scikit-learn-intelex 2024.0.1__py312-none-manylinux1_x86_64.whl → 2024.2.0__py312-none-manylinux1_x86_64.whl
This diff represents the content of publicly available package versions that have been released to one of the supported registries. The information contained in this diff is provided for informational purposes only and reflects changes between package versions as they appear in their respective public registries.
Potentially problematic release.
This version of scikit-learn-intelex might be problematic. Click here for more details.
- {scikit_learn_intelex-2024.0.1.dist-info → scikit_learn_intelex-2024.2.0.dist-info}/METADATA +2 -2
- scikit_learn_intelex-2024.2.0.dist-info/RECORD +101 -0
- sklearnex/__init__.py +3 -1
- sklearnex/__main__.py +0 -1
- sklearnex/_utils.py +15 -1
- sklearnex/basic_statistics/__init__.py +0 -1
- sklearnex/cluster/__init__.py +0 -1
- sklearnex/cluster/dbscan.py +2 -1
- sklearnex/cluster/k_means.py +0 -1
- sklearnex/cluster/tests/test_dbscan.py +0 -1
- sklearnex/cluster/tests/test_kmeans.py +0 -1
- sklearnex/covariance/__init__.py +19 -0
- sklearnex/covariance/incremental_covariance.py +130 -0
- sklearnex/covariance/tests/test_incremental_covariance.py +143 -0
- sklearnex/decomposition/__init__.py +0 -1
- sklearnex/decomposition/pca.py +0 -1
- sklearnex/decomposition/tests/test_pca.py +0 -1
- sklearnex/dispatcher.py +35 -1
- sklearnex/ensemble/__init__.py +0 -1
- sklearnex/ensemble/_forest.py +17 -2
- sklearnex/ensemble/tests/test_forest.py +0 -1
- sklearnex/glob/__main__.py +0 -1
- sklearnex/glob/dispatcher.py +0 -1
- sklearnex/linear_model/__init__.py +1 -3
- sklearnex/linear_model/coordinate_descent.py +0 -1
- sklearnex/linear_model/linear.py +9 -1
- sklearnex/linear_model/logistic_path.py +0 -1
- sklearnex/linear_model/logistic_regression.py +333 -0
- sklearnex/linear_model/ridge.py +0 -1
- sklearnex/linear_model/tests/test_linear.py +8 -3
- sklearnex/linear_model/tests/test_logreg.py +70 -6
- sklearnex/manifold/__init__.py +0 -1
- sklearnex/manifold/t_sne.py +0 -1
- sklearnex/manifold/tests/test_tsne.py +0 -1
- sklearnex/metrics/__init__.py +0 -1
- sklearnex/metrics/pairwise.py +0 -1
- sklearnex/metrics/ranking.py +0 -1
- sklearnex/metrics/tests/test_metrics.py +0 -1
- sklearnex/model_selection/__init__.py +0 -1
- sklearnex/model_selection/split.py +0 -1
- sklearnex/model_selection/tests/test_model_selection.py +0 -1
- sklearnex/neighbors/__init__.py +1 -2
- sklearnex/neighbors/_lof.py +167 -0
- sklearnex/neighbors/common.py +1 -2
- sklearnex/neighbors/knn_classification.py +5 -4
- sklearnex/neighbors/knn_regression.py +5 -4
- sklearnex/neighbors/knn_unsupervised.py +4 -3
- sklearnex/neighbors/tests/test_neighbors.py +12 -12
- sklearnex/preview/__init__.py +1 -2
- sklearnex/preview/cluster/__init__.py +0 -1
- sklearnex/preview/cluster/k_means.py +2 -1
- sklearnex/preview/covariance/__init__.py +19 -0
- sklearnex/preview/covariance/covariance.py +132 -0
- sklearnex/preview/covariance/tests/test_covariance.py +53 -0
- sklearnex/preview/decomposition/__init__.py +0 -1
- sklearnex/preview/decomposition/pca.py +43 -45
- sklearnex/preview/decomposition/tests/test_preview_pca.py +7 -3
- sklearnex/spmd/__init__.py +1 -0
- sklearnex/spmd/covariance/__init__.py +19 -0
- sklearnex/spmd/covariance/covariance.py +21 -0
- sklearnex/spmd/linear_model/__init__.py +2 -1
- sklearnex/spmd/linear_model/logistic_regression.py +21 -0
- sklearnex/svm/__init__.py +0 -1
- sklearnex/svm/nusvc.py +4 -0
- sklearnex/svm/nusvr.py +2 -0
- sklearnex/svm/svc.py +5 -1
- sklearnex/svm/svr.py +2 -0
- sklearnex/svm/tests/test_svm.py +0 -1
- sklearnex/tests/test_memory_usage.py +1 -4
- sklearnex/tests/test_monkeypatch.py +46 -16
- sklearnex/tests/test_n_jobs_support.py +93 -0
- sklearnex/tests/test_patching.py +19 -5
- sklearnex/utils/validation.py +0 -1
- scikit_learn_intelex-2024.0.1.dist-info/RECORD +0 -90
- sklearnex/neighbors/lof.py +0 -437
