scikit-learn-intelex 2024.0.1__py310-none-win_amd64.whl → 2024.2.0__py310-none-win_amd64.whl
This diff represents the content of publicly available package versions that have been released to one of the supported registries. The information contained in this diff is provided for informational purposes only and reflects changes between package versions as they appear in their respective public registries.
Potentially problematic release.
This version of scikit-learn-intelex might be problematic. Click here for more details.
- {scikit_learn_intelex-2024.0.1.data → scikit_learn_intelex-2024.2.0.data}/data/Lib/site-packages/sklearnex/__init__.py +3 -1
- {scikit_learn_intelex-2024.0.1.data → scikit_learn_intelex-2024.2.0.data}/data/Lib/site-packages/sklearnex/__main__.py +0 -1
- {scikit_learn_intelex-2024.0.1.data → scikit_learn_intelex-2024.2.0.data}/data/Lib/site-packages/sklearnex/_utils.py +15 -1
- {scikit_learn_intelex-2024.0.1.data → scikit_learn_intelex-2024.2.0.data}/data/Lib/site-packages/sklearnex/cluster/__init__.py +0 -1
- {scikit_learn_intelex-2024.0.1.data → scikit_learn_intelex-2024.2.0.data}/data/Lib/site-packages/sklearnex/cluster/dbscan.py +2 -1
- {scikit_learn_intelex-2024.0.1.data → scikit_learn_intelex-2024.2.0.data}/data/Lib/site-packages/sklearnex/cluster/k_means.py +0 -1
- {scikit_learn_intelex-2024.0.1.data → scikit_learn_intelex-2024.2.0.data}/data/Lib/site-packages/sklearnex/cluster/tests/test_dbscan.py +0 -1
- {scikit_learn_intelex-2024.0.1.data → scikit_learn_intelex-2024.2.0.data}/data/Lib/site-packages/sklearnex/cluster/tests/test_kmeans.py +0 -1
- scikit_learn_intelex-2024.2.0.data/data/Lib/site-packages/sklearnex/covariance/__init__.py +19 -0
- scikit_learn_intelex-2024.2.0.data/data/Lib/site-packages/sklearnex/covariance/incremental_covariance.py +130 -0
- scikit_learn_intelex-2024.2.0.data/data/Lib/site-packages/sklearnex/covariance/tests/test_incremental_covariance.py +143 -0
- {scikit_learn_intelex-2024.0.1.data → scikit_learn_intelex-2024.2.0.data}/data/Lib/site-packages/sklearnex/decomposition/__init__.py +0 -1
- {scikit_learn_intelex-2024.0.1.data → scikit_learn_intelex-2024.2.0.data}/data/Lib/site-packages/sklearnex/decomposition/pca.py +0 -1
- {scikit_learn_intelex-2024.0.1.data → scikit_learn_intelex-2024.2.0.data}/data/Lib/site-packages/sklearnex/decomposition/tests/test_pca.py +0 -1
- {scikit_learn_intelex-2024.0.1.data → scikit_learn_intelex-2024.2.0.data}/data/Lib/site-packages/sklearnex/dispatcher.py +35 -1
- {scikit_learn_intelex-2024.0.1.data → scikit_learn_intelex-2024.2.0.data}/data/Lib/site-packages/sklearnex/ensemble/__init__.py +0 -1
- {scikit_learn_intelex-2024.0.1.data → scikit_learn_intelex-2024.2.0.data}/data/Lib/site-packages/sklearnex/ensemble/_forest.py +17 -2
- {scikit_learn_intelex-2024.0.1.data → scikit_learn_intelex-2024.2.0.data}/data/Lib/site-packages/sklearnex/ensemble/tests/test_forest.py +0 -1
- {scikit_learn_intelex-2024.0.1.data → scikit_learn_intelex-2024.2.0.data}/data/Lib/site-packages/sklearnex/glob/__main__.py +0 -1
- {scikit_learn_intelex-2024.0.1.data → scikit_learn_intelex-2024.2.0.data}/data/Lib/site-packages/sklearnex/glob/dispatcher.py +0 -1
- {scikit_learn_intelex-2024.0.1.data → scikit_learn_intelex-2024.2.0.data}/data/Lib/site-packages/sklearnex/linear_model/__init__.py +1 -3
- {scikit_learn_intelex-2024.0.1.data → scikit_learn_intelex-2024.2.0.data}/data/Lib/site-packages/sklearnex/linear_model/coordinate_descent.py +0 -1
- {scikit_learn_intelex-2024.0.1.data → scikit_learn_intelex-2024.2.0.data}/data/Lib/site-packages/sklearnex/linear_model/linear.py +9 -1
- {scikit_learn_intelex-2024.0.1.data → scikit_learn_intelex-2024.2.0.data}/data/Lib/site-packages/sklearnex/linear_model/logistic_path.py +0 -1
- scikit_learn_intelex-2024.2.0.data/data/Lib/site-packages/sklearnex/linear_model/logistic_regression.py +333 -0
- {scikit_learn_intelex-2024.0.1.data → scikit_learn_intelex-2024.2.0.data}/data/Lib/site-packages/sklearnex/linear_model/ridge.py +0 -1
- {scikit_learn_intelex-2024.0.1.data → scikit_learn_intelex-2024.2.0.data}/data/Lib/site-packages/sklearnex/linear_model/tests/test_linear.py +8 -3
- scikit_learn_intelex-2024.2.0.data/data/Lib/site-packages/sklearnex/linear_model/tests/test_logreg.py +93 -0
- {scikit_learn_intelex-2024.0.1.data → scikit_learn_intelex-2024.2.0.data}/data/Lib/site-packages/sklearnex/manifold/__init__.py +0 -1
- {scikit_learn_intelex-2024.0.1.data → scikit_learn_intelex-2024.2.0.data}/data/Lib/site-packages/sklearnex/manifold/t_sne.py +0 -1
- {scikit_learn_intelex-2024.0.1.data → scikit_learn_intelex-2024.2.0.data}/data/Lib/site-packages/sklearnex/manifold/tests/test_tsne.py +0 -1
- {scikit_learn_intelex-2024.0.1.data → scikit_learn_intelex-2024.2.0.data}/data/Lib/site-packages/sklearnex/metrics/__init__.py +0 -1
- {scikit_learn_intelex-2024.0.1.data → scikit_learn_intelex-2024.2.0.data}/data/Lib/site-packages/sklearnex/metrics/pairwise.py +0 -1
- {scikit_learn_intelex-2024.0.1.data → scikit_learn_intelex-2024.2.0.data}/data/Lib/site-packages/sklearnex/metrics/ranking.py +0 -1
- {scikit_learn_intelex-2024.0.1.data → scikit_learn_intelex-2024.2.0.data}/data/Lib/site-packages/sklearnex/metrics/tests/test_metrics.py +0 -1
- {scikit_learn_intelex-2024.0.1.data → scikit_learn_intelex-2024.2.0.data}/data/Lib/site-packages/sklearnex/model_selection/__init__.py +0 -1
- {scikit_learn_intelex-2024.0.1.data → scikit_learn_intelex-2024.2.0.data}/data/Lib/site-packages/sklearnex/model_selection/split.py +0 -1
- {scikit_learn_intelex-2024.0.1.data → scikit_learn_intelex-2024.2.0.data}/data/Lib/site-packages/sklearnex/model_selection/tests/test_model_selection.py +0 -1
- {scikit_learn_intelex-2024.0.1.data → scikit_learn_intelex-2024.2.0.data}/data/Lib/site-packages/sklearnex/neighbors/__init__.py +1 -2
- scikit_learn_intelex-2024.2.0.data/data/Lib/site-packages/sklearnex/neighbors/_lof.py +167 -0
- {scikit_learn_intelex-2024.0.1.data → scikit_learn_intelex-2024.2.0.data}/data/Lib/site-packages/sklearnex/neighbors/common.py +1 -2
- {scikit_learn_intelex-2024.0.1.data → scikit_learn_intelex-2024.2.0.data}/data/Lib/site-packages/sklearnex/neighbors/knn_classification.py +5 -4
- {scikit_learn_intelex-2024.0.1.data → scikit_learn_intelex-2024.2.0.data}/data/Lib/site-packages/sklearnex/neighbors/knn_regression.py +5 -4
- {scikit_learn_intelex-2024.0.1.data → scikit_learn_intelex-2024.2.0.data}/data/Lib/site-packages/sklearnex/neighbors/knn_unsupervised.py +4 -3
- {scikit_learn_intelex-2024.0.1.data → scikit_learn_intelex-2024.2.0.data}/data/Lib/site-packages/sklearnex/neighbors/tests/test_neighbors.py +12 -12
- {scikit_learn_intelex-2024.0.1.data → scikit_learn_intelex-2024.2.0.data}/data/Lib/site-packages/sklearnex/preview/__init__.py +1 -2
- {scikit_learn_intelex-2024.0.1.data → scikit_learn_intelex-2024.2.0.data}/data/Lib/site-packages/sklearnex/preview/cluster/__init__.py +0 -1
- {scikit_learn_intelex-2024.0.1.data → scikit_learn_intelex-2024.2.0.data}/data/Lib/site-packages/sklearnex/preview/cluster/k_means.py +2 -1
- scikit_learn_intelex-2024.2.0.data/data/Lib/site-packages/sklearnex/preview/covariance/__init__.py +19 -0
- scikit_learn_intelex-2024.2.0.data/data/Lib/site-packages/sklearnex/preview/covariance/covariance.py +132 -0
- scikit_learn_intelex-2024.2.0.data/data/Lib/site-packages/sklearnex/preview/covariance/tests/test_covariance.py +53 -0
