scikit-learn-intelex 2024.0.1__py311-none-win_amd64.whl → 2024.2.0__py311-none-win_amd64.whl

This diff represents the content of publicly available package versions that have been released to one of the supported registries. The information contained in this diff is provided for informational purposes only and reflects changes between package versions as they appear in their respective public registries.

Potentially problematic release.


This version of scikit-learn-intelex might be problematic. Click here for more details.

Files changed (104) hide show
  1. {scikit_learn_intelex-2024.0.1.data → scikit_learn_intelex-2024.2.0.data}/data/Lib/site-packages/sklearnex/__init__.py +3 -1
  2. {scikit_learn_intelex-2024.0.1.data → scikit_learn_intelex-2024.2.0.data}/data/Lib/site-packages/sklearnex/__main__.py +0 -1
  3. {scikit_learn_intelex-2024.0.1.data → scikit_learn_intelex-2024.2.0.data}/data/Lib/site-packages/sklearnex/_utils.py +15 -1
  4. {scikit_learn_intelex-2024.0.1.data → scikit_learn_intelex-2024.2.0.data}/data/Lib/site-packages/sklearnex/cluster/__init__.py +0 -1
  5. {scikit_learn_intelex-2024.0.1.data → scikit_learn_intelex-2024.2.0.data}/data/Lib/site-packages/sklearnex/cluster/dbscan.py +2 -1
  6. {scikit_learn_intelex-2024.0.1.data → scikit_learn_intelex-2024.2.0.data}/data/Lib/site-packages/sklearnex/cluster/k_means.py +0 -1
  7. {scikit_learn_intelex-2024.0.1.data → scikit_learn_intelex-2024.2.0.data}/data/Lib/site-packages/sklearnex/cluster/tests/test_dbscan.py +0 -1
  8. {scikit_learn_intelex-2024.0.1.data → scikit_learn_intelex-2024.2.0.data}/data/Lib/site-packages/sklearnex/cluster/tests/test_kmeans.py +0 -1
  9. scikit_learn_intelex-2024.2.0.data/data/Lib/site-packages/sklearnex/covariance/__init__.py +19 -0
  10. scikit_learn_intelex-2024.2.0.data/data/Lib/site-packages/sklearnex/covariance/incremental_covariance.py +130 -0
  11. scikit_learn_intelex-2024.2.0.data/data/Lib/site-packages/sklearnex/covariance/tests/test_incremental_covariance.py +143 -0
  12. {scikit_learn_intelex-2024.0.1.data → scikit_learn_intelex-2024.2.0.data}/data/Lib/site-packages/sklearnex/decomposition/__init__.py +0 -1
  13. {scikit_learn_intelex-2024.0.1.data → scikit_learn_intelex-2024.2.0.data}/data/Lib/site-packages/sklearnex/decomposition/pca.py +0 -1
  14. {scikit_learn_intelex-2024.0.1.data → scikit_learn_intelex-2024.2.0.data}/data/Lib/site-packages/sklearnex/decomposition/tests/test_pca.py +0 -1
  15. {scikit_learn_intelex-2024.0.1.data → scikit_learn_intelex-2024.2.0.data}/data/Lib/site-packages/sklearnex/dispatcher.py +35 -1
  16. {scikit_learn_intelex-2024.0.1.data → scikit_learn_intelex-2024.2.0.data}/data/Lib/site-packages/sklearnex/ensemble/__init__.py +0 -1
  17. {scikit_learn_intelex-2024.0.1.data → scikit_learn_intelex-2024.2.0.data}/data/Lib/site-packages/sklearnex/ensemble/_forest.py +17 -2
  18. {scikit_learn_intelex-2024.0.1.data → scikit_learn_intelex-2024.2.0.data}/data/Lib/site-packages/sklearnex/ensemble/tests/test_forest.py +0 -1
  19. {scikit_learn_intelex-2024.0.1.data → scikit_learn_intelex-2024.2.0.data}/data/Lib/site-packages/sklearnex/glob/__main__.py +0 -1
  20. {scikit_learn_intelex-2024.0.1.data → scikit_learn_intelex-2024.2.0.data}/data/Lib/site-packages/sklearnex/glob/dispatcher.py +0 -1
  21. {scikit_learn_intelex-2024.0.1.data → scikit_learn_intelex-2024.2.0.data}/data/Lib/site-packages/sklearnex/linear_model/__init__.py +1 -3
  22. {scikit_learn_intelex-2024.0.1.data → scikit_learn_intelex-2024.2.0.data}/data/Lib/site-packages/sklearnex/linear_model/coordinate_descent.py +0 -1
  23. {scikit_learn_intelex-2024.0.1.data → scikit_learn_intelex-2024.2.0.data}/data/Lib/site-packages/sklearnex/linear_model/linear.py +9 -1
  24. {scikit_learn_intelex-2024.0.1.data → scikit_learn_intelex-2024.2.0.data}/data/Lib/site-packages/sklearnex/linear_model/logistic_path.py +0 -1
