
|
|
96
|
-
scikit_learn_intelex-2024.
|
|
97
|
-
scikit_learn_intelex-2024.
|
|
97
|
+
scikit_learn_intelex-2024.2.0.dist-info/LICENSE.txt,sha256=7micbUpzQXphq9e_2oL7PpZcvoXzPuQHIDEXyKXC81s,10797
|
|
98
|
+
scikit_learn_intelex-2024.2.0.dist-info/METADATA,sha256=nNiD7x2RPhuhzEKH-Hg0-iOk3kqAUlLd3f--6KmLP-c,12449
|
|
99
|
+
scikit_learn_intelex-2024.2.0.dist-info/WHEEL,sha256=8HLRuLcXtw8zhRBAbl72hZgSmSYmdfyBfCzEjumF0eI,108
|
|
100
|
+
scikit_learn_intelex-2024.2.0.dist-info/top_level.txt,sha256=kzKChSWGJEYFmdj5PwE63HNuP_PVOhWfD32ytH9rL9Q,10
|
|
101
|
+
scikit_learn_intelex-2024.2.0.dist-info/RECORD,,
|
sklearnex/cluster/dbscan.py
CHANGED
|
@@ -22,7 +22,8 @@ from scipy import sparse as sp
|
|
|
22
22
|
from sklearn.cluster import DBSCAN as sklearn_DBSCAN
|
|
23
23
|
from sklearn.utils.validation import _check_sample_weight
|
|
24
24
|
|
|
25
|
-
from daal4py.sklearn.
|
|
25
|
+
from daal4py.sklearn._n_jobs_support import control_n_jobs
|
|
26
|
+
from daal4py.sklearn._utils import sklearn_check_version
|
|
26
27
|
from onedal.cluster import DBSCAN as onedal_DBSCAN
|
|
27
28
|
|
|
28
29
|
from .._device_offload import dispatch, wrap_output_data
|
|
@@ -45,7 +46,7 @@ class BaseDBSCAN(ABC):
|
|
|
45
46
|
self.n_features_in_ = self._onedal_estimator.n_features_in_
|
|
46
47
|
|
|
47
48
|
|
|
48
|
-
@control_n_jobs
|
|
49
|
+
@control_n_jobs(decorated_methods=["fit"])
|
|
49
50
|
class DBSCAN(sklearn_DBSCAN, BaseDBSCAN):
|
|
50
51
|
__doc__ = sklearn_DBSCAN.__doc__
|
|
51
52
|
|
|
@@ -83,7 +84,6 @@ class DBSCAN(sklearn_DBSCAN, BaseDBSCAN):
|
|
|
83
84
|
self.p = p
|
|
84
85
|
self.n_jobs = n_jobs
|
|
85
86
|
|
|
86
|
-
@run_with_n_jobs
|
|
87
87
|
def _onedal_fit(self, X, y, sample_weight=None, queue=None):
|
|
88
88
|
onedal_params = {
|
|
89
89
|
"eps": self.eps,
|
|
@@ -1,5 +1,5 @@
|
|
|
1
1
|
# ===============================================================================
|
|
2
|
-
# Copyright
|
|
2
|
+
# Copyright 2024 Intel Corporation
|
|
3
3
|
#
|
|
4
4
|
# Licensed under the Apache License, Version 2.0 (the "License");
|
|
5
5
|
# you may not use this file except in compliance with the License.
|
|
@@ -14,6 +14,6 @@
|
|
|
14
14
|
# limitations under the License.
|
|
15
15
|
# ===============================================================================
|
|
16
16
|
|
|
17
|
-
from .