- {scikit_learn_intelex-2024.0.1.data → scikit_learn_intelex-2024.2.0.data}/data/Lib/site-packages/sklearnex/preview/decomposition/__init__.py +0 -1
- {scikit_learn_intelex-2024.0.1.data → scikit_learn_intelex-2024.2.0.data}/data/Lib/site-packages/sklearnex/preview/decomposition/pca.py +43 -45
- {scikit_learn_intelex-2024.0.1.data → scikit_learn_intelex-2024.2.0.data}/data/Lib/site-packages/sklearnex/preview/decomposition/tests/test_preview_pca.py +7 -3
- {scikit_learn_intelex-2024.0.1.data → scikit_learn_intelex-2024.2.0.data}/data/Lib/site-packages/sklearnex/spmd/__init__.py +1 -0
- {scikit_learn_intelex-2024.0.1.data/data/Lib/site-packages/sklearnex → scikit_learn_intelex-2024.2.0.data/data/Lib/site-packages/sklearnex/spmd}/basic_statistics/__init__.py +0 -1
- scikit_learn_intelex-2024.2.0.data/data/Lib/site-packages/sklearnex/spmd/covariance/__init__.py +19 -0
- scikit_learn_intelex-2024.2.0.data/data/Lib/site-packages/sklearnex/spmd/covariance/covariance.py +21 -0
- {scikit_learn_intelex-2024.0.1.data → scikit_learn_intelex-2024.2.0.data}/data/Lib/site-packages/sklearnex/spmd/linear_model/__init__.py +2 -1
- scikit_learn_intelex-2024.2.0.data/data/Lib/site-packages/sklearnex/spmd/linear_model/logistic_regression.py +21 -0
- {scikit_learn_intelex-2024.0.1.data → scikit_learn_intelex-2024.2.0.data}/data/Lib/site-packages/sklearnex/svm/__init__.py +0 -1
- {scikit_learn_intelex-2024.0.1.data → scikit_learn_intelex-2024.2.0.data}/data/Lib/site-packages/sklearnex/svm/nusvc.py +4 -0
- {scikit_learn_intelex-2024.0.1.data → scikit_learn_intelex-2024.2.0.data}/data/Lib/site-packages/sklearnex/svm/nusvr.py +2 -0
- {scikit_learn_intelex-2024.0.1.data → scikit_learn_intelex-2024.2.0.data}/data/Lib/site-packages/sklearnex/svm/svc.py +5 -1
- {scikit_learn_intelex-2024.0.1.data → scikit_learn_intelex-2024.2.0.data}/data/Lib/site-packages/sklearnex/svm/svr.py +2 -0
- {scikit_learn_intelex-2024.0.1.data → scikit_learn_intelex-2024.2.0.data}/data/Lib/site-packages/sklearnex/svm/tests/test_svm.py +0 -1
- {scikit_learn_intelex-2024.0.1.data → scikit_learn_intelex-2024.2.0.data}/data/Lib/site-packages/sklearnex/tests/test_memory_usage.py +1 -4
- {scikit_learn_intelex-2024.0.1.data → scikit_learn_intelex-2024.2.0.data}/data/Lib/site-packages/sklearnex/tests/test_monkeypatch.py +46 -16
- scikit_learn_intelex-2024.2.0.data/data/Lib/site-packages/sklearnex/tests/test_n_jobs_support.py +93 -0
- {scikit_learn_intelex-2024.0.1.data → scikit_learn_intelex-2024.2.0.data}/data/Lib/site-packages/sklearnex/tests/test_patching.py +19 -5
- {scikit_learn_intelex-2024.0.1.data → scikit_learn_intelex-2024.2.0.data}/data/Lib/site-packages/sklearnex/utils/validation.py +0 -1
- {scikit_learn_intelex-2024.0.1.dist-info → scikit_learn_intelex-2024.2.0.dist-info}/METADATA +2 -2
- scikit_learn_intelex-2024.2.0.dist-info/RECORD +101 -0
- scikit_learn_intelex-2024.0.1.data/data/Lib/site-packages/sklearnex/linear_model/tests/test_logreg.py +0 -29
- scikit_learn_intelex-2024.0.1.data/data/Lib/site-packages/sklearnex/neighbors/lof.py +0 -437
- scikit_learn_intelex-2024.0.1.dist-info/RECORD +0 -90
- {scikit_learn_intelex-2024.0.1.data → scikit_learn_intelex-2024.2.0.data}/data/Lib/site-packages/sklearnex/_config.py +0 -0
- {scikit_learn_intelex-2024.0.1.data → scikit_learn_intelex-2024.2.0.data}/data/Lib/site-packages/sklearnex/_device_offload.py +0 -0
- {scikit_learn_intelex-2024.0.1.data/data/Lib/site-packages/sklearnex/spmd → scikit_learn_intelex-2024.2.0.data/data/Lib/site-packages/sklearnex}/basic_statistics/__init__.py +0 -0
- {scikit_learn_intelex-2024.0.1.data → scikit_learn_intelex-2024.2.0.data}/data/Lib/site-packages/sklearnex/basic_statistics/basic_statistics.py +0 -0
- {scikit_learn_intelex-2024.0.1.data → scikit_learn_intelex-2024.2.0.data}/data/Lib/site-packages/sklearnex/doc/third-party-programs.txt +0 -0
- {scikit_learn_intelex-2024.0.1.data → scikit_learn_intelex-2024.2.0.data}/data/Lib/site-packages/sklearnex/preview/cluster/_common.py +0 -0
- {scikit_learn_intelex-2024.0.1.data → scikit_learn_intelex-2024.2.0.data}/data/Lib/site-packages/sklearnex/spmd/basic_statistics/basic_statistics.py +0 -0
- {scikit_learn_intelex-2024.0.1.data → scikit_learn_intelex-2024.2.0.data}/data/Lib/site-packages/sklearnex/spmd/cluster/__init__.py +0 -0
- {scikit_learn_intelex-2024.0.1.data → scikit_learn_intelex-2024.2.0.data}/data/Lib/site-packages/sklearnex/spmd/cluster/dbscan.py +0 -0
- {scikit_learn_intelex-2024.0.1.data → scikit_learn_intelex-2024.2.0.data}/data/Lib/site-packages/sklearnex/spmd/cluster/kmeans.py +0 -0
- {scikit_learn_intelex-2024.0.1.data → scikit_learn_intelex-2024.2.0.data}/data/Lib/site-packages/sklearnex/spmd/decomposition/__init__.py +0 -0
- {scikit_learn_intelex-2024.0.1.data → scikit_learn_intelex-2024.2.0.data}/data/Lib/site-packages/sklearnex/spmd/decomposition/pca.py +0 -0
- {scikit_learn_intelex-2024.0.1.data → scikit_learn_intelex-2024.2.0.data}/data/Lib/site-packages/sklearnex/spmd/ensemble/__init__.py +0 -0
- {scikit_learn_intelex-2024.0.1.data → scikit_learn_intelex-2024.2.0.data}/data/Lib/site-packages/sklearnex/spmd/ensemble/forest.py +0 -0
- {scikit_learn_intelex-2024.0.1.data → scikit_learn_intelex-2024.2.0.data}/data/Lib/site-packages/sklearnex/spmd/linear_model/linear_model.py +0 -0
- {scikit_learn_intelex-2024.0.1.data → scikit_learn_intelex-2024.2.0.data}/data/Lib/site-packages/sklearnex/spmd/neighbors/__init__.py +0 -0
- {scikit_learn_intelex-2024.0.1.data → scikit_learn_intelex-2024.2.0.data}/data/Lib/site-packages/sklearnex/spmd/neighbors/neighbors.py +0 -0
- {scikit_learn_intelex-2024.0.1.data → scikit_learn_intelex-2024.2.0.data}/data/Lib/site-packages/sklearnex/svm/_common.py +0 -0
- {scikit_learn_intelex-2024.0.1.data → scikit_learn_intelex-2024.2.0.data}/data/Lib/site-packages/sklearnex/tests/_models_info.py +0 -0
- {scikit_learn_intelex-2024.0.1.data → scikit_learn_intelex-2024.2.0.data}/data/Lib/site-packages/sklearnex/tests/test_config.py +0 -0
- {scikit_learn_intelex-2024.0.1.data → scikit_learn_intelex-2024.2.0.data}/data/Lib/site-packages/sklearnex/tests/test_parallel.py +0 -0
- {scikit_learn_intelex-2024.0.1.data → scikit_learn_intelex-2024.2.0.data}/data/Lib/site-packages/sklearnex/tests/test_run_to_run_stability_tests.py +0 -0
- {scikit_learn_intelex-2024.0.1.data → scikit_learn_intelex-2024.2.0.data}/data/Lib/site-packages/sklearnex/tests/utils/_launch_algorithms.py +0 -0
- {scikit_learn_intelex-2024.0.1.data → scikit_learn_intelex-2024.2.0.data}/data/Lib/site-packages/sklearnex/utils/__init__.py +0 -0
- {scikit_learn_intelex-2024.0.1.data → scikit_learn_intelex-2024.2.0.data}/data/Lib/site-packages/sklearnex/utils/parallel.py +0 -0
- {scikit_learn_intelex-2024.0.1.dist-info → scikit_learn_intelex-2024.2.0.dist-info}/LICENSE.txt +0 -0
- {scikit_learn_intelex-2024.0.1.dist-info → scikit_learn_intelex-2024.2.0.dist-info}/WHEEL +0 -0
- {scikit_learn_intelex-2024.0.1.dist-info → scikit_learn_intelex-2024.2.0.dist-info}/top_level.txt +0 -0
{scikit_learn_intelex-2024.0.1.dist-info → scikit_learn_intelex-2024.2.0.dist-info}/METADATA
RENAMED
|
@@ -1,6 +1,6 @@
|
|
|
1
1
|
Metadata-Version: 2.1
|
|
2
2
|
Name: scikit-learn-intelex
|
|
3
|
-
Version: 2024.0
|
|
3
|
+
Version: 2024.2.0
|
|
4
4
|
Summary: Intel(R) Extension for Scikit-learn is a seamless way to speed up your Scikit-learn application.