  25. scikit_learn_intelex-2024.2.0.data/data/Lib/site-packages/sklearnex/linear_model/logistic_regression.py +333 -0
  26. {scikit_learn_intelex-2024.0.1.data → scikit_learn_intelex-2024.2.0.data}/data/Lib/site-packages/sklearnex/linear_model/ridge.py +0 -1
  27. {scikit_learn_intelex-2024.0.1.data → scikit_learn_intelex-2024.2.0.data}/data/Lib/site-packages/sklearnex/linear_model/tests/test_linear.py +8 -3
  28. scikit_learn_intelex-2024.2.0.data/data/Lib/site-packages/sklearnex/linear_model/tests/test_logreg.py +93 -0
  29. {scikit_learn_intelex-2024.0.1.data → scikit_learn_intelex-2024.2.0.data}/data/Lib/site-packages/sklearnex/manifold/__init__.py +0 -1
  30. {scikit_learn_intelex-2024.0.1.data → scikit_learn_intelex-2024.2.0.data}/data/Lib/site-packages/sklearnex/manifold/t_sne.py +0 -1
  31. {scikit_learn_intelex-2024.0.1.data → scikit_learn_intelex-2024.2.0.data}/data/Lib/site-packages/sklearnex/manifold/tests/test_tsne.py +0 -1
  32. {scikit_learn_intelex-2024.0.1.data → scikit_learn_intelex-2024.2.0.data}/data/Lib/site-packages/sklearnex/metrics/__init__.py +0 -1
  33. {scikit_learn_intelex-2024.0.1.data → scikit_learn_intelex-2024.2.0.data}/data/Lib/site-packages/sklearnex/metrics/pairwise.py +0 -1
  34. {scikit_learn_intelex-2024.0.1.data → scikit_learn_intelex-2024.2.0.data}/data/Lib/site-packages/sklearnex/metrics/ranking.py +0 -1
  35. {scikit_learn_intelex-2024.0.1.data → scikit_learn_intelex-2024.2.0.data}/data/Lib/site-packages/sklearnex/metrics/tests/test_metrics.py +0 -1
  36. {scikit_learn_intelex-2024.0.1.data → scikit_learn_intelex-2024.2.0.data}/data/Lib/site-packages/sklearnex/model_selection/__init__.py +0 -1
  37. {scikit_learn_intelex-2024.0.1.data → scikit_learn_intelex-2024.2.0.data}/data/Lib/site-packages/sklearnex/model_selection/split.py +0 -1
  38. {scikit_learn_intelex-2024.0.1.data → scikit_learn_intelex-2024.2.0.data}/data/Lib/site-packages/sklearnex/model_selection/tests/test_model_selection.py +0 -1
  39. {scikit_learn_intelex-2024.0.1.data → scikit_learn_intelex-2024.2.0.data}/data/Lib/site-packages/sklearnex/neighbors/__init__.py +1 -2
  40. scikit_learn_intelex-2024.2.0.data/data/Lib/site-packages/sklearnex/neighbors/_lof.py +167 -0
  41. {scikit_learn_intelex-2024.0.1.data → scikit_learn_intelex-2024.2.0.data}/data/Lib/site-packages/sklearnex/neighbors/common.py +1 -2
  42. {scikit_learn_intelex-2024.0.1.data → scikit_learn_intelex-2024.2.0.data}/data/Lib/site-packages/sklearnex/neighbors/knn_classification.py +5 -4
  43. {scikit_learn_intelex-2024.0.1.data → scikit_learn_intelex-2024.2.0.data}/data/Lib/site-packages/sklearnex/neighbors/knn_regression.py +5 -4
  44. {scikit_learn_intelex-2024.0.1.data → scikit_learn_intelex-2024.2.0.data}/data/Lib/site-packages/sklearnex/neighbors/knn_unsupervised.py +4 -3
  45. {scikit_learn_intelex-2024.0.1.data → scikit_learn_intelex-2024.2.0.data}/data/Lib/site-packages/sklearnex/neighbors/tests/test_neighbors.py +12 -12
  46. {scikit_learn_intelex-2024.0.1.data → scikit_learn_intelex-2024.2.0.data}/data/Lib/site-packages/sklearnex/preview/__init__.py +1 -2
  47. {scikit_learn_intelex-2024.0.1.data → scikit_learn_intelex-2024.2.0.data}/data/Lib/site-packages/sklearnex/preview/cluster/__init__.py +0 -1
  48. {scikit_learn_intelex-2024.0.1.data → scikit_learn_intelex-2024.2.0.data}/data/Lib/site-packages/sklearnex/preview/cluster/k_means.py +2 -1
  49. scikit_learn_intelex-2024.2.0.data/data/Lib/site-packages/sklearnex/preview/covariance/__init__.py +19 -0
  50. scikit_learn_intelex-2024.2.0.data/data/Lib/site-packages/sklearnex/preview/covariance/covariance.py +132 -0
  51. scikit_learn_intelex-2024.2.0.data/data/Lib/site-packages/sklearnex/preview/covariance/tests/test_covariance.py +53 -0
  52. {scikit_learn_intelex-2024.0.1.data → scikit_learn_intelex-2024.2.0.data}/data/Lib/site-packages/sklearnex/preview/decomposition/__init__.py +0 -1