- {scikit_learn_intelex-2024.0.1.dist-info → scikit_learn_intelex-2024.2.0.dist-info}/LICENSE.txt +0 -0
- {scikit_learn_intelex-2024.0.1.dist-info → scikit_learn_intelex-2024.2.0.dist-info}/WHEEL +0 -0
- {scikit_learn_intelex-2024.0.1.dist-info → scikit_learn_intelex-2024.2.0.dist-info}/top_level.txt +0 -0
sklearnex/ensemble/_forest.py
CHANGED
|
@@ -1,4 +1,3 @@
|
|
|
1
|
-
#!/usr/bin/env python
|
|
2
1
|
# ==============================================================================
|
|
3
2
|
# Copyright 2021 Intel Corporation
|
|
4
3
|
#
|
|
@@ -43,6 +42,7 @@ from sklearn.utils.validation import (
|
|
|
43
42
|
check_X_y,
|
|
44
43
|
)
|
|
45
44
|
|
|
45
|
+
from daal4py.sklearn._n_jobs_support import control_n_jobs
|
|
46
46
|
from daal4py.sklearn._utils import (
|
|
47
47
|
check_tree_nodes,
|
|
48
48
|
daal_check_version,
|
|
@@ -114,6 +114,8 @@ class BaseForest(ABC):
|
|
|
114
114
|
# [:, np.newaxis] that does not.
|
|
115
115
|
y = np.reshape(y, (-1, 1))
|
|
116
116
|
|
|
117
|
+
self._n_samples, self.n_outputs_ = y.shape
|
|
118
|
+
|
|
117
119
|
y, expanded_class_weight = self._validate_y_class_weight(y)
|
|
118
120
|
|
|
119
121
|
self.n_features_in_ = X.shape[1]
|
|
@@ -189,7 +191,16 @@ class BaseForest(ABC):
|
|
|
189
191
|
self.oob_decision_function_ = (
|
|
190
192
|
self._onedal_estimator.oob_decision_function_
|
|
191
193
|
)
|
|
192
|
-
|
|
194
|
+
if self.bootstrap:
|
|
195
|
+
self._n_samples_bootstrap = max(
|
|
196
|
+
round(
|
|
197
|
+
self._onedal_estimator.observations_per_tree_fraction
|
|
198
|
+
* self._n_samples
|
|
199
|
+
),
|
|
200
|
+
1,
|
|
201
|
+
)
|
|
202
|
+
else:
|
|
203
|
+
self._n_samples_bootstrap = None
|
|
193
204
|
self._validate_estimator()
|
|
194
205
|
return self
|
|
195
206
|
|
|
@@ -1122,6 +1133,7 @@ class ForestRegressor(sklearn_ForestRegressor, BaseForest):
|
|
|
1122
1133
|
predict.__doc__ = sklearn_ForestRegressor.predict.__doc__
|
|
1123
1134
|
|
|
1124
1135
|
|
|
1136
|
+
@control_n_jobs(decorated_methods=["fit", "predict", "predict_proba"])
|
|
1125
1137
|
class RandomForestClassifier(ForestClassifier):
|
|
1126
1138
|
__doc__ = sklearn_RandomForestClassifier.__doc__
|
|
1127
1139
|
_onedal_factory = onedal_RandomForestClassifier
|
|
@@ -1331,6 +1343,7 @@ class RandomForestClassifier(ForestClassifier):
|
|
|
1331
1343
|
self.min_bin_size = min_bin_size
|
|
1332
1344
|
|
|
1333
1345
|
|
|
1346
|
+
@control_n_jobs(decorated_methods=["fit", "predict"])
|
|
1334
1347
|
class RandomForestRegressor(ForestRegressor):
|
|
1335
1348
|
__doc__ = sklearn_RandomForestRegressor.__doc__
|
|
1336
1349
|
_onedal_factory = onedal_RandomForestRegressor
|
|
@@ -1531,6 +1544,7 @@ class RandomForestRegressor(ForestRegressor):
|
|
|
1531
1544
|
self.min_bin_size = min_bin_size
|
|
1532
1545
|
|
|
1533
1546
|
|
|
1547
|
+
@control_n_jobs(decorated_methods=["fit", "predict", "predict_proba"])
|
|
1534
1548
|
class ExtraTreesClassifier(ForestClassifier):
|
|
1535
1549
|
__doc__ = sklearn_ExtraTreesClassifier.__doc__
|
|
1536
1550
|
_onedal_factory = onedal_ExtraTreesClassifier
|
|
@@ -1740,6 +1754,7 @@ class ExtraTreesClassifier(ForestClassifier):
|
|
|
1740
1754
|
self.min_bin_size = min_bin_size
|
|
1741
1755
|
|
|
1742
1756
|
|
|
1757
|
+
@control_n_jobs(decorated_methods=["fit", "predict"])
|
|
1743
1758
|
class ExtraTreesRegressor(ForestRegressor):
|
|
1744
1759
|
__doc__ = sklearn_ExtraTreesRegressor.__doc__
|
|
1745
1760
|
_onedal_factory = onedal_ExtraTreesRegressor
|
sklearnex/glob/__main__.py
CHANGED
sklearnex/glob/dispatcher.py
CHANGED
|
@@ -1,4 +1,3 @@
|
|
|
1
|
-
#!/usr/bin/env python
|
|
2
1
|
# ===============================================================================
|
|
3
2
|
# Copyright 2021 Intel Corporation
|
|
4
3
|
#
|
|
@@ -17,14 +16,13 @@
|
|
|
17
16
|
|
|
18
17
|
from .coordinate_descent import ElasticNet, Lasso
|
|
19
18
|
from .linear import LinearRegression
|
|
20
|
-
from .