|
|
5
5
|
Home-page: https://github.com/intel/scikit-learn-intelex
|
|
6
6
|
Author: Intel Corporation
|
|
@@ -31,7 +31,7 @@ Classifier: Topic :: Software Development
|
|
|
31
31
|
Requires-Python: >=3.7
|
|
32
32
|
Description-Content-Type: text/markdown
|
|
33
33
|
License-File: LICENSE.txt
|
|
34
|
-
Requires-Dist: daal4py (==2024.0
|
|
34
|
+
Requires-Dist: daal4py (==2024.2.0)
|
|
35
35
|
Requires-Dist: scikit-learn (>=0.22)
|
|
36
36
|
|
|
37
37
|
|
|
@@ -0,0 +1,101 @@
|
|
|
1
|
+
scikit_learn_intelex-2024.2.0.data/data/Lib/site-packages/sklearnex/__init__.py,sha256=ScbLh27pOsTushgVj4zxZsNOLLYct65-7XrD_96Pu94,1648
|
|
2
|
+
scikit_learn_intelex-2024.2.0.data/data/Lib/site-packages/sklearnex/__main__.py,sha256=Le9BJq6aLEGSSoZwJLsOADxsV89ynBfA8BcoJHk9F24,1921
|
|
3
|
+
scikit_learn_intelex-2024.2.0.data/data/Lib/site-packages/sklearnex/_config.py,sha256=6WS3UuS4-0DxIJyGn7yQMosj-mGkLybLQrg3W7dED5o,3928
|
|
4
|
+
scikit_learn_intelex-2024.2.0.data/data/Lib/site-packages/sklearnex/_device_offload.py,sha256=J0tZqj6tfvIFonWR01PadtTLgloQk_QEfXeCoqEvJlk,7710
|
|
5
|
+
scikit_learn_intelex-2024.2.0.data/data/Lib/site-packages/sklearnex/_utils.py,sha256=EV4jC3plVdndsgrfPBsJZTzggrRdYWLwOpoIRWtTXt4,3812
|
|
6
|
+
scikit_learn_intelex-2024.2.0.data/data/Lib/site-packages/sklearnex/dispatcher.py,sha256=89QQ508iMt6qxoCIHt4woLvz_-KBOR6UvvhJJeC77hE,12878
|
|
7
|
+
scikit_learn_intelex-2024.2.0.data/data/Lib/site-packages/sklearnex/basic_statistics/__init__.py,sha256=NA5RGlwcp27UEeCgz0ngzYYd3MAIRpxlTy86uhM2-RE,821
|
|
8
|
+
scikit_learn_intelex-2024.2.0.data/data/Lib/site-packages/sklearnex/basic_statistics/basic_statistics.py,sha256=j5jBZ3DgXjoyjCBEFfYQHyl3LgLXEWWFnNHwInThdZw,796
|
|
9
|
+
scikit_learn_intelex-2024.2.0.data/data/Lib/site-packages/sklearnex/cluster/__init__.py,sha256=TsDzdbKzEubaP86iY8a7mSW0ZQzgjzGYuPkhc5lZmlQ,853
|
|
10
|
+
scikit_learn_intelex-2024.2.0.data/data/Lib/site-packages/sklearnex/cluster/dbscan.py,sha256=EegSXIFHKNhaKLoe_G8dsC5t2SXRdu3tDzsHbcubdDM,6706
|
|
11
|
+
scikit_learn_intelex-2024.2.0.data/data/Lib/site-packages/sklearnex/cluster/k_means.py,sha256=1QKcFUQcnycu8kSD8uYSaDIuedHbxZsV_gvUfcEwVAM,806
|
|
12
|
+
scikit_learn_intelex-2024.2.0.data/data/Lib/site-packages/sklearnex/cluster/tests/test_dbscan.py,sha256=AgFoKwXFVyLKLvEtJVs0qlbBs1Ci3PcRft7f-6_ENOU,1464
|
|
13
|
+
scikit_learn_intelex-2024.2.0.data/data/Lib/site-packages/sklearnex/cluster/tests/test_kmeans.py,sha256=H3a9NSHRRSASo0Eceo44Kjq6GwEoMqMzcubaNt1s1QQ,1213
|
|
14
|
+
scikit_learn_intelex-2024.2.0.data/data/Lib/site-packages/sklearnex/covariance/__init__.py,sha256=_c86wiKDGBH50ofN-_tn7lO4M2YVEWO5AHhJIfimUDk,859
|
|
15
|
+
scikit_learn_intelex-2024.2.0.data/data/Lib/site-packages/sklearnex/covariance/incremental_covariance.py,sha256=3s9gmLP48DPhlhnFcg2JB7RQ2sliSZdNroJkv8-1sIA,4526
|
|
16
|
+
scikit_learn_intelex-2024.2.0.data/data/Lib/site-packages/sklearnex/covariance/tests/test_incremental_covariance.py,sha256=JIa4p-1_RYvU2ZVLx27iz0OKp0Nwrl9sYCsT0Dlyi2I,5402
|
|
17
|
+
scikit_learn_intelex-2024.2.0.data/data/Lib/site-packages/sklearnex/decomposition/__init__.py,sha256=RJBYDWyvnn5DA-j5r4IqVdXLp6H4mdPySsSjnXhlv-U,805
|
|
18
|
+
scikit_learn_intelex-2024.2.0.data/data/Lib/site-packages/sklearnex/decomposition/pca.py,sha256=68ksLxTP5fMOUhRmiIq9QNm0YzQanBNzxsq-zA8DKaY,809
|
|
19
|
+
scikit_learn_intelex-2024.2.0.data/data/Lib/site-packages/sklearnex/decomposition/tests/test_pca.py,sha256=aP4gxjML38CFpknwNVIkZLQCc8t2rqYGlWVo03vsMfE,1146
|
|
20
|
+
scikit_learn_intelex-2024.2.0.data/data/Lib/site-packages/sklearnex/doc/third-party-programs.txt,sha256=qA1XbOqYkMRnp29p8VxXjfcH0kHE8NSO5s2heea83-8,21773
|
|
21
|
+
scikit_learn_intelex-2024.2.0.data/data/Lib/site-packages/sklearnex/ensemble/__init__.py,sha256=2xB2KfG7l7uJv0p3kfVhrs4KLM174SCsigZhYqwSYAA,1035
|
|
22
|
+
scikit_learn_intelex-2024.2.0.data/data/Lib/site-packages/sklearnex/ensemble/_forest.py,sha256=nw_aUdgyjxKWc6yZ-8DBaqNqDODhx5uEy13GbpM7C18,70561
|
|
23
|
+
scikit_learn_intelex-2024.2.0.data/data/Lib/site-packages/sklearnex/ensemble/tests/test_forest.py,sha256=KoETKE1sSpKgp38s9bepAujJjcG21eFX5RyYINcHCUo,4516
|
|
24
|
+
scikit_learn_intelex-2024.2.0.data/data/Lib/site-packages/sklearnex/glob/__main__.py,sha256=--FAjkhh5E6a1TFOGu6_BM3MHe78jP8oSpl0xKiRtTI,2531
|
|
25
|
+
scikit_learn_intelex-2024.2.0.data/data/Lib/site-packages/sklearnex/glob/dispatcher.py,sha256=IEEPhAOCVzC2JDFvYtijbiPAbaUY5RrCAhFLRjMMe1w,3018
|
|
26
|
+
scikit_learn_intelex-2024.2.0.data/data/Lib/site-packages/sklearnex/linear_model/__init__.py,sha256=5XZDZh8R0SmT8D8ZtSjW7-MKRO7l1jOZ8CUnt_OzHe4,1047
|
|
27
|
+
scikit_learn_intelex-2024.2.0.data/data/Lib/site-packages/sklearnex/linear_model/coordinate_descent.py,sha256=uZOHIKfFlHoMlNXZCh2MAnZE30fRZlmtcF7UsZQ3Vq4,822
|
|
28
|
+
scikit_learn_intelex-2024.2.0.data/data/Lib/site-packages/sklearnex/linear_model/linear.py,sha256=ed7pNKKnRkwa-wC0haUCOGHQoPkA4AuFhKNMzmRL6Fw,13832
|
|
29
|
+
scikit_learn_intelex-2024.2.0.data/data/Lib/site-packages/sklearnex/linear_model/logistic_path.py,sha256=Nq3JPXSzE4bjamnP3gGQtsMKks2v7s6bSiuYRnFqrRw,849
|
|
30
|
+
scikit_learn_intelex-2024.2.0.data/data/Lib/site-packages/sklearnex/linear_model/logistic_regression.py,sha256=ezW717qpPM4EC6uvmKbvxZZZwkooLuc8mfddAu5ebJM,12547
|
|
31
|
+
scikit_learn_intelex-2024.2.0.data/data/Lib/site-packages/sklearnex/linear_model/ridge.py,sha256=0oxlM5McYYvl0KxK9OIGJKM6lOADuFSPTdfx-efJNTI,810