  53. {scikit_learn_intelex-2024.0.1.data → scikit_learn_intelex-2024.2.0.data}/data/Lib/site-packages/sklearnex/preview/decomposition/pca.py +43 -45
  54. {scikit_learn_intelex-2024.0.1.data → scikit_learn_intelex-2024.2.0.data}/data/Lib/site-packages/sklearnex/preview/decomposition/tests/test_preview_pca.py +7 -3
  55. {scikit_learn_intelex-2024.0.1.data → scikit_learn_intelex-2024.2.0.data}/data/Lib/site-packages/sklearnex/spmd/__init__.py +1 -0
  56. {scikit_learn_intelex-2024.0.1.data/data/Lib/site-packages/sklearnex → scikit_learn_intelex-2024.2.0.data/data/Lib/site-packages/sklearnex/spmd}/basic_statistics/__init__.py +0 -1
  57. scikit_learn_intelex-2024.2.0.data/data/Lib/site-packages/sklearnex/spmd/covariance/__init__.py +19 -0
  58. scikit_learn_intelex-2024.2.0.data/data/Lib/site-packages/sklearnex/spmd/covariance/covariance.py +21 -0
  59. {scikit_learn_intelex-2024.0.1.data → scikit_learn_intelex-2024.2.0.data}/data/Lib/site-packages/sklearnex/spmd/linear_model/__init__.py +2 -1
  60. scikit_learn_intelex-2024.2.0.data/data/Lib/site-packages/sklearnex/spmd/linear_model/logistic_regression.py +21 -0
  61. {scikit_learn_intelex-2024.0.1.data → scikit_learn_intelex-2024.2.0.data}/data/Lib/site-packages/sklearnex/svm/__init__.py +0 -1
  62. {scikit_learn_intelex-2024.0.1.data → scikit_learn_intelex-2024.2.0.data}/data/Lib/site-packages/sklearnex/svm/nusvc.py +4 -0
  63. {scikit_learn_intelex-2024.0.1.data → scikit_learn_intelex-2024.2.0.data}/data/Lib/site-packages/sklearnex/svm/nusvr.py +2 -0
  64. {scikit_learn_intelex-2024.0.1.data → scikit_learn_intelex-2024.2.0.data}/data/Lib/site-packages/sklearnex/svm/svc.py +5 -1
  65. {scikit_learn_intelex-2024.0.1.data → scikit_learn_intelex-2024.2.0.data}/data/Lib/site-packages/sklearnex/svm/svr.py +2 -0
  66. {scikit_learn_intelex-2024.0.1.data → scikit_learn_intelex-2024.2.0.data}/data/Lib/site-packages/sklearnex/svm/tests/test_svm.py +0 -1
  67. {scikit_learn_intelex-2024.0.1.data → scikit_learn_intelex-2024.2.0.data}/data/Lib/site-packages/sklearnex/tests/test_memory_usage.py +1 -4
  68. {scikit_learn_intelex-2024.0.1.data → scikit_learn_intelex-2024.2.0.data}/data/Lib/site-packages/sklearnex/tests/test_monkeypatch.py +46 -16
  69. scikit_learn_intelex-2024.2.0.data/data/Lib/site-packages/sklearnex/tests/test_n_jobs_support.py +93 -0
  70. {scikit_learn_intelex-2024.0.1.data → scikit_learn_intelex-2024.2.0.data}/data/Lib/site-packages/sklearnex/tests/test_patching.py +19 -5
  71. {scikit_learn_intelex-2024.0.1.data → scikit_learn_intelex-2024.2.0.data}/data/Lib/site-packages/sklearnex/utils/validation.py +0 -1
  72. {scikit_learn_intelex-2024.0.1.dist-info → scikit_learn_intelex-2024.2.0.dist-info}/METADATA +2 -2
  73. scikit_learn_intelex-2024.2.0.dist-info/RECORD +101 -0
  74. scikit_learn_intelex-2024.0.1.data/data/Lib/site-packages/sklearnex/linear_model/tests/test_logreg.py +0 -29
  75. scikit_learn_intelex-2024.0.1.data/data/Lib/site-packages/sklearnex/neighbors/lof.py +0 -437
  76. scikit_learn_intelex-2024.0.1.dist-info/RECORD +0 -90
  77. {scikit_learn_intelex-2024.0.1.data → scikit_learn_intelex-2024.2.0.data}/data/Lib/site-packages/sklearnex/_config.py +0 -0
  78. {scikit_learn_intelex-2024.0.1.data → scikit_learn_intelex-2024.2.0.data}/data/Lib/site-packages/sklearnex/_device_offload.py +0 -0
  79. {scikit_learn_intelex-2024.0.1.data/data/Lib/site-packages/sklearnex/spmd → scikit_learn_intelex-2024.2.0.data/data/Lib/site-packages/sklearnex}/basic_statistics/__init__.py +0 -0
  80. {scikit_learn_intelex-2024.0.1.data → scikit_learn_intelex-2024.2.0.data}/data/Lib/site-packages/sklearnex/basic_statistics/basic_statistics.py +0 -0
  81. {scikit_learn_intelex-2024.0.1.data → scikit_learn_intelex-2024.2.0.data}/data/Lib/site-packages/sklearnex/doc/third-party-programs.txt +0 -0
  82. {scikit_learn_intelex-2024.0.1.data → scikit_learn_intelex-2024.2.0.data}/data/Lib/site-packages/sklearnex/preview/cluster/_common.py +0 -0