|
|
19
|
+
from .logistic_regression import LogisticRegression
|
|
21
20
|
from .ridge import Ridge
|
|
22
21
|
|
|
23
22
|
__all__ = [
|
|
24
23
|
"Ridge",
|
|
25
24
|
"LinearRegression",
|
|
26
25
|
"LogisticRegression",
|
|
27
|
-
"logistic_regression_path",
|
|
28
26
|
"ElasticNet",
|
|
29
27
|
"Lasso",
|
|
30
28
|
]
|
sklearnex/linear_model/linear.py
CHANGED
|
@@ -65,10 +65,15 @@ if daal_check_version((2023, "P", 100)):
|
|
|
65
65
|
import numpy as np
|
|
66
66
|
from sklearn.linear_model import LinearRegression as sklearn_LinearRegression
|
|
67
67
|
|
|
68
|
+
from daal4py.sklearn._n_jobs_support import control_n_jobs
|
|
68
69
|
from daal4py.sklearn._utils import get_dtype, make2d, sklearn_check_version
|
|
69
70
|
|
|
70
71
|
from .._device_offload import dispatch, wrap_output_data
|
|
71
|
-
from .._utils import
|
|
72
|
+
from .._utils import (
|
|
73
|
+
PatchingConditionsChain,
|
|
74
|
+
get_patch_message,
|
|
75
|
+
register_hyperparameters,
|
|
76
|
+
)
|
|
72
77
|
from ..utils.validation import _assert_all_finite
|
|
73
78
|
|
|
74
79
|
if sklearn_check_version("1.0") and not sklearn_check_version("1.2"):
|
|
@@ -78,9 +83,12 @@ if daal_check_version((2023, "P", 100)):
|
|
|
78
83
|
from sklearn.exceptions import NotFittedError
|
|
79
84
|
from sklearn.utils.validation import _deprecate_positional_args, check_X_y
|
|
80
85
|
|
|
86
|
+
from onedal.common.hyperparameters import get_hyperparameters
|
|
81
87
|
from onedal.linear_model import LinearRegression as onedal_LinearRegression
|
|
82
88
|
from onedal.utils import _num_features, _num_samples
|
|
83
89
|
|
|
90
|
+
@register_hyperparameters({"fit": get_hyperparameters("linear_regression", "train")})
|
|
91
|
+
@control_n_jobs(decorated_methods=["fit", "predict"])
|
|
84
92
|
class LinearRegression(sklearn_LinearRegression, BaseLinearRegression):