|
|
32
|
+
scikit_learn_intelex-2024.2.0.data/data/Lib/site-packages/sklearnex/linear_model/tests/test_linear.py,sha256=li9LLWgap6YCwvNiHQ9yHduvUIsK1lpXfuVNR3dLwig,3200
|
|
33
|
+
scikit_learn_intelex-2024.2.0.data/data/Lib/site-packages/sklearnex/linear_model/tests/test_logreg.py,sha256=iH6pxRJ5Nh6RzO_ohFLlt-TpJpQmzKh2QMU81SnPwv4,3346
|
|
34
|
+
scikit_learn_intelex-2024.2.0.data/data/Lib/site-packages/sklearnex/manifold/__init__.py,sha256=3FU5fY1YvHAyNeSlUHsZfPnAbvlAUtZpum0Obmok2KE,809
|
|
35
|
+
scikit_learn_intelex-2024.2.0.data/data/Lib/site-packages/sklearnex/manifold/t_sne.py,sha256=U6F_dGB6taVuEJvTnVBWD-sri3x3m0Khu3HI4wXidhg,805
|
|
36
|
+
scikit_learn_intelex-2024.2.0.data/data/Lib/site-packages/sklearnex/manifold/tests/test_tsne.py,sha256=SNqe1yg45mL4qIsxpX5hDpBsIyrv9r__6wfrerjp3yU,1063
|
|
37
|
+
scikit_learn_intelex-2024.2.0.data/data/Lib/site-packages/sklearnex/metrics/__init__.py,sha256=EHOCTU9RERa0Rrkr4dgmyO9ippbN5kjH_FwK3BqIROc,907
|
|
38
|
+
scikit_learn_intelex-2024.2.0.data/data/Lib/site-packages/sklearnex/metrics/pairwise.py,sha256=5T_Vcbiadzi7oo0hq6vLl_BHQzXOmDsn5pHaMCPSHd8,818
|
|
39
|
+
scikit_learn_intelex-2024.2.0.data/data/Lib/site-packages/sklearnex/metrics/ranking.py,sha256=rjJxQntblbegSZRwDsOOy2ntIYBqlnV8NM46IAc0MiE,813
|
|
40
|
+
scikit_learn_intelex-2024.2.0.data/data/Lib/site-packages/sklearnex/metrics/tests/test_metrics.py,sha256=Nwfz8UV4V4fKLLY7f9P9eg8uY09xLXaFx1GC49TOiA8,1579
|
|
41
|
+
scikit_learn_intelex-2024.2.0.data/data/Lib/site-packages/sklearnex/model_selection/__init__.py,sha256=64045Y-nzLDBepO6IRjt88LhL2DM3KdvpCF2vvj_RpA,842
|
|
42
|
+
scikit_learn_intelex-2024.2.0.data/data/Lib/site-packages/sklearnex/model_selection/split.py,sha256=qjmy8sRf_QEG8LhT0ivn_tICMCYmt7ffZZV1-rLQnko,824
|
|
43
|
+
scikit_learn_intelex-2024.2.0.data/data/Lib/site-packages/sklearnex/model_selection/tests/test_model_selection.py,sha256=3kZIq8kba8SW93DBWXupoRymNStR1_mGGYSErQRnwME,1338
|
|
44
|
+
scikit_learn_intelex-2024.2.0.data/data/Lib/site-packages/sklearnex/neighbors/__init__.py,sha256=_GMJ2L-6YechRYI2fOFwHjy0kebUncE81z4FmdXUlb8,1078
|
|
45
|
+
scikit_learn_intelex-2024.2.0.data/data/Lib/site-packages/sklearnex/neighbors/_lof.py,sha256=HddPA9VdHEKCENr260qEAWoaB3KdqVYqHE-BssSuWPY,6605
|
|
46
|
+
scikit_learn_intelex-2024.2.0.data/data/Lib/site-packages/sklearnex/neighbors/common.py,sha256=iia-EUIRUIohDCIGpHbVx2PeDlwUvz4Mj1Tn169jidA,10781
|
|
47
|
+
scikit_learn_intelex-2024.2.0.data/data/Lib/site-packages/sklearnex/neighbors/knn_classification.py,sha256=C0jqL9qRQwt31JTIxjjWQWJuiy_D1I5Am1_W6ek8beY,11077
|
|
48
|
+
scikit_learn_intelex-2024.2.0.data/data/Lib/site-packages/sklearnex/neighbors/knn_regression.py,sha256=7ihpIl5SKSYDGvXtsUC0vNaOTj6_NNpXAAsu3uiQuaQ,9978
|
|
49
|
+
scikit_learn_intelex-2024.2.0.data/data/Lib/site-packages/sklearnex/neighbors/knn_unsupervised.py,sha256=Stw63vAKiaHnPQ2cfnXWD1Omf-QssT4BqhFPCMmyVCs,7620
|
|
50
|
+
scikit_learn_intelex-2024.2.0.data/data/Lib/site-packages/sklearnex/neighbors/tests/test_neighbors.py,sha256=s4jip1Ntrhp5Zu9-pHVbeIoNdNFsq03ABY-N-iF_UL8,3437
|
|
51
|
+
scikit_learn_intelex-2024.2.0.data/data/Lib/site-packages/sklearnex/preview/__init__.py,sha256=1QcbV6xCSP7QCXRxYLVPc_b4lxE0cQiyTrMm4xOnosM,797
|
|
52
|
+
scikit_learn_intelex-2024.2.0.data/data/Lib/site-packages/sklearnex/preview/cluster/__init__.py,sha256=FONzOuTGAb5NwdfFhLco99P_VccRk9NBkDHU3EKuAIs,794
|
|
53
|
+
scikit_learn_intelex-2024.2.0.data/data/Lib/site-packages/sklearnex/preview/cluster/_common.py,sha256=bgpzijxgyrAtdNCCHyCNsZ-N70KQYNwMuoCTNdUna6o,2718
|
|
54
|
+
scikit_learn_intelex-2024.2.0.data/data/Lib/site-packages/sklearnex/preview/cluster/k_means.py,sha256=jSuU8E6r4fdbbBnxBpWp4ybBa62kCnbBx7zDXyUr0Cs,13007
|
|
55
|
+
scikit_learn_intelex-2024.2.0.data/data/Lib/site-packages/sklearnex/preview/covariance/__init__.py,sha256=DPYTk8lwcVphtwU8J3CyUYH8Uz6Zr0Uz4S6nn-RY5iM,825
|
|
56
|
+
scikit_learn_intelex-2024.2.0.data/data/Lib/site-packages/sklearnex/preview/covariance/covariance.py,sha256=LrNrGP62FEhTSBVaO-EOYAaq-Rszc1VS2B2IqMgh4oo,4938
|
|
57
|
+
scikit_learn_intelex-2024.2.0.data/data/Lib/site-packages/sklearnex/preview/covariance/tests/test_covariance.py,sha256=GYI4bMIhGnjmOXpt8J7R0JQmpm9eOvDjIphugRa4kD8,2140
|
|
58
|
+
scikit_learn_intelex-2024.2.0.data/data/Lib/site-packages/sklearnex/preview/decomposition/__init__.py,sha256=uRenwBGf7hHQqwAVYbBw3clUQB_HWUqJGOAKTuCnrcM,805
|
|
59
|
+
scikit_learn_intelex-2024.2.0.data/data/Lib/site-packages/sklearnex/preview/decomposition/pca.py,sha256=S8g5GhLdnUAb1FifNx6gnrwA8AWv8ddZtLY1Er83BkY,14342
|
|
60
|
+
scikit_learn_intelex-2024.2.0.data/data/Lib/site-packages/sklearnex/preview/decomposition/tests/test_preview_pca.py,sha256=xcllHM-jDIq33rAWTeh_gjhS2qfCNbUIAI5KeLPA8aY,1790
|
|
61
|
+
scikit_learn_intelex-2024.2.0.data/data/Lib/site-packages/sklearnex/spmd/__init__.py,sha256=ChQy2kEWlo4KGvs0RnbPoPEVhdgl8URV099B1rZtF5Y,889
|
|
62
|
+
scikit_learn_intelex-2024.2.0.data/data/Lib/site-packages/sklearnex/spmd/basic_statistics/__init__.py,sha256=NA5RGlwcp27UEeCgz0ngzYYd3MAIRpxlTy86uhM2-RE,821
|
|
63
|
+
scikit_learn_intelex-2024.2.0.data/data/Lib/site-packages/sklearnex/spmd/basic_statistics/basic_statistics.py,sha256=_dQ9mhVYxeuChATEpAmHpXDpgW3YvtK1qrG-kLr2MtI,886
|
|
64
|
+
scikit_learn_intelex-2024.2.0.data/data/Lib/site-packages/sklearnex/spmd/cluster/__init__.py,sha256=qBBfrCHh6_82EROLbu54XKk7SmmRwS1XJyCj0zwkoUw,1029
|
|