  83. {scikit_learn_intelex-2024.0.1.data → scikit_learn_intelex-2024.2.0.data}/data/Lib/site-packages/sklearnex/spmd/basic_statistics/basic_statistics.py +0 -0
  84. {scikit_learn_intelex-2024.0.1.data → scikit_learn_intelex-2024.2.0.data}/data/Lib/site-packages/sklearnex/spmd/cluster/__init__.py +0 -0
  85. {scikit_learn_intelex-2024.0.1.data → scikit_learn_intelex-2024.2.0.data}/data/Lib/site-packages/sklearnex/spmd/cluster/dbscan.py +0 -0
  86. {scikit_learn_intelex-2024.0.1.data → scikit_learn_intelex-2024.2.0.data}/data/Lib/site-packages/sklearnex/spmd/cluster/kmeans.py +0 -0
  87. {scikit_learn_intelex-2024.0.1.data → scikit_learn_intelex-2024.2.0.data}/data/Lib/site-packages/sklearnex/spmd/decomposition/__init__.py +0 -0
  88. {scikit_learn_intelex-2024.0.1.data → scikit_learn_intelex-2024.2.0.data}/data/Lib/site-packages/sklearnex/spmd/decomposition/pca.py +0 -0
  89. {scikit_learn_intelex-2024.0.1.data → scikit_learn_intelex-2024.2.0.data}/data/Lib/site-packages/sklearnex/spmd/ensemble/__init__.py +0 -0
  90. {scikit_learn_intelex-2024.0.1.data → scikit_learn_intelex-2024.2.0.data}/data/Lib/site-packages/sklearnex/spmd/ensemble/forest.py +0 -0
  91. {scikit_learn_intelex-2024.0.1.data → scikit_learn_intelex-2024.2.0.data}/data/Lib/site-packages/sklearnex/spmd/linear_model/linear_model.py +0 -0
  92. {scikit_learn_intelex-2024.0.1.data → scikit_learn_intelex-2024.2.0.data}/data/Lib/site-packages/sklearnex/spmd/neighbors/__init__.py +0 -0
  93. {scikit_learn_intelex-2024.0.1.data → scikit_learn_intelex-2024.2.0.data}/data/Lib/site-packages/sklearnex/spmd/neighbors/neighbors.py +0 -0
  94. {scikit_learn_intelex-2024.0.1.data → scikit_learn_intelex-2024.2.0.data}/data/Lib/site-packages/sklearnex/svm/_common.py +0 -0
  95. {scikit_learn_intelex-2024.0.1.data → scikit_learn_intelex-2024.2.0.data}/data/Lib/site-packages/sklearnex/tests/_models_info.py +0 -0
  96. {scikit_learn_intelex-2024.0.1.data → scikit_learn_intelex-2024.2.0.data}/data/Lib/site-packages/sklearnex/tests/test_config.py +0 -0
  97. {scikit_learn_intelex-2024.0.1.data → scikit_learn_intelex-2024.2.0.data}/data/Lib/site-packages/sklearnex/tests/test_parallel.py +0 -0
  98. {scikit_learn_intelex-2024.0.1.data → scikit_learn_intelex-2024.2.0.data}/data/Lib/site-packages/sklearnex/tests/test_run_to_run_stability_tests.py +0 -0
  99. {scikit_learn_intelex-2024.0.1.data → scikit_learn_intelex-2024.2.0.data}/data/Lib/site-packages/sklearnex/tests/utils/_launch_algorithms.py +0 -0
  100. {scikit_learn_intelex-2024.0.1.data → scikit_learn_intelex-2024.2.0.data}/data/Lib/site-packages/sklearnex/utils/__init__.py +0 -0
  101. {scikit_learn_intelex-2024.0.1.data → scikit_learn_intelex-2024.2.0.data}/data/Lib/site-packages/sklearnex/utils/parallel.py +0 -0
  102. {scikit_learn_intelex-2024.0.1.dist-info → scikit_learn_intelex-2024.2.0.dist-info}/LICENSE.txt +0 -0
  103. {scikit_learn_intelex-2024.0.1.dist-info → scikit_learn_intelex-2024.2.0.dist-info}/WHEEL +0 -0
  104. {scikit_learn_intelex-2024.0.1.dist-info → scikit_learn_intelex-2024.2.0.dist-info}/top_level.txt +0 -0
@@ -0,0 +1,333 @@
1
+ # ===============================================================================
2
+ # Copyright 2024 Intel Corporation
3
+ #
4
+ # Licensed under the Apache License, Version 2.0 (the "License");
5
+ # you may not use this file except in compliance with the License.
6
+ # You may obtain a copy of the License at
7
+ #
8
+ # http://www.apache.org/licenses/LICENSE-2.0
9
+ #
10
+ # Unless required by applicable law or agreed to in writing, software
11
+ # distributed under the License is distributed on an "AS IS" BASIS,
12
+ # WITHOUT WARRANTIES OR CONDITIONS OF ANY KIND, either express or implied.
13
+ # See the License for the specific language governing permissions and
14
+ # limitations under the License.
