scikit-learn-intelex 2024.0.1__py312-none-win_amd64.whl → 2024.2.0__py312-none-win_amd64.whl

This diff represents the content of publicly available package versions that have been released to one of the supported registries. The information contained in this diff is provided for informational purposes only and reflects changes between package versions as they appear in their respective public registries.

Potentially problematic release.


This version of scikit-learn-intelex might be problematic. Click here for more details.

Files changed (104) hide show
  1. {scikit_learn_intelex-2024.0.1.data → scikit_learn_intelex-2024.2.0.data}/data/Lib/site-packages/sklearnex/__init__.py +3 -1
  2. {scikit_learn_intelex-2024.0.1.data → scikit_learn_intelex-2024.2.0.data}/data/Lib/site-packages/sklearnex/__main__.py +0 -1
  3. {scikit_learn_intelex-2024.0.1.data → scikit_learn_intelex-2024.2.0.data}/data/Lib/site-packages/sklearnex/_utils.py +15 -1
  4. {scikit_learn_intelex-2024.0.1.data → scikit_learn_intelex-2024.2.0.data}/data/Lib/site-packages/sklearnex/cluster/__init__.py +0 -1
  5. {scikit_learn_intelex-2024.0.1.data → scikit_learn_intelex-2024.2.0.data}/data/Lib/site-packages/sklearnex/cluster/dbscan.py +2 -1
  6. {scikit_learn_intelex-2024.0.1.data → scikit_learn_intelex-2024.2.0.data}/data/Lib/site-packages/sklearnex/cluster/k_means.py +0 -1
  7. {scikit_learn_intelex-2024.0.1.data → scikit_learn_intelex-2024.2.0.data}/data/Lib/site-packages/sklearnex/cluster/tests/test_dbscan.py +0 -1
  8. {scikit_learn_intelex-2024.0.1.data → scikit_learn_intelex-2024.2.0.data}/data/Lib/site-packages/sklearnex/cluster/tests/test_kmeans.py +0 -1
  9. scikit_learn_intelex-2024.2.0.data/data/Lib/site-packages/sklearnex/covariance/__init__.py +19 -0
  10. scikit_learn_intelex-2024.2.0.data/data/Lib/site-packages/sklearnex/covariance/incremental_covariance.py +130 -0
  11. scikit_learn_intelex-2024.2.0.data/data/Lib/site-packages/sklearnex/covariance/tests/test_incremental_covariance.py +143 -0
  12. {scikit_learn_intelex-2024.0.1.data → scikit_learn_intelex-2024.2.0.data}/data/Lib/site-packages/sklearnex/decomposition/__init__.py +0 -1
  13. {scikit_learn_intelex-2024.0.1.data → scikit_learn_intelex-2024.2.0.data}/data/Lib/site-packages/sklearnex/decomposition/pca.py +0 -1
  14. {scikit_learn_intelex-2024.0.1.data → scikit_learn_intelex-2024.2.0.data}/data/Lib/site-packages/sklearnex/decomposition/tests/test_pca.py +0 -1
  15. {scikit_learn_intelex-2024.0.1.data → scikit_learn_intelex-2024.2.0.data}/data/Lib/site-packages/sklearnex/dispatcher.py +35 -1
  16. {scikit_learn_intelex-2024.0.1.data → scikit_learn_intelex-2024.2.0.data}/data/Lib/site-packages/sklearnex/ensemble/__init__.py +0 -1
  17. {scikit_learn_intelex-2024.0.1.data → scikit_learn_intelex-2024.2.0.data}/data/Lib/site-packages/sklearnex/ensemble/_forest.py +17 -2
  18. {scikit_learn_intelex-2024.0.1.data → scikit_learn_intelex-2024.2.0.data}/data/Lib/site-packages/sklearnex/ensemble/tests/test_forest.py +0 -1
  19. {scikit_learn_intelex-2024.0.1.data → scikit_learn_intelex-2024.2.0.data}/data/Lib/site-packages/sklearnex/glob/__main__.py +0 -1
  20. {scikit_learn_intelex-2024.0.1.data → scikit_learn_intelex-2024.2.0.data}/data/Lib/site-packages/sklearnex/glob/dispatcher.py +0 -1
  21. {scikit_learn_intelex-2024.0.1.data → scikit_learn_intelex-2024.2.0.data}/data/Lib/site-packages/sklearnex/linear_model/__init__.py +1 -3
  22. {scikit_learn_intelex-2024.0.1.data → scikit_learn_intelex-2024.2.0.data}/data/Lib/site-packages/sklearnex/linear_model/coordinate_descent.py +0 -1
  23. {scikit_learn_intelex-2024.0.1.data → scikit_learn_intelex-2024.2.0.data}/data/Lib/site-packages/sklearnex/linear_model/linear.py +9 -1
  24. {scikit_learn_intelex-2024.0.1.data → scikit_learn_intelex-2024.2.0.data}/data/Lib/site-packages/sklearnex/linear_model/logistic_path.py +0 -1
  25. scikit_learn_intelex-2024.2.0.data/data/Lib/site-packages/sklearnex/linear_model/logistic_regression.py +333 -0
  26. {scikit_learn_intelex-2024.0.1.data → scikit_learn_intelex-2024.2.0.data}/data/Lib/site-packages/sklearnex/linear_model/ridge.py +0 -1
  27. {scikit_learn_intelex-2024.0.1.data → scikit_learn_intelex-2024.2.0.data}/data/Lib/site-packages/sklearnex/linear_model/tests/test_linear.py +8 -3
  28. scikit_learn_intelex-2024.2.0.data/data/Lib/site-packages/sklearnex/linear_model/tests/test_logreg.py +93 -0
  29. {scikit_learn_intelex-2024.0.1.data → scikit_learn_intelex-2024.2.0.data}/data/Lib/site-packages/sklearnex/manifold/__init__.py +0 -1
  30. {scikit_learn_intelex-2024.0.1.data → scikit_learn_intelex-2024.2.0.data}/data/Lib/site-packages/sklearnex/manifold/t_sne.py +0 -1
  31. {scikit_learn_intelex-2024.0.1.data → scikit_learn_intelex-2024.2.0.data}/data/Lib/site-packages/sklearnex/manifold/tests/test_tsne.py +0 -1
  32. {scikit_learn_intelex-2024.0.1.data → scikit_learn_intelex-2024.2.0.data}/data/Lib/site-packages/sklearnex/metrics/__init__.py +0 -1
  33. {scikit_learn_intelex-2024.0.1.data → scikit_learn_intelex-2024.2.0.data}/data/Lib/site-packages/sklearnex/metrics/pairwise.py +0 -1
  34. {scikit_learn_intelex-2024.0.1.data → scikit_learn_intelex-2024.2.0.data}/data/Lib/site-packages/sklearnex/metrics/ranking.py +0 -1