65
|
+
scikit_learn_intelex-2024.2.0.data/data/Lib/site-packages/sklearnex/spmd/cluster/dbscan.py,sha256=23YNzPhx4MZijU0md-E3ZkHpTkhUh5cmtS3loHe-KhI,1824
|
|
66
|
+
scikit_learn_intelex-2024.2.0.data/data/Lib/site-packages/sklearnex/spmd/cluster/kmeans.py,sha256=Rnb9tr9LXVto5vCAumk7ZJfa9BYYDhdD1qUWL-QK5bY,868
|
|
67
|
+
scikit_learn_intelex-2024.2.0.data/data/Lib/site-packages/sklearnex/spmd/covariance/__init__.py,sha256=5xeL1REMIxCv5M1ya99GGKaVjctUngboZ3uXgxcZ04o,823
|
|
68
|
+
scikit_learn_intelex-2024.2.0.data/data/Lib/site-packages/sklearnex/spmd/covariance/covariance.py,sha256=_oIlr1W1vqDHqIPnsCb04HcBCen5oBHQr5-_n9OSvIA,884
|
|
69
|
+
scikit_learn_intelex-2024.2.0.data/data/Lib/site-packages/sklearnex/spmd/decomposition/__init__.py,sha256=dBh0ZMIiaqdf3DKbt8FWNB2K9Iacs395m8OxaDFQg_M,784
|
|
70
|
+
scikit_learn_intelex-2024.2.0.data/data/Lib/site-packages/sklearnex/spmd/decomposition/pca.py,sha256=CUrsVD2jae-A9H8RB_emza_fe82CwnFa5PEy0fW_EZ8,871
|
|
71
|
+
scikit_learn_intelex-2024.2.0.data/data/Lib/site-packages/sklearnex/spmd/ensemble/__init__.py,sha256=B3yi7hWoVogMIiw0QRT_x5atsAFS-OO72YPLGeUQJ8M,873
|
|
72
|
+
scikit_learn_intelex-2024.2.0.data/data/Lib/site-packages/sklearnex/spmd/ensemble/forest.py,sha256=ao6lyzcxoRW-RG9xIYwtDFyM7JIjlF8wmQKpOv_oSRQ,3113
|
|
73
|
+
scikit_learn_intelex-2024.2.0.data/data/Lib/site-packages/sklearnex/spmd/linear_model/__init__.py,sha256=WwqCr2DOyUnkSIHlP0yq0UI2yFDgSl5MHV7wu3QGJtA,893
|
|
74
|
+
scikit_learn_intelex-2024.2.0.data/data/Lib/site-packages/sklearnex/spmd/linear_model/linear_model.py,sha256=7QPCIQTWKBiZBTDZZbpZXi-REgxQCfRMt6rHPJAnc5E,883
|
|
75
|
+
scikit_learn_intelex-2024.2.0.data/data/Lib/site-packages/sklearnex/spmd/linear_model/logistic_regression.py,sha256=q_HkfWcg0RgFbk2t9FeV0ZY28HHAOtkGEnUj4tLuwt4,885
|
|
76
|
+
scikit_learn_intelex-2024.2.0.data/data/Lib/site-packages/sklearnex/spmd/neighbors/__init__.py,sha256=S16sH8N_18LN_8AgC_wGK5EDSNyuN-F-gI6GVlaiWVE,906
|
|
77
|
+
scikit_learn_intelex-2024.2.0.data/data/Lib/site-packages/sklearnex/spmd/neighbors/neighbors.py,sha256=SiKAS_RVt34MUcGytBS5pHnI_5vFNxJn8jqt1MOhDh8,940
|
|
78
|
+
scikit_learn_intelex-2024.2.0.data/data/Lib/site-packages/sklearnex/svm/__init__.py,sha256=f3e4ZFwZfx6MsXsn94VK1xVm6mWKT5XCiHczo6zNyAQ,1057
|
|
79
|
+
scikit_learn_intelex-2024.2.0.data/data/Lib/site-packages/sklearnex/svm/_common.py,sha256=Dt1Iyz1g04zOW6hn9cHa9ruzM_MHAIq0ZEEIxh5s7nI,7167
|
|
80
|
+
scikit_learn_intelex-2024.2.0.data/data/Lib/site-packages/sklearnex/svm/nusvc.py,sha256=Bvs_FmC1CYH23tXyrQE3Ti1h3BqK0YeX-_PBTZMRM0k,9008
|
|
81
|
+
scikit_learn_intelex-2024.2.0.data/data/Lib/site-packages/sklearnex/svm/nusvr.py,sha256=XHlDAGwnx1NVkkt8c9EUST8zVRLQY7Mwu335TPCcuRk,5237
|
|
82
|
+
scikit_learn_intelex-2024.2.0.data/data/Lib/site-packages/sklearnex/svm/svc.py,sha256=4f-vJlPGeAcquz7nkSCeu0LJTTXCbdU2M54HkT49TeQ,10288
|
|
83
|
+
scikit_learn_intelex-2024.2.0.data/data/Lib/site-packages/sklearnex/svm/svr.py,sha256=fmYi0dghOmmyFFVI59COX9-tyouQnSDfHIbs8GY8AHs,5241
|
|
84
|
+
scikit_learn_intelex-2024.2.0.data/data/Lib/site-packages/sklearnex/svm/tests/test_svm.py,sha256=Ru-aGNGCsRJts7SEEYbnKcVqUx-DqPyUtw-hEoMVpW8,4190
|
|
85
|
+
scikit_learn_intelex-2024.2.0.data/data/Lib/site-packages/sklearnex/tests/_models_info.py,sha256=xhjvnU3TvQg8J5Cih2hphWAOSsT8DnKmCyYbtwa0Qvs,4785
|
|
86
|
+
scikit_learn_intelex-2024.2.0.data/data/Lib/site-packages/sklearnex/tests/test_config.py,sha256=SnSJjxAAysISDyC3bYKSJiRHStkB9X-yjLeF11LpRog,1372
|
|
87
|
+
scikit_learn_intelex-2024.2.0.data/data/Lib/site-packages/sklearnex/tests/test_memory_usage.py,sha256=lwm63gSyRR82n3LGBdsophU_NvZK5RHkxAoTDZ2AcWI,7309
|
|
88
|
+
scikit_learn_intelex-2024.2.0.data/data/Lib/site-packages/sklearnex/tests/test_monkeypatch.py,sha256=wmtEeDNGoiPBlAh4Vmts86eFQLk8Wbzjbj6Busf6V3o,8663
|
|
89
|
+
scikit_learn_intelex-2024.2.0.data/data/Lib/site-packages/sklearnex/tests/test_n_jobs_support.py,sha256=ynfCSdCMnR3yEq1YEf_cilVD7zSe0sS-ZQ9jC0hHo8M,3903
|
|
90
|
+
scikit_learn_intelex-2024.2.0.data/data/Lib/site-packages/sklearnex/tests/test_parallel.py,sha256=bMu22noUvGiDX4oyxKIHPiOEoBP9lRQQUq6wq8ZD730,1776
|
|
91
|
+
scikit_learn_intelex-2024.2.0.data/data/Lib/site-packages/sklearnex/tests/test_patching.py,sha256=IySMpMdWVgoAZgs1cRKvdJeb8RXElFwjjNdHcE4jJz0,4247
|
|
92
|
+
scikit_learn_intelex-2024.2.0.data/data/Lib/site-packages/sklearnex/tests/test_run_to_run_stability_tests.py,sha256=4HDOeJruA1EDILbyQJtsHFmEXC0D1upSHuOT-KyTlEc,14008
|
|
93
|
+
scikit_learn_intelex-2024.2.0.data/data/Lib/site-packages/sklearnex/tests/utils/_launch_algorithms.py,sha256=pJT5tAW9rWvk7GT37R-B0-e8SLz8e9FSZw8yu4LWNJ4,3724
|
|
94
|
+
scikit_learn_intelex-2024.2.0.data/data/Lib/site-packages/sklearnex/utils/__init__.py,sha256=I8mbJQ3Zsm_F3sCLAhJQb7tUrG30kVsQ-wZoqA8vDdA,842
|
|
95
|
+
scikit_learn_intelex-2024.2.0.data/data/Lib/site-packages/sklearnex/utils/parallel.py,sha256=VBcS-KUdyq7XpJUN6ygmNjyWtYLroghbvCxQ8nVU3YI,2085
|
|
96
|
+
scikit_learn_intelex-2024.2.0.data/data/Lib/site-packages/sklearnex/utils/validation.py,sha256=fjfhQiKnBQnD7LCBlacMyvsrhGnlMLRXk5Q69uoZIP4,827
|
|
97
|
+
scikit_learn_intelex-2024.2.0.dist-info/LICENSE.txt,sha256=rVeK6nE7qRmAwbwjnG9ENguRsDgzEkFn5MZL2IU6QgY,10999
|
|
98
|
+
scikit_learn_intelex-2024.2.0.dist-info/METADATA,sha256=yUEG8voZbX3yS6WqASjdCJ23B3xLFxgOM9gA0501bHw,12448
|
|
99
|
+
scikit_learn_intelex-2024.2.0.dist-info/WHEEL,sha256=XoKki0KLAVNudIEzWXw23yrSNzEQs-OWXWdxw5aEl88,100