15
+ # ===============================================================================
16
+
17
+ import logging
18
+ from abc import ABC
19
+
20
+ from daal4py.sklearn._utils import daal_check_version
21
+ from daal4py.sklearn.linear_model.logistic_path import (
22
+ LogisticRegression as LogisticRegression_daal4py,
23
+ )
24
+ from daal4py.sklearn.linear_model.logistic_path import daal4py_fit, daal4py_predict
25
+
26
+
27
+ class BaseLogisticRegression(ABC):
28
+ def _save_attributes(self):
29
+ assert hasattr(self, "_onedal_estimator")
30
+ self.classes_ = self._onedal_estimator.classes_
31
+ self.coef_ = self._onedal_estimator.coef_
32
+ self.intercept_ = self._onedal_estimator.intercept_
33
+ self.n_features_in_ = self._onedal_estimator.n_features_in_
34
+ self.n_iter_ = self._onedal_estimator.n_iter_
35
+
36
+
37
+ if daal_check_version((2024, "P", 1)):
38
+ import numpy as np
39
+ from scipy.sparse import issparse
40
+ from sklearn.linear_model import LogisticRegression as sklearn_LogisticRegression
41
+ from sklearn.utils.validation import check_X_y
42
+
43
+ from daal4py.sklearn._n_jobs_support import control_n_jobs
44
+ from daal4py.sklearn._utils import sklearn_check_version
45
+ from onedal.linear_model import LogisticRegression as onedal_LogisticRegression
46
+ from onedal.utils import _num_features, _num_samples
47
+
48
+ from .._device_offload import dispatch, wrap_output_data
49
+ from .._utils import PatchingConditionsChain, get_patch_message
50
+ from ..utils.validation import _assert_all_finite
51
+
52
+ @control_n_jobs(
53
+ decorated_methods=["fit", "predict", "predict_proba", "predict_log_proba"]
54
+ )
55
+ class LogisticRegression(sklearn_LogisticRegression, BaseLogisticRegression):
56
+ __doc__ = sklearn_LogisticRegression.__doc__
57
+ intercept_, coef_, n_iter_ = None, None, None
58
+
59
+ if sklearn_check_version("1.2"):
60
+ _parameter_constraints: dict = {
61
+ **sklearn_LogisticRegression._parameter_constraints
62
+ }
63
+
64
+ def __init__(
65
+ self,
66
+ penalty="l2",
67
+ *,
68
+ dual=False,
69
+ tol=1e-4,
70
+ C=1.0,
71
+ fit_intercept=True,
72
+ intercept_scaling=1,
73
+ class_weight=None,
74
+ random_state=None,
75
+ solver="lbfgs" if sklearn_check_version("0.22") else "liblinear",
76
+ max_iter=100,
77
+ multi_class="auto" if sklearn_check_version("0.22") else "ovr",
78
+ verbose=0,
79
+ warm_start=False,
80
+ n_jobs=None,
81
+ l1_ratio=None,
82
+ ):
83
+ super().__init__(
84
+ penalty=penalty,
85
+ dual=dual,
86
+ tol=tol,
87
+ C=C,
88
+ fit_intercept=fit_intercept,
89
+ intercept_scaling=intercept_scaling,
90
+ class_weight=class_weight,
91
+ random_state=random_state,
92
+ solver=solver,
93
+ max_iter=max_iter,
94
+ multi_class=multi_class,
95
+ verbose=verbose,
96
+ warm_start=warm_start,
97
+ n_jobs=n_jobs,
98
+ l1_ratio=l1_ratio,
99
+ )
100
+
101
+ _onedal_cpu_fit = daal4py_fit
102
+
103
+ def fit(self, X, y, sample_weight=None):
104
+ if sklearn_check_version("1.0"):
105
+ self._check_feature_names(X, reset=True)
106
+ if sklearn_check_version("1.2"):
107
+ self._validate_params()
108
+ dispatch(
109
+ self,
110
+ "fit",
111
+ {
112
+ "onedal": self.__class__._onedal_fit,
113
+ "sklearn": sklearn_LogisticRegression.fit,
114
+ },
115
+ X,
116
+ y,
117
+ sample_weight,
118
+ )
119
+ return self
120
+
121
+ @wrap_output_data
122
+ def predict(self, X):
123
+ if sklearn_check_version("1.0"):
124
+ self._check_feature_names(X, reset=False)
125
+ return dispatch(
126
+ self,
127
+ "predict",
128
+ {
129
+ "onedal": self.__class__._onedal_predict,
130
+ "sklearn": sklearn_LogisticRegression.predict,
131
+ },
132
+ X,
133
+ )
134
+
135
+ @wrap_output_data
136
+ def predict_proba(self, X):
137
+ if sklearn_check_version("1.0"):
138
+ self._check_feature_names(X, reset=False)
139
+ return dispatch(
140
+ self,
141
+ "predict",
142
+ {
143
+ "onedal": self.__class__._onedal_predict_proba,
144
+ "sklearn": sklearn_LogisticRegression.predict_proba,
145
+ },
146
+ X,
147
+ )
148
+
149
+ @wrap_output_data
150
+ def predict_log_proba(self, X):
151
+ if sklearn_check_version("1.0"):
152
+ self._check_feature_names(X, reset=False)
153
+ return dispatch(