|
|
17
|
+
from .incremental_covariance import IncrementalEmpiricalCovariance
|
|
18
18
|
|
|
19
|
-
__all__ = ["
|
|
19
|
+
__all__ = ["IncrementalEmpiricalCovariance"]
|
|
@@ -0,0 +1,130 @@
|
|
|
1
|
+
# ===============================================================================
|
|
2
|
+
# Copyright 2024 Intel Corporation
|
|
3
|
+
#
|
|
4
|
+
# Licensed under the Apache License, Version 2.0 (the "License");
|
|
5
|
+
# you may not use this file except in compliance with the License.
|
|
6
|
+
# You may obtain a copy of the License at
|
|
7
|
+
#
|
|
8
|
+
# http://www.apache.org/licenses/LICENSE-2.0
|
|
9
|
+
#
|
|
10
|
+
# Unless required by applicable law or agreed to in writing, software
|
|
11
|
+
# distributed under the License is distributed on an "AS IS" BASIS,
|
|
12
|
+
# WITHOUT WARRANTIES OR CONDITIONS OF ANY KIND, either express or implied.
|
|
13
|
+
# See the License for the specific language governing permissions and
|
|
14
|
+
# limitations under the License.
|
|
15
|
+
# ===============================================================================
|
|
16
|
+
|
|
17
|
+
import numpy as np
|
|
18
|
+
from sklearn.utils import check_array, gen_batches
|
|
19
|
+
|
|
20
|
+
from daal4py.sklearn._n_jobs_support import control_n_jobs
|
|
21
|
+
from onedal._device_offload import support_usm_ndarray
|
|
22
|
+
from onedal.covariance import (
|
|
23
|
+
IncrementalEmpiricalCovariance as onedal_IncrementalEmpiricalCovariance,
|
|
24
|
+
)
|
|
25
|
+
|
|
26
|
+
|
|
27
|
+
@control_n_jobs(decorated_methods=["partial_fit"])
|
|
28
|
+
class IncrementalEmpiricalCovariance:
|
|
29
|
+
"""
|
|
30
|
+
Incremental estimator for covariance.
|
|
31
|
+
Allows to compute empirical covariance estimated by maximum
|
|
32
|
+
likelihood method if data are splitted into batches.
|
|
33
|
+
|
|
34
|
+
Parameters
|
|
35
|
+
----------
|
|
36
|
+
batch_size : int, default=None
|
|
37
|
+
The number of samples to use for each batch. Only used when calling
|
|
38
|
+
``fit``. If ``batch_size`` is ``None``, then ``batch_size``
|
|
39
|
+
is inferred from the data and set to ``5 * n_features``, to provide a
|
|
40
|
+
balance between approximation accuracy and memory consumption.
|
|
41
|
+
|
|
42
|
+
Attributes
|
|
43
|
+
----------
|
|
44
|
+
location_ : ndarray of shape (n_features,)
|
|
45
|
+
Estimated location, i.e. the estimated mean.
|
|
46
|
+
|
|
47
|
+
covariance_ : ndarray of shape (n_features, n_features)
|
|
48
|
+
Estimated covariance matrix
|
|
49
|
+
"""
|
|
50
|
+
|
|
51
|
+
_onedal_incremental_covariance = staticmethod(onedal_IncrementalEmpiricalCovariance)
|
|
52
|
+
|
|
53
|
+
def __init__(self, batch_size=None):
|
|
54
|
+
self._need_to_finalize = False # If True then finalize compute should
|
|
55
|
+
# be called to obtain covariance_ or location_ from partial compute data
|
|
56
|
+
self.batch_size = batch_size
|
|
57
|
+
|
|
58
|
+
def _onedal_finalize_fit(self):
|
|
59
|
+
assert hasattr(self, "_onedal_estimator")
|
|
60
|
+
self._onedal_estimator.finalize_fit()
|
|
61
|
+
self._need_to_finalize = False
|
|
62
|
+
|
|
63
|
+
def _onedal_partial_fit(self, X, queue):
|
|
64
|
+
onedal_params = {
|
|
65
|
+
"method": "dense",
|
|
66
|
+
"bias": True,
|
|
67
|
+
}
|
|
68
|
+
if not hasattr(self, "_onedal_estimator"):
|
|
69
|
+
self._onedal_estimator = self._onedal_incremental_covariance(**onedal_params)
|
|
70
|
+
self._onedal_estimator.partial_fit(X, queue)
|
|
71
|
+
self._need_to_finalize = True
|
|
72
|
+
|
|
73
|
+
@property
|
|
74
|
+
def covariance_(self):
|
|
75
|
+
if self._need_to_finalize:
|
|
76
|
+
self._onedal_finalize_fit()
|
|
77
|
+
return self._onedal_estimator.covariance_
|
|
78
|
+
|
|
79
|
+
@property
|
|
80
|
+
def location_(self):
|
|
81
|
+
if self._need_to_finalize:
|
|
82
|
+
self._onedal_finalize_fit()
|
|
83
|
+
return self._onedal_estimator.location_
|
|
84
|
+
|
|
85
|
+
@support_usm_ndarray()
|
|
86
|
+
def partial_fit(self, X, queue=None):
|
|
87
|
+
"""
|
|
88
|
+
Incremental fit with X. All of X is processed as a single batch.