|
|
85
93
|
__doc__ = sklearn_LinearRegression.__doc__
|
|
86
94
|
intercept_, coef_ = None, None
|
|
@@ -0,0 +1,333 @@
|
|
|
1
|
+
# ===============================================================================
|
|
2
|
+
# Copyright 2024 Intel Corporation
|
|
3
|
+
#
|
|
4
|
+
# Licensed under the Apache License, Version 2.0 (the "License");
|
|
5
|
+
# you may not use this file except in compliance with the License.
|
|
6
|
+
# You may obtain a copy of the License at
|
|
7
|
+
#
|
|
8
|
+
# http://www.apache.org/licenses/LICENSE-2.0
|
|
9
|
+
#
|
|
10
|
+
# Unless required by applicable law or agreed to in writing, software
|
|
11
|
+
# distributed under the License is distributed on an "AS IS" BASIS,
|
|
12
|
+
# WITHOUT WARRANTIES OR CONDITIONS OF ANY KIND, either express or implied.
|
|
13
|
+
# See the License for the specific language governing permissions and
|
|
14
|
+
# limitations under the License.
|
|
15
|
+
# ===============================================================================
|
|
16
|
+
|
|
17
|
+
import logging
|
|
18
|
+
from abc import ABC
|
|
19
|
+
|
|
20
|
+
from daal4py.sklearn._utils import daal_check_version
|
|
21
|
+
from daal4py.sklearn.linear_model.logistic_path import (
|
|
22
|
+
LogisticRegression as LogisticRegression_daal4py,
|
|
23
|
+
)
|
|
24
|
+
from daal4py.sklearn.linear_model.logistic_path import daal4py_fit, daal4py_predict
|
|
25
|
+
|
|
26
|
+
|
|
27
|
+
class BaseLogisticRegression(ABC):
|
|
28
|
+
def _save_attributes(self):
|
|
29
|
+
assert hasattr(self, "_onedal_estimator")
|
|
30
|
+
self.classes_ = self._onedal_estimator.classes_
|
|
31
|
+
self.coef_ = self._onedal_estimator.coef_
|
|
32
|
+
self.intercept_ = self._onedal_estimator.intercept_
|
|
33
|
+
self.n_features_in_ = self._onedal_estimator.n_features_in_
|
|
34
|
+
self.n_iter_ = self._onedal_estimator.n_iter_
|
|
35
|
+
|
|
36
|
+
|
|
37
|
+
if daal_check_version((2024, "P", 1)):
|
|
38
|
+
import numpy as np
|
|
39
|
+
from scipy.sparse import issparse
|
|
40
|
+
from sklearn.linear_model import LogisticRegression as sklearn_LogisticRegression
|
|
41
|
+
from sklearn.utils.validation import check_X_y
|
|
42
|
+
|
|
43
|
+
from daal4py.sklearn._n_jobs_support import control_n_jobs
|
|
44
|
+
from daal4py.sklearn._utils import sklearn_check_version
|
|
45
|
+
from onedal.linear_model import LogisticRegression as onedal_LogisticRegression
|
|
46
|
+
from onedal.utils import _num_features, _num_samples
|
|
47
|
+
|
|
48
|
+
from .._device_offload import dispatch, wrap_output_data
|
|
49
|
+
from .._utils import PatchingConditionsChain, get_patch_message
|
|
50
|
+
from ..utils.validation import _assert_all_finite
|
|
51
|
+
|
|
52
|
+
@control_n_jobs(
|
|
53
|
+
decorated_methods=["fit", "predict", "predict_proba", "predict_log_proba"]
|
|
54
|
+
)
|
|
55
|
+
class LogisticRegression(sklearn_LogisticRegression, BaseLogisticRegression):
|
|
56
|
+
__doc__ = sklearn_LogisticRegression.__doc__
|
|
57
|
+
intercept_, coef_, n_iter_ = None, None, None
|
|
58
|
+
|
|
59
|
+
if sklearn_check_version("1.2"):
|
|
60
|
+
_parameter_constraints: dict = {
|
|
61
|
+
**sklearn_LogisticRegression._parameter_constraints
|
|
62
|
+
}
|
|
63
|
+
|
|
64
|
+
def __init__(
|
|
65
|
+
self,
|
|
66
|
+
penalty="l2",
|
|
67
|
+
*,
|
|
68
|
+
dual=False,
|
|
69
|
+
tol=1e-4,
|
|
70
|
+
C=1.0,
|
|
71
|
+
fit_intercept=True,
|
|
72
|
+
intercept_scaling=1,
|
|
73
|
+
class_weight=None,
|
|
74
|
+
random_state=None,
|
|
75
|
+
solver="lbfgs" if sklearn_check_version("0.22") else "liblinear",
|
|
76
|
+
max_iter=100,
|
|
77
|
+
multi_class="auto" if sklearn_check_version("0.22") else "ovr",
|
|
78
|
+
verbose=0,
|
|
79
|
+
warm_start=False,
|
|
80
|
+
n_jobs=None,
|
|
81
|
+
l1_ratio=None,
|
|
82
|
+
):
|
|
83
|
+
super().__init__(
|
|
84
|
+
penalty=penalty,
|
|
85
|
+
dual=dual,
|
|
86
|
+
tol=tol,
|
|
87
|
+
C=C,
|
|
88
|
+
fit_intercept=fit_intercept,
|
|
89
|
+