  35. {scikit_learn_intelex-2024.0.1.data → scikit_learn_intelex-2024.2.0.data}/data/Lib/site-packages/sklearnex/metrics/tests/test_metrics.py +0 -1
  36. {scikit_learn_intelex-2024.0.1.data → scikit_learn_intelex-2024.2.0.data}/data/Lib/site-packages/sklearnex/model_selection/__init__.py +0 -1
  37. {scikit_learn_intelex-2024.0.1.data → scikit_learn_intelex-2024.2.0.data}/data/Lib/site-packages/sklearnex/model_selection/split.py +0 -1
  38. {scikit_learn_intelex-2024.0.1.data → scikit_learn_intelex-2024.2.0.data}/data/Lib/site-packages/sklearnex/model_selection/tests/test_model_selection.py +0 -1
  39. {scikit_learn_intelex-2024.0.1.data → scikit_learn_intelex-2024.2.0.data}/data/Lib/site-packages/sklearnex/neighbors/__init__.py +1 -2
  40. scikit_learn_intelex-2024.2.0.data/data/Lib/site-packages/sklearnex/neighbors/_lof.py +167 -0
  41. {scikit_learn_intelex-2024.0.1.data → scikit_learn_intelex-2024.2.0.data}/data/Lib/site-packages/sklearnex/neighbors/common.py +1 -2
  42. {scikit_learn_intelex-2024.0.1.data → scikit_learn_intelex-2024.2.0.data}/data/Lib/site-packages/sklearnex/neighbors/knn_classification.py +5 -4
  43. {scikit_learn_intelex-2024.0.1.data → scikit_learn_intelex-2024.2.0.data}/data/Lib/site-packages/sklearnex/neighbors/knn_regression.py +5 -4
  44. {scikit_learn_intelex-2024.0.1.data → scikit_learn_intelex-2024.2.0.data}/data/Lib/site-packages/sklearnex/neighbors/knn_unsupervised.py +4 -3
  45. {scikit_learn_intelex-2024.0.1.data → scikit_learn_intelex-2024.2.0.data}/data/Lib/site-packages/sklearnex/neighbors/tests/test_neighbors.py +12 -12
  46. {scikit_learn_intelex-2024.0.1.data → scikit_learn_intelex-2024.2.0.data}/data/Lib/site-packages/sklearnex/preview/__init__.py +1 -2
  47. {scikit_learn_intelex-2024.0.1.data → scikit_learn_intelex-2024.2.0.data}/data/Lib/site-packages/sklearnex/preview/cluster/__init__.py +0 -1
  48. {scikit_learn_intelex-2024.0.1.data → scikit_learn_intelex-2024.2.0.data}/data/Lib/site-packages/sklearnex/preview/cluster/k_means.py +2 -1
  49. scikit_learn_intelex-2024.2.0.data/data/Lib/site-packages/sklearnex/preview/covariance/__init__.py +19 -0
  50. scikit_learn_intelex-2024.2.0.data/data/Lib/site-packages/sklearnex/preview/covariance/covariance.py +132 -0
  51. scikit_learn_intelex-2024.2.0.data/data/Lib/site-packages/sklearnex/preview/covariance/tests/test_covariance.py +53 -0
  52. {scikit_learn_intelex-2024.0.1.data → scikit_learn_intelex-2024.2.0.data}/data/Lib/site-packages/sklearnex/preview/decomposition/__init__.py +0 -1
  53. {scikit_learn_intelex-2024.0.1.data → scikit_learn_intelex-2024.2.0.data}/data/Lib/site-packages/sklearnex/preview/decomposition/pca.py +43 -45
  54. {scikit_learn_intelex-2024.0.1.data → scikit_learn_intelex-2024.2.0.data}/data/Lib/site-packages/sklearnex/preview/decomposition/tests/test_preview_pca.py +7 -3
  55. {scikit_learn_intelex-2024.0.1.data → scikit_learn_intelex-2024.2.0.data}/data/Lib/site-packages/sklearnex/spmd/__init__.py +1 -0
  56. {scikit_learn_intelex-2024.0.1.data/data/Lib/site-packages/sklearnex → scikit_learn_intelex-2024.2.0.data/data/Lib/site-packages/sklearnex/spmd}/basic_statistics/__init__.py +0 -1
  57. scikit_learn_intelex-2024.2.0.data/data/Lib/site-packages/sklearnex/spmd/covariance/__init__.py +19 -0
  58. scikit_learn_intelex-2024.2.0.data/data/Lib/site-packages/sklearnex/spmd/covariance/covariance.py +21 -0
  59. {scikit_learn_intelex-2024.0.1.data → scikit_learn_intelex-2024.2.0.data}/data/Lib/site-packages/sklearnex/spmd/linear_model/__init__.py +2 -1
  60. scikit_learn_intelex-2024.2.0.data/data/Lib/site-packages/sklearnex/spmd/linear_model/logistic_regression.py +21 -0
  61. {scikit_learn_intelex-2024.0.1.data → scikit_learn_intelex-2024.2.0.data}/data/Lib/site-packages/sklearnex/svm/__init__.py +0 -1
  62. {scikit_learn_intelex-2024.0.1.data → scikit_learn_intelex-2024.2.0.data}/data/Lib/site-packages/sklearnex/svm/nusvc.py +4 -0
  63. {scikit_learn_intelex-2024.0.1.data → scikit_learn_intelex-2024.2.0.data}/data/Lib/site-packages/sklearnex/svm/nusvr.py +2 -0
  64. {scikit_learn_intelex-2024.0.1.data → scikit_learn_intelex-2024.2.0.data}/data/Lib/site-packages/sklearnex/svm/svc.py +5 -1
  65. {scikit_learn_intelex-2024.0.1.data → scikit_learn_intelex-2024.2.0.data}/data/Lib/site-packages/sklearnex/svm/svr.py +2 -0
  66. {scikit_learn_intelex-2024.0.1.data → scikit_learn_intelex-2024.2.0.data}/data/Lib/site-packages/sklearnex/svm/tests/test_svm.py +0 -1
  67. {scikit_learn_intelex-2024.0.1.data → scikit_learn_intelex-2024.2.0.data}/data/Lib/site-packages/sklearnex/tests/test_memory_usage.py +1 -4
  68. {scikit_learn_intelex-2024.0.1.data → scikit_learn_intelex-2024.2.0.data}/data/Lib/site-packages/sklearnex/tests/test_monkeypatch.py +46 -16
  69. scikit_learn_intelex-2024.2.0.data/data/Lib/site-packages/sklearnex/tests/test_n_jobs_support.py +93 -0
  70. {scikit_learn_intelex-2024.0.1.data → scikit_learn_intelex-2024.2.0.data}/data/Lib/site-packages/sklearnex/tests/test_patching.py +19 -5
  71. {scikit_learn_intelex-2024.0.1.data → scikit_learn_intelex-2024.2.0.data}/data/Lib/site-packages/sklearnex/utils/validation.py +0 -1
  72. {scikit_learn_intelex-2024.0.1.dist-info → scikit_learn_intelex-2024.2.0.dist-info}/METADATA +2 -2
  73. scikit_learn_intelex-2024.2.0.dist-info/RECORD +101 -0