154
+ self,
155
+ "predict",
156
+ {
157
+ "onedal": self.__class__._onedal_predict_log_proba,
158
+ "sklearn": sklearn_LogisticRegression.predict_log_proba,
159
+ },
160
+ X,
161
+ )
162
+
163
+ def _test_type_and_finiteness(self, X_in):
164
+ X = np.asarray(X_in)
165
+
166
+ if np.iscomplexobj(X):
167
+ return False
168
+ try:
169
+ _assert_all_finite(X)
170
+ except BaseException:
171
+ return False
172
+ return True
173
+
174
+ def _onedal_gpu_fit_supported(self, method_name, *data):
175
+ assert method_name == "fit"
176
+ assert len(data) == 3
177
+ X, y, sample_weight = data
178
+
179
+ class_name = self.__class__.__name__
180
+ patching_status = PatchingConditionsChain(
181
+ f"sklearn.linear_model.{class_name}.fit"
182
+ )
183
+
184
+ dal_ready = patching_status.and_conditions(
185
+ [
186
+ (self.penalty == "l2", "Only l2 penalty is supported."),
187
+ (self.dual == False, "dual=True is not supported."),
188
+ (self.intercept_scaling == 1, "Intercept scaling is not supported."),
189
+ (self.class_weight is None, "Class weight is not supported"),
190
+ (self.solver == "newton-cg", "Only newton-cg solver is supported."),
191
+ (
192
+ self.multi_class != "multinomial",
193
+ "multi_class parameter is not supported.",
194
+ ),
195
+ (self.warm_start == False, "Warm start is not supported."),
196
+ (self.l1_ratio is None, "l1 ratio is not supported."),
197
+ (sample_weight is None, "Sample weight is not supported."),
198
+ ]
199
+ )
200
+
201
+ if not dal_ready:
202
+ return patching_status
203
+
204
+ if not patching_status.and_condition(
205
+ self._test_type_and_finiteness(X), "Input X is not supported."
206
+ ):
207
+ return patching_status
208
+
209
+ patching_status.and_condition(
210
+ self._test_type_and_finiteness(y), "Input y is not supported."
211
+ )
212
+
213
+ return patching_status
214
+
215
+ def _onedal_gpu_predict_supported(self, method_name, *data):
216
+ assert method_name in ["predict", "predict_proba", "predict_log_proba"]
217
+ assert len(data) == 1
218
+
219
+ class_name = self.__class__.__name__
220
+ patching_status = PatchingConditionsChain(
221
+ f"sklearn.linear_model.{class_name}.{method_name}"
222
+ )
223
+
224
+ n_samples = _num_samples(*data)
225
+ model_is_sparse = issparse(self.coef_) or (
226
+ self.fit_intercept and issparse(self.intercept_)
227
+ )
228
+ dal_ready = patching_status.and_conditions(
229
+ [
230
+ (n_samples > 0, "Number of samples is less than 1."),
231
+ (not issparse(*data), "Sparse input is not supported."),
232
+ (not model_is_sparse, "Sparse coefficients are not supported."),
233
+ (hasattr(self, "_onedal_estimator"), "oneDAL model was not trained."),
234
+ ]
235
+ )
236
+ if not dal_ready:
237
+ return patching_status
238
+
239
+ patching_status.and_condition(
240
+ self._test_type_and_finiteness(*data), "Input X is not supported."
241
+ )
242
+
243
+ return patching_status
244
+
245
+ def _onedal_gpu_supported(self, method_name, *data):
246
+ if method_name == "fit":
247
+ return self._onedal_gpu_fit_supported(method_name, *data)
248
+ if method_name in ["predict", "predict_proba", "predict_log_proba"]:
249
+ return self._onedal_gpu_predict_supported(method_name, *data)
250
+ raise RuntimeError(
251
+ f"Unknown method {method_name} in {self.__class__.__name__}"
252
+ )
253
+
254
+ def _onedal_cpu_supported(self, method_name, *data):
255
+ class_name = self.__class__.__name__
256
+ patching_status = PatchingConditionsChain(
257
+ f"sklearn.linear_model.{class_name}.{method_name}"
258
+ )
259
+
260
+ return patching_status
261
+
262
+ def _initialize_onedal_estimator(self):
263
+ onedal_params = {
264
+ "tol": self.tol,
265
+ "C": self.C,
266
+ "fit_intercept": self.fit_intercept,
267
+ "solver": self.solver,
268
+ "max_iter": self.max_iter,
269
+ }
270
+ self._onedal_estimator = onedal_LogisticRegression(**onedal_params)
271
+
272
+ def _onedal_fit(self, X, y, sample_weight, queue=None):
273
+ if queue is None or queue.sycl_device.is_cpu:
274
+ return self._onedal_cpu_fit(X, y, sample_weight)
275
+
276
+ assert sample_weight is None
277
+
278
+ check_params = {
279
+ "X": X,
280
+ "y": y,
281