|
|
89
|
+
|
|
90
|
+
Parameters
|
|
91
|
+
----------
|
|
92
|
+
X : array-like of shape (n_samples, n_features)
|
|
93
|
+
Training data, where `n_samples` is the number of samples and
|
|
94
|
+
`n_features` is the number of features.
|
|
95
|
+
|
|
96
|
+
Returns
|
|
97
|
+
-------
|
|
98
|
+
self : object
|
|
99
|
+
Returns the instance itself.
|
|
100
|
+
"""
|
|
101
|
+
X = check_array(X, dtype=[np.float64, np.float32])
|
|
102
|
+
self._onedal_partial_fit(X, queue)
|
|
103
|
+
return self
|
|
104
|
+
|
|
105
|
+
def fit(self, X, queue=None):
|
|
106
|
+
"""
|
|
107
|
+
Fit the model with X, using minibatches of size batch_size.
|
|
108
|
+
|
|
109
|
+
Parameters
|
|
110
|
+
----------
|
|
111
|
+
X : array-like of shape (n_samples, n_features)
|
|
112
|
+
Training data, where `n_samples` is the number of samples and
|
|
113
|
+
`n_features` is the number of features.
|
|
114
|
+
|
|
115
|
+
Returns
|
|
116
|
+
-------
|
|
117
|
+
self : object
|
|
118
|
+
Returns the instance itself.
|
|
119
|
+
"""
|
|
120
|
+
n_samples, n_features = X.shape
|
|
121
|
+
if self.batch_size is None:
|
|
122
|
+
batch_size_ = 5 * n_features
|
|
123
|
+
else:
|
|
124
|
+
batch_size_ = self.batch_size
|
|
125
|
+
for batch in gen_batches(n_samples, batch_size_):
|
|
126
|
+
X_batch = X[batch]
|
|
127
|
+
self.partial_fit(X_batch, queue=queue)
|
|
128
|
+
|
|
129
|
+
self._onedal_finalize_fit()
|
|
130
|
+
return self
|
|
@@ -0,0 +1,143 @@
|
|
|
1
|
+
# ===============================================================================
|
|
2
|
+
# Copyright 2024 Intel Corporation
|
|
3
|
+
#
|
|
4
|
+
# Licensed under the Apache License, Version 2.0 (the "License");
|
|
5
|
+
# you may not use this file except in compliance with the License.
|
|
6
|
+
# You may obtain a copy of the License at
|
|
7
|
+
#
|
|
8
|
+
# http://www.apache.org/licenses/LICENSE-2.0
|
|
9
|
+
#
|
|
10
|
+
# Unless required by applicable law or agreed to in writing, software
|
|
11
|
+
# distributed under the License is distributed on an "AS IS" BASIS,
|
|
12
|
+
# WITHOUT WARRANTIES OR CONDITIONS OF ANY KIND, either express or implied.
|
|
13
|
+
# See the License for the specific language governing permissions and
|
|
14
|
+
# limitations under the License.
|
|
15
|
+
# ===============================================================================
|
|
16
|
+
|
|
17
|
+
import numpy as np
|
|
18
|
+
import pytest
|
|
19
|
+
from numpy.testing import assert_allclose
|
|
20
|
+
|
|
21
|
+
from onedal.tests.utils._dataframes_support import (
|
|
22
|
+
_convert_to_dataframe,
|
|
23
|
+
get_dataframes_and_queues,
|
|
24
|
+
)
|
|
25
|
+
|
|
26
|
+
|
|
27
|
+
@pytest.mark.parametrize("dataframe,queue", get_dataframes_and_queues())
|
|
28
|
+
@pytest.mark.parametrize("dtype", [np.float32, np.float64])
|
|
29
|
+
def test_sklearnex_partial_fit_on_gold_data(dataframe, queue, dtype):
|
|
30
|
+
from sklearnex.covariance import IncrementalEmpiricalCovariance
|
|
31
|
+
|
|
32
|
+
X = np.array([[0, 1], [0, 1]])
|
|
33
|
+
X = X.astype(dtype)
|
|
34
|
+
X_split = np.array_split(X, 2)
|
|
35
|
+
inccov = IncrementalEmpiricalCovariance()
|
|
36
|
+
|
|
37
|
+
for i in range(2):
|
|
38
|
+
X_split_df = _convert_to_dataframe(
|
|
39
|
+
X_split[i], sycl_queue=queue, target_df=dataframe
|
|
40
|
+
)
|
|
41
|
+
result = inccov.partial_fit(X_split_df)
|
|
42
|
+
|
|
43
|
+
expected_covariance = np.array([[0, 0], [0, 0]])
|
|
44
|
+
expected_means = np.array([0, 1])
|
|
45
|
+
|
|
46
|
+
assert_allclose(expected_covariance, result.covariance_)
|
|
47
|
+
assert_allclose(expected_means, result.location_)
|
|
48
|
+
|
|
49
|
+
X = np.array([[1, 2], [3, 6]])
|
|
50
|
+
X = X.astype(dtype)
|
|
51
|
+
X_split = np.array_split(X, 2)
|
|
52
|
+
inccov = IncrementalEmpiricalCovariance()
|
|
53
|
+
|
|
54
|
+
for i in range(2):
|
|
55
|
+
X_split_df = _convert_to_dataframe(
|
|
56
|
+
X_split[i], sycl_queue=queue, target_df=dataframe
|
|
57
|
+
)
|
|
58
|
+
result = inccov.partial_fit(X_split_df)
|
|
59
|
+
|
|
60
|
+
expected_covariance = np.array([[1, 2], [2, 4]])
|
|
61
|
+
expected_means = np.array([2, 4])
|
|
62
|
+
|
|
63
|
+
assert_allclose(expected_covariance, result.covariance_)
|
|
64
|
+
assert_allclose(expected_means, result.location_)
|
|
65
|
+
|
|
66
|
+
|
|
67
|
+
@pytest.mark.parametrize("dataframe,queue", get_dataframes_and_queues())
|
|
68
|
+
@pytest.mark.parametrize("batch_size", [2, 4])
|
|
69
|
+
@pytest.mark.parametrize("dtype", [np.float32, np.float64])
|
|
70
|
+
def test_sklearnex_fit_on_gold_data(dataframe, queue, batch_size, dtype):
|
|
71
|
+
from sklearnex.covariance import IncrementalEmpiricalCovariance
|
|
72
|
+
|
|
73
|
+
X = np.array([[0, 1, 2, 3], [0, -1, -2, -3], [0, 1, 2, 3], [0, 1, 2, 3]])
|
|
74
|
+
X = X.astype(dtype)
|
|
75
|
+
X_df = _convert_to_dataframe(X, sycl_queue=queue, target_df=dataframe)
|
|
76
|
+
inccov = IncrementalEmpiricalCovariance(batch_size=batch_size)
|
|
77
|
+
|
|
78
|
+
result = inccov.fit(X_df)
|
|
79
|
+
|
|
80
|
+
expected_covariance = np.array(
|
|
81
|
+
[[0, 0, 0, 0], [0, 0.75, 1.5, 2.25], [0, 1.5, 3, 4.5], [0, 2.25, 4.5, 6.75]]
|
|
82
|
+
)
|
|
83
|
+
expected_means = np.array([0, 0.5, 1, 1.5])
|
|
84
|
+
|
|
85
|
+
assert_allclose(expected_covariance, result.covariance_)
|
|
86
|
+
assert_allclose(expected_means, result.location_)
|
|
87
|
+
|
|
88
|
+
|
|
89
|
+
@pytest.mark.parametrize("dataframe,queue", get_dataframes_and_queues())
|
|
90
|
+
@pytest.mark.parametrize("num_batches", [2, 4, 6, 8, 10])
|
|
91
|
+
@pytest.mark.parametrize("row_count", [100, 1000, 2000])
|
|
92
|
+
@pytest.mark.parametrize("column_count", [10, 100, 200])
|
|
93
|
+
@pytest.mark.parametrize("dtype", [np.float32, np.float64])
|
|
94
|
+
def test_sklearnex_partial_fit_on_random_data(
|
|
95
|
+
dataframe, queue, num_batches, row_count, column_count, dtype
|
|
96
|
+
):
|
|
97
|
+
from sklearnex.covariance import IncrementalEmpiricalCovariance
|
|
98
|
+
|
|
99
|
+
seed = 77
|
|
100
|
+
gen = np.random.default_rng(seed)
|
|
101
|
+
X = gen.uniform(low=-0.3, high=+0.7, size=(row_count, column_count))
|
|
102
|
+
X = X.astype(dtype)
|
|
103
|
+
X_split = np.array_split(X, num_batches)
|
|
104
|
+
inccov = IncrementalEmpiricalCovariance()
|
|
105
|
+
|
|
106
|
+
for i in range(num_batches):
|
|
107
|
+
X_split_df = _convert_to_dataframe(
|
|
108
|
+
X_split[i], sycl_queue=queue, target_df=dataframe
|
|
109
|
+
)
|
|
110
|
+
result = inccov.partial_fit(X_split_df)
|
|
111
|
+
|
|
112
|
+
expected_covariance = np.cov(X.T, bias=1)
|
|
113
|
+
expected_means = np.mean(X, axis=0)
|
|
114
|
+
|
|
115
|
+
assert_allclose(expected_covariance, result.covariance_, atol=1e-6)
|
|
116
|
+
assert_allclose(expected_means, result.location_, atol=1e-6)
|
|
117
|
+
|
|
118
|
+
|
|
119
|
+
@pytest.mark.parametrize("dataframe,queue", get_dataframes_and_queues())
|
|
120
|
+
@pytest.mark.parametrize("num_batches", [2, 4, 6, 8, 10])
|
|
121
|
+
@pytest.mark.parametrize("row_count", [100, 1000, 2000])
|
|
122
|
+
@pytest.mark.parametrize("column_count", [10, 100, 200])
|
|
123
|
+
@pytest.mark.parametrize("dtype", [np.float32, np.float64])
|
|
124
|
+
def test_sklearnex_fit_on_random_data(
|
|
125
|
+
dataframe, queue, num_batches, row_count, column_count, dtype
|
|
126
|
+
):
|
|
127
|
+
from sklearnex.covariance import IncrementalEmpiricalCovariance
|
|
128
|
+
|
|
129
|
+
seed = 77
|
|
130
|
+
gen = np.random.default_rng(seed)
|
|
131
|
+
X = gen.uniform(low=-0.3, high=+0.7, size=(row_count, column_count))
|
|
132
|
+
X = X.astype(dtype)
|
|
133
|
+
X_df = _convert_to_dataframe(X, sycl_queue=queue, target_df=dataframe)
|
|
134
|
+
batch_size = row_count // num_batches
|
|
135
|
+
inccov = IncrementalEmpiricalCovariance(batch_size=batch_size)
|
|
136
|
+
|
|
137
|
+
result = inccov.fit(X_df)
|
|
138
|
+
|
|
139
|
+
expected_covariance = np.cov(X.T, bias=1)
|
|
140
|
+
expected_means = np.mean(X, axis=0)
|
|
141
|
+
|
|
142
|
+
assert_allclose(expected_covariance, result.covariance_, atol=1e-6)
|
|
143
|
+
assert_allclose(expected_means, result.location_, atol=1e-6)
|
sklearnex/dispatcher.py
CHANGED
|
@@ -69,6 +69,7 @@ def get_patch_map():
|
|
|
69
69
|
from .ensemble import RandomForestClassifier as RandomForestClassifier_sklearnex
|
|
70
70
|
from .ensemble import RandomForestRegressor as RandomForestRegressor_sklearnex
|
|
71
71
|
from .linear_model import LinearRegression as LinearRegression_sklearnex
|
|
72
|
+
from .linear_model import LogisticRegression as LogisticRegression_sklearnex
|
|
72
73
|
from .neighbors import KNeighborsClassifier as KNeighborsClassifier_sklearnex
|
|
73
74
|
from .neighbors import KNeighborsRegressor as KNeighborsRegressor_sklearnex
|
|
74
75
|
from .neighbors import LocalOutlierFactor as LocalOutlierFactor_sklearnex
|
|
@@ -80,9 +81,6 @@ def get_patch_map():
|
|
|
80
81
|
EmpiricalCovariance as EmpiricalCovariance_sklearnex,
|
|
81
82
|
)
|
|
82
83
|
from .preview.decomposition import PCA as PCA_sklearnex
|
|
83
|
-
from .preview.linear_model import (
|
|
84
|
-
LogisticRegression as LogisticRegression_sklearnex,
|
|
85
|
-
)
|
|
86
84
|
from .svm import SVC as SVC_sklearnex
|
|
87
85
|
from .svm import SVR as SVR_sklearnex
|
|
88
86
|
from .svm import NuSVC as NuSVC_sklearnex
|
|
@@ -119,21 +117,6 @@ def get_patch_map():
|
|
|
119
117
|
]
|
|
120
118
|
]
|
|
121
119
|
|
|
122
|
-
# LogisticRegression
|
|
123
|
-
mapping.pop("logisticregression")
|
|
124
|
-
mapping.pop("log_reg")
|
|
125
|
-
mapping["log_reg"] = [
|
|
126
|
-
[
|
|
127
|
-
(
|
|
128
|
-
linear_model_module,
|
|
129
|
-
"LogisticRegression",
|
|
130
|
-
LogisticRegression_sklearnex,
|
|
131
|
-
),
|
|
132
|
-
None,
|
|
133
|
-
]
|
|
134
|
-
]
|
|
135
|
-
mapping["logisticregression"] = mapping["log_reg"]
|
|
136
|
-
|
|
137
120
|
# DBSCAN
|
|
138
121
|
mapping.pop("dbscan")
|
|
139
122
|
mapping["dbscan"] = [[(cluster_module, "DBSCAN", DBSCAN_sklearnex), None]]
|
|
@@ -161,6 +144,24 @@ def get_patch_map():
|
|
|
161
144
|
]
|
|
162
145
|
mapping["linearregression"] = mapping["linear"]
|
|
163
146
|
|
|
147
|
+
# Logistic Regression
|
|
148
|
+
|
|
149
|
+
mapping.pop("logisticregression")
|
|
150
|
+
mapping.pop("log_reg")
|
|
151
|
+
mapping.pop("logistic")
|
|
152
|
+
mapping.pop("_logistic_regression_path")
|
|
153
|
+
mapping["log_reg"] = [
|
|
154
|
+
[
|
|
155
|
+
(
|
|
156
|
+
linear_model_module,
|
|
157
|
+
"LogisticRegression",
|
|
158
|
+
LogisticRegression_sklearnex,
|
|
159
|
+
),
|
|
160
|
+
None,
|
|
161
|
+
]
|
|
162
|
+
]
|
|
163
|
+
mapping["logisticregression"] = mapping["log_reg"]
|
|
164
|
+
|
|
164
165
|
# kNN
|
|
165
166
|
mapping.pop("knn_classifier")
|
|
166
167
|
mapping.pop("kneighborsclassifier")
|
sklearnex/ensemble/_forest.py
CHANGED
|
@@ -42,11 +42,10 @@ from sklearn.utils.validation import (
|
|
|
42
42
|
check_X_y,
|
|
43
43
|
)
|
|
44
44
|
|
|
45
|
+
from daal4py.sklearn._n_jobs_support import control_n_jobs
|
|
45
46
|
from daal4py.sklearn._utils import (
|
|
46
47
|
check_tree_nodes,
|
|
47
|
-
control_n_jobs,
|
|
48
48
|
daal_check_version,
|
|
49
|
-
run_with_n_jobs,
|
|
50
49
|
sklearn_check_version,
|
|
51
50
|
)
|
|
52
51
|
from onedal.ensemble import ExtraTreesClassifier as onedal_ExtraTreesClassifier
|
|
@@ -78,7 +77,6 @@ if sklearn_check_version("1.4"):
|
|
|
78
77
|
class BaseForest(ABC):
|
|
79
78
|
_onedal_factory = None
|
|
80
79
|
|
|
81
|
-
@run_with_n_jobs
|
|
82
80
|
def _onedal_fit(self, X, y, sample_weight=None, queue=None):
|
|
83
81
|
if sklearn_check_version("0.24"):
|
|
84
82
|
X, y = self._validate_data(
|
|
@@ -787,7 +785,6 @@ class ForestClassifier(sklearn_ForestClassifier, BaseForest):