  74. scikit_learn_intelex-2024.0.1.data/data/Lib/site-packages/sklearnex/linear_model/tests/test_logreg.py +0 -29
  75. scikit_learn_intelex-2024.0.1.data/data/Lib/site-packages/sklearnex/neighbors/lof.py +0 -437
  76. scikit_learn_intelex-2024.0.1.dist-info/RECORD +0 -90
  77. {scikit_learn_intelex-2024.0.1.data → scikit_learn_intelex-2024.2.0.data}/data/Lib/site-packages/sklearnex/_config.py +0 -0
  78. {scikit_learn_intelex-2024.0.1.data → scikit_learn_intelex-2024.2.0.data}/data/Lib/site-packages/sklearnex/_device_offload.py +0 -0
  79. {scikit_learn_intelex-2024.0.1.data/data/Lib/site-packages/sklearnex/spmd → scikit_learn_intelex-2024.2.0.data/data/Lib/site-packages/sklearnex}/basic_statistics/__init__.py +0 -0
  80. {scikit_learn_intelex-2024.0.1.data → scikit_learn_intelex-2024.2.0.data}/data/Lib/site-packages/sklearnex/basic_statistics/basic_statistics.py +0 -0
  81. {scikit_learn_intelex-2024.0.1.data → scikit_learn_intelex-2024.2.0.data}/data/Lib/site-packages/sklearnex/doc/third-party-programs.txt +0 -0
  82. {scikit_learn_intelex-2024.0.1.data → scikit_learn_intelex-2024.2.0.data}/data/Lib/site-packages/sklearnex/preview/cluster/_common.py +0 -0
  83. {scikit_learn_intelex-2024.0.1.data → scikit_learn_intelex-2024.2.0.data}/data/Lib/site-packages/sklearnex/spmd/basic_statistics/basic_statistics.py +0 -0
  84. {scikit_learn_intelex-2024.0.1.data → scikit_learn_intelex-2024.2.0.data}/data/Lib/site-packages/sklearnex/spmd/cluster/__init__.py +0 -0
  85. {scikit_learn_intelex-2024.0.1.data → scikit_learn_intelex-2024.2.0.data}/data/Lib/site-packages/sklearnex/spmd/cluster/dbscan.py +0 -0
  86. {scikit_learn_intelex-2024.0.1.data → scikit_learn_intelex-2024.2.0.data}/data/Lib/site-packages/sklearnex/spmd/cluster/kmeans.py +0 -0
  87. {scikit_learn_intelex-2024.0.1.data → scikit_learn_intelex-2024.2.0.data}/data/Lib/site-packages/sklearnex/spmd/decomposition/__init__.py +0 -0
  88. {scikit_learn_intelex-2024.0.1.data → scikit_learn_intelex-2024.2.0.data}/data/Lib/site-packages/sklearnex/spmd/decomposition/pca.py +0 -0
  89. {scikit_learn_intelex-2024.0.1.data → scikit_learn_intelex-2024.2.0.data}/data/Lib/site-packages/sklearnex/spmd/ensemble/__init__.py +0 -0
  90. {scikit_learn_intelex-2024.0.1.data → scikit_learn_intelex-2024.2.0.data}/data/Lib/site-packages/sklearnex/spmd/ensemble/forest.py +0 -0
  91. {scikit_learn_intelex-2024.0.1.data → scikit_learn_intelex-2024.2.0.data}/data/Lib/site-packages/sklearnex/spmd/linear_model/linear_model.py +0 -0
  92. {scikit_learn_intelex-2024.0.1.data → scikit_learn_intelex-2024.2.0.data}/data/Lib/site-packages/sklearnex/spmd/neighbors/__init__.py +0 -0
  93. {scikit_learn_intelex-2024.0.1.data → scikit_learn_intelex-2024.2.0.data}/data/Lib/site-packages/sklearnex/spmd/neighbors/neighbors.py +0 -0
  94. {scikit_learn_intelex-2024.0.1.data → scikit_learn_intelex-2024.2.0.data}/data/Lib/site-packages/sklearnex/svm/_common.py +0 -0
  95. {scikit_learn_intelex-2024.0.1.data → scikit_learn_intelex-2024.2.0.data}/data/Lib/site-packages/sklearnex/tests/_models_info.py +0 -0
  96. {scikit_learn_intelex-2024.0.1.data → scikit_learn_intelex-2024.2.0.data}/data/Lib/site-packages/sklearnex/tests/test_config.py +0 -0
  97. {scikit_learn_intelex-2024.0.1.data → scikit_learn_intelex-2024.2.0.data}/data/Lib/site-packages/sklearnex/tests/test_parallel.py +0 -0
  98. {scikit_learn_intelex-2024.0.1.data → scikit_learn_intelex-2024.2.0.data}/data/Lib/site-packages/sklearnex/tests/test_run_to_run_stability_tests.py +0 -0
  99. {scikit_learn_intelex-2024.0.1.data → scikit_learn_intelex-2024.2.0.data}/data/Lib/site-packages/sklearnex/tests/utils/_launch_algorithms.py +0 -0
  100. {scikit_learn_intelex-2024.0.1.data → scikit_learn_intelex-2024.2.0.data}/data/Lib/site-packages/sklearnex/utils/__init__.py +0 -0
  101. {scikit_learn_intelex-2024.0.1.data → scikit_learn_intelex-2024.2.0.data}/data/Lib/site-packages/sklearnex/utils/parallel.py +0 -0
  102. {scikit_learn_intelex-2024.0.1.dist-info → scikit_learn_intelex-2024.2.0.dist-info}/LICENSE.txt +0 -0
  103. {scikit_learn_intelex-2024.0.1.dist-info → scikit_learn_intelex-2024.2.0.dist-info}/WHEEL +0 -0
  104. {scikit_learn_intelex-2024.0.1.dist-info → scikit_learn_intelex-2024.2.0.dist-info}/top_level.txt +0 -0
@@ -1,4 +1,3 @@
1
- #!/usr/bin/env python
2
1
  # ===============================================================================
3
2
  # Copyright 2022 Intel Corporation
4
3
  #
@@ -1,6 +1,6 @@
1
1
  Metadata-Version: 2.1
2
2
  Name: scikit-learn-intelex
3
- Version: 2024.0.1
3
+ Version: 2024.2.0
4
4
  Summary: Intel(R) Extension for Scikit-learn is a seamless way to speed up your Scikit-learn application.
5
5
  Home-page: https://github.com/intel/scikit-learn-intelex
6
6
  Author: Intel Corporation
@@ -31,7 +31,7 @@ Classifier: Topic :: Software Development
31
31
  Requires-Python: >=3.7
32
32
  Description-Content-Type: text/markdown
33
33
  License-File: LICENSE.txt
34
- Requires-Dist: daal4py (==2024.0.1)
34
+ Requires-Dist: daal4py (==2024.2.0)
35
35
  Requires-Dist: scikit-learn (>=0.22)
36
36
 
37
37
 
@@ -0,0 +1,101 @@
1
+ scikit_learn_intelex-2024.2.0.data/data/Lib/site-packages/sklearnex/__init__.py,sha256=ScbLh27pOsTushgVj4zxZsNOLLYct65-7XrD_96Pu94,1648
2
+ scikit_learn_intelex-2024.2.0.data/data/Lib/site-packages/sklearnex/__main__.py,sha256=Le9BJq6aLEGSSoZwJLsOADxsV89ynBfA8BcoJHk9F24,1921
