scikit-learn-intelex 2024.0.0__py310-none-win_amd64.whl → 2024.0.1__py310-none-win_amd64.whl

This diff represents the content of publicly available package versions that have been released to one of the supported registries. The information contained in this diff is provided for informational purposes only and reflects changes between package versions as they appear in their respective public registries.

Potentially problematic release.


This version of scikit-learn-intelex might be problematic. Click here for more details.

Files changed (99) hide show
  1. {scikit_learn_intelex-2024.0.0.data → scikit_learn_intelex-2024.0.1.data}/data/Lib/site-packages/sklearnex/_utils.py +2 -0
  2. {scikit_learn_intelex-2024.0.0.data → scikit_learn_intelex-2024.0.1.data}/data/Lib/site-packages/sklearnex/dispatcher.py +70 -77
  3. {scikit_learn_intelex-2024.0.0.data/data/Lib/site-packages/sklearnex/preview → scikit_learn_intelex-2024.0.1.data/data/Lib/site-packages/sklearnex}/ensemble/__init__.py +6 -2
  4. scikit_learn_intelex-2024.0.0.data/data/Lib/site-packages/sklearnex/preview/ensemble/extra_trees.py → scikit_learn_intelex-2024.0.1.data/data/Lib/site-packages/sklearnex/ensemble/_forest.py +960 -494
  5. scikit_learn_intelex-2024.0.0.data/data/Lib/site-packages/sklearnex/preview/ensemble/tests/test_preview_ensemble.py → scikit_learn_intelex-2024.0.1.data/data/Lib/site-packages/sklearnex/ensemble/tests/test_forest.py +18 -15
  6. {scikit_learn_intelex-2024.0.0.data/data/Lib/site-packages/sklearnex/preview → scikit_learn_intelex-2024.0.1.data/data/Lib/site-packages/sklearnex}/linear_model/linear.py +59 -12
  7. {scikit_learn_intelex-2024.0.0.data → scikit_learn_intelex-2024.0.1.data}/data/Lib/site-packages/sklearnex/linear_model/tests/test_linear.py +15 -4
  8. {scikit_learn_intelex-2024.0.0.data → scikit_learn_intelex-2024.0.1.data}/data/Lib/site-packages/sklearnex/preview/__init__.py +1 -1
  9. {scikit_learn_intelex-2024.0.0.data → scikit_learn_intelex-2024.0.1.data}/data/Lib/site-packages/sklearnex/preview/cluster/k_means.py +3 -1
  10. {scikit_learn_intelex-2024.0.0.data → scikit_learn_intelex-2024.0.1.data}/data/Lib/site-packages/sklearnex/spmd/ensemble/forest.py +2 -6
  11. {scikit_learn_intelex-2024.0.0.data → scikit_learn_intelex-2024.0.1.data}/data/Lib/site-packages/sklearnex/tests/test_memory_usage.py +0 -14
  12. {scikit_learn_intelex-2024.0.0.data → scikit_learn_intelex-2024.0.1.data}/data/Lib/site-packages/sklearnex/tests/test_monkeypatch.py +8 -5
  13. {scikit_learn_intelex-2024.0.0.dist-info → scikit_learn_intelex-2024.0.1.dist-info}/METADATA +34 -35
  14. scikit_learn_intelex-2024.0.1.dist-info/RECORD +90 -0
  15. scikit_learn_intelex-2024.0.0.data/data/Lib/site-packages/sklearnex/ensemble/__init__.py +0 -20
  16. scikit_learn_intelex-2024.0.0.data/data/Lib/site-packages/sklearnex/ensemble/forest.py +0 -18
  17. scikit_learn_intelex-2024.0.0.data/data/Lib/site-packages/sklearnex/ensemble/tests/test_forest.py +0 -54
  18. scikit_learn_intelex-2024.0.0.data/data/Lib/site-packages/sklearnex/linear_model/linear.py +0 -17
  19. scikit_learn_intelex-2024.0.0.data/data/Lib/site-packages/sklearnex/preview/ensemble/forest.py +0 -1557
  20. scikit_learn_intelex-2024.0.0.data/data/Lib/site-packages/sklearnex/preview/linear_model/__init__.py +0 -20
  21. scikit_learn_intelex-2024.0.0.data/data/Lib/site-packages/sklearnex/preