scikit-learn-intelex 2024.0.0__py38-none-win_amd64.whl → 2024.0.1__py38-none-win_amd64.whl
This diff represents the content of publicly available package versions that have been released to one of the supported registries. The information contained in this diff is provided for informational purposes only and reflects changes between package versions as they appear in their respective public registries.
Potentially problematic release.
This version of scikit-learn-intelex might be problematic. Click here for more details.
- {scikit_learn_intelex-2024.0.0.data → scikit_learn_intelex-2024.0.1.data}/data/Lib/site-packages/sklearnex/_utils.py +2 -0
- {scikit_learn_intelex-2024.0.0.data → scikit_learn_intelex-2024.0.1.data}/data/Lib/site-packages/sklearnex/dispatcher.py +70 -77
- {scikit_learn_intelex-2024.0.0.data/data/Lib/site-packages/sklearnex/preview → scikit_learn_intelex-2024.0.1.data/data/Lib/site-packages/sklearnex}/ensemble/__init__.py +6 -2
- scikit_learn_intelex-2024.0.0.data/data/Lib/site-packages/sklearnex/preview/ensemble/extra_trees.py → scikit_learn_intelex-2024.0.1.data/data/Lib/site-packages/sklearnex/ensemble/_forest.py +960 -494
- scikit_learn_intelex-2024.0.0.data/data/Lib/site-packages/sklearnex/preview/ensemble/tests/test_preview_ensemble.py → scikit_learn_intelex-2024.0.1.data/data/Lib/site-packages/sklearnex/ensemble/tests/test_forest.py +18 -15
- {scikit_learn_intelex-2024.0.0.data/data/Lib/site-packages/sklearnex/preview → scikit_learn_intelex-2024.0.1.data/data/Lib/site-packages/sklearnex}/linear_model/linear.py +59 -12
- {scikit_learn_intelex-2024.0.0.data → scikit_learn_intelex-2024.0.1.data}/data/Lib/site-packages/sklearnex/linear_model/tests/test_linear.py +15 -4
- {scikit_learn_intelex-2024.0.0.data → scikit_learn_intelex-2024.0.1.data}/data/Lib/site-packages/sklearnex/preview/__init__.py +1 -1
- {scikit_learn_intelex-2024.0.0.data → scikit_learn_intelex-2024.0.1.data}/data/Lib/site-packages/sklearnex/preview/cluster/k_means.py +3 -1
- {scikit_learn_intelex-2024.0.0.data → scikit_learn_intelex-2024.0.1.data}/data/Lib/site-packages/sklearnex/spmd/ensemble/forest.py +2 -6
- {scikit_learn_intelex-2024.0.0.data → scikit_learn_intelex-2024.0.1.data}/data/Lib/site-packages/sklearnex/tests/test_memory_usage.py +0 -14
- {scikit_learn_intelex-2024.0.0.data → scikit_learn_intelex-2024.0.1.data}/data/Lib/site-packages/sklearnex/tests/test_monkeypatch.py +8 -5
- {scikit_learn_intelex-2024.0.0.dist-info → scikit_learn_intelex-2024.0.1.dist-info}/METADATA +34 -35
- scikit_learn_intelex-2024.0.1.dist-info/RECORD +90 -0
- scikit_learn_intelex-2024.0.0.data/data/Lib/site-packages/sklearnex/ensemble/__init__.py +0 -20
- scikit_learn_intelex-2024.0.0.data/data/Lib/site-packages/sklearnex/ensemble/forest.py +0 -18
- scikit_learn_intelex-2024.0.0.data/data/Lib/site-packages/sklearnex/ensemble/tests/test_forest.py +0 -54
- scikit_learn_intelex-2024.0.0.data/data/Lib/site-packages/sklearnex/linear_model/linear.py +0 -17
- scikit_learn_intelex-2024.0.0.data/data/Lib/site-packages/sklearnex/preview/ensemble/forest.py +0 -1557
- scikit_learn_intelex-2024.0.0.data/data/Lib/site-packages/sklearnex/preview/linear_model/__init__.py +0 -20
- scikit_learn_intelex-2024.0.0.data/data/Lib/site-packages/sklearnex/preview/linear_model/_common.py +0 -66
- scikit_learn_intelex-2024.0.0.data/data/Lib/site-packages/sklearnex/preview/linear_model/tests/test_preview_linear.py +0 -47
- scikit_learn_intelex-2024.0.0.dist-info/RECORD +0 -98
- {scikit_learn_intelex-2024.0.0.data → scikit_learn_intelex-2024.0.1.data}/data/Lib/site-packages/sklearnex/__init__.py +0 -0
- {scikit_learn_intelex-2024.0.0.data → scikit_learn_intelex-2024.0.1.data}/data/Lib/site-packages/sklearnex/__main__.py +0 -0
- {scikit_learn_intelex-2024.0.0.data → scikit_learn_intelex-2024.0.1.data}/data/Lib/site-packages/sklearnex/_config.py +0 -0
- {scikit_learn_intelex-2024.0.0.data → scikit_learn_intelex-2024.0.1.data}/data/Lib/site-packages/sklearnex/_device_offload.py +0 -0
- {scikit_learn_intelex-2024.0.0.data → scikit_learn_intelex-2024.0.1.data}/data/Lib/site-packages/sklearnex/basic_statistics/__init__.py +0 -0
- {scikit_learn_intelex-2024.0.0.data → scikit_learn_intelex-2024.0.1.data}/data/Lib/site-packages/sklearnex/basic_statistics/basic_statistics.py +0 -0
- {scikit_learn_intelex-2024.0.0.data → scikit_learn_intelex-2024.0.1.data}/data/Lib/site-packages/sklearnex/cluster/__init__.py +0 -0
- {scikit_learn_intelex-2024.0.0.data → scikit_learn_intelex-2024.0.1.data}/data/Lib/site-packages/sklearnex/cluster/dbscan.py +0 -0
- {scikit_learn_intelex-2024.0.0.data → scikit_learn_intelex-2024.0.1.data}/data/Lib/site-packages/sklearnex/cluster/k_means.py +0 -0
- {scikit_learn_intelex-2024.0.0.data → scikit_learn_intelex-2024.0.1.data}/data/Lib/site-packages/sklearnex/cluster/tests/test_dbscan.py +0 -0
- {scikit_learn_intelex-2024.0.0.data → scikit_learn_intelex-2024.0.1.data}/data/Lib/site-packages/sklearnex/cluster/tests/test_kmeans.py +0 -0
- {scikit_learn_intelex-2024.0.0.data → scikit_learn_intelex-2024.0.1.data}/data/Lib/site-packages/sklearnex/decomposition/__init__.py +0 -0
- {scikit_learn_intelex-2024.0.0.data → scikit_learn_intelex-2024.0.1.data}/data/Lib/site-packages/sklearnex/decomposition/pca.py +0 -0
- {scikit_learn_intelex-2024.0.0.data → scikit_learn_intelex-2024.0.1.data}/data/Lib/site-packages/sklearnex/decomposition/tests/test_pca.py +0 -0
- {scikit_learn_intelex-2024.0.0.data → scikit_learn_intelex-2024.0.1.data}/data/Lib/site-packages/sklearnex/doc/third-party-programs.txt +0 -0
- {scikit_learn_intelex-2024.0.0.data → scikit_learn_intelex-2024.0.1.data}/data/Lib/site-packages/sklearnex/glob/__main__.py +0 -0
- {scikit_learn_intelex-2024.0.0.data → scikit_learn_intelex-2024.0.1.data}/data/Lib/site-packages/sklearnex/glob/dispatcher.py +0 -0
- {scikit_learn_intelex-2024.0.0.data → scikit_learn_intelex-2024.0.1.data}/data/Lib/site-packages/sklearnex/linear_model/__init__.py +0 -0
- {scikit_learn_intelex-2024.0.0.data → scikit_learn_intelex-2024.0.1.data}/data/Lib/site-packages/sklearnex/linear_model/coordinate_descent.py +0 -0
- {scikit_learn_intelex-2024.0.0.data → scikit_learn_intelex-2024.0.1.data}/data/Lib/site-packages/sklearnex/linear_model/logistic_path.py +0 -0
- {scikit_learn_intelex-2024.0.0.data → scikit_learn_intelex-2024.0.1.data}/data/Lib/site-packages/sklearnex/linear_model/ridge.py +0 -0
- {scikit_learn_intelex-2024.0.0.data → scikit_learn_intelex-2024.0.1.data}/data/Lib/site-packages/sklearnex/linear_model/tests/test_logreg.py +0 -0
- {scikit_learn_intelex-2024.0.0.data → scikit_learn_intelex-2024.0.1.data}/data/Lib/site-packages/sklearnex/manifold/__init__.py +0 -0
- {scikit_learn_intelex-2024.0.0.data → scikit_learn_intelex-2024.0.1.data}/data/Lib/site-packages/sklearnex/manifold/t_sne.py +0 -0
- {scikit_learn_intelex-2024.0.0.data → scikit_learn_intelex-2024.0.1.data}/data/Lib/site-packages/sklearnex/manifold/tests/test_tsne.py +0 -0
- {scikit_learn_intelex-2024.0.0.data → scikit_learn_intelex-2024.0.1.data}/data/Lib/site-packages/sklearnex/metrics/__init__.py +0 -0
- {scikit_learn_intelex-2024.0.0.data → scikit_learn_intelex-2024.0.1.data}/data/Lib/site-packages/sklearnex/metrics/pairwise.py +0 -0
- {scikit_learn_intelex-2024.0.0.data → scikit_learn_intelex-2024.0.1.data}/data/Lib/site-packages/sklearnex/metrics/ranking.py +0 -0
- {scikit_learn_intelex-2024.0.0.data → scikit_learn_intelex-2024.0.1.data}/data/Lib/site-packages/sklearnex/metrics/tests/test_metrics.py +0 -0
- {scikit_learn_intelex-2024.0.0.data → scikit_learn_intelex-2024.0.1.data}/data/Lib/site-packages/sklearnex/model_selection/__init__.py +0 -0
- {scikit_learn_intelex-2024.0.0.data → scikit_learn_intelex-2024.0.1.data}/data/Lib/site-packages/sklearnex/model_selection/split.py +0 -0
- {scikit_learn_intelex-2024.0.0.data → scikit_learn_intelex-2024.0.1.data}/data/Lib/site-packages/sklearnex/model_selection/tests/test_model_selection.py +0 -0
- {scikit_learn_intelex-2024.0.0.data → scikit_learn_intelex-2024.0.1.data}/data/Lib/site-packages/sklearnex/neighbors/__init__.py +0 -0
- {scikit_learn_intelex-2024.0.0.data → scikit_learn_intelex-2024.0.1.data}/data/Lib/site-packages/sklearnex/neighbors/common.py +0 -0
- {scikit_learn_intelex-2024.0.0.data → scikit_learn_intelex-2024.0.1.data}/data/Lib/site-packages/sklearnex/neighbors/knn_classification.py +0 -0
- {scikit_learn_intelex-2024.0.0.data → scikit_learn_intelex-2024.0.1.data}/data/Lib/site-packages/sklearnex/neighbors/knn_regression.py +0 -0
- {scikit_learn_intelex-2024.0.0.data → scikit_learn_intelex-2024.0.1.data}/data/Lib/site-packages/sklearnex/neighbors/knn_unsupervised.py +0 -0
- {scikit_learn_intelex-2024.0.0.data → scikit_learn_intelex-2024.0.1.data}/data/Lib/site-packages/sklearnex/neighbors/lof.py +0 -0
- {scikit_learn_intelex-2024.0.0.data → scikit_learn_intelex-2024.0.1.data}/data/Lib/site-packages/sklearnex/neighbors/tests/test_neighbors.py +0 -0
- {scikit_learn_intelex-2024.0.0.data → scikit_learn_intelex-2024.0.1.data}/data/Lib/site-packages/sklearnex/preview/cluster/__init__.py +0 -0
- {scikit_learn_intelex-2024.0.0.data → scikit_learn_intelex-2024.0.1.data}/data/Lib/site-packages/sklearnex/preview/cluster/_common.py +0 -0
- {scikit_learn_intelex-2024.0.0.data → scikit_learn_intelex-2024.0.1.data}/data/Lib/site-packages/sklearnex/preview/decomposition/__init__.py +0 -0
- {scikit_learn_intelex-2024.0.0.data → scikit_learn_intelex-2024.0.1.data}/data/Lib/site-packages/sklearnex/preview/decomposition/pca.py +0 -0
- {scikit_learn_intelex-2024.0.0.data → scikit_learn_intelex-2024.0.1.data}/data/Lib/site-packages/sklearnex/preview/decomposition/tests/test_preview_pca.py +0 -0
- {scikit_learn_intelex-2024.0.0.data → scikit_learn_intelex-2024.0.1.data}/data/Lib/site-packages/sklearnex/spmd/__init__.py +0 -0
- {scikit_learn_intelex-2024.0.0.data → scikit_learn_intelex-2024.0.1.data}/data/Lib/site-packages/sklearnex/spmd/basic_statistics/__init__.py +0 -0
- {scikit_learn_intelex-2024.0.0.data → scikit_learn_intelex-2024.0.1.data}/data/Lib/site-packages/sklearnex/spmd/basic_statistics/basic_statistics.py +0 -0
- {scikit_learn_intelex-2024.0.0.data → scikit_learn_intelex-2024.0.1.data}/data/Lib/site-packages/sklearnex/spmd/cluster/__init__.py +0 -0
- {scikit_learn_intelex-2024.0.0.data → scikit_learn_intelex-2024.0.1.data}/data/Lib/site-packages/sklearnex/spmd/cluster/dbscan.py +0 -0
- {scikit_learn_intelex-2024.0.0.data → scikit_learn_intelex-2024.0.1.data}/data/Lib/site-packages/sklearnex/spmd/cluster/kmeans.py +0 -0
- {scikit_learn_intelex-2024.0.0.data → scikit_learn_intelex-2024.0.1.data}/data/Lib/site-packages/sklearnex/spmd/decomposition/__init__.py +0 -0
- {scikit_learn_intelex-2024.0.0.data → scikit_learn_intelex-2024.0.1.data}/data/Lib/site-packages/sklearnex/spmd/decomposition/pca.py +0 -0
- {scikit_learn_intelex-2024.0.0.data → scikit_learn_intelex-2024.0.1.data}/data/Lib/site-packages/sklearnex/spmd/ensemble/__init__.py +0 -0
- {scikit_learn_intelex-2024.0.0.data → scikit_learn_intelex-2024.0.1.data}/data/Lib/site-packages/sklearnex/spmd/linear_model/__init__.py +0 -0
- {scikit_learn_intelex-2024.0.0.data → scikit_learn_intelex-2024.0.1.data}/data/Lib/site-packages/sklearnex/spmd/linear_model/linear_model.py +0 -0
- {scikit_learn_intelex-2024.0.0.data → scikit_learn_intelex-2024.0.1.data}/data/Lib/site-packages/sklearnex/spmd/neighbors/__init__.py +0 -0
- {scikit_learn_intelex-2024.0.0.data → scikit_learn_intelex-2024.0.1.data}/data/Lib/site-packages/sklearnex/spmd/neighbors/neighbors.py +0 -0
- {scikit_learn_intelex-2024.0.0.data → scikit_learn_intelex-2024.0.1.data}/data/Lib/site-packages/sklearnex/svm/__init__.py +0 -0
- {scikit_learn_intelex-2024.0.0.data → scikit_learn_intelex-2024.0.1.data}/data/Lib/site-packages/sklearnex/svm/_common.py +0 -0
- {scikit_learn_intelex-2024.0.0.data → scikit_learn_intelex-2024.0.1.data}/data/Lib/site-packages/sklearnex/svm/nusvc.py +0 -0
- {scikit_learn_intelex-2024.0.0.data → scikit_learn_intelex-2024.0.1.data}/data/Lib/site-packages/sklearnex/svm/nusvr.py +0 -0
- {scikit_learn_intelex-2024.0.0.data → scikit_learn_intelex-2024.0.1.data}/data/Lib/site-packages/sklearnex/svm/svc.py +0 -0
- {scikit_learn_intelex-2024.0.0.data → scikit_learn_intelex-2024.0.1.data}/data/Lib/site-packages/sklearnex/svm/svr.py +0 -0
- {scikit_learn_intelex-2024.0.0.data → scikit_learn_intelex-2024.0.1.data}/data/Lib/site-packages/sklearnex/svm/tests/test_svm.py +0 -0
- {scikit_learn_intelex-2024.0.0.data → scikit_learn_intelex-2024.0.1.data}/data/Lib/site-packages/sklearnex/tests/_models_info.py +0 -0
- {scikit_learn_intelex-2024.0.0.data → scikit_learn_intelex-2024.0.1.data}/data/Lib/site-packages/sklearnex/tests/test_config.py +0 -0
- {scikit_learn_intelex-2024.0.0.data → scikit_learn_intelex-2024.0.1.data}/data/Lib/site-packages/sklearnex/tests/test_parallel.py +0 -0
- {scikit_learn_intelex-2024.0.0.data → scikit_learn_intelex-2024.0.1.data}/data/Lib/site-packages/sklearnex/tests/test_patching.py +0 -0
- {scikit_learn_intelex-2024.0.0.data → scikit_learn_intelex-2024.0.1.data}/data/Lib/site-packages/sklearnex/tests/test_run_to_run_stability_tests.py +0 -0
- {scikit_learn_intelex-2024.0.0.data → scikit_learn_intelex-2024.0.1.data}/data/Lib/site-packages/sklearnex/tests/utils/_launch_algorithms.py +0 -0
- {scikit_learn_intelex-2024.0.0.data → scikit_learn_intelex-2024.0.1.data}/data/Lib/site-packages/sklearnex/utils/__init__.py +0 -0
- {scikit_learn_intelex-2024.0.0.data → scikit_learn_intelex-2024.0.1.data}/data/Lib/site-packages/sklearnex/utils/parallel.py +0 -0
- {scikit_learn_intelex-2024.0.0.data → scikit_learn_intelex-2024.0.1.data}/data/Lib/site-packages/sklearnex/utils/validation.py +0 -0
- {scikit_learn_intelex-2024.0.0.dist-info → scikit_learn_intelex-2024.0.1.dist-info}/LICENSE.txt +0 -0
- {scikit_learn_intelex-2024.0.0.dist-info → scikit_learn_intelex-2024.0.1.dist-info}/WHEEL +0 -0
- {scikit_learn_intelex-2024.0.0.dist-info → scikit_learn_intelex-2024.0.1.dist-info}/top_level.txt +0 -0
|
@@ -29,7 +29,7 @@ from onedal.tests.utils._dataframes_support import (
|
|
|
29
29
|
|
|
30
30
|
@pytest.mark.parametrize("dataframe,queue", get_dataframes_and_queues())
|
|
31
31
|
def test_sklearnex_import_rf_classifier(dataframe, queue):
|
|
32
|
-
from sklearnex.
|
|
32
|
+
from sklearnex.ensemble import RandomForestClassifier
|
|
33
33
|
|
|
34
34
|
X, y = make_classification(
|
|
35
35
|
n_samples=1000,
|
|
@@ -42,7 +42,7 @@ def test_sklearnex_import_rf_classifier(dataframe, queue):
|
|
|
42
42
|
X = _convert_to_dataframe(X, sycl_queue=queue, target_df=dataframe)
|
|
43
43
|
y = _convert_to_dataframe(y, sycl_queue=queue, target_df=dataframe)
|
|
44
44
|
rf = RandomForestClassifier(max_depth=2, random_state=0).fit(X, y)
|
|
45
|
-
assert "sklearnex
|
|
45
|
+
assert "sklearnex" in rf.__module__
|
|
46
46
|
assert_allclose([1], _as_numpy(rf.predict([[0, 0, 0, 0]])))
|
|
47
47
|
|
|
48
48
|
|
|
@@ -52,13 +52,13 @@ def test_sklearnex_import_rf_classifier(dataframe, queue):
|
|
|
52
52
|
"dataframe,queue", get_dataframes_and_queues(device_filter_="cpu")
|
|
53
53
|
)
|
|
54
54
|
def test_sklearnex_import_rf_regression(dataframe, queue):
|
|
55
|
-
from sklearnex.
|
|
55
|
+
from sklearnex.ensemble import RandomForestRegressor
|
|
56
56
|
|
|
57
57
|
X, y = make_regression(n_features=4, n_informative=2, random_state=0, shuffle=False)
|
|
58
58
|
X = _convert_to_dataframe(X, sycl_queue=queue, target_df=dataframe)
|
|
59
59
|
y = _convert_to_dataframe(y, sycl_queue=queue, target_df=dataframe)
|
|
60
60
|
rf = RandomForestRegressor(max_depth=2, random_state=0).fit(X, y)
|
|
61
|
-
assert "sklearnex
|
|
61
|
+
assert "sklearnex" in rf.__module__
|
|
62
62
|
pred = _as_numpy(rf.predict([[0, 0, 0, 0]]))
|
|
63
63
|
if daal_check_version((2024, "P", 0)):
|
|
64
64
|
assert_allclose([-6.971], pred, atol=1e-2)
|
|
@@ -72,7 +72,7 @@ def test_sklearnex_import_rf_regression(dataframe, queue):
|
|
|
72
72
|
"dataframe,queue", get_dataframes_and_queues(device_filter_="cpu")
|
|
73
73
|
)
|
|
74
74
|
def test_sklearnex_import_et_classifier(dataframe, queue):
|
|
75
|
-
from sklearnex.
|
|
75
|
+
from sklearnex.ensemble import ExtraTreesClassifier
|
|
76
76
|
|
|
77
77
|
X, y = make_classification(
|
|
78
78
|
n_samples=1000,
|
|
@@ -97,19 +97,22 @@ def test_sklearnex_import_et_classifier(dataframe, queue):
|
|
|
97
97
|
"dataframe,queue", get_dataframes_and_queues(device_filter_="cpu")
|
|
98
98
|
)
|
|
99
99
|
def test_sklearnex_import_et_regression(dataframe, queue):
|
|
100
|
-
from sklearnex.
|
|
100
|
+
from sklearnex.ensemble import ExtraTreesRegressor
|
|
101
101
|
|
|
102
|
-
X, y = make_regression(n_features=
|
|
102
|
+
X, y = make_regression(n_features=1, random_state=0, shuffle=False)
|
|
103
103
|
X = _convert_to_dataframe(X, sycl_queue=queue, target_df=dataframe)
|
|
104
104
|
y = _convert_to_dataframe(y, sycl_queue=queue, target_df=dataframe)
|
|
105
105
|
# For the 2023.2 release, random_state is not supported
|
|
106
106
|
# defaults to seed=777, although it is set to 0
|
|
107
|
-
rf = ExtraTreesRegressor(
|
|
107
|
+
rf = ExtraTreesRegressor(random_state=0).fit(X, y)
|
|
108
108
|
assert "sklearnex" in rf.__module__
|
|
109
|
-
pred = _as_numpy(
|
|
110
|
-
|
|
111
|
-
|
|
112
|
-
|
|
113
|
-
|
|
114
|
-
|
|
115
|
-
|
|
109
|
+
pred = _as_numpy(
|
|
110
|
+
rf.predict(
|
|
111
|
+
[
|
|
112
|
+
[
|
|
113
|
+
0,
|
|
114
|
+
]
|
|
115
|
+
]
|
|
116
|
+
)
|
|
117
|
+
)
|
|
118
|
+
assert_allclose([0.445], pred, atol=1e-2)
|
|
@@ -15,23 +15,61 @@
|
|
|
15
15
|
# ===============================================================================
|
|
16
16
|
|
|
17
17
|
import logging
|
|
18
|
+
from abc import ABC
|
|
18
19
|
|
|
19
20
|
from daal4py.sklearn._utils import daal_check_version
|
|
20
21
|
|
|
22
|
+
|
|
23
|
+
def get_coef(self):
|
|
24
|
+
return self._coef_
|
|
25
|
+
|
|
26
|
+
|
|
27
|
+
def set_coef(self, value):
|
|
28
|
+
self._coef_ = value
|
|
29
|
+
if hasattr(self, "_onedal_estimator"):
|
|
30
|
+
self._onedal_estimator.coef_ = value
|
|
31
|
+
if not self._is_in_fit:
|
|
32
|
+
del self._onedal_estimator._onedal_model
|
|
33
|
+
|
|
34
|
+
|
|
35
|
+
def get_intercept(self):
|
|
36
|
+
return self._intercept_
|
|
37
|
+
|
|
38
|
+
|
|
39
|
+
def set_intercept(self, value):
|
|
40
|
+
self._intercept_ = value
|
|
41
|
+
if hasattr(self, "_onedal_estimator"):
|
|
42
|
+
self._onedal_estimator.intercept_ = value
|
|
43
|
+
if not self._is_in_fit:
|
|
44
|
+
del self._onedal_estimator._onedal_model
|
|
45
|
+
|
|
46
|
+
|
|
47
|
+
class BaseLinearRegression(ABC):
|
|
48
|
+
def _save_attributes(self):
|
|
49
|
+
self.n_features_in_ = self._onedal_estimator.n_features_in_
|
|
50
|
+
self.fit_status_ = 0
|
|
51
|
+
self._coef_ = self._onedal_estimator.coef_
|
|
52
|
+
self._intercept_ = self._onedal_estimator.intercept_
|
|
53
|
+
self._sparse = False
|
|
54
|
+
|
|
55
|
+
self.coef_ = property(get_coef, set_coef)
|
|
56
|
+
self.intercept_ = property(get_intercept, set_intercept)
|
|
57
|
+
|
|
58
|
+
self._is_in_fit = True
|
|
59
|
+
self.coef_ = self._coef_
|
|
60
|
+
self.intercept_ = self._intercept_
|
|
61
|
+
self._is_in_fit = False
|
|
62
|
+
|
|
63
|
+
|
|
21
64
|
if daal_check_version((2023, "P", 100)):
|
|
22
65
|
import numpy as np
|
|
23
66
|
from sklearn.linear_model import LinearRegression as sklearn_LinearRegression
|
|
24
67
|
|
|
25
|
-
from daal4py.sklearn._utils import
|
|
26
|
-
get_dtype,
|
|
27
|
-
make2d,
|
|
28
|
-
sklearn_check_version,
|
|
29
|
-
)
|
|
68
|
+
from daal4py.sklearn._utils import get_dtype, make2d, sklearn_check_version
|
|
30
69
|
|
|
31
|
-
from
|
|
32
|
-
from
|
|
33
|
-
from
|
|
34
|
-
from ._common import BaseLinearRegression
|
|
70
|
+
from .._device_offload import dispatch, wrap_output_data
|
|
71
|
+
from .._utils import PatchingConditionsChain, get_patch_message
|
|
72
|
+
from ..utils.validation import _assert_all_finite
|
|
35
73
|
|
|
36
74
|
if sklearn_check_version("1.0") and not sklearn_check_version("1.2"):
|
|
37
75
|
from sklearn.linear_model._base import _deprecate_normalize
|
|
@@ -304,9 +342,18 @@ if daal_check_version((2023, "P", 100)):
|
|
|
304
342
|
)
|
|
305
343
|
|
|
306
344
|
self._initialize_onedal_estimator()
|
|
307
|
-
|
|
345
|
+
try:
|
|
346
|
+
self._onedal_estimator.fit(X, y, queue=queue)
|
|
347
|
+
self._save_attributes()
|
|
348
|
+
|
|
349
|
+
except RuntimeError:
|
|
350
|
+
logging.getLogger("sklearnex").info(
|
|
351
|
+
f"{self.__class__.__name__}.fit "
|
|
352
|
+
+ get_patch_message("sklearn_after_onedal")
|
|
353
|
+
)
|
|
308
354
|
|
|
309
|
-
|
|
355
|
+
del self._onedal_estimator
|
|
356
|
+
super().fit(X, y)
|
|
310
357
|
|
|
311
358
|
def _onedal_predict(self, X, queue=None):
|
|
312
359
|
X = self._validate_data(X, accept_sparse=False, reset=False)
|
|
@@ -321,6 +368,6 @@ else:
|
|
|
321
368
|
from daal4py.sklearn.linear_model import LinearRegression
|
|
322
369
|
|
|
323
370
|
logging.warning(
|
|
324
|
-
"
|
|
371
|
+
"Sklearnex LinearRegression requires oneDAL version >= 2023.1 "
|
|
325
372
|
"but it was not found"
|
|
326
373
|
)
|
|
@@ -16,22 +16,33 @@
|
|
|
16
16
|
# ===============================================================================
|
|
17
17
|
|
|
18
18
|
import numpy as np
|
|
19
|
+
import pytest
|
|
19
20
|
from numpy.testing import assert_allclose
|
|
20
21
|
from sklearn.datasets import make_regression
|
|
21
22
|
|
|
22
23
|
from daal4py.sklearn._utils import daal_check_version
|
|
24
|
+
from onedal.tests.utils._dataframes_support import (
|
|
25
|
+
_as_numpy,
|
|
26
|
+
_convert_to_dataframe,
|
|
27
|
+
get_dataframes_and_queues,
|
|
28
|
+
)
|
|
23
29
|
|
|
24
30
|
|
|
25
|
-
|
|
31
|
+
@pytest.mark.parametrize("dataframe,queue", get_dataframes_and_queues())
|
|
32
|
+
def test_sklearnex_import_linear(dataframe, queue):
|
|
26
33
|
from sklearnex.linear_model import LinearRegression
|
|
27
34
|
|
|
28
35
|
X = np.array([[1, 1], [1, 2], [2, 2], [2, 3]])
|
|
29
36
|
y = np.dot(X, np.array([1, 2])) + 3
|
|
37
|
+
X = _convert_to_dataframe(X, sycl_queue=queue, target_df=dataframe)
|
|
38
|
+
y = _convert_to_dataframe(y, sycl_queue=queue, target_df=dataframe)
|
|
30
39
|
linreg = LinearRegression().fit(X, y)
|
|
31
|
-
|
|
40
|
+
if daal_check_version((2023, "P", 100)):
|
|
41
|
+
assert hasattr(linreg, "_onedal_estimator")
|
|
42
|
+
assert "sklearnex" in linreg.__module__
|
|
32
43
|
assert linreg.n_features_in_ == 2
|
|
33
|
-
assert_allclose(linreg.intercept_, 3.0)
|
|
34
|
-
assert_allclose(linreg.coef_, [1.0, 2.0])
|
|
44
|
+
assert_allclose(_as_numpy(linreg.intercept_), 3.0)
|
|
45
|
+
assert_allclose(_as_numpy(linreg.coef_), [1.0, 2.0])
|
|
35
46
|
|
|
36
47
|
|
|
37
48
|
def test_sklearnex_import_ridge():
|
|
@@ -290,7 +290,9 @@ if daal_check_version((2023, "P", 200)):
|
|
|
290
290
|
)
|
|
291
291
|
|
|
292
292
|
def _onedal_predict(self, X, queue=None):
|
|
293
|
-
X = self._validate_data(
|
|
293
|
+
X = self._validate_data(
|
|
294
|
+
X, accept_sparse=False, reset=False, dtype=[np.float64, np.float32]
|
|
295
|
+
)
|
|
294
296
|
if not hasattr(self, "_onedal_estimator"):
|
|
295
297
|
self._initialize_onedal_estimator()
|
|
296
298
|
self._onedal_estimator.cluster_centers_ = self.cluster_centers_
|
|
@@ -19,12 +19,8 @@ from abc import ABC
|
|
|
19
19
|
from onedal.spmd.ensemble import RandomForestClassifier as onedal_RandomForestClassifier
|
|
20
20
|
from onedal.spmd.ensemble import RandomForestRegressor as onedal_RandomForestRegressor
|
|
21
21
|
|
|
22
|
-
from ...
|
|
23
|
-
|
|
24
|
-
)
|
|
25
|
-
from ...preview.ensemble.forest import (
|
|
26
|
-
RandomForestRegressor as RandomForestRegressor_Batch,
|
|
27
|
-
)
|
|
22
|
+
from ...ensemble import RandomForestClassifier as RandomForestClassifier_Batch
|
|
23
|
+
from ...ensemble import RandomForestRegressor as RandomForestRegressor_Batch
|
|
28
24
|
|
|
29
25
|
|
|
30
26
|
class BaseForestSPMD(ABC):
|
|
@@ -31,15 +31,6 @@ from sklearnex import get_patch_map
|
|
|
31
31
|
from sklearnex.metrics import pairwise_distances, roc_auc_score
|
|
32
32
|
from sklearnex.model_selection import train_test_split
|
|
33
33
|
from sklearnex.preview.decomposition import PCA as PreviewPCA
|
|
34
|
-
from sklearnex.preview.ensemble import ExtraTreesClassifier as PreviewExtraTreesClassifier
|
|
35
|
-
from sklearnex.preview.ensemble import ExtraTreesRegressor as PreviewExtraTreesRegressor
|
|
36
|
-
from sklearnex.preview.ensemble import (
|
|
37
|
-
RandomForestClassifier as PreviewRandomForestClassifier,
|
|
38
|
-
)
|
|
39
|
-
from sklearnex.preview.ensemble import (
|
|
40
|
-
RandomForestRegressor as PreviewRandomForestRegressor,
|
|
41
|
-
)
|
|
42
|
-
from sklearnex.preview.linear_model import LinearRegression as PreviewLinearRegression
|
|
43
34
|
from sklearnex.utils import _assert_all_finite
|
|
44
35
|
|
|
45
36
|
|
|
@@ -109,11 +100,6 @@ BANNED_ESTIMATORS = (
|
|
|
109
100
|
)
|
|
110
101
|
estimators = [
|
|
111
102
|
PreviewPCA,
|
|
112
|
-
PreviewLinearRegression,
|
|
113
|
-
PreviewRandomForestClassifier,
|
|
114
|
-
PreviewRandomForestRegressor,
|
|
115
|
-
PreviewExtraTreesClassifier,
|
|
116
|
-
PreviewExtraTreesRegressor,
|
|
117
103
|
TrainTestSplitEstimator,
|
|
118
104
|
FiniteCheckEstimator,
|
|
119
105
|
CosineDistancesEstimator,
|
|
@@ -115,7 +115,7 @@ def test_unpatch_by_list_many_estimators():
|
|
|
115
115
|
from sklearn.neighbors import KNeighborsRegressor
|
|
116
116
|
from sklearn.svm import SVC
|
|
117
117
|
|
|
118
|
-
assert RandomForestRegressor.__module__.startswith("
|
|
118
|
+
assert RandomForestRegressor.__module__.startswith("sklearnex")
|
|
119
119
|
assert KNeighborsRegressor.__module__.startswith(
|
|
120
120
|
"daal4py"
|
|
121
121
|
) or KNeighborsRegressor.__module__.startswith("sklearnex")
|
|
@@ -174,10 +174,10 @@ def test_preview_namespace():
|
|
|
174
174
|
assert sklearnex.dispatcher._is_preview_enabled()
|
|
175
175
|
|
|
176
176
|
lr, pca, dbscan, svc, rfc = get_estimators()
|
|
177
|
-
assert "sklearnex
|
|
177
|
+
assert "sklearnex" in rfc.__module__
|
|
178
178
|
|
|
179
179
|
if daal_check_version((2023, "P", 100)):
|
|
180
|
-
assert "sklearnex
|
|
180
|
+
assert "sklearnex" in lr.__module__
|
|
181
181
|
else:
|
|
182
182
|
assert "daal4py" in lr.__module__
|
|
183
183
|
|
|
@@ -199,9 +199,12 @@ def test_preview_namespace():
|
|
|
199
199
|
assert not sklearnex.dispatcher._is_preview_enabled()
|
|
200
200
|
|
|
201
201
|
lr, pca, dbscan, svc, rfc = get_estimators()
|
|
202
|
-
|
|
202
|
+
if daal_check_version((2023, "P", 100)):
|
|
203
|
+
assert "sklearnex" in lr.__module__
|
|
204
|
+
else:
|
|
205
|
+
assert "daal4py" in lr.__module__
|
|
203
206
|
assert "daal4py" in pca.__module__
|
|
204
|
-
assert "
|
|
207
|
+
assert "sklearnex" in rfc.__module__
|
|
205
208
|
assert "sklearnex" in dbscan.__module__
|
|
206
209
|
assert "sklearnex" in svc.__module__
|
|
207
210
|
sklearnex.unpatch_sklearn()
|
{scikit_learn_intelex-2024.0.0.dist-info → scikit_learn_intelex-2024.0.1.dist-info}/METADATA
RENAMED
|
@@ -1,10 +1,10 @@
|
|
|
1
1
|
Metadata-Version: 2.1
|
|
2
2
|
Name: scikit-learn-intelex
|
|
3
|
-
Version: 2024.0.
|
|
3
|
+
Version: 2024.0.1
|
|
4
4
|
Summary: Intel(R) Extension for Scikit-learn is a seamless way to speed up your Scikit-learn application.
|
|
5
5
|
Home-page: https://github.com/intel/scikit-learn-intelex
|
|
6
6
|
Author: Intel Corporation
|
|
7
|
-
Author-email:
|
|
7
|
+
Author-email: onedal.maintainers@intel.com
|
|
8
8
|
Maintainer-email: onedal.maintainers@intel.com
|
|
9
9
|
License: Apache-2.0
|
|
10
10
|
Project-URL: Bug Tracker, https://github.com/intel/scikit-learn-intelex/issues
|
|
@@ -18,21 +18,20 @@ Classifier: Intended Audience :: Developers
|
|
|
18
18
|
Classifier: Intended Audience :: Other Audience
|
|
19
19
|
Classifier: Intended Audience :: Science/Research
|
|
20
20
|
Classifier: License :: OSI Approved :: Apache Software License
|
|
21
|
-
Classifier: Operating System :: MacOS :: MacOS X
|
|
22
21
|
Classifier: Operating System :: Microsoft :: Windows
|
|
23
22
|
Classifier: Operating System :: POSIX :: Linux
|
|
24
|
-
Classifier: Programming Language :: Python :: 3
|
|
25
|
-
Classifier: Programming Language :: Python :: 3.6
|
|
26
|
-
Classifier: Programming Language :: Python :: 3.7
|
|
27
23
|
Classifier: Programming Language :: Python :: 3.8
|
|
28
24
|
Classifier: Programming Language :: Python :: 3.9
|
|
25
|
+
Classifier: Programming Language :: Python :: 3.10
|
|
26
|
+
Classifier: Programming Language :: Python :: 3.11
|
|
27
|
+
Classifier: Programming Language :: Python :: 3.12
|
|
29
28
|
Classifier: Topic :: Scientific/Engineering
|
|
30
29
|
Classifier: Topic :: System
|
|
31
30
|
Classifier: Topic :: Software Development
|
|
32
31
|
Requires-Python: >=3.7
|
|
33
32
|
Description-Content-Type: text/markdown
|
|
34
33
|
License-File: LICENSE.txt
|
|
35
|
-
Requires-Dist: daal4py (==2024.0.
|
|
34
|
+
Requires-Dist: daal4py (==2024.0.1)
|
|
36
35
|
Requires-Dist: scikit-learn (>=0.22)
|
|
37
36
|
|
|
38
37
|
|
|
@@ -44,13 +43,13 @@ Requires-Dist: scikit-learn (>=0.22)
|
|
|
44
43
|
[](https://pypi.org/project/scikit-learn-intelex/)
|
|
45
44
|
[](https://anaconda.org/conda-forge/scikit-learn-intelex)
|
|
46
45
|
|
|
47
|
-
Intel(R) Extension for Scikit-learn
|
|
46
|
+
With Intel(R) Extension for Scikit-learn you can accelerate your Scikit-learn applications and still have full conformance with all Scikit-Learn APIs and algorithms. This is a free software AI accelerator that brings over 10-100X acceleration across a variety of applications. And you do not even need to change the existing code!
|
|
47
|
+
|
|
48
|
+
The acceleration is achieved through the use of the Intel(R) oneAPI Data Analytics Library ([oneDAL](https://github.com/oneapi-src/oneDAL)). Patching scikit-learn makes it a well-suited machine learning framework for dealing with real-life problems.
|
|
48
49
|
|
|
49
50
|
⚠️Intel(R) Extension for Scikit-learn contains scikit-learn patching functionality that was originally available in [**daal4py**](https://github.com/intel/scikit-learn-intelex/tree/master/daal4py) package. All future updates for the patches will be available only in Intel(R) Extension for Scikit-learn. We recommend you to use scikit-learn-intelex package instead of daal4py.
|
|
50
51
|
You can learn more about daal4py in [daal4py documentation](https://intelpython.github.io/daal4py).
|
|
51
52
|
|
|
52
|
-
Running the latest scikit-learn test suite with Intel(R) Extension for Scikit-learn: [](https://circleci.com/gh/intel/scikit-learn-intelex)
|
|
53
|
-
|
|
54
53
|
## 👀 Follow us on Medium
|
|
55
54
|
|
|
56
55
|
We publish blogs on Medium, so [follow us](https://medium.com/intel-analytics-software/tagged/machine-learning) to learn tips and tricks for more efficient data analysis with the help of Intel(R) Extension for Scikit-learn. Here are our latest blogs:
|
|
@@ -99,40 +98,41 @@ pip install scikit-learn-intelex
|
|
|
99
98
|
- Anaconda Cloud from Conda-Forge channel (recommended for conda users by default)
|
|
100
99
|
|
|
101
100
|
```bash
|
|
102
|
-
conda
|
|
101
|
+
conda config --add channels conda-forge
|
|
102
|
+
conda config --set channel_priority strict
|
|
103
|
+
conda install scikit-learn-intelex
|
|
103
104
|
```
|
|
104
105
|
|
|
105
106
|
- Anaconda Cloud from Intel channel (recommended for Intel® Distribution for Python users)
|
|
106
107
|
|
|
107
108
|
```bash
|
|
108
|
-
conda
|
|
109
|
+
conda config --add channels intel
|
|
110
|
+
conda config --set channel_priority strict
|
|
111
|
+
conda install scikit-learn-intelex
|
|
109
112
|
```
|
|
110
113
|
|
|
111
114
|
<details><summary>[Click to expand] ℹ️ Supported configurations </summary>
|
|
112
115
|
|
|
113
116
|
#### 📦 PyPi channel
|
|
114
117
|
|
|
115
|
-
| OS / Python version | **Python 3.
|
|
116
|
-
| :-----------------------| :------------: | :-------------:|
|
|
117
|
-
| **Linux** | [CPU, GPU] | [CPU, GPU] | [CPU, GPU]
|
|
118
|
-
| **Windows** | [CPU, GPU] | [CPU, GPU] | [CPU, GPU]
|
|
119
|
-
| **OsX** | [CPU] | [CPU] | [CPU] | ❌ |
|
|
118
|
+
| OS / Python version | **Python 3.8** | **Python 3.9** | **Python 3.10**| **Python 3.11**| **Python 3.12**|
|
|
119
|
+
| :-----------------------| :------------: | :-------------:| :------------: | :------------: | :------------: |
|
|
120
|
+
| **Linux** | [CPU, GPU] | [CPU, GPU] | [CPU, GPU] | [CPU, GPU] | [CPU, GPU] |
|
|
121
|
+
| **Windows** | [CPU, GPU] | [CPU, GPU] | [CPU, GPU] | [CPU, GPU] | [CPU, GPU] |
|
|
120
122
|
|
|
121
123
|
#### 📦 Anaconda Cloud: Conda-Forge channel
|
|
122
124
|
|
|
123
|
-
| OS / Python version | **Python 3.
|
|
124
|
-
| :-----------------------| :------------: | :------------: |
|
|
125
|
-
| **Linux** |
|
|
126
|
-
| **Windows** |
|
|
127
|
-
| **OsX** | [CPU] | [CPU] | [CPU] | [CPU] |
|
|
125
|
+
| OS / Python version | **Python 3.8** | **Python 3.9** | **Python 3.10**| **Python 3.11**| **Python 3.12**|
|
|
126
|
+
| :-----------------------| :------------: | :------------: | :------------: | :------------: | :------------: |
|
|
127
|
+
| **Linux** | [CPU] | [CPU] | [CPU] | [CPU] | [CPU] |
|
|
128
|
+
| **Windows** | [CPU] | [CPU] | [CPU] | [CPU] | [CPU] |
|
|
128
129
|
|
|
129
130
|
#### 📦 Anaconda Cloud: Intel channel
|
|
130
131
|
|
|
131
|
-
| OS / Python version | **Python 3.
|
|
132
|
-
| :-----------------------| :------------: | :-------------:|
|
|
133
|
-
| **Linux** | [CPU, GPU] |
|
|
134
|
-
| **Windows** | [CPU, GPU] |
|
|
135
|
-
| **OsX** | [CPU] | [CPU] | [CPU] | ❌ |
|
|
132
|
+
| OS / Python version | **Python 3.8** | **Python 3.9** | **Python 3.10**| **Python 3.11**| **Python 3.12**|
|
|
133
|
+
| :-----------------------| :------------: | :-------------:| :------------: | :------------: | :------------: |
|
|
134
|
+
| **Linux** | [CPU, GPU] | [CPU, GPU] | [CPU, GPU] | [CPU, GPU] | [CPU, GPU] |
|
|
135
|
+
| **Windows** | [CPU, GPU] | [CPU, GPU] | [CPU, GPU] | [CPU, GPU] | [CPU, GPU] |
|
|
136
136
|
|
|
137
137
|
</details>
|
|
138
138
|
|
|
@@ -175,15 +175,15 @@ clustering = DBSCAN(eps=3, min_samples=2).fit(X)
|
|
|
175
175
|
Intel GPU optimizations patching
|
|
176
176
|
```py
|
|
177
177
|
import numpy as np
|
|
178
|
-
|
|
179
|
-
from
|
|
178
|
+
import dpctl
|
|
179
|
+
from sklearnex import patch_sklearn, config_context
|
|
180
180
|
patch_sklearn()
|
|
181
181
|
|
|
182
182
|
from sklearn.cluster import DBSCAN
|
|
183
183
|
|
|
184
184
|
X = np.array([[1., 2.], [2., 2.], [2., 3.],
|
|
185
185
|
[8., 7.], [8., 8.], [25., 80.]], dtype=np.float32)
|
|
186
|
-
with
|
|
186
|
+
with config_context(target_offload="gpu:0"):
|
|
187
187
|
clustering = DBSCAN(eps=3, min_samples=2).fit(X)
|
|
188
188
|
```
|
|
189
189
|
|
|
@@ -201,25 +201,24 @@ Configurations:
|
|
|
201
201
|
- With Intel® Extension for Scikit-learn enabled:
|
|
202
202
|
|
|
203
203
|
```bash
|
|
204
|
-
python runner.py --configs configs/blogs/skl_conda_config.json
|
|
204
|
+
python runner.py --configs configs/blogs/skl_conda_config.json -–report
|
|
205
205
|
```
|
|
206
206
|
|
|
207
207
|
- With the original Scikit-learn:
|
|
208
208
|
|
|
209
209
|
```bash
|
|
210
|
-
python runner.py --configs configs/blogs/skl_conda_config.json
|
|
210
|
+
python runner.py --configs configs/blogs/skl_conda_config.json -–report --no-intel-optimized
|
|
211
211
|
```
|
|
212
212
|
</details>
|
|
213
213
|
|
|
214
214
|
Intel(R) Extension for Scikit-learn patching affects performance of specific Scikit-learn functionality. Refer to the [list of supported algorithms and parameters](https://intel.github.io/scikit-learn-intelex/algorithms.html) for details. In cases when unsupported parameters are used, the package fallbacks into original Scikit-learn. If the patching does not cover your scenarios, [submit an issue on GitHub](https://github.com/intel/scikit-learn-intelex/issues).