3
+ scikit_learn_intelex-2024.2.0.data/data/Lib/site-packages/sklearnex/_config.py,sha256=6WS3UuS4-0DxIJyGn7yQMosj-mGkLybLQrg3W7dED5o,3928
4
+ scikit_learn_intelex-2024.2.0.data/data/Lib/site-packages/sklearnex/_device_offload.py,sha256=J0tZqj6tfvIFonWR01PadtTLgloQk_QEfXeCoqEvJlk,7710
5
+ scikit_learn_intelex-2024.2.0.data/data/Lib/site-packages/sklearnex/_utils.py,sha256=EV4jC3plVdndsgrfPBsJZTzggrRdYWLwOpoIRWtTXt4,3812
6
+ scikit_learn_intelex-2024.2.0.data/data/Lib/site-packages/sklearnex/dispatcher.py,sha256=89QQ508iMt6qxoCIHt4woLvz_-KBOR6UvvhJJeC77hE,12878
7
+ scikit_learn_intelex-2024.2.0.data/data/Lib/site-packages/sklearnex/basic_statistics/__init__.py,sha256=NA5RGlwcp27UEeCgz0ngzYYd3MAIRpxlTy86uhM2-RE,821
8
+ scikit_learn_intelex-2024.2.0.data/data/Lib/site-packages/sklearnex/basic_statistics/basic_statistics.py,sha256=j5jBZ3DgXjoyjCBEFfYQHyl3LgLXEWWFnNHwInThdZw,796
9
+ scikit_learn_intelex-2024.2.0.data/data/Lib/site-packages/sklearnex/cluster/__init__.py,sha256=TsDzdbKzEubaP86iY8a7mSW0ZQzgjzGYuPkhc5lZmlQ,853
10
+ scikit_learn_intelex-2024.2.0.data/data/Lib/site-packages/sklearnex/cluster/dbscan.py,sha256=EegSXIFHKNhaKLoe_G8dsC5t2SXRdu3tDzsHbcubdDM,6706
11
+ scikit_learn_intelex-2024.2.0.data/data/Lib/site-packages/sklearnex/cluster/k_means.py,sha256=1QKcFUQcnycu8kSD8uYSaDIuedHbxZsV_gvUfcEwVAM,806
12
+ scikit_learn_intelex-2024.2.0.data/data/Lib/site-packages/sklearnex/cluster/tests/test_dbscan.py,sha256=AgFoKwXFVyLKLvEtJVs0qlbBs1Ci3PcRft7f-6_ENOU,1464
13
+ scikit_learn_intelex-2024.2.0.data/data/Lib/site-packages/sklearnex/cluster/tests/test_kmeans.py,sha256=H3a9NSHRRSASo0Eceo44Kjq6GwEoMqMzcubaNt1s1QQ,1213
14
+ scikit_learn_intelex-2024.2.0.data/data/Lib/site-packages/sklearnex/covariance/__init__.py,sha256=_c86wiKDGBH50ofN-_tn7lO4M2YVEWO5AHhJIfimUDk,859
15
+ scikit_learn_intelex-2024.2.0.data/data/Lib/site-packages/sklearnex/covariance/incremental_covariance.py,sha256=3s9gmLP48DPhlhnFcg2JB7RQ2sliSZdNroJkv8-1sIA,4526
16
+ scikit_learn_intelex-2024.2.0.data/data/Lib/site-packages/sklearnex/covariance/tests/test_incremental_covariance.py,sha256=JIa4p-1_RYvU2ZVLx27iz0OKp0Nwrl9sYCsT0Dlyi2I,5402
17
+ scikit_learn_intelex-2024.2.0.data/data/Lib/site-packages/sklearnex/decomposition/__init__.py,sha256=RJBYDWyvnn5DA-j5r4IqVdXLp6H4mdPySsSjnXhlv-U,805
18
+ scikit_learn_intelex-2024.2.0.data/data/Lib/site-packages/sklearnex/decomposition/pca.py,sha256=68ksLxTP5fMOUhRmiIq9QNm0YzQanBNzxsq-zA8DKaY,809
19
+ scikit_learn_intelex-2024.2.0.data/data/Lib/site-packages/sklearnex/decomposition/tests/test_pca.py,sha256=aP4gxjML38CFpknwNVIkZLQCc8t2rqYGlWVo03vsMfE,1146
20
+ scikit_learn_intelex-2024.2.0.data/data/Lib/site-packages/sklearnex/doc/third-party-programs.txt,sha256=qA1XbOqYkMRnp29p8VxXjfcH0kHE8NSO5s2heea83-8,21773
21
+ scikit_learn_intelex-2024.2.0.data/data/Lib/site-packages/sklearnex/ensemble/__init__.py,sha256=2xB2KfG7l7uJv0p3kfVhrs4KLM174SCsigZhYqwSYAA,1035
22
+ scikit_learn_intelex-2024.2.0.data/data/Lib/site-packages/sklearnex/ensemble/_forest.py,sha256=nw_aUdgyjxKWc6yZ-8DBaqNqDODhx5uEy13GbpM7C18,70561
23
+ scikit_learn_intelex-2024.2.0.data/data/Lib/site-packages/sklearnex/ensemble/tests/test_forest.py,sha256=KoETKE1sSpKgp38s9bepAujJjcG21eFX5RyYINcHCUo,4516
24
+ scikit_learn_intelex-2024.2.0.data/data/Lib/site-packages/sklearnex/glob/__main__.py,sha256=--FAjkhh5E6a1TFOGu6_BM3MHe78jP8oSpl0xKiRtTI,2531
25
+ scikit_learn_intelex-2024.2.0.data/data/Lib/site-packages/sklearnex/glob/dispatcher.py,sha256=IEEPhAOCVzC2JDFvYtijbiPAbaUY5RrCAhFLRjMMe1w,3018
26
+ scikit_learn_intelex-2024.2.0.data/data/Lib/site-packages/sklearnex/linear_model/__init__.py,sha256=5XZDZh8R0SmT8D8ZtSjW7-MKRO7l1jOZ8CUnt_OzHe4,1047
27
+ scikit_learn_intelex-2024.2.0.data/data/Lib/site-packages/sklearnex/linear_model/coordinate_descent.py,sha256=uZOHIKfFlHoMlNXZCh2MAnZE30fRZlmtcF7UsZQ3Vq4,822
28
+ scikit_learn_intelex-2024.2.0.data/data/Lib/site-packages/sklearnex/linear_model/linear.py,sha256=ed7pNKKnRkwa-wC0haUCOGHQoPkA4AuFhKNMzmRL6Fw,13832
29
+ scikit_learn_intelex-2024.2.0.data/data/Lib/site-packages/sklearnex/linear_model/logistic_path.py,sha256=Nq3JPXSzE4bjamnP3gGQtsMKks2v7s6bSiuYRnFqrRw,849
30
+ scikit_learn_intelex-2024.2.0.data/data/Lib/site-packages/sklearnex/linear_model/logistic_regression.py,sha256=ezW717qpPM4EC6uvmKbvxZZZwkooLuc8mfddAu5ebJM,12547
31
+ scikit_learn_intelex-2024.2.0.data/data/Lib/site-packages/sklearnex/linear_model/ridge.py,sha256=0oxlM5McYYvl0KxK9OIGJKM6lOADuFSPTdfx-efJNTI,810
32
+ scikit_learn_intelex-2024.2.0.data/data/Lib/site-packages/sklearnex/linear_model/tests/test_linear.py,sha256=li9LLWgap6YCwvNiHQ9yHduvUIsK1lpXfuVNR3dLwig,3200
33
+ scikit_learn_intelex-2024.2.0.data/data/Lib/site-packages/sklearnex/linear_model/tests/test_logreg.py,sha256=iH6pxRJ5Nh6RzO_ohFLlt-TpJpQmzKh2QMU81SnPwv4,3346
34
+ scikit_learn_intelex-2024.2.0.data/data/Lib/site-packages/sklearnex/manifold/__init__.py,sha256=3FU5fY1YvHAyNeSlUHsZfPnAbvlAUtZpum0Obmok2KE,809
35
+ scikit_learn_intelex-2024.2.0.data/data/Lib/site-packages/sklearnex/manifold/t_sne.py,sha256=U6F_dGB6taVuEJvTnVBWD-sri3x3m0Khu3HI4wXidhg,805
36
+ scikit_learn_intelex-2024.2.0.data/data/Lib/site-packages/sklearnex/manifold/tests/test_tsne.py,sha256=SNqe1yg45mL4qIsxpX5hDpBsIyrv9r__6wfrerjp3yU,1063