|
|
100
|
+
scikit_learn_intelex-2024.2.0.dist-info/top_level.txt,sha256=AbpHGcgLb-kRsJGnwFEktk7uzpZOCcBY74-YBdrKVGs,1
|
|
101
|
+
scikit_learn_intelex-2024.2.0.dist-info/RECORD,,
|
|
@@ -1,29 +0,0 @@
|
|
|
1
|
-
#!/usr/bin/env python
|
|
2
|
-
# ===============================================================================
|
|
3
|
-
# Copyright 2021 Intel Corporation
|
|
4
|
-
#
|
|
5
|
-
# Licensed under the Apache License, Version 2.0 (the "License");
|
|
6
|
-
# you may not use this file except in compliance with the License.
|
|
7
|
-
# You may obtain a copy of the License at
|
|
8
|
-
#
|
|
9
|
-
# http://www.apache.org/licenses/LICENSE-2.0
|
|
10
|
-
#
|
|
11
|
-
# Unless required by applicable law or agreed to in writing, software
|
|
12
|
-
# distributed under the License is distributed on an "AS IS" BASIS,
|
|
13
|
-
# WITHOUT WARRANTIES OR CONDITIONS OF ANY KIND, either express or implied.
|
|
14
|
-
# See the License for the specific language governing permissions and
|
|
15
|
-
# limitations under the License.
|
|
16
|
-
# ===============================================================================
|
|
17
|
-
|
|
18
|
-
import numpy as np
|
|
19
|
-
from numpy.testing import assert_allclose
|
|
20
|
-
from sklearn.datasets import load_iris
|
|
21
|
-
|
|
22
|
-
|
|
23
|
-
def test_sklearnex_import():
|
|
24
|
-
from sklearnex.linear_model import LogisticRegression
|
|
25
|
-
|
|
26
|
-
X, y = load_iris(return_X_y=True)
|
|
27
|
-
logreg = LogisticRegression(random_state=0, max_iter=200).fit(X, y)
|
|
28
|
-
assert "daal4py" in logreg.__module__
|
|
29
|
-
assert_allclose(logreg.score(X, y), 0.9733, atol=1e-3)
|
|
@@ -1,437 +0,0 @@
|
|
|
1
|
-
#!/usr/bin/env python
|
|
2
|
-
# ===============================================================================
|
|
3
|
-
# Copyright 2023 Intel Corporation
|
|
4
|
-
#
|
|
5
|
-
# Licensed under the Apache License, Version 2.0 (the "License");
|
|
6
|
-
# you may not use this file except in compliance with the License.
|
|
7
|
-
# You may obtain a copy of the License at
|
|
8
|
-
#
|
|
9
|
-
# http://www.apache.org/licenses/LICENSE-2.0
|
|
10
|
-
#
|
|
11
|
-
# Unless required by applicable law or agreed to in writing, software
|
|
12
|
-
# distributed under the License is distributed on an "AS IS" BASIS,
|
|
13
|
-
# WITHOUT WARRANTIES OR CONDITIONS OF ANY KIND, either express or implied.
|
|
14
|
-
# See the License for the specific language governing permissions and
|
|
15
|
-
# limitations under the License.
|
|
16
|
-
# ===============================================================================
|
|
17
|
-
|
|
18
|
-
import warnings
|
|
19
|
-
|
|
20
|
-
import numpy as np
|
|
21
|
-
from sklearn.neighbors._lof import LocalOutlierFactor as sklearn_LocalOutlierFactor
|
|
22
|
-
|
|
23
|
-
from .knn_unsupervised import NearestNeighbors
|
|
24
|
-
|
|
25
|
-
try:
|
|
26
|
-
from sklearn.utils.metaestimators import available_if
|
|
27
|
-
except ImportError:
|
|
28
|
-
pass
|
|
29
|
-
|
|
30
|
-
from sklearn.utils import check_array
|
|
31
|
-
from sklearn.utils.validation import check_is_fitted
|
|
32
|
-
|
|
33
|
-
from daal4py.sklearn._utils import sklearn_check_version
|
|
34
|
-
|
|
35
|
-
from .._config import config_context
|
|
36
|
-
from .._device_offload import dispatch, wrap_output_data
|
|
37
|
-
from .._utils import PatchingConditionsChain
|
|
38
|
-
|
|
39
|
-
if sklearn_check_version("1.0"):
|
|
40
|
-
|
|
41
|
-
class LocalOutlierFactor(sklearn_LocalOutlierFactor):
|
|
42
|
-
if sklearn_check_version("1.2"):
|
|
43
|
-
_parameter_constraints: dict = {
|
|
44
|
-
**sklearn_LocalOutlierFactor._parameter_constraints
|
|
45
|
-
}
|
|
46
|
-
|
|
47
|
-
def __init__(
|
|
48
|
-
self,
|
|
49
|
-
n_neighbors=20,
|
|
50
|
-
*,
|
|
51
|
-
algorithm="auto",
|
|
52
|
-
leaf_size=30,
|
|
53
|
-
metric="minkowski",
|
|
54
|
-
p=2,
|
|
55
|
-
metric_params=None,
|
|
56
|
-
contamination="auto",
|
|
57
|
-
novelty=False,
|
|
58
|
-
n_jobs=None,
|
|
59
|
-
):
|
|
60
|
-
super().__init__(
|
|
61
|
-
n_neighbors=n_neighbors,
|
|
62
|
-
algorithm=algorithm,
|
|
63
|
-
leaf_size=leaf_size,
|
|
64
|
-
metric=metric,
|
|
65
|
-
p=p,
|
|
66
|
-
metric_params=metric_params,
|
|
67
|
-
n_jobs=n_jobs,
|
|
68
|
-
contamination=contamination,
|
|
69
|
-
novelty=novelty,
|
|
70
|
-
)
|
|
71
|
-
|
|
72
|
-
def _fit(self, X, y, queue=None):
|
|
73
|
-
with config_context(target_offload=queue):
|
|
74
|
-
if sklearn_check_version("1.2"):
|
|
75
|
-
self._validate_params()
|
|
76
|
-
self._knn = NearestNeighbors(
|
|
77
|
-
n_neighbors=self.n_neighbors,
|
|
78
|
-
algorithm=self.algorithm,
|
|
79
|
-
leaf_size=self.leaf_size,
|
|
80
|
-
metric=self.metric,
|
|
81
|
-
p=self.p,
|
|
82
|
-
metric_params=self.metric_params,
|
|
83
|
-
n_jobs=self.n_jobs,
|
|
84
|
-
)
|
|
85
|
-
self._knn.fit(X)
|
|
86
|
-
|
|
87
|
-
if self.contamination != "auto":
|
|
88
|
-
if not (0.0 < self.contamination <= 0.5):
|
|
89
|
-
raise ValueError(
|
|
90
|
-
"contamination must be in (0, 0.5], "
|
|
91
|
-
"got: %f" % self.contamination
|
|
92
|
-
)
|
|
93
|
-
|
|
94
|
-
n_samples = self._knn.n_samples_fit_
|
|
95
|
-
|
|
96
|
-
if self.n_neighbors > n_samples:
|
|
97
|
-
warnings.warn(
|
|
98
|
-
"n_neighbors (%s) is greater than the "
|
|
99
|
-
"total number of samples (%s). n_neighbors "
|
|
100
|
-
"will be set to (n_samples - 1) for estimation."