|
|
215
215
|
|
|
216
|
-
⚠️ We support optimizations for the last four versions of scikit-learn. The latest release of
|
|
217
|
-
0.23.X, 0.24.X and 1.0.X.
|
|
216
|
+
⚠️ We support optimizations for the last four versions of scikit-learn. The latest release of scikit-learn-intelex-2024.0.X supports scikit-learn 1.0.X, 1.1.X, 1.2.X and 1.3.X.
|
|
218
217
|
|
|
219
218
|
## 📜 Intel(R) Extension for Scikit-learn verbose
|
|
220
219
|
|
|
221
220
|
To find out which implementation of the algorithm is currently used (Intel(R) Extension for Scikit-learn or original Scikit-learn), set the environment variable:
|
|
222
|
-
- On Linux
|
|
221
|
+
- On Linux: `export SKLEARNEX_VERBOSE=INFO`
|
|
223
222
|
- On Windows: `set SKLEARNEX_VERBOSE=INFO`
|
|
224
223
|
|
|
225
224
|
For example, for DBSCAN you get one of these print statements depending on which implementation is used:
|
|
@@ -0,0 +1,90 @@
|
|
|
1
|
+
scikit_learn_intelex-2024.0.1.data/data/Lib/site-packages/sklearnex/__init__.py,sha256=tEVwU6DfbDy6ZRz-ii8lKaNvvSeACNL7ckci-Mxgk9I,1580
|
|
2
|
+
scikit_learn_intelex-2024.0.1.data/data/Lib/site-packages/sklearnex/__main__.py,sha256=8OjFE_Dr4GxqRHE407tvqoVlaQ3Tq7OMLoVafTuwFlg,1943
|
|
3
|
+
scikit_learn_intelex-2024.0.1.data/data/Lib/site-packages/sklearnex/_config.py,sha256=6WS3UuS4-0DxIJyGn7yQMosj-mGkLybLQrg3W7dED5o,3928
|
|
4
|
+
scikit_learn_intelex-2024.0.1.data/data/Lib/site-packages/sklearnex/_device_offload.py,sha256=J0tZqj6tfvIFonWR01PadtTLgloQk_QEfXeCoqEvJlk,7710
|
|
5
|
+
scikit_learn_intelex-2024.0.1.data/data/Lib/site-packages/sklearnex/_utils.py,sha256=hpPk7iIEMOUSzK6YnSNBdpJqUWD6BRPgJLZS-0R_C94,3401
|
|
6
|
+
scikit_learn_intelex-2024.0.1.data/data/Lib/site-packages/sklearnex/dispatcher.py,sha256=RpmYFWWxyv-FQujLxMm88nAdle0x2mw8WMl4u4Ys3D4,11797
|
|
7
|
+
scikit_learn_intelex-2024.0.1.data/data/Lib/site-packages/sklearnex/basic_statistics/__init__.py,sha256=vR2aU4OXaukmuNhI1BgAZNwQcjXBGqjTrxoU0zv6AsU,843
|
|
8
|
+
scikit_learn_intelex-2024.0.1.data/data/Lib/site-packages/sklearnex/basic_statistics/basic_statistics.py,sha256=j5jBZ3DgXjoyjCBEFfYQHyl3LgLXEWWFnNHwInThdZw,796
|
|
9
|
+
scikit_learn_intelex-2024.0.1.data/data/Lib/site-packages/sklearnex/cluster/__init__.py,sha256=0wLPkqPWr6O3-SaL6bshmuuLN2i61WYlnCKuTHDx2Eg,876
|
|
10
|
+
scikit_learn_intelex-2024.0.1.data/data/Lib/site-packages/sklearnex/cluster/dbscan.py,sha256=2wc8mi0OTsjmGGyNJViyBv_L906xGq4NscHb7IuyGbE,6625
|
|
11
|
+
scikit_learn_intelex-2024.0.1.data/data/Lib/site-packages/sklearnex/cluster/k_means.py,sha256=1NQNXdyBDX7XrrdUB8kuU4z2pHOSqK2TbJtRrU1sltQ,829
|
|
12
|
+
scikit_learn_intelex-2024.0.1.data/data/Lib/site-packages/sklearnex/cluster/tests/test_dbscan.py,sha256=N04puPOBMI0aW2w19AHI17iqyQFMeoebJNwxzcmR9qY,1487
|
|
13
|
+
scikit_learn_intelex-2024.0.1.data/data/Lib/site-packages/sklearnex/cluster/tests/test_kmeans.py,sha256=SOKXULDw_h0YTOnUKMJ3e5tUobdYffsnSa6-bTTzy1A,1236
|
|
14
|
+
scikit_learn_intelex-2024.0.1.data/data/Lib/site-packages/sklearnex/decomposition/__init__.py,sha256=iWLonuyjtG2OtGodiWdgHsylgCODZEd4T-7BynHRJlc,828
|
|
15
|
+
scikit_learn_intelex-2024.0.1.data/data/Lib/site-packages/sklearnex/decomposition/pca.py,sha256=JXCmMFf6MFSYMh3dej5-A6mQN8q8RMAB3LAxk1Fb4Qg,832
|
|
16
|
+
scikit_learn_intelex-2024.0.1.data/data/Lib/site-packages/sklearnex/decomposition/tests/test_pca.py,sha256=oYsMN7BtqfBqR1Ubsmv6it46R7KdMQWF4ozi16p0iYE,1169
|
|
17
|
+
scikit_learn_intelex-2024.0.1.data/data/Lib/site-packages/sklearnex/doc/third-party-programs.txt,sha256=qA1XbOqYkMRnp29p8VxXjfcH0kHE8NSO5s2heea83-8,21773
|
|
18
|
+
scikit_learn_intelex-2024.0.1.data/data/Lib/site-packages/sklearnex/ensemble/__init__.py,sha256=YgWzjycWS5jWcGr52fjqnnU2RJbn9yoiFgiqcLbXEf4,1058
|
|
19
|
+
scikit_learn_intelex-2024.0.1.data/data/Lib/site-packages/sklearnex/ensemble/_forest.py,sha256=mFf7byarVtAUGQdfDSIyvs6P4cj9w2tDVHjnUiKke3g,69905
|
|
20
|
+
scikit_learn_intelex-2024.0.1.data/data/Lib/site-packages/sklearnex/ensemble/tests/test_forest.py,sha256=STPvCRAlxBaKl229jPF9bIZ-L9KqnwK_6rthUg3uyi0,4539
|
|
21
|
+
scikit_learn_intelex-2024.0.1.data/data/Lib/site-packages/sklearnex/glob/__main__.py,sha256=aeuJrm_SpvNje7wNhuI8wMxt2eJFPv-sdGJoCH6YDpA,2554
|
|
22
|
+
scikit_learn_intelex-2024.0.1.data/data/Lib/site-packages/sklearnex/glob/dispatcher.py,sha256=xcorUAME9Iex2AgROH20GV4z2RNiXrBL4TlFkBVgnSI,3041
|
|
23
|
+
scikit_learn_intelex-2024.0.1.data/data/Lib/site-packages/sklearnex/linear_model/__init__.py,sha256=jTSIlC5SusySbs1ertugjQA2z_7YRcvWQFOpsVDy5tU,1123
|
|
24
|
+
scikit_learn_intelex-2024.0.1.data/data/Lib/site-packages/sklearnex/linear_model/coordinate_descent.py,sha256=l_8PcqbCIgVKEuV_X7nbT2kfvQlmDBKWccTo5N-3Gr4,845
|
|
25
|
+
scikit_learn_intelex-2024.0.1.data/data/Lib/site-packages/sklearnex/linear_model/linear.py,sha256=_9rUZzhCasNYZL8yB20eqMS_odZrlgf1uJF4m6-aYls,13488
|
|
26
|
+
scikit_learn_intelex-2024.0.1.data/data/Lib/site-packages/sklearnex/linear_model/logistic_path.py,sha256=tcJTtn1jaUFcAozVI9IVfPoJSzAvQ_NMavW40TEEvSc,872
|
|
27
|
+
scikit_learn_intelex-2024.0.1.data/data/Lib/site-packages/sklearnex/linear_model/ridge.py,sha256=XHSwzQc1k8PkYUDNGvodRG2EgsIJJYNNOXvXyf_4o5s,833
|
|
28
|
+
scikit_learn_intelex-2024.0.1.data/data/Lib/site-packages/sklearnex/linear_model/tests/test_linear.py,sha256=sxivv1E6O33BOphV-W3xxUs52-3k9qEFIbzCDqyV_Yo,2924
|
|
29
|
+
scikit_learn_intelex-2024.0.1.data/data/Lib/site-packages/sklearnex/linear_model/tests/test_logreg.py,sha256=PDJZiVu0TFCh995-7OCud3-XnraJzfHTIIp_SORfc70,1198
|
|
30
|
+
scikit_learn_intelex-2024.0.1.data/data/Lib/site-packages/sklearnex/manifold/__init__.py,sha256=6KtNG4ZRbJUg_Iu1AdCz4h5fM5GhMz-2e4PMOOVdKCE,832
|
|
31
|
+