37
+ scikit_learn_intelex-2024.2.0.data/data/Lib/site-packages/sklearnex/metrics/__init__.py,sha256=EHOCTU9RERa0Rrkr4dgmyO9ippbN5kjH_FwK3BqIROc,907
38
+ scikit_learn_intelex-2024.2.0.data/data/Lib/site-packages/sklearnex/metrics/pairwise.py,sha256=5T_Vcbiadzi7oo0hq6vLl_BHQzXOmDsn5pHaMCPSHd8,818
39
+ scikit_learn_intelex-2024.2.0.data/data/Lib/site-packages/sklearnex/metrics/ranking.py,sha256=rjJxQntblbegSZRwDsOOy2ntIYBqlnV8NM46IAc0MiE,813
40
+ scikit_learn_intelex-2024.2.0.data/data/Lib/site-packages/sklearnex/metrics/tests/test_metrics.py,sha256=Nwfz8UV4V4fKLLY7f9P9eg8uY09xLXaFx1GC49TOiA8,1579
41
+ scikit_learn_intelex-2024.2.0.data/data/Lib/site-packages/sklearnex/model_selection/__init__.py,sha256=64045Y-nzLDBepO6IRjt88LhL2DM3KdvpCF2vvj_RpA,842
42
+ scikit_learn_intelex-2024.2.0.data/data/Lib/site-packages/sklearnex/model_selection/split.py,sha256=qjmy8sRf_QEG8LhT0ivn_tICMCYmt7ffZZV1-rLQnko,824
43
+ scikit_learn_intelex-2024.2.0.data/data/Lib/site-packages/sklearnex/model_selection/tests/test_model_selection.py,sha256=3kZIq8kba8SW93DBWXupoRymNStR1_mGGYSErQRnwME,1338
44
+ scikit_learn_intelex-2024.2.0.data/data/Lib/site-packages/sklearnex/neighbors/__init__.py,sha256=_GMJ2L-6YechRYI2fOFwHjy0kebUncE81z4FmdXUlb8,1078
45
+ scikit_learn_intelex-2024.2.0.data/data/Lib/site-packages/sklearnex/neighbors/_lof.py,sha256=HddPA9VdHEKCENr260qEAWoaB3KdqVYqHE-BssSuWPY,6605
46
+ scikit_learn_intelex-2024.2.0.data/data/Lib/site-packages/sklearnex/neighbors/common.py,sha256=iia-EUIRUIohDCIGpHbVx2PeDlwUvz4Mj1Tn169jidA,10781
47
+ scikit_learn_intelex-2024.2.0.data/data/Lib/site-packages/sklearnex/neighbors/knn_classification.py,sha256=C0jqL9qRQwt31JTIxjjWQWJuiy_D1I5Am1_W6ek8beY,11077
48
+ scikit_learn_intelex-2024.2.0.data/data/Lib/site-packages/sklearnex/neighbors/knn_regression.py,sha256=7ihpIl5SKSYDGvXtsUC0vNaOTj6_NNpXAAsu3uiQuaQ,9978
49
+ scikit_learn_intelex-2024.2.0.data/data/Lib/site-packages/sklearnex/neighbors/knn_unsupervised.py,sha256=Stw63vAKiaHnPQ2cfnXWD1Omf-QssT4BqhFPCMmyVCs,7620
50
+ scikit_learn_intelex-2024.2.0.data/data/Lib/site-packages/sklearnex/neighbors/tests/test_neighbors.py,sha256=s4jip1Ntrhp5Zu9-pHVbeIoNdNFsq03ABY-N-iF_UL8,3437
51
+ scikit_learn_intelex-2024.2.0.data/data/Lib/site-packages/sklearnex/preview/__init__.py,sha256=1QcbV6xCSP7QCXRxYLVPc_b4lxE0cQiyTrMm4xOnosM,797
52
+ scikit_learn_intelex-2024.2.0.data/data/Lib/site-packages/sklearnex/preview/cluster/__init__.py,sha256=FONzOuTGAb5NwdfFhLco99P_VccRk9NBkDHU3EKuAIs,794
53
+ scikit_learn_intelex-2024.2.0.data/data/Lib/site-packages/sklearnex/preview/cluster/_common.py,sha256=bgpzijxgyrAtdNCCHyCNsZ-N70KQYNwMuoCTNdUna6o,2718
54
+ scikit_learn_intelex-2024.2.0.data/data/Lib/site-packages/sklearnex/preview/cluster/k_means.py,sha256=jSuU8E6r4fdbbBnxBpWp4ybBa62kCnbBx7zDXyUr0Cs,13007
55
+ scikit_learn_intelex-2024.2.0.data/data/Lib/site-packages/sklearnex/preview/covariance/__init__.py,sha256=DPYTk8lwcVphtwU8J3CyUYH8Uz6Zr0Uz4S6nn-RY5iM,825
56
+ scikit_learn_intelex-2024.2.0.data/data/Lib/site-packages/sklearnex/preview/covariance/covariance.py,sha256=LrNrGP62FEhTSBVaO-EOYAaq-Rszc1VS2B2IqMgh4oo,4938
57
+ scikit_learn_intelex-2024.2.0.data/data/Lib/site-packages/sklearnex/preview/covariance/tests/test_covariance.py,sha256=GYI4bMIhGnjmOXpt8J7R0JQmpm9eOvDjIphugRa4kD8,2140
58
+ scikit_learn_intelex-2024.2.0.data/data/Lib/site-packages/sklearnex/preview/decomposition/__init__.py,sha256=uRenwBGf7hHQqwAVYbBw3clUQB_HWUqJGOAKTuCnrcM,805
59
+ scikit_learn_intelex-2024.2.0.data/data/Lib/site-packages/sklearnex/preview/decomposition/pca.py,sha256=S8g5GhLdnUAb1FifNx6gnrwA8AWv8ddZtLY1Er83BkY,14342
60
+ scikit_learn_intelex-2024.2.0.data/data/Lib/site-packages/sklearnex/preview/decomposition/tests/test_preview_pca.py,sha256=xcllHM-jDIq33rAWTeh_gjhS2qfCNbUIAI5KeLPA8aY,1790
61
+ scikit_learn_intelex-2024.2.0.data/data/Lib/site-packages/sklearnex/spmd/__init__.py,sha256=ChQy2kEWlo4KGvs0RnbPoPEVhdgl8URV099B1rZtF5Y,889
62
+ scikit_learn_intelex-2024.2.0.data/data/Lib/site-packages/sklearnex/spmd/basic_statistics/__init__.py,sha256=NA5RGlwcp27UEeCgz0ngzYYd3MAIRpxlTy86uhM2-RE,821
63
+ scikit_learn_intelex-2024.2.0.data/data/Lib/site-packages/sklearnex/spmd/basic_statistics/basic_statistics.py,sha256=_dQ9mhVYxeuChATEpAmHpXDpgW3YvtK1qrG-kLr2MtI,886
64
+ scikit_learn_intelex-2024.2.0.data/data/Lib/site-packages/sklearnex/spmd/cluster/__init__.py,sha256=qBBfrCHh6_82EROLbu54XKk7SmmRwS1XJyCj0zwkoUw,1029
65
+ scikit_learn_intelex-2024.2.0.data/data/Lib/site-packages/sklearnex/spmd/cluster/dbscan.py,sha256=23YNzPhx4MZijU0md-E3ZkHpTkhUh5cmtS3loHe-KhI,1824
66
+ scikit_learn_intelex-2024.2.0.data/data/Lib/site-packages/sklearnex/spmd/cluster/kmeans.py,sha256=Rnb9tr9LXVto5vCAumk7ZJfa9BYYDhdD1qUWL-QK5bY,868
67
+ scikit_learn_intelex-2024.2.0.data/data/Lib/site-packages/sklearnex/spmd/covariance/__init__.py,sha256=5xeL1REMIxCv5M1ya99GGKaVjctUngboZ3uXgxcZ04o,823
68
+ scikit_learn_intelex-2024.2.0.data/data/Lib/site-packages/sklearnex/spmd/covariance/covariance.py,sha256=_oIlr1W1vqDHqIPnsCb04HcBCen5oBHQr5-_n9OSvIA,884
69
+ scikit_learn_intelex-2024.2.0.data/data/Lib/site-packages/sklearnex/spmd/decomposition/__init__.py,sha256=dBh0ZMIiaqdf3DKbt8FWNB2K9Iacs395m8OxaDFQg_M,784
70
+ scikit_learn_intelex-2024.2.0.data/data/Lib/site-packages/sklearnex/spmd/decomposition/pca.py,sha256=CUrsVD2jae-A9H8RB_emza_fe82CwnFa5PEy0fW_EZ8,871
71
+ scikit_learn_intelex-2024.2.0.data/data/Lib/site-packages/sklearnex/spmd/ensemble/__init__.py,sha256=B3yi7hWoVogMIiw0QRT_x5atsAFS-OO72YPLGeUQJ8M,873
72
+ scikit_learn_intelex-2024.2.0.data/data/Lib/site-packages/sklearnex/spmd/ensemble/forest.py,sha256=ao6lyzcxoRW-RG9xIYwtDFyM7JIjlF8wmQKpOv_oSRQ,3113
73
+ scikit_learn_intelex-2024.2.0.data/data/Lib/site-packages/sklearnex/spmd/linear_model/__init__.py,sha256=WwqCr2DOyUnkSIHlP0yq0UI2yFDgSl5MHV7wu3QGJtA,893
74
+ scikit_learn_intelex-2024.2.0.data/data/Lib/site-packages/sklearnex/spmd/linear_model/linear_model.py,sha256=7QPCIQTWKBiZBTDZZbpZXi-REgxQCfRMt6rHPJAnc5E,883
75
+ scikit_learn_intelex-2024.2.0.data/data/Lib/site-packages/sklearnex/spmd/linear_model/logistic_regression.py,sha256=q_HkfWcg0RgFbk2t9FeV0ZY28HHAOtkGEnUj4tLuwt4,885
76
+ scikit_learn_intelex-2024.2.0.data/data/Lib/site-packages/sklearnex/spmd/neighbors/__init__.py,sha256=S16sH8N_18LN_8AgC_wGK5EDSNyuN-F-gI6GVlaiWVE,906
77
+ scikit_learn_intelex-2024.2.0.data/data/Lib/site-packages/sklearnex/spmd/neighbors/neighbors.py,sha256=SiKAS_RVt34MUcGytBS5pHnI_5vFNxJn8jqt1MOhDh8,940
78
+ scikit_learn_intelex-2024.2.0.data/data/Lib/site-packages/sklearnex/svm/__init__.py,sha256=f3e4ZFwZfx6MsXsn94VK1xVm6mWKT5XCiHczo6zNyAQ,1057
79
+ scikit_learn_intelex-2024.2.0.data/data/Lib/site-packages/sklearnex/svm/_common.py,sha256=Dt1Iyz1g04zOW6hn9cHa9ruzM_MHAIq0ZEEIxh5s7nI,7167
80
+ scikit_learn_intelex-2024.2.0.data/data/Lib/site-packages/sklearnex/svm/nusvc.py,sha256=Bvs_FmC1CYH23tXyrQE3Ti1h3BqK0YeX-_PBTZMRM0k,9008
81
+ scikit_learn_intelex-2024.2.0.data/data/Lib/site-packages/sklearnex/svm/nusvr.py,sha256=XHlDAGwnx1NVkkt8c9EUST8zVRLQY7Mwu335TPCcuRk,5237
82
+ scikit_learn_intelex-2024.2.0.data/data/Lib/site-packages/sklearnex/svm/svc.py,sha256=4f-vJlPGeAcquz7nkSCeu0LJTTXCbdU2M54HkT49TeQ,10288
83
+ scikit_learn_intelex-2024.2.0.data/data/Lib/site-packages/sklearnex/svm/svr.py,sha256=fmYi0dghOmmyFFVI59COX9-tyouQnSDfHIbs8GY8AHs,5241
84
+ scikit_learn_intelex-2024.2.0.data/data/Lib/site-packages/sklearnex/svm/tests/test_svm.py,sha256=Ru-aGNGCsRJts7SEEYbnKcVqUx-DqPyUtw-hEoMVpW8,4190
85
+ scikit_learn_intelex-2024.2.0.data/data/Lib/site-packages/sklearnex/tests/_models_info.py,sha256=xhjvnU3TvQg8J5Cih2hphWAOSsT8DnKmCyYbtwa0Qvs,4785
86
+ scikit_learn_intelex-2024.2.0.data/data/Lib/site-packages/sklearnex/tests/test_config.py,sha256=SnSJjxAAysISDyC3bYKSJiRHStkB9X-yjLeF11LpRog,1372
87
+ scikit_learn_intelex-2024.2.0.data/data/Lib/site-packages/sklearnex/tests/test_memory_usage.py,sha256=lwm63gSyRR82n3LGBdsophU_NvZK5RHkxAoTDZ2AcWI,7309
88
+ scikit_learn_intelex-2024.2.0.data/data/Lib/site-packages/sklearnex/tests/test_monkeypatch.py,sha256=wmtEeDNGoiPBlAh4Vmts86eFQLk8Wbzjbj6Busf6V3o,8663
89
+ scikit_learn_intelex-2024.2.0.data/data/Lib/site-packages/sklearnex/tests/test_n_jobs_support.py,sha256=ynfCSdCMnR3yEq1YEf_cilVD7zSe0sS-ZQ9jC0hHo8M,3903
90
+ scikit_learn_intelex-2024.2.0.data/data/Lib/site-packages/sklearnex/tests/test_parallel.py,sha256=bMu22noUvGiDX4oyxKIHPiOEoBP9lRQQUq6wq8ZD730,1776
91
+ scikit_learn_intelex-2024.2.0.data/data/Lib/site-packages/sklearnex/tests/test_patching.py,sha256=IySMpMdWVgoAZgs1cRKvdJeb8RXElFwjjNdHcE4jJz0,4247
92
+ scikit_learn_intelex-2024.2.0.data/data/Lib/site-packages/sklearnex/tests/test_run_to_run_stability_tests.py,sha256=4HDOeJruA1EDILbyQJtsHFmEXC0D1upSHuOT-KyTlEc,14008
93
+ scikit_learn_intelex-2024.2.0.data/data/Lib/site-packages/sklearnex/tests/utils/_launch_algorithms.py,sha256=pJT5tAW9rWvk7GT37R-B0-e8SLz8e9FSZw8yu4LWNJ4,3724
94
+ scikit_learn_intelex-2024.2.0.data/data/Lib/site-packages/sklearnex/utils/__init__.py,sha256=I8mbJQ3Zsm_F3sCLAhJQb7tUrG30kVsQ-wZoqA8vDdA,842
95
+ scikit_learn_intelex-2024.2.0.data/data/Lib/site-packages/sklearnex/utils/parallel.py,sha256=VBcS-KUdyq7XpJUN6ygmNjyWtYLroghbvCxQ8nVU3YI,2085
96
+ scikit_learn_intelex-2024.2.0.data/data/Lib/site-packages/sklearnex/utils/validation.py,sha256=fjfhQiKnBQnD7LCBlacMyvsrhGnlMLRXk5Q69uoZIP4,827
97
+ scikit_learn_intelex-2024.2.0.dist-info/LICENSE.txt,sha256=rVeK6nE7qRmAwbwjnG9ENguRsDgzEkFn5MZL2IU6QgY,10999
98
+ scikit_learn_intelex-2024.2.0.dist-info/METADATA,sha256=yUEG8voZbX3yS6WqASjdCJ23B3xLFxgOM9gA0501bHw,12448
99
+ scikit_learn_intelex-2024.2.0.dist-info/WHEEL,sha256=G27LerVAsJMtVEJpFfuoxcZMbwZpIab_g-fyc0T6CrM,100
100
+ scikit_learn_intelex-2024.2.0.dist-info/top_level.txt,sha256=AbpHGcgLb-kRsJGnwFEktk7uzpZOCcBY74-YBdrKVGs,1
101
+ scikit_learn_intelex-2024.2.0.dist-info/RECORD,,
@@ -1,29 +0,0 @@
1
- #!/usr/bin/env python
2
- # ===============================================================================
3
- # Copyright 2021 Intel Corporation
4
- #
5
- # Licensed under the Apache License, Version 2.0 (the "License");
6
- # you may not use this file except in compliance with the License.
7
- # You may obtain a copy of the License at
8
- #
9
- # http://www.apache.org/licenses/LICENSE-2.0
10
- #
11
- # Unless required by applicable law or agreed to in writing, software
12
- # distributed under the License is distributed on an "AS IS" BASIS,
13
- # WITHOUT WARRANTIES OR CONDITIONS OF ANY KIND, either express or implied.
14
- # See the License for the specific language governing permissions and
15
- # limitations under the License.
16
- # ===============================================================================
17
-
18
- import numpy as np
19
- from numpy.testing import assert_allclose
20
- from sklearn.datasets import load_iris
21
-
22
-
23
- def test_sklearnex_import():
24
- from sklearnex.linear_model import LogisticRegression
25
-
26
- X, y = load_iris(return_X_y=True)
27
- logreg = LogisticRegression(random_state=0, max_iter=200).fit(X, y)
28
- assert "daal4py" in logreg.__module__
29
- assert_allclose(logreg.score(X, y), 0.9733, atol=1e-3)
@@ -1,437 +0,0 @@
1
- #!/usr/bin/env python
2
- # ===============================================================================
3
- # Copyright 2023 Intel Corporation
4
- #
5
- # Licensed under the Apache License, Version 2.0 (the "License");
6
- # you may not use this file except in compliance with the License.
7
- # You may obtain a copy of the License at
8
- #
9
- # http://www.apache.org/licenses/LICENSE-2.0
10
- #
11
- # Unless required by applicable law or agreed to in writing, software
12
- # distributed under the License is distributed on an "AS IS" BASIS,
13
- # WITHOUT WARRANTIES OR CONDITIONS OF ANY KIND, either express or implied.
14
- # See the License for the specific language governing permissions and
15
- # limitations under the License.
16
- # ===============================================================================
17
-
18
- import warnings
19
-
20
- import numpy as np
21
- from sklearn.neighbors._lof import LocalOutlierFactor as sklearn_LocalOutlierFactor
22
-
23
- from .knn_unsupervised import NearestNeighbors
24
-
25
- try:
26
- from sklearn.utils.metaestimators import available_if
27
- except ImportError:
28
- pass
29
-
30
- from sklearn.utils import check_array
31
- from sklearn.utils.validation import check_is_fitted
32
-
33
- from daal4py.sklearn._utils import sklearn_check_version
34
-
35
- from .._config import config_context
36
- from .._device_offload import dispatch, wrap_output_data
37
- from .._utils import PatchingConditionsChain
38
-
39
- if sklearn_check_version("1.0"):
40
-
41
- class LocalOutlierFactor(sklearn_LocalOutlierFactor):
42
- if sklearn_check_version("1.2"):
43
- _parameter_constraints: dict = {
44
- **sklearn_LocalOutlierFactor._parameter_constraints
45
- }
46
-
47
- def __init__(
48
- self,
49
- n_neighbors=20,
50
- *,
51
- algorithm="auto",
52
- leaf_size=30,
53
- metric="minkowski",
54
- p=2,
55
- metric_params=None,
56
- contamination="auto",
57
- novelty=False,
58
- n_jobs=None,
59
- ):
60
- super().__init__(
61
- n_neighbors=n_neighbors,
62
- algorithm=algorithm,
63
- leaf_size=leaf_size,
64
- metric=metric,
65
- p=p,
66
- metric_params=metric_params,
67
- n_jobs=n_jobs,
68
- contamination=contamination,
69
- novelty=novelty,
70
- )
71
-
72
- def _fit(self, X, y, queue=None):
73
- with config_context(target_offload=queue):
74
- if sklearn_check_version("1.2"):
75
- self._validate_params()
76
- self._knn = NearestNeighbors(
77
- n_neighbors=self.n_neighbors,
78
- algorithm=self.algorithm,
79
- leaf_size=self.leaf_size,
80
- metric=self.metric,
81
- p=self.p,
82
- metric_params=self.metric_params,
83
- n_jobs=self.n_jobs,
84
- )
85
- self._knn.fit(X)
86
-
87
- if self.contamination != "auto":
88
- if not (0.0 < self.contamination <= 0.5):
89
- raise ValueError(
90
- "contamination must be in (0, 0.5], "
91
- "got: %f" % self.contamination
92
- )
93
-
94
- n_samples = self._knn.n_samples_fit_
95
-
96
- if self.n_neighbors > n_samples:
97
- warnings.warn(
98
- "n_neighbors (%s) is greater than the "
99
- "total number of samples (%s). n_neighbors "
100
- "will be set to (n_samples - 1) for estimation."
101
- % (self.n_neighbors, n_samples)
102
- )
103
- self.n_neighbors_ = max(1, min(self.n_neighbors, n_samples - 1))
104
-
105
- self._distances_fit_X_, _neighbors_indices_fit_X_ = self._knn.kneighbors(
106
- n_neighbors=self.n_neighbors_
107
- )
108
-
109
- self._lrd = self._local_reachability_density(
110
- self._distances_fit_X_, _neighbors_indices_fit_X_
111
- )
112
-
113
- # Compute lof score over training samples to define offset_:
114
- lrd_ratios_array = (
115
- self._lrd[_neighbors_indices_fit_X_] / self._lrd[:, np.newaxis]
116
- )
117
-
118
- self.negative_outlier_factor_ = -np.mean(lrd_ratios_array, axis=1)
119
-
120
- if self.contamination == "auto":
121
- # inliers score around -1 (the higher, the less abnormal).
122
- self.offset_ = -1.5
123
- else:
124
- self.offset_ = np.percentile(
125
- self.negative_outlier_factor_, 100.0 * self.contamination
126
- )
127
-
128
- for knn_prop_name in self._knn.__dict__.keys():
129
- if knn_prop_name not in self.__dict__.keys():
130
- setattr(self, knn_prop_name, self._knn.__dict__[knn_prop_name])
131
-
132
- return self
133
-
134
- def fit(self, X, y=None):
135
- return dispatch(
136
- self,
137
- "neighbors.LocalOutlierFactor.fit",
138
- {
139
- "onedal": self.__class__._fit,
140
- "sklearn": None,
141
- },
142
- X,
143
- y,
144
- )
145
-
146
- def _onedal_predict(self, X, queue=None):
147
- with config_context(target_offload=queue):
148
- check_is_fitted(self)
149
-
150
- if X is not None:
151
- X = check_array(X, accept_sparse="csr")
152
- is_inlier = np.ones(X.shape[0], dtype=int)
153
- is_inlier[self.decision_function(X) < 0] = -1
154
- else:
155
- is_inlier = np.ones(self._knn.n_samples_fit_, dtype=int)
156
- is_inlier[self.negative_outlier_factor_ < self.offset_] = -1
157
-
158
- return is_inlier
159
-
160
- @wrap_output_data
161
- def _predict(self, X=None):
162
- return dispatch(
163
- self,
164
- "neighbors.LocalOutlierFactor.predict",
165
- {
166
- "onedal": self.__class__._onedal_predict,
167
- "sklearn": None,
168
- },
169
- X,
170
- )
171
-
172
- def _score_samples(self, X, queue=None):
173
- with config_context(target_offload=queue):
174
- check_is_fitted(self)
175
- X = check_array(X, accept_sparse="csr")
176
-
177
- distances_X, neighbors_indices_X = self._knn.kneighbors(
178
- X, n_neighbors=self.n_neighbors_
179
- )
180
- X_lrd = self._local_reachability_density(distances_X, neighbors_indices_X)
181
-
182
- lrd_ratios_array = self._lrd[neighbors_indices_X] / X_lrd[:, np.newaxis]
183
-
184
- # as bigger is better:
185
- return -np.mean(lrd_ratios_array, axis=1)
186
-
187
- def _check_novelty_score_samples(self):
188
- if not self.novelty:
189
- msg = (
190
- "score_samples is not available when novelty=False. The "
191
- "scores of the training samples are always available "
192
- "through the negative_outlier_factor_ attribute. Use "
193
- "novelty=True if you want to use LOF for novelty detection "
194
- "and compute score_samples for new unseen data."