intercept_scaling=intercept_scaling,
|
|
90
|
+
class_weight=class_weight,
|
|
91
|
+
random_state=random_state,
|
|
92
|
+
solver=solver,
|
|
93
|
+
max_iter=max_iter,
|
|
94
|
+
multi_class=multi_class,
|
|
95
|
+
verbose=verbose,
|
|
96
|
+
warm_start=warm_start,
|
|
97
|
+
n_jobs=n_jobs,
|
|
98
|
+
l1_ratio=l1_ratio,
|
|
99
|
+
)
|
|
100
|
+
|
|
101
|
+
_onedal_cpu_fit = daal4py_fit
|
|
102
|
+
|
|
103
|
+
def fit(self, X, y, sample_weight=None):
|
|
104
|
+
if sklearn_check_version("1.0"):
|
|
105
|
+
self._check_feature_names(X, reset=True)
|
|
106
|
+
if sklearn_check_version("1.2"):
|
|
107
|
+
self._validate_params()
|
|
108
|
+
dispatch(
|
|
109
|
+
self,
|
|
110
|
+
"fit",
|
|
111
|
+
{
|
|
112
|
+
"onedal": self.__class__._onedal_fit,
|
|
113
|
+
"sklearn": sklearn_LogisticRegression.fit,
|
|
114
|
+
},
|
|
115
|
+
X,
|
|
116
|
+
y,
|
|
117
|
+
sample_weight,
|
|
118
|
+
)
|
|
119
|
+
return self
|
|
120
|
+
|
|
121
|
+
@wrap_output_data
|
|
122
|
+
def predict(self, X):
|
|
123
|
+
if sklearn_check_version("1.0"):
|
|
124
|
+
self._check_feature_names(X, reset=False)
|
|
125
|
+
return dispatch(
|
|
126
|
+
self,
|
|
127
|
+
"predict",
|
|
128
|
+
{
|
|
129
|
+
"onedal": self.__class__._onedal_predict,
|
|
130
|
+
"sklearn": sklearn_LogisticRegression.predict,
|
|
131
|
+
},
|
|
132
|
+
X,
|
|
133
|
+
)
|
|
134
|
+
|
|
135
|
+
@wrap_output_data
|
|
136
|
+
def predict_proba(self, X):
|
|
137
|
+
if sklearn_check_version("1.0"):
|
|
138
|
+
self._check_feature_names(X, reset=False)
|
|
139
|
+
return dispatch(
|
|
140
|
+
self,
|
|
141
|
+
"predict",
|
|
142
|
+
{
|
|
143
|
+
"onedal": self.__class__._onedal_predict_proba,
|
|
144
|
+
"sklearn": sklearn_LogisticRegression.predict_proba,
|
|
145
|
+
},
|
|
146
|
+
X,
|
|
147
|
+
)
|
|
148
|
+
|
|
149
|
+
@wrap_output_data
|
|
150
|
+
def predict_log_proba(self, X):
|
|
151
|
+
if sklearn_check_version("1.0"):
|
|
152
|
+
self._check_feature_names(X, reset=False)
|
|
153
|
+
return dispatch(
|
|
154
|
+
self,
|
|
155
|
+
"predict",
|
|
156
|
+
{
|
|
157
|
+
"onedal": self.__class__._onedal_predict_log_proba,
|
|
158
|
+
"sklearn": sklearn_LogisticRegression.predict_log_proba,
|
|
159
|
+
},
|
|
160
|
+
X,
|
|
161
|
+
)
|
|
162
|
+
|
|
163
|
+
def _test_type_and_finiteness(self, X_in):
|
|
164
|
+
X = np.asarray(X_in)
|
|
165
|
+
|
|
166
|
+
if np.iscomplexobj(X):
|
|
167
|
+
return False
|
|
168
|
+
try:
|
|
169
|
+
_assert_all_finite(X)
|
|
170
|
+
except BaseException:
|
|
171
|
+
return False
|
|
172
|
+
return True
|
|
173
|
+
|
|
174
|
+
def _onedal_gpu_fit_supported(self, method_name, *data):
|
|
175
|
+
assert method_name == "fit"
|
|
176
|
+
assert len(data) == 3
|
|
177
|
+
X, y, sample_weight = data
|
|
178
|
+
|
|
179
|
+
class_name = self.__class__.__name__
|
|
180
|
+
patching_status = PatchingConditionsChain(
|
|
181
|
+
f"sklearn.linear_model.{class_name}.fit"
|
|
182
|
+
)
|
|
183
|
+
|
|
184
|
+
dal_ready = patching_status.and_conditions(
|
|
185
|
+
[
|
|
186
|
+
(self.penalty == "l2", "Only l2 penalty is supported."),
|
|
187
|
+
(self.dual == False, "dual=True is not supported."),
|
|
188
|
+
(self.intercept_scaling == 1, "Intercept scaling is not supported."),
|
|
189
|
+
(self.class_weight is None, "Class weight is not supported"),
|
|
190
|
+
(self.solver == "newton-cg", "Only newton-cg solver is supported."),
|
|
191
|
+
(
|
|
192
|
+
self.multi_class != "multinomial",
|
|
193
|
+
"multi_class parameter is not supported.",
|
|
194
|
+
),
|
|
195
|
+
(self.warm_start == False, "Warm start is not supported."),
|
|
196
|
+
(self.l1_ratio is None, "l1 ratio is not supported."),
|
|
197
|
+
(sample_weight is None, "Sample weight is not supported."),
|
|
198
|
+
]
|
|
199
|
+
)
|
|
200
|
+
|
|
201
|
+
if not dal_ready:
|
|
202
|
+
return patching_status
|
|
203
|
+
|
|
204
|
+
if not patching_status.and_condition(
|
|
205
|
+
self._test_type_and_finiteness(X), "Input X is not supported."