scikit_learn_intelex-2024.0.1.data/data/Lib/site-packages/sklearnex/manifold/t_sne.py,sha256=AaHGbnbqQFX_9zxqi-lShihoB7Rs4iDDWD8pftycxtU,828
|
|
32
|
+
scikit_learn_intelex-2024.0.1.data/data/Lib/site-packages/sklearnex/manifold/tests/test_tsne.py,sha256=_6eB-NPHvDFRuaXIoVAOOUe0DY3u2G8dVuwivp9UHSQ,1086
|
|
33
|
+
scikit_learn_intelex-2024.0.1.data/data/Lib/site-packages/sklearnex/metrics/__init__.py,sha256=Ktd6l7mbJwSd7y23z90mC43NbnbJfzYZU8iN9wuBaFM,930
|
|
34
|
+
scikit_learn_intelex-2024.0.1.data/data/Lib/site-packages/sklearnex/metrics/pairwise.py,sha256=8zSV7GhfBI2I-4eJ15CTs2RWIXRo5B1K3fXjPQHAqMI,841
|
|
35
|
+
scikit_learn_intelex-2024.0.1.data/data/Lib/site-packages/sklearnex/metrics/ranking.py,sha256=9QcnfnNbQIeLLtH5GbA0XDw5LPwpx9ONDp5Pn8J964g,836
|
|
36
|
+
scikit_learn_intelex-2024.0.1.data/data/Lib/site-packages/sklearnex/metrics/tests/test_metrics.py,sha256=tZYVjntV60QQPRJhidWF6071rG5kZfRzYi4hMR4dK18,1602
|
|
37
|
+
scikit_learn_intelex-2024.0.1.data/data/Lib/site-packages/sklearnex/model_selection/__init__.py,sha256=Frgfgmn9VxIZZUDc7QuwiIegeUcVB_QzVYMbuzbFtzQ,865
|
|
38
|
+
scikit_learn_intelex-2024.0.1.data/data/Lib/site-packages/sklearnex/model_selection/split.py,sha256=KFcH_Khll_tPwGVKzzxJaH-4UEOPLXLQOU-sk-2wfuU,847
|
|
39
|
+
scikit_learn_intelex-2024.0.1.data/data/Lib/site-packages/sklearnex/model_selection/tests/test_model_selection.py,sha256=rDJrR3b8vmGuOneQZAEV6MiERN2Uzu6NpG46d__C_aY,1361
|
|
40
|
+
scikit_learn_intelex-2024.0.1.data/data/Lib/site-packages/sklearnex/neighbors/__init__.py,sha256=ECtrr26pXdyHiRDGZ5TNI3vMo6Lc9FV_ObjJBQeuCbw,1100
|
|
41
|
+
scikit_learn_intelex-2024.0.1.data/data/Lib/site-packages/sklearnex/neighbors/common.py,sha256=m6vHNHT_wnZmKf3DfkJbfnARuMtwXuI4Hs6ff6060sM,10805
|
|
42
|
+
scikit_learn_intelex-2024.0.1.data/data/Lib/site-packages/sklearnex/neighbors/knn_classification.py,sha256=Vv4GVTcTSwjmXIeyqRY2DLn0waOW5Vff_AA3r1vz5To,10908
|
|
43
|
+
scikit_learn_intelex-2024.0.1.data/data/Lib/site-packages/sklearnex/neighbors/knn_regression.py,sha256=VQBiT7izukJ30Xq6-5Aft8zGkCODyuEoBR2pdr8H8ag,9827
|
|
44
|
+
scikit_learn_intelex-2024.0.1.data/data/Lib/site-packages/sklearnex/neighbors/knn_unsupervised.py,sha256=NjhAzqn6L3CAICFDn4AMrSiqz5EN3Sw4zlhFZN2f7DQ,7497
|
|
45
|
+
scikit_learn_intelex-2024.0.1.data/data/Lib/site-packages/sklearnex/neighbors/lof.py,sha256=l6m3qk8ikDStT6KYQGd_cnw1ao4U0qYZi6cTpXCgcuo,16287
|
|
46
|
+
scikit_learn_intelex-2024.0.1.data/data/Lib/site-packages/sklearnex/neighbors/tests/test_neighbors.py,sha256=4DfPmbm2_95oSmjecrHqICAvUgts_DqxZzdP0c0cBSU,3588
|
|
47
|
+
scikit_learn_intelex-2024.0.1.data/data/Lib/site-packages/sklearnex/preview/__init__.py,sha256=wHze7Itms2CEgqDAyVsgUUkoby4V29DQ3jq7sWjM7sw,805
|
|
48
|
+
scikit_learn_intelex-2024.0.1.data/data/Lib/site-packages/sklearnex/preview/cluster/__init__.py,sha256=DVm0fd9GY7NPqWivFaFDRC8-RgYmx8_LGrb_9lQO5H8,816
|
|
49
|
+
scikit_learn_intelex-2024.0.1.data/data/Lib/site-packages/sklearnex/preview/cluster/_common.py,sha256=bgpzijxgyrAtdNCCHyCNsZ-N70KQYNwMuoCTNdUna6o,2718
|
|
50
|
+
scikit_learn_intelex-2024.0.1.data/data/Lib/site-packages/sklearnex/preview/cluster/k_means.py,sha256=6PHbqYkoLB9HQnwrvGRsuD65Dn9Vg_GwWPk0s5rZoZA,12908
|
|
51
|
+
scikit_learn_intelex-2024.0.1.data/data/Lib/site-packages/sklearnex/preview/decomposition/__init__.py,sha256=EqdGlm-BdYa7B68ANaBAJmVrpXnI2IGeEqYDJKCLmis,828
|
|
52
|
+
scikit_learn_intelex-2024.0.1.data/data/Lib/site-packages/sklearnex/preview/decomposition/pca.py,sha256=yzGY5jOwDPfMadB86HWpCOGklf6im39N5xeJdXVqsLw,14579
|
|
53
|
+
scikit_learn_intelex-2024.0.1.data/data/Lib/site-packages/sklearnex/preview/decomposition/tests/test_preview_pca.py,sha256=lTcgVUhmGq_tLmKvB5YaIjqQ5zxrU0yciFW02cMnoDk,1539
|
|
54
|
+
scikit_learn_intelex-2024.0.1.data/data/Lib/site-packages/sklearnex/spmd/__init__.py,sha256=8cxQy-oCFy1TJto0qoRf4lt98siPx2c-YV99YC-sk6s,871
|
|
55
|
+
scikit_learn_intelex-2024.0.1.data/data/Lib/site-packages/sklearnex/spmd/basic_statistics/__init__.py,sha256=NA5RGlwcp27UEeCgz0ngzYYd3MAIRpxlTy86uhM2-RE,821
|
|
56
|
+
scikit_learn_intelex-2024.0.1.data/data/Lib/site-packages/sklearnex/spmd/basic_statistics/basic_statistics.py,sha256=_dQ9mhVYxeuChATEpAmHpXDpgW3YvtK1qrG-kLr2MtI,886
|
|
57
|
+
scikit_learn_intelex-2024.0.1.data/data/Lib/site-packages/sklearnex/spmd/cluster/__init__.py,sha256=qBBfrCHh6_82EROLbu54XKk7SmmRwS1XJyCj0zwkoUw,1029
|
|
58
|
+
scikit_learn_intelex-2024.0.1.data/data/Lib/site-packages/sklearnex/spmd/cluster/dbscan.py,sha256=23YNzPhx4MZijU0md-E3ZkHpTkhUh5cmtS3loHe-KhI,1824
|
|
59
|
+
scikit_learn_intelex-2024.0.1.data/data/Lib/site-packages/sklearnex/spmd/cluster/kmeans.py,sha256=Rnb9tr9LXVto5vCAumk7ZJfa9BYYDhdD1qUWL-QK5bY,868
|
|
60
|
+
scikit_learn_intelex-2024.0.1.data/data/Lib/site-packages/sklearnex/spmd/decomposition/__init__.py,sha256=dBh0ZMIiaqdf3DKbt8FWNB2K9Iacs395m8OxaDFQg_M,784
|
|
61
|
+
scikit_learn_intelex-2024.0.1.data/data/Lib/site-packages/sklearnex/spmd/decomposition/pca.py,sha256=CUrsVD2jae-A9H8RB_emza_fe82CwnFa5PEy0fW_EZ8,871
|
|
62
|
+
scikit_learn_intelex-2024.0.1.data/data/Lib/site-packages/sklearnex/spmd/ensemble/__init__.py,sha256=B3yi7hWoVogMIiw0QRT_x5atsAFS-OO72YPLGeUQJ8M,873
|
|
63
|
+
scikit_learn_intelex-2024.0.1.data/data/Lib/site-packages/sklearnex/spmd/ensemble/forest.py,sha256=ao6lyzcxoRW-RG9xIYwtDFyM7JIjlF8wmQKpOv_oSRQ,3113
|
|
64
|
+
scikit_learn_intelex-2024.0.1.data/data/Lib/site-packages/sklearnex/spmd/linear_model/__init__.py,sha256=eCJGleo00O6c280G97i18KNmSvi6uwX7wM1ZN5JMqhw,819
|
|
65
|
+
scikit_learn_intelex-2024.0.1.data/data/Lib/site-packages/sklearnex/spmd/linear_model/linear_model.py,sha256=7QPCIQTWKBiZBTDZZbpZXi-REgxQCfRMt6rHPJAnc5E,883
|
|
66
|
+
scikit_learn_intelex-2024.0.1.data/data/Lib/site-packages/sklearnex/spmd/neighbors/__init__.py,sha256=S16sH8N_18LN_8AgC_wGK5EDSNyuN-F-gI6GVlaiWVE,906