195
- )
196
- raise AttributeError(msg)
197
- return True
198
-
199
- @available_if(_check_novelty_score_samples)
200
- @wrap_output_data
201
- def score_samples(self, X):
202
- return dispatch(
203
- self,
204
- "neighbors.LocalOutlierFactor.score_samples",
205
- {
206
- "onedal": self.__class__._score_samples,
207
- "sklearn": None,
208
- },
209
- X,
210
- )
211
-
212
- def _check_novelty_fit_predict(self):
213
- if self.novelty:
214
- msg = (
215
- "fit_predict is not available when novelty=True. Use "
216
- "novelty=False if you want to predict on the training set."
217
- )
218
- raise AttributeError(msg)
219
- return True
220
-
221
- def _fit_predict(self, X, y, queue=None):
222
- with config_context(target_offload=queue):
223
- return self.fit(X)._predict()
224
-
225
- @available_if(_check_novelty_fit_predict)
226
- @wrap_output_data
227
- def fit_predict(self, X, y=None):
228
- return dispatch(
229
- self,
230
- "neighbors.LocalOutlierFactor.fit_predict",
231
- {
232
- "onedal": self.__class__._fit_predict,
233
- "sklearn": None,
234
- },
235
- X,
236
- y,
237
- )
238
-
239
- def _onedal_gpu_supported(self, method_name, *data):
240
- class_name = self.__class__.__name__
241
- patching_status = PatchingConditionsChain(
242
- f"sklearn.neighbors.{class_name}.{method_name}"
243
- )
244
- return patching_status
245
-
246
- def _onedal_cpu_supported(self, method_name, *data):
247
- class_name = self.__class__.__name__
248
- patching_status = PatchingConditionsChain(
249
- f"sklearn.neighbors.{class_name}.{method_name}"
250
- )
251
- return patching_status
252
-
253
- else:
254
-
255
- class LocalOutlierFactor(sklearn_LocalOutlierFactor):
256
- def __init__(
257
- self,
258
- n_neighbors=20,
259
- *,
260
- algorithm="auto",
261
- leaf_size=30,
262
- metric="minkowski",
263
- p=2,
264
- metric_params=None,
265
- contamination="auto",
266
- novelty=False,
267
- n_jobs=None,
268
- ):
269
- super().__init__(
270
- n_neighbors=n_neighbors,
271
- algorithm=algorithm,
272
- leaf_size=leaf_size,
273
- metric=metric,
274
- p=p,
275
- metric_params=metric_params,
276
- n_jobs=n_jobs,
277
- contamination=contamination,
278
- novelty=novelty,
279
- )
280
-
281
- def _fit(self, X, y=None, queue=None):
282
- with config_context(target_offload=queue):
283
- self._knn = NearestNeighbors(
284
- n_neighbors=self.n_neighbors,
285
- algorithm=self.algorithm,
286
- leaf_size=self.leaf_size,
287
- metric=self.metric,
288
- p=self.p,
289
- metric_params=self.metric_params,
290
- n_jobs=self.n_jobs,
291
- )
292
- self._knn.fit(X)
293
-
294
- if self.contamination != "auto":
295
- if not (0.0 < self.contamination <= 0.5):
296
- raise ValueError(
297
- "contamination must be in (0, 0.5], "
298
- "got: %f" % self.contamination
299
- )
300
-
301
- n_samples = self._knn.n_samples_fit_
302
-
303
- if self.n_neighbors > n_samples:
304
- warnings.warn(
305
- "n_neighbors (%s) is greater than the "
306
- "total number of samples (%s). n_neighbors "
307
- "will be set to (n_samples - 1) for estimation."
308
- % (self.n_neighbors, n_samples)
309
- )
310
- self.n_neighbors_ = max(1, min(self.n_neighbors, n_samples - 1))
311
-
312
- self._distances_fit_X_, _neighbors_indices_fit_X_ = self._knn.kneighbors(
313
- n_neighbors=self.n_neighbors_
314
- )
315
-
316
- self._lrd = self._local_reachability_density(
317
- self._distances_fit_X_, _neighbors_indices_fit_X_
318
- )
319
-
320
- # Compute lof score over training samples to define offset_:
321
- lrd_ratios_array = (
322
- self._lrd[_neighbors_indices_fit_X_] / self._lrd[:, np.newaxis]
323
- )
324
-
325
- self.negative_outlier_factor_ = -np.mean(lrd_ratios_array, axis=1)
326
-
327
- if self.contamination == "auto":
328
- # inliers score around -1 (the higher, the less abnormal).
329
- self.offset_ = -1.5
330
- else:
331
- self.offset_ = np.percentile(
332
- self.negative_outlier_factor_, 100.0 * self.contamination
333
- )
334
-
335
- for knn_prop_name in self._knn.__dict__.keys():
336
- if knn_prop_name not in self.__dict__.keys():
337
- setattr(self, knn_prop_name, self._knn.__dict__[knn_prop_name])
338
-
339
- return self
340
-
341
- def fit(self, X, y=None):
342
- return dispatch(
343
- self,
344
- "neighbors.LocalOutlierFactor.fit",
345
- {
346
- "onedal": self.__class__._fit,
347
- "sklearn": None,
348
- },
349
- X,
350
- y,
351
- )
352
-
353
- def _onedal_predict(self, X, queue=None):
354
- with config_context(target_offload=queue):
355
- check_is_fitted(self)
356
-
357
- if X is not None:
358
- X = check_array(X, accept_sparse="csr")
359
- is_inlier = np.ones(X.shape[0], dtype=int)
360
- is_inlier[self.decision_function(X) < 0] = -1
361
- else:
362
- is_inlier = np.ones(self._knn.n_samples_fit_, dtype=int)
363
- is_inlier[self.negative_outlier_factor_ < self.offset_] = -1
364
-
365
- return is_inlier
366
-
367
- @wrap_output_data
368
- def _predict(self, X=None):
369
- return dispatch(
370
- self,
371
- "neighbors.LocalOutlierFactor.predict",
372
- {
373
- "onedal": self.__class__._onedal_predict,
374
- "sklearn": None,
375
- },
376
- X,
377
- )
378
-
379
- def _onedal_score_samples(self, X, queue=None):
380
- with config_context(target_offload=queue):
381
- check_is_fitted(self)
382
- X = check_array(X, accept_sparse="csr")
383
-
384
- distances_X, neighbors_indices_X = self._knn.kneighbors(
385
- X, n_neighbors=self.n_neighbors_
386
- )
387
- X_lrd = self._local_reachability_density(distances_X, neighbors_indices_X)
388
-
389
- lrd_ratios_array = self._lrd[neighbors_indices_X] / X_lrd[:, np.newaxis]
390
-
391
- # as bigger is better:
392
- return -np.mean(lrd_ratios_array, axis=1)
393
-
394
- @wrap_output_data
395
- def _score_samples(self, X):
396
- if not self.novelty:
397
- msg = (
398
- "score_samples is not available when novelty=False. The "
399
- "scores of the training samples are always available "
400
- "through the negative_outlier_factor_ attribute. Use "
401
- "novelty=True if you want to use LOF for novelty detection "
402
- "and compute score_samples for new unseen data."
403
- )
404
- raise AttributeError(msg)
405
-
406
- return dispatch(
407
- self,
408
- "neighbors.LocalOutlierFactor.score_samples",
409
- {
410
- "onedal": self.__class__._onedal_score_samples,
411
- "sklearn": None,
412
- },
413
- X,
414
- )
415
-
416
- def _onedal_fit_predict(self, X, y, queue=None):
417
- with config_context(target_offload=queue):
418
- return self.fit(X)._predict()
419
-
420
- @wrap_output_data
421
- def _fit_predict(self, X, y=None):
422
- return dispatch(
423
- self,
424
- "neighbors.LocalOutlierFactor._onedal_fit_predict",
425
- {
426
- "onedal": self.__class__._onedal_fit_predict,
427
- "sklearn": None,
428
- },
429
- X,
430
- y,
431
- )
432
-
433
- def _onedal_gpu_supported(self, method_name, *data):
434
- return True
435
-
436
- def _onedal_cpu_supported(self, method_name, *data):
437
- return True