|
|
206
|
+
):
|
|
207
|
+
return patching_status
|
|
208
|
+
|
|
209
|
+
patching_status.and_condition(
|
|
210
|
+
self._test_type_and_finiteness(y), "Input y is not supported."
|
|
211
|
+
)
|
|
212
|
+
|
|
213
|
+
return patching_status
|
|
214
|
+
|
|
215
|
+
def _onedal_gpu_predict_supported(self, method_name, *data):
|
|
216
|
+
assert method_name in ["predict", "predict_proba", "predict_log_proba"]
|
|
217
|
+
assert len(data) == 1
|
|
218
|
+
|
|
219
|
+
class_name = self.__class__.__name__
|
|
220
|
+
patching_status = PatchingConditionsChain(
|
|
221
|
+
f"sklearn.linear_model.{class_name}.{method_name}"
|
|
222
|
+
)
|
|
223
|
+
|
|
224
|
+
n_samples = _num_samples(*data)
|
|
225
|
+
model_is_sparse = issparse(self.coef_) or (
|
|
226
|
+
self.fit_intercept and issparse(self.intercept_)
|
|
227
|
+
)
|
|
228
|
+
dal_ready = patching_status.and_conditions(
|
|
229
|
+
[
|
|
230
|
+
(n_samples > 0, "Number of samples is less than 1."),
|
|
231
|
+
(not issparse(*data), "Sparse input is not supported."),
|
|
232
|
+
(not model_is_sparse, "Sparse coefficients are not supported."),
|
|
233
|
+
(hasattr(self, "_onedal_estimator"), "oneDAL model was not trained."),
|
|
234
|
+
]
|
|
235
|
+
)
|
|
236
|
+
if not dal_ready:
|
|
237
|
+
return patching_status
|
|
238
|
+
|
|
239
|
+
patching_status.and_condition(
|
|
240
|
+
self._test_type_and_finiteness(*data), "Input X is not supported."
|
|
241
|
+
)
|
|
242
|
+
|
|
243
|
+
return patching_status
|
|
244
|
+
|
|
245
|
+
def _onedal_gpu_supported(self, method_name, *data):
|
|
246
|
+
if method_name == "fit":
|
|
247
|
+
return self._onedal_gpu_fit_supported(method_name, *data)
|
|
248
|
+
if method_name in ["predict", "predict_proba", "predict_log_proba"]:
|
|
249
|
+
return self._onedal_gpu_predict_supported(method_name, *data)
|
|
250
|
+
raise RuntimeError(
|
|
251
|
+
f"Unknown method {method_name} in {self.__class__.__name__}"
|
|
252
|
+
)
|
|
253
|
+
|
|
254
|
+
def _onedal_cpu_supported(self, method_name, *data):
|
|
255
|
+
class_name = self.__class__.__name__
|
|
256
|
+
patching_status = PatchingConditionsChain(
|
|
257
|
+
f"sklearn.linear_model.{class_name}.{method_name}"
|
|
258
|
+
)
|
|
259
|
+
|
|
260
|
+
return patching_status
|
|
261
|
+
|
|
262
|
+
def _initialize_onedal_estimator(self):
|
|
263
|
+
onedal_params = {
|
|
264
|
+
"tol": self.tol,
|
|
265
|
+
"C": self.C,
|
|
266
|
+
"fit_intercept": self.fit_intercept,
|
|
267
|
+
"solver": self.solver,
|
|
268
|
+
"max_iter": self.max_iter,
|
|
269
|
+
}
|
|
270
|
+
self._onedal_estimator = onedal_LogisticRegression(**onedal_params)
|
|
271
|
+
|
|
272
|
+
def _onedal_fit(self, X, y, sample_weight, queue=None):
|
|
273
|
+
if queue is None or queue.sycl_device.is_cpu:
|
|
274
|
+
return self._onedal_cpu_fit(X, y, sample_weight)
|
|
275
|
+
|
|
276
|
+
assert sample_weight is None
|
|
277
|
+
|
|
278
|
+
check_params = {
|
|
279
|
+
"X": X,
|
|
280
|
+
"y": y,
|
|
281
|
+
"dtype": [np.float64, np.float32],
|
|
282
|
+
"accept_sparse": False,
|
|
283
|
+
"multi_output": False,
|
|
284
|
+
"force_all_finite": True,
|
|
285
|
+
}
|
|
286
|
+
if sklearn_check_version("1.2"):
|
|
287
|
+
X, y = self._validate_data(**check_params)
|
|
288
|
+
else:
|
|
289
|
+
X, y = check_X_y(**check_params)
|
|
290
|
+
self._initialize_onedal_estimator()
|
|
291
|
+
try:
|
|
292
|
+
self._onedal_estimator.fit(X, y, queue=queue)
|
|
293
|
+
self._save_attributes()
|
|
294
|
+