+ "dtype": [np.float64, np.float32],
282
+ "accept_sparse": False,
283
+ "multi_output": False,
284
+ "force_all_finite": True,
285
+ }
286
+ if sklearn_check_version("1.2"):
287
+ X, y = self._validate_data(**check_params)
288
+ else:
289
+ X, y = check_X_y(**check_params)
290
+ self._initialize_onedal_estimator()
291
+ try:
292
+ self._onedal_estimator.fit(X, y, queue=queue)
293
+ self._save_attributes()
294
+ except RuntimeError:
295
+ logging.getLogger("sklearnex").info(
296
+ f"{self.__class__.__name__}.fit "
297
+ + get_patch_message("sklearn_after_onedal")
298
+ )
299
+
300
+ del self._onedal_estimator
301
+ super().fit(X, y)
302
+
303
+ def _onedal_predict(self, X, queue=None):
304
+ if queue is None or queue.sycl_device.is_cpu:
305
+ return daal4py_predict(self, X, "computeClassLabels")
306
+
307
+ X = self._validate_data(X, accept_sparse=False, reset=False)
308
+ assert hasattr(self, "_onedal_estimator")
309
+ return self._onedal_estimator.predict(X, queue=queue)
310
+
311
+ def _onedal_predict_proba(self, X, queue=None):
312
+ if queue is None or queue.sycl_device.is_cpu:
313
+ return daal4py_predict(self, X, "computeClassProbabilities")
314
+
315
+ X = self._validate_data(X, accept_sparse=False, reset=False)
316
+ assert hasattr(self, "_onedal_estimator")
317
+ return self._onedal_estimator.predict_proba(X, queue=queue)
318
+
319
+ def _onedal_predict_log_proba(self, X, queue=None):
320
+ if queue is None or queue.sycl_device.is_cpu:
321
+ return daal4py_predict(self, X, "computeClassLogProbabilities")
322
+
323
+ X = self._validate_data(X, accept_sparse=False, reset=False)
324
+ assert hasattr(self, "_onedal_estimator")
325
+ return self._onedal_estimator.predict_log_proba(X, queue=queue)
326
+
327
+ else:
328
+ LogisticRegression = LogisticRegression_daal4py
329
+
330
+ logging.warning(
331
+ "Sklearnex LogisticRegression requires oneDAL version >= 2024.0.1 "
332
+ "but it was not found"
333
+ )
@@ -1,4 +1,3 @@
1
- #!/usr/bin/env python
2
1
  # ===============================================================================
3
2
  # Copyright 2021 Intel Corporation
4
3
  #
@@ -1,4 +1,3 @@
1
- #!/usr/bin/env python
2
1
  # ===============================================================================
3
2
  # Copyright 2021 Intel Corporation
4
3
  #
@@ -29,14 +28,20 @@ from onedal.tests.utils._dataframes_support import (
29
28
 
30
29
 
31
30
  @pytest.mark.parametrize("dataframe,queue", get_dataframes_and_queues())
32
- def test_sklearnex_import_linear(dataframe, queue):
31
+ @pytest.mark.parametrize("macro_block", [None, 1024])
32
+ def test_sklearnex_import_linear(dataframe, queue, macro_block):
33
33
  from sklearnex.linear_model import LinearRegression
34
34
 
35
35
  X = np.array([[1, 1], [1, 2], [2, 2], [2, 3]])
36
36
  y = np.dot(X, np.array([1, 2])) + 3
37
37
  X = _convert_to_dataframe(X, sycl_queue=queue, target_df=dataframe)
38
38
  y = _convert_to_dataframe(y, sycl_queue=queue, target_df=dataframe)
39
- linreg = LinearRegression().fit(X, y)
39
+ linreg = LinearRegression()
40
+ if daal_check_version((2024, "P", 0)) and macro_block is not None:
41
+ hparams = linreg.get_hyperparameters("fit")
42
+ hparams.cpu_macro_block = macro_block
43
+ hparams.gpu_macro_block = macro_block
44
+ linreg.fit(X, y)
40
45
  if daal_check_version((2023, "P", 100)):
41
46
  assert hasattr(linreg, "_onedal_estimator")
42
47
  assert "sklearnex" in linreg.__module__
@@ -0,0 +1,93 @@
1
+ # ===============================================================================
2
+ # Copyright 2021 Intel Corporation
3
+ #
4
+ # Licensed under the Apache License, Version 2.0 (the "License");
5
+ # you may not use this file except in compliance with the License.
6
+ # You may obtain a copy of the License at
7
+ #
8
+ # http://www.apache.org/licenses/LICENSE-2.0
9
+ #
10
+ # Unless required by applicable law or agreed to in writing, software
11
+ # distributed under the License is distributed on an "AS IS" BASIS,
12
+ # WITHOUT WARRANTIES OR CONDITIONS OF ANY KIND, either express or implied.
13
+ # See the License for the specific language governing permissions and
14
+ # limitations under the License.