|
|
101
|
-
% (self.n_neighbors, n_samples)
|
|
102
|
-
)
|
|
103
|
-
self.n_neighbors_ = max(1, min(self.n_neighbors, n_samples - 1))
|
|
104
|
-
|
|
105
|
-
self._distances_fit_X_, _neighbors_indices_fit_X_ = self._knn.kneighbors(
|
|
106
|
-
n_neighbors=self.n_neighbors_
|
|
107
|
-
)
|
|
108
|
-
|
|
109
|
-
self._lrd = self._local_reachability_density(
|
|
110
|
-
self._distances_fit_X_, _neighbors_indices_fit_X_
|
|
111
|
-
)
|
|
112
|
-
|
|
113
|
-
# Compute lof score over training samples to define offset_:
|
|
114
|
-
lrd_ratios_array = (
|
|
115
|
-
self._lrd[_neighbors_indices_fit_X_] / self._lrd[:, np.newaxis]
|
|
116
|
-
)
|
|
117
|
-
|
|
118
|
-
self.negative_outlier_factor_ = -np.mean(lrd_ratios_array, axis=1)
|
|
119
|
-
|
|
120
|
-
if self.contamination == "auto":
|
|
121
|
-
# inliers score around -1 (the higher, the less abnormal).
|
|
122
|
-
self.offset_ = -1.5
|
|
123
|
-
else:
|
|
124
|
-
self.offset_ = np.percentile(
|
|
125
|
-
self.negative_outlier_factor_, 100.0 * self.contamination
|
|
126
|
-
)
|
|
127
|
-
|
|
128
|
-
for knn_prop_name in self._knn.__dict__.keys():
|
|
129
|
-
if knn_prop_name not in self.__dict__.keys():
|
|
130
|
-
setattr(self, knn_prop_name, self._knn.__dict__[knn_prop_name])
|
|
131
|
-
|
|
132
|
-
return self
|
|
133
|
-
|
|
134
|
-
def fit(self, X, y=None):
|
|
135
|
-
return dispatch(
|
|
136
|
-
self,
|
|
137
|
-
"neighbors.LocalOutlierFactor.fit",
|
|
138
|
-
{
|
|
139
|
-
"onedal": self.__class__._fit,
|
|
140
|
-
"sklearn": None,
|
|
141
|
-
},
|
|
142
|
-
X,
|
|
143
|
-
y,
|
|
144
|
-
)
|
|
145
|
-
|
|
146
|
-
def _onedal_predict(self, X, queue=None):
|
|
147
|
-
with config_context(target_offload=queue):
|
|
148
|
-
check_is_fitted(self)
|
|
149
|
-
|
|
150
|
-
if X is not None:
|
|
151
|
-
X = check_array(X, accept_sparse="csr")
|
|
152
|
-
is_inlier = np.ones(X.shape[0], dtype=int)
|
|
153
|
-
is_inlier[self.decision_function(X) < 0] = -1
|
|
154
|
-
else:
|
|
155
|
-
is_inlier = np.ones(self._knn.n_samples_fit_, dtype=int)
|
|
156
|
-
is_inlier[self.negative_outlier_factor_ < self.offset_] = -1
|
|
157
|
-
|
|
158
|
-
return is_inlier
|
|
159
|
-
|
|
160
|
-
@wrap_output_data
|
|
161
|
-
def _predict(self, X=None):
|
|
162
|
-
return dispatch(
|
|
163
|
-
self,
|
|
164
|
-
"neighbors.LocalOutlierFactor.predict",
|
|
165
|
-
{
|
|
166
|
-
"onedal": self.__class__._onedal_predict,
|
|
167
|
-
"sklearn": None,
|
|
168
|
-
},
|
|
169
|
-
X,
|
|
170
|
-
)
|
|
171
|
-
|
|
172
|
-
def _score_samples(self, X, queue=None):
|
|
173
|
-
with config_context(target_offload=queue):
|
|
174
|
-
check_is_fitted(self)
|
|
175
|
-
X = check_array(X, accept_sparse="csr")
|
|
176
|
-
|
|
177
|
-
distances_X, neighbors_indices_X = self._knn.kneighbors(
|
|
178
|
-
X, n_neighbors=self.n_neighbors_
|
|
179
|
-
)
|
|
180
|
-
X_lrd = self._local_reachability_density(distances_X, neighbors_indices_X)
|
|
181
|
-
|
|
182
|
-
lrd_ratios_array = self._lrd[neighbors_indices_X] / X_lrd[:, np.newaxis]
|
|
183
|
-
|
|
184
|
-
# as bigger is better:
|
|
185
|
-
return -np.mean(lrd_ratios_array, axis=1)
|
|
186
|
-
|
|
187
|
-
def _check_novelty_score_samples(self):
|
|
188
|
-
if not self.novelty:
|
|
189
|
-
msg = (
|
|
190
|
-
"score_samples is not available when novelty=False. The "
|
|
191
|
-
"scores of the training samples are always available "
|
|
192
|
-
"through the negative_outlier_factor_ attribute. Use "
|
|
193
|
-
"novelty=True if you want to use LOF for novelty detection "
|
|
194
|
-
"and compute score_samples for new unseen data."
|
|
195
|
-
)
|
|
196
|
-
raise AttributeError(msg)
|
|
197
|
-
return True
|
|
198
|
-
|
|
199
|
-
@available_if(_check_novelty_score_samples)
|
|
200
|
-
@wrap_output_data
|
|
201
|
-
def score_samples(self, X):
|
|
202
|
-
return dispatch(
|
|
203
|
-
self,
|
|
204
|
-
"neighbors.LocalOutlierFactor.score_samples",
|
|
205
|
-
{
|
|
206
|
-
"onedal": self.__class__._score_samples,
|
|
207
|
-
"sklearn": None,
|
|
208
|
-
},
|
|
209
|
-
X,
|
|
210
|
-
)
|
|
211
|
-
|
|
212
|
-
def _check_novelty_fit_predict(self):
|
|
213
|
-
if self.novelty:
|
|
214
|
-
msg = (
|
|
215
|
-
"fit_predict is not available when novelty=True. Use "
|
|
216
|
-
"novelty=False if you want to predict on the training set."
|
|
217
|
-
)
|
|
218
|
-
raise AttributeError(msg)
|
|
219
|
-
return True
|
|
220
|
-
|
|
221
|
-
def _fit_predict(self, X, y, queue=None):
|
|
222
|
-
with config_context(target_offload=queue):
|
|
223
|
-
return self.fit(X)._predict()
|
|
224
|
-
|
|
225
|
-
@available_if(_check_novelty_fit_predict)
|
|
226
|
-
@wrap_output_data
|
|
227
|
-
def fit_predict(self, X, y=None):
|
|
228
|
-
return dispatch(
|
|
229
|
-
self,
|
|
230
|
-
"neighbors.LocalOutlierFactor.fit_predict",
|
|
231
|
-
{
|
|
232
|
-
"onedal": self.__class__._fit_predict,
|
|
233
|
-
"sklearn": None,
|
|
234
|
-
},
|
|
235
|
-
X,
|
|
236
|
-
y,
|
|
237
|
-
)
|
|
238
|
-
|
|
239
|
-
def _onedal_gpu_supported(self, method_name, *data):
|
|
240
|
-
class_name = self.__class__.__name__
|
|
241
|
-
patching_status = PatchingConditionsChain(
|
|
242
|
-
f"sklearn.neighbors.{class_name}.{method_name}"
|
|
243
|
-
)
|
|
244
|
-
return patching_status
|
|
245
|
-
|
|
246
|
-
def _onedal_cpu_supported(self, method_name, *data):
|
|
247
|
-
class_name = self.__class__.__name__
|
|
248
|
-
patching_status = PatchingConditionsChain(
|
|
249
|
-
f"sklearn.neighbors.{class_name}.{method_name}"
|
|
250
|
-
)
|
|
251
|
-
return patching_status
|
|
252
|
-
|
|
253
|
-
else:
|
|
254
|
-
|
|
255
|
-
class LocalOutlierFactor(sklearn_LocalOutlierFactor):
|
|
256
|
-
def __init__(
|
|
257
|
-
self,
|
|
258
|
-
n_neighbors=20,
|
|
259
|
-
*,
|
|
260
|
-
algorithm="auto",
|
|
261
|
-
leaf_size=30,
|
|
262
|
-
metric="minkowski",
|
|
263
|
-
p=2,
|
|
264
|
-
metric_params=None,
|
|
265
|
-
contamination="auto",
|
|
266
|
-
novelty=False,
|
|
267
|
-
n_jobs=None,
|
|
268
|
-
):
|
|
269
|
-
super().__init__(
|
|
270
|
-
n_neighbors=n_neighbors,
|
|
271
|
-
algorithm=algorithm,
|
|
272
|
-
leaf_size=leaf_size,
|
|
273
|
-
metric=metric,
|
|
274
|
-
p=p,
|
|
275
|
-
metric_params=metric_params,
|
|
276
|
-
n_jobs=n_jobs,
|
|
277
|
-
contamination=contamination,
|
|
278
|
-
novelty=novelty,
|
|
279
|
-
)
|
|
280
|
-
|
|
281
|
-
def _fit(self, X, y=None, queue=None):
|
|
282
|
-
with config_context(target_offload=queue):
|
|
283
|
-
self._knn = NearestNeighbors(
|
|
284
|
-
n_neighbors=self.n_neighbors,
|
|
285
|
-
algorithm=self.algorithm,
|
|
286
|
-
leaf_size=self.leaf_size,
|
|
287
|
-
metric=self.metric,
|
|
288
|
-
p=self.p,
|
|
289
|
-
metric_params=self.metric_params,
|
|
290
|
-
n_jobs=self.n_jobs,
|
|
291
|
-
)
|
|
292
|
-
self._knn.fit(X)
|
|
293
|
-
|
|
294
|
-
if self.contamination != "auto":
|
|
295
|
-
if not (0.0 < self.contamination <= 0.5):
|
|
296
|
-
raise ValueError(
|
|
297
|
-
"contamination must be in (0, 0.5], "
|
|
298
|
-
"got: %f" % self.contamination
|
|
299
|
-
)
|
|
300
|
-
|
|
301
|
-
n_samples = self._knn.n_samples_fit_
|
|
302
|
-
|
|
303
|
-
if self.n_neighbors > n_samples:
|
|
304
|
-
warnings.warn(
|
|
305
|
-
"n_neighbors (%s) is greater than the "
|
|
306
|
-
"total number of samples (%s). n_neighbors "
|
|
307
|
-
"will be set to (n_samples - 1) for estimation."