except RuntimeError:
|
|
295
|
+
logging.getLogger("sklearnex").info(
|
|
296
|
+
f"{self.__class__.__name__}.fit "
|
|
297
|
+
+ get_patch_message("sklearn_after_onedal")
|
|
298
|
+
)
|
|
299
|
+
|
|
300
|
+
del self._onedal_estimator
|
|
301
|
+
super().fit(X, y)
|
|
302
|
+
|
|
303
|
+
def _onedal_predict(self, X, queue=None):
|
|
304
|
+
if queue is None or queue.sycl_device.is_cpu:
|
|
305
|
+
return daal4py_predict(self, X, "computeClassLabels")
|
|
306
|
+
|
|
307
|
+
X = self._validate_data(X, accept_sparse=False, reset=False)
|
|
308
|
+
assert hasattr(self, "_onedal_estimator")
|
|
309
|
+
return self._onedal_estimator.predict(X, queue=queue)
|
|
310
|
+
|
|
311
|
+
def _onedal_predict_proba(self, X, queue=None):
|
|
312
|
+
if queue is None or queue.sycl_device.is_cpu:
|
|
313
|
+
return daal4py_predict(self, X, "computeClassProbabilities")
|
|
314
|
+
|
|
315
|
+
X = self._validate_data(X, accept_sparse=False, reset=False)
|
|
316
|
+
assert hasattr(self, "_onedal_estimator")
|
|
317
|
+
return self._onedal_estimator.predict_proba(X, queue=queue)
|
|
318
|
+
|
|
319
|
+
def _onedal_predict_log_proba(self, X, queue=None):
|
|
320
|
+
if queue is None or queue.sycl_device.is_cpu:
|
|
321
|
+
return daal4py_predict(self, X, "computeClassLogProbabilities")
|
|
322
|
+
|
|
323
|
+
X = self._validate_data(X, accept_sparse=False, reset=False)
|
|
324
|
+
assert hasattr(self, "_onedal_estimator")
|
|
325
|
+
return self._onedal_estimator.predict_log_proba(X, queue=queue)
|
|
326
|
+
|
|
327
|
+
else:
|
|
328
|
+
LogisticRegression = LogisticRegression_daal4py
|
|
329
|
+
|
|
330
|
+
logging.warning(
|
|
331
|
+
"Sklearnex LogisticRegression requires oneDAL version >= 2024.0.1 "
|
|
332
|
+
"but it was not found"
|
|
333
|
+
)
|
sklearnex/linear_model/ridge.py
CHANGED
|
@@ -1,4 +1,3 @@
|
|
|
1
|
-
#!/usr/bin/env python
|
|
2
1
|
# ===============================================================================
|
|
3
2
|
# Copyright 2021 Intel Corporation
|
|
4
3
|
#
|
|
@@ -29,14 +28,20 @@ from onedal.tests.utils._dataframes_support import (
|
|
|
29
28
|
|
|
30
29
|
|
|
31
30
|
@pytest.mark.parametrize("dataframe,queue", get_dataframes_and_queues())
|
|
32
|
-
|
|
31
|
+
@pytest.mark.parametrize("macro_block", [None, 1024])
|
|
32
|
+
def test_sklearnex_import_linear(dataframe, queue, macro_block):
|
|
33
33
|
from sklearnex.linear_model import LinearRegression
|
|
34
34
|
|
|
35
35
|
X = np.array([[1, 1], [1, 2], [2, 2], [2, 3]])
|
|
36
36
|
y = np.dot(X, np.array([1, 2])) + 3
|
|
37
37
|
X = _convert_to_dataframe(X, sycl_queue=queue, target_df=dataframe)
|
|
38
38
|
y = _convert_to_dataframe(y, sycl_queue=queue, target_df=dataframe)
|
|
39
|
-
linreg = LinearRegression()
|
|
39
|
+
linreg = LinearRegression()
|
|
40
|
+
if daal_check_version((2024, "P", 0)) and macro_block is not None:
|
|
41
|
+
hparams = linreg.get_hyperparameters("fit")
|
|
42
|
+
hparams.cpu_macro_block = macro_block
|
|
43
|
+
hparams.gpu_macro_block = macro_block
|
|
44
|
+
linreg.fit(X, y)
|
|
40
45
|
if daal_check_version((2023, "P", 100)):
|
|
41
46
|
assert hasattr(linreg, "_onedal_estimator")
|
|
42
47
|
assert "sklearnex" in linreg.__module__
|
|
@@ -1,4 +1,3 @@
|
|
|
1
|
-
#!/usr/bin/env python
|
|
2
1
|
# ===============================================================================
|
|
3
2
|
# Copyright 2021 Intel Corporation
|
|
4
3
|
#
|
|
@@ -16,14 +15,79 @@
|
|
|
16
15
|