|
|
67
|
+
scikit_learn_intelex-2024.0.1.data/data/Lib/site-packages/sklearnex/spmd/neighbors/neighbors.py,sha256=SiKAS_RVt34MUcGytBS5pHnI_5vFNxJn8jqt1MOhDh8,940
|
|
68
|
+
scikit_learn_intelex-2024.0.1.data/data/Lib/site-packages/sklearnex/svm/__init__.py,sha256=X-iZnbXkz-ulBilzsBJXKC1hDzH5E7epiQbk-LxmT88,1079
|
|
69
|
+
scikit_learn_intelex-2024.0.1.data/data/Lib/site-packages/sklearnex/svm/_common.py,sha256=Dt1Iyz1g04zOW6hn9cHa9ruzM_MHAIq0ZEEIxh5s7nI,7167
|
|
70
|
+
scikit_learn_intelex-2024.0.1.data/data/Lib/site-packages/sklearnex/svm/nusvc.py,sha256=JEITTg810wcFBLOfmGy_3VTcKVlRai2GTrNYBJEWu7E,8850
|
|
71
|
+
scikit_learn_intelex-2024.0.1.data/data/Lib/site-packages/sklearnex/svm/nusvr.py,sha256=WqIBW2ALTq1J1HEjeL_lcRJph553qWLFOkJ1gdETj7E,5124
|
|
72
|
+
scikit_learn_intelex-2024.0.1.data/data/Lib/site-packages/sklearnex/svm/svc.py,sha256=Yph6bTgqahimBSHLCod0Tywv3Nw-oFoAPD1DTHfxSuY,10132
|
|
73
|
+
scikit_learn_intelex-2024.0.1.data/data/Lib/site-packages/sklearnex/svm/svr.py,sha256=z3MDzTtbod2wt22TUzgBhK5L_XoRyNTCvG31ijl4280,5128
|
|
74
|
+
scikit_learn_intelex-2024.0.1.data/data/Lib/site-packages/sklearnex/svm/tests/test_svm.py,sha256=9_jjPNCmlGnxgt6Ga1vOauKF3wGE-KYQ4jTdZUBxNXg,4213
|
|
75
|
+
scikit_learn_intelex-2024.0.1.data/data/Lib/site-packages/sklearnex/tests/_models_info.py,sha256=xhjvnU3TvQg8J5Cih2hphWAOSsT8DnKmCyYbtwa0Qvs,4785
|
|
76
|
+
scikit_learn_intelex-2024.0.1.data/data/Lib/site-packages/sklearnex/tests/test_config.py,sha256=SnSJjxAAysISDyC3bYKSJiRHStkB9X-yjLeF11LpRog,1372
|
|
77
|
+
scikit_learn_intelex-2024.0.1.data/data/Lib/site-packages/sklearnex/tests/test_memory_usage.py,sha256=-9S5EY9Ivy6WRW18IJEY1uyJxo9073GwXHybnFrJULc,7381
|
|
78
|
+
scikit_learn_intelex-2024.0.1.data/data/Lib/site-packages/sklearnex/tests/test_monkeypatch.py,sha256=YlnYNEFNE9jUZmWSHt0JJl8hseWQmipjIvvGkhxJk6I,7586
|
|
79
|
+
scikit_learn_intelex-2024.0.1.data/data/Lib/site-packages/sklearnex/tests/test_parallel.py,sha256=bMu22noUvGiDX4oyxKIHPiOEoBP9lRQQUq6wq8ZD730,1776
|
|
80
|
+
scikit_learn_intelex-2024.0.1.data/data/Lib/site-packages/sklearnex/tests/test_patching.py,sha256=6H0Um6N5qhD5OZ875HhAcKPFXM81les5XWCCsaNyMb8,3759
|
|
81
|
+
scikit_learn_intelex-2024.0.1.data/data/Lib/site-packages/sklearnex/tests/test_run_to_run_stability_tests.py,sha256=4HDOeJruA1EDILbyQJtsHFmEXC0D1upSHuOT-KyTlEc,14008
|
|
82
|
+
scikit_learn_intelex-2024.0.1.data/data/Lib/site-packages/sklearnex/tests/utils/_launch_algorithms.py,sha256=pJT5tAW9rWvk7GT37R-B0-e8SLz8e9FSZw8yu4LWNJ4,3724
|
|
83
|
+
scikit_learn_intelex-2024.0.1.data/data/Lib/site-packages/sklearnex/utils/__init__.py,sha256=I8mbJQ3Zsm_F3sCLAhJQb7tUrG30kVsQ-wZoqA8vDdA,842
|
|
84
|
+
scikit_learn_intelex-2024.0.1.data/data/Lib/site-packages/sklearnex/utils/parallel.py,sha256=VBcS-KUdyq7XpJUN6ygmNjyWtYLroghbvCxQ8nVU3YI,2085
|
|
85
|
+
scikit_learn_intelex-2024.0.1.data/data/Lib/site-packages/sklearnex/utils/validation.py,sha256=w1MhNVEK59O5xK1wwzej9llsHXCU2yHjhcnskZseDdg,850
|
|
86
|
+
scikit_learn_intelex-2024.0.1.dist-info/LICENSE.txt,sha256=rVeK6nE7qRmAwbwjnG9ENguRsDgzEkFn5MZL2IU6QgY,10999
|
|
87
|
+
scikit_learn_intelex-2024.0.1.dist-info/METADATA,sha256=vsGdi_IiSd5Rc8B2RlsgrANFW0ktwW6fJ2Gsk0U_wP4,12448
|
|
88
|
+
scikit_learn_intelex-2024.0.1.dist-info/WHEEL,sha256=EL6xoqqjbROFcjnsV_38AkJ5UOTZv-vTn6od7mqm5rc,99
|
|
89
|
+
scikit_learn_intelex-2024.0.1.dist-info/top_level.txt,sha256=AbpHGcgLb-kRsJGnwFEktk7uzpZOCcBY74-YBdrKVGs,1
|
|
90
|
+
scikit_learn_intelex-2024.0.1.dist-info/RECORD,,
|
|
@@ -1,20 +0,0 @@
|
|
|
1
|
-
#!/usr/bin/env python
|
|
2
|
-
# ==============================================================================
|
|
3
|
-
# Copyright 2023 Intel Corporation
|
|
4
|
-
#
|
|
5
|
-
# Licensed under the Apache License, Version 2.0 (the "License");
|
|
6
|
-
# you may not use this file except in compliance with the License.
|
|
7
|
-
# You may obtain a copy of the License at
|
|
8
|
-
#
|
|
9
|
-
# http://www.apache.org/licenses/LICENSE-2.0
|
|
10
|
-
#
|
|
11
|
-
# Unless required by applicable law or agreed to in writing, software
|
|
12
|
-
# distributed under the License is distributed on an "AS IS" BASIS,
|
|
13
|
-
# WITHOUT WARRANTIES OR CONDITIONS OF ANY KIND, either express or implied.
|
|
14
|
-
# See the License for the specific language governing permissions and
|
|
15
|
-
# limitations under the License.
|
|
16
|
-
# ==============================================================================
|
|
17
|
-
|
|
18
|
-
from .forest import RandomForestClassifier, RandomForestRegressor
|
|
19
|
-
|
|
20
|
-
__all__ = ["RandomForestClassifier", "RandomForestRegressor"]
|
|
@@ -1,18 +0,0 @@
|
|
|
1
|
-
#!/usr/bin/env python
|
|
2
|
-
# ==============================================================================
|
|
3
|
-
# Copyright 2021 Intel Corporation
|
|
4
|
-
#
|
|
5
|
-
# Licensed under the Apache License, Version 2.0 (the "License");
|
|
6
|
-
# you may not use this file except in compliance with the License.
|
|
7
|
-
# You may obtain a copy of the License at
|
|
8
|
-
#
|
|
9
|
-
# http://www.apache.org/licenses/LICENSE-2.0
|
|
10
|
-
#
|
|
11
|
-
# Unless required by applicable law or agreed to in writing, software
|
|
12
|
-
# distributed under the License is distributed on an "AS IS" BASIS,
|
|
13
|
-
# WITHOUT WARRANTIES OR CONDITIONS OF ANY KIND, either express or implied.
|
|
14
|
-
# See the License for the specific language governing permissions and
|
|
15
|
-
# limitations under the License.
|
|
16
|
-
# ==============================================================================
|
|
17
|
-
|
|
18
|
-
from daal4py.sklearn.ensemble import RandomForestClassifier, RandomForestRegressor
|