15
+ # ===============================================================================
16
+
17
+ import numpy as np
18
+ import pytest
19
+ from numpy.testing import assert_allclose
20
+ from sklearn.datasets import load_breast_cancer, load_iris
21
+ from sklearn.metrics import accuracy_score
22
+ from sklearn.model_selection import train_test_split
23
+
24
+ from daal4py.sklearn._utils import daal_check_version
25
+ from onedal.tests.utils._dataframes_support import (
26
+ _as_numpy,
27
+ _convert_to_dataframe,
28
+ get_dataframes_and_queues,
29
+ )
30
+
31
+
32
+ def prepare_input(X, y, dataframe, queue):
33
+ X_train, X_test, y_train, y_test = train_test_split(
34
+ X, y, train_size=0.8, random_state=42
35
+ )
36
+ X_train = _convert_to_dataframe(X_train, sycl_queue=queue, target_df=dataframe)
37
+ y_train = _convert_to_dataframe(y_train, sycl_queue=queue, target_df=dataframe)
38
+ X_test = _convert_to_dataframe(X_test, sycl_queue=queue, target_df=dataframe)
39
+ return X_train, X_test, y_train, y_test
40
+
41
+
42
+ @pytest.mark.parametrize(
43
+ "dataframe,queue",
44
+ get_dataframes_and_queues(device_filter_="cpu"),
45
+ )
46
+ def test_sklearnex_multiclass_classification(dataframe, queue):
47
+ from sklearnex.linear_model import LogisticRegression
48
+
49
+ X, y = load_iris(return_X_y=True)
50
+ X_train, X_test, y_train, y_test = prepare_input(X, y, dataframe, queue)
51
+
52
+ logreg = LogisticRegression(fit_intercept=True, solver="lbfgs", max_iter=200).fit(
53
+ X_train, y_train
54
+ )
55
+
56
+ if daal_check_version((2024, "P", 1)):
57
+ assert "sklearnex" in logreg.__module__
58
+ else:
59
+ assert "daal4py" in logreg.__module__
60
+
61
+ y_pred = _as_numpy(logreg.predict(X_test))
62
+ assert accuracy_score(y_test, y_pred) > 0.99
63
+
64
+
65
+ @pytest.mark.parametrize(
66
+ "dataframe,queue",
67
+ get_dataframes_and_queues(),
68
+ )
69
+ def test_sklearnex_binary_classification(dataframe, queue):
70
+ from sklearnex.linear_model import LogisticRegression
71
+
72
+ X, y = load_breast_cancer(return_X_y=True)
73
+ X_train, X_test, y_train, y_test = prepare_input(X, y, dataframe, queue)
74
+
75
+ logreg = LogisticRegression(fit_intercept=True, solver="newton-cg", max_iter=100).fit(
76
+ X_train, y_train
77
+ )
78
+
79
+ if daal_check_version((2024, "P", 1)):
80
+ assert "sklearnex" in logreg.__module__
81
+ else:
82
+ assert "daal4py" in logreg.__module__
83
+ if (
84
+ dataframe != "numpy"
85
+ and queue is not None
86
+ and queue.sycl_device.is_gpu
87
+ and daal_check_version((2024, "P", 1))
88
+ ):
89
+ # fit was done on gpu
90
+ assert hasattr(logreg, "_onedal_estimator")
91
+
92
+ y_pred = _as_numpy(logreg.predict(X_test))
93
+ assert accuracy_score(y_test, y_pred) > 0.95
@@ -1,4 +1,3 @@
1
- #!/usr/bin/env python
2
1
  # ===============================================================================
3
2
  # Copyright 2021 Intel Corporation
4
3
  #
@@ -1,4 +1,3 @@
1
- #!/usr/bin/env python
2
1
  # ===============================================================================
3
2
  # Copyright 2021 Intel Corporation
4
3
  #
@@ -1,4 +1,3 @@
1
- #!/usr/bin/env python
2
1
  # ===============================================================================
3
2
  # Copyright 2021 Intel Corporation
4
3
  #
@@ -1,4 +1,3 @@
1
- #!/usr/bin/env python
2
1
  # ===============================================================================
3
2
  # Copyright 2021 Intel Corporation
4
3
  #
@@ -1,4 +1,3 @@
1
- #!/usr/bin/env python
2
1
  # ===============================================================================
3
2
  # Copyright 2021 Intel Corporation
4
3
  #
@@ -1,4 +1,3 @@
1
- #!/usr/bin/env python
2
1
  # ===============================================================================
3
2
  # Copyright 2021 Intel Corporation
4
3
  #
@@ -1,4 +1,3 @@
1
- #!/usr/bin/env python
2
1
  # ===============================================================================
3
2
  # Copyright 2021 Intel Corporation
4
3
  #
@@ -1,4 +1,3 @@
1
- #!/usr/bin/env python
2
1
  # ===============================================================================
3
2
  # Copyright 2021 Intel Corporation
4
3
  #
@@ -1,4 +1,3 @@
1
- #!/usr/bin/env python
2
1
  # ===============================================================================
3
2
  # Copyright 2021 Intel Corporation
4
3
  #
@@ -1,4 +1,3 @@
1
- #!/usr/bin/env python
2
1
  # ===============================================================================
3
2
  # Copyright 2021 Intel Corporation
4
3
  #
@@ -1,4 +1,3 @@
1
- #!/usr/bin/env python
2
1
  # ===============================================================================
3
2
  # Copyright 2021 Intel Corporation
4
3
  #
@@ -15,10 +14,10 @@
15
14
  # limitations under the License.
16
15
  # ===============================================================================
17
16
 
17
+ from ._lof import LocalOutlierFactor
18
18
  from .knn_classification import KNeighborsClassifier
19
19
  from .knn_regression import KNeighborsRegressor
20
20
  from .knn_unsupervised import NearestNeighbors
21
- from .lof import LocalOutlierFactor
22
21
 
23
22
  __all__ = [
24
23
  "KNeighborsClassifier",