|
|
308
|
-
% (self.n_neighbors, n_samples)
|
|
309
|
-
)
|
|
310
|
-
self.n_neighbors_ = max(1, min(self.n_neighbors, n_samples - 1))
|
|
311
|
-
|
|
312
|
-
self._distances_fit_X_, _neighbors_indices_fit_X_ = self._knn.kneighbors(
|
|
313
|
-
n_neighbors=self.n_neighbors_
|
|
314
|
-
)
|
|
315
|
-
|
|
316
|
-
self._lrd = self._local_reachability_density(
|
|
317
|
-
self._distances_fit_X_, _neighbors_indices_fit_X_
|
|
318
|
-
)
|
|
319
|
-
|
|
320
|
-
# Compute lof score over training samples to define offset_:
|
|
321
|
-
lrd_ratios_array = (
|
|
322
|
-
self._lrd[_neighbors_indices_fit_X_] / self._lrd[:, np.newaxis]
|
|
323
|
-
)
|
|
324
|
-
|
|
325
|
-
self.negative_outlier_factor_ = -np.mean(lrd_ratios_array, axis=1)
|
|
326
|
-
|
|
327
|
-
if self.contamination == "auto":
|
|
328
|
-
# inliers score around -1 (the higher, the less abnormal).
|
|
329
|
-
self.offset_ = -1.5
|
|
330
|
-
else:
|
|
331
|
-
self.offset_ = np.percentile(
|
|
332
|
-
self.negative_outlier_factor_, 100.0 * self.contamination
|
|
333
|
-
)
|
|
334
|
-
|
|
335
|
-
for knn_prop_name in self._knn.__dict__.keys():
|
|
336
|
-
if knn_prop_name not in self.__dict__.keys():
|
|
337
|
-
setattr(self, knn_prop_name, self._knn.__dict__[knn_prop_name])
|
|
338
|
-
|
|
339
|
-
return self
|
|
340
|
-
|
|
341
|
-
def fit(self, X, y=None):
|
|
342
|
-
return dispatch(
|
|
343
|
-
self,
|
|
344
|
-
"neighbors.LocalOutlierFactor.fit",
|
|
345
|
-
{
|
|
346
|
-
"onedal": self.__class__._fit,
|
|
347
|
-
"sklearn": None,
|
|
348
|
-
},
|
|
349
|
-
X,
|
|
350
|
-
y,
|
|
351
|
-
)
|
|
352
|
-
|
|
353
|
-
def _onedal_predict(self, X, queue=None):
|
|
354
|
-
with config_context(target_offload=queue):
|
|
355
|
-
check_is_fitted(self)
|
|
356
|
-
|
|
357
|
-
if X is not None:
|
|
358
|
-
X = check_array(X, accept_sparse="csr")
|
|
359
|
-
is_inlier = np.ones(X.shape[0], dtype=int)
|
|
360
|
-
is_inlier[self.decision_function(X) < 0] = -1
|
|
361
|
-
else:
|
|
362
|
-
is_inlier = np.ones(self._knn.n_samples_fit_, dtype=int)
|
|
363
|
-
is_inlier[self.negative_outlier_factor_ < self.offset_] = -1
|
|
364
|
-
|
|
365
|
-
return is_inlier
|
|
366
|
-
|
|
367
|
-
@wrap_output_data
|
|
368
|
-
def _predict(self, X=None):
|
|
369
|
-
return dispatch(
|
|
370
|
-
self,
|
|
371
|
-
"neighbors.LocalOutlierFactor.predict",
|
|
372
|
-
{
|
|
373
|
-
"onedal": self.__class__._onedal_predict,
|
|
374
|
-
"sklearn": None,
|
|
375
|
-
},
|
|
376
|
-
X,
|
|
377
|
-
)
|
|
378
|
-
|
|
379
|
-
def _onedal_score_samples(self, X, queue=None):
|
|
380
|
-
with config_context(target_offload=queue):
|
|
381
|
-
check_is_fitted(self)
|
|
382
|
-
X = check_array(X, accept_sparse="csr")
|
|
383
|
-
|
|
384
|
-
distances_X, neighbors_indices_X = self._knn.kneighbors(
|
|
385
|
-
X, n_neighbors=self.n_neighbors_
|
|
386
|
-
)
|
|
387
|
-
X_lrd = self._local_reachability_density(distances_X, neighbors_indices_X)
|
|
388
|
-
|
|
389
|
-
lrd_ratios_array = self._lrd[neighbors_indices_X] / X_lrd[:, np.newaxis]
|
|
390
|
-
|
|
391
|
-
# as bigger is better:
|
|
392
|
-
return -np.mean(lrd_ratios_array, axis=1)
|
|
393
|
-
|
|
394
|
-
@wrap_output_data
|
|
395
|
-
def _score_samples(self, X):
|
|
396
|
-
if not self.novelty:
|
|
397
|
-
msg = (
|
|
398
|
-
"score_samples is not available when novelty=False. The "
|
|
399
|
-
"scores of the training samples are always available "
|
|
400
|
-
"through the negative_outlier_factor_ attribute. Use "
|
|
401
|
-
"novelty=True if you want to use LOF for novelty detection "
|
|
402
|
-
"and compute score_samples for new unseen data."
|
|
403
|
-
)
|
|
404
|
-
raise AttributeError(msg)
|
|
405
|
-
|
|
406
|
-
return dispatch(
|
|
407
|
-
self,
|
|
408
|
-
"neighbors.LocalOutlierFactor.score_samples",
|
|
409
|
-
{
|
|
410
|
-
"onedal": self.__class__._onedal_score_samples,
|
|
411
|
-
"sklearn": None,
|
|
412
|
-
},
|
|
413
|
-
X,
|
|
414
|
-
)
|
|
415
|
-
|
|
416
|
-
def _onedal_fit_predict(self, X, y, queue=None):
|
|
417
|
-
with config_context(target_offload=queue):
|
|
418
|
-
return self.fit(X)._predict()
|
|
419
|
-
|
|
420
|
-
@wrap_output_data
|
|
421
|
-
def _fit_predict(self, X, y=None):
|
|
422
|
-
return dispatch(
|
|
423
|
-
self,
|
|
424
|
-
"neighbors.LocalOutlierFactor._onedal_fit_predict",
|
|
425
|
-
{
|
|
426
|
-
"onedal": self.__class__._onedal_fit_predict,
|
|
427
|
-
"sklearn": None,
|
|
428
|
-
},
|
|
429
|
-
X,
|
|
430
|
-
y,
|
|
431
|
-
)
|
|
432
|
-
|
|
433
|
-
def _onedal_gpu_supported(self, method_name, *data):
|
|
434
|
-
return True
|
|
435
|
-
|
|
436
|
-
def _onedal_cpu_supported(self, method_name, *data):
|
|
437
|
-
return True
|