|
|
|
787
785
|
|
|
788
786
|
return patching_status
|
|
789
787
|
|
|
790
|
-
@run_with_n_jobs
|
|
791
788
|
def _onedal_predict(self, X, queue=None):
|
|
792
789
|
X = check_array(
|
|
793
790
|
X,
|
|
@@ -802,7 +799,6 @@ class ForestClassifier(sklearn_ForestClassifier, BaseForest):
|
|
|
802
799
|
res = self._onedal_estimator.predict(X, queue=queue)
|
|
803
800
|
return np.take(self.classes_, res.ravel().astype(np.int64, casting="unsafe"))
|
|
804
801
|
|
|
805
|
-
@run_with_n_jobs
|
|
806
802
|
def _onedal_predict_proba(self, X, queue=None):
|
|
807
803
|
X = check_array(X, dtype=[np.float64, np.float32], force_all_finite=False)
|
|
808
804
|
check_is_fitted(self, "_onedal_estimator")
|
|
@@ -1096,7 +1092,6 @@ class ForestRegressor(sklearn_ForestRegressor, BaseForest):
|
|
|
1096
1092
|
|
|
1097
1093
|
return patching_status
|
|
1098
1094
|
|
|
1099
|
-
@run_with_n_jobs
|
|
1100
1095
|
def _onedal_predict(self, X, queue=None):
|
|
1101
1096
|
X = check_array(
|
|
1102
1097
|
X, dtype=[np.float64, np.float32], force_all_finite=False
|
|
@@ -1138,7 +1133,7 @@ class ForestRegressor(sklearn_ForestRegressor, BaseForest):
|
|
|
1138
1133
|
predict.__doc__ = sklearn_ForestRegressor.predict.__doc__
|
|
1139
1134
|
|
|
1140
1135
|
|
|
1141
|
-
@control_n_jobs
|
|
1136
|
+
@control_n_jobs(decorated_methods=["fit", "predict", "predict_proba"])
|
|
1142
1137
|
class RandomForestClassifier(ForestClassifier):
|
|
1143
1138
|
__doc__ = sklearn_RandomForestClassifier.__doc__
|
|
1144
1139
|
_onedal_factory = onedal_RandomForestClassifier
|
|
@@ -1348,7 +1343,7 @@ class RandomForestClassifier(ForestClassifier):
|
|
|
1348
1343
|
self.min_bin_size = min_bin_size
|
|
1349
1344
|
|
|
1350
1345
|
|
|
1351
|
-
@control_n_jobs
|
|
1346
|
+
@control_n_jobs(decorated_methods=["fit", "predict"])
|
|
1352
1347
|
class RandomForestRegressor(ForestRegressor):
|
|
1353
1348
|
__doc__ = sklearn_RandomForestRegressor.__doc__
|
|
1354
1349
|
_onedal_factory = onedal_RandomForestRegressor
|
|
@@ -1549,7 +1544,7 @@ class RandomForestRegressor(ForestRegressor):
|
|
|
1549
1544
|
self.min_bin_size = min_bin_size
|
|
1550
1545
|
|
|
1551
1546
|
|
|
1552
|
-
@control_n_jobs
|
|
1547
|
+
@control_n_jobs(decorated_methods=["fit", "predict", "predict_proba"])
|
|
1553
1548
|
class ExtraTreesClassifier(ForestClassifier):
|
|
1554
1549
|
__doc__ = sklearn_ExtraTreesClassifier.__doc__
|
|
1555
1550
|
_onedal_factory = onedal_ExtraTreesClassifier
|
|
@@ -1759,7 +1754,7 @@ class ExtraTreesClassifier(ForestClassifier):
|
|
|
1759
1754
|
self.min_bin_size = min_bin_size
|
|
1760
1755
|
|
|
1761
1756
|
|
|
1762
|
-
@control_n_jobs
|
|
1757
|
+
@control_n_jobs(decorated_methods=["fit", "predict"])
|
|
1763
1758
|
class ExtraTreesRegressor(ForestRegressor):
|
|
1764
1759
|
__doc__ = sklearn_ExtraTreesRegressor.__doc__
|
|
1765
1760
|
_onedal_factory = onedal_ExtraTreesRegressor
|
|
@@ -16,14 +16,13 @@
|
|
|
16
16
|
|
|
17
17
|
from .coordinate_descent import ElasticNet, Lasso
|
|
18
18
|
from .linear import LinearRegression
|
|
19
|
-
from .
|
|
19
|
+
from .logistic_regression import LogisticRegression
|
|
20
20
|
from .ridge import Ridge
|
|
21
21
|
|
|
22
22
|
__all__ = [
|
|
23
23
|
"Ridge",
|
|
24
24
|
"LinearRegression",
|
|
25
25
|
"LogisticRegression",
|
|
26
|
-
"logistic_regression_path",
|
|
27
26
|
"ElasticNet",
|
|
28
27
|
"Lasso",
|
|
29
28
|
]
|