# ===============================================================================
|
|
17
16
|
|
|
18
17
|
import numpy as np
|
|
18
|
+
import pytest
|
|
19
19
|
from numpy.testing import assert_allclose
|
|
20
|
-
from sklearn.datasets import load_iris
|
|
20
|
+
from sklearn.datasets import load_breast_cancer, load_iris
|
|
21
|
+
from sklearn.metrics import accuracy_score
|
|
22
|
+
from sklearn.model_selection import train_test_split
|
|
21
23
|
|
|
24
|
+
from daal4py.sklearn._utils import daal_check_version
|
|
25
|
+
from onedal.tests.utils._dataframes_support import (
|
|
26
|
+
_as_numpy,
|
|
27
|
+
_convert_to_dataframe,
|
|
28
|
+
get_dataframes_and_queues,
|
|
29
|
+
)
|
|
22
30
|
|
|
23
|
-
|
|
31
|
+
|
|
32
|
+
def prepare_input(X, y, dataframe, queue):
|
|
33
|
+
X_train, X_test, y_train, y_test = train_test_split(
|
|
34
|
+
X, y, train_size=0.8, random_state=42
|
|
35
|
+
)
|
|
36
|
+
X_train = _convert_to_dataframe(X_train, sycl_queue=queue, target_df=dataframe)
|
|
37
|
+
y_train = _convert_to_dataframe(y_train, sycl_queue=queue, target_df=dataframe)
|
|
38
|
+
X_test = _convert_to_dataframe(X_test, sycl_queue=queue, target_df=dataframe)
|
|
39
|
+
return X_train, X_test, y_train, y_test
|
|
40
|
+
|
|
41
|
+
|
|
42
|
+
@pytest.mark.parametrize(
|
|
43
|
+
"dataframe,queue",
|
|
44
|
+
get_dataframes_and_queues(device_filter_="cpu"),
|
|
45
|
+
)
|
|
46
|
+
def test_sklearnex_multiclass_classification(dataframe, queue):
|
|
24
47
|
from sklearnex.linear_model import LogisticRegression
|
|
25
48
|
|
|
26
49
|
X, y = load_iris(return_X_y=True)
|
|
27
|
-
|
|
28
|
-
|
|
29
|
-
|
|
50
|
+
X_train, X_test, y_train, y_test = prepare_input(X, y, dataframe, queue)
|
|
51
|
+
|
|
52
|
+
logreg = LogisticRegression(fit_intercept=True, solver="lbfgs", max_iter=200).fit(
|
|
53
|
+
X_train, y_train
|
|
54
|
+
)
|
|
55
|
+
|
|
56
|
+
if daal_check_version((2024, "P", 1)):
|
|
57
|
+
assert "sklearnex" in logreg.__module__
|
|
58
|
+
else:
|
|
59
|
+
assert "daal4py" in logreg.__module__
|
|
60
|
+
|
|
61
|
+
y_pred = _as_numpy(logreg.predict(X_test))
|
|
62
|
+
assert accuracy_score(y_test, y_pred) > 0.99
|
|
63
|
+
|
|
64
|
+
|
|
65
|
+
@pytest.mark.parametrize(
|
|
66
|
+
"dataframe,queue",
|
|
67
|
+
get_dataframes_and_queues(),
|
|
68
|
+
)
|
|
69
|
+
def test_sklearnex_binary_classification(dataframe, queue):
|
|
70
|
+
from sklearnex.linear_model import LogisticRegression
|
|
71
|
+
|
|
72
|
+
X, y = load_breast_cancer(return_X_y=True)
|
|
73
|
+
X_train, X_test, y_train, y_test = prepare_input(X, y, dataframe, queue)
|
|
74
|
+
|
|
75
|
+
logreg = LogisticRegression(fit_intercept=True, solver="newton-cg", max_iter=100).fit(
|
|
76
|
+
X_train, y_train
|
|
77
|
+
)
|
|
78
|
+
|
|
79
|
+
if daal_check_version((2024, "P", 1)):
|
|
80
|
+
assert "sklearnex" in logreg.__module__
|
|
81
|
+
else:
|
|
82
|
+
assert "daal4py" in logreg.__module__
|
|
83
|
+
if (
|
|
84
|
+
dataframe != "numpy"
|
|
85
|
+
and queue is not None
|
|
86
|
+
and queue.sycl_device.is_gpu
|
|
87
|
+
and daal_check_version((2024, "P", 1))
|
|
88
|
+
):
|
|
89
|
+
# fit was done on gpu
|
|
90
|
+
assert hasattr(logreg, "_onedal_estimator")
|
|
91
|
+
|
|
92
|
+
y_pred = _as_numpy(logreg.predict(X_test))
|
|
93
|
+
assert accuracy_score(y_test, y_pred) > 0.95
|
sklearnex/manifold/__init__.py
CHANGED
sklearnex/manifold/t_sne.py
CHANGED
sklearnex/metrics/__init__.py
CHANGED
sklearnex/metrics/pairwise.py
CHANGED
sklearnex/metrics/ranking.py
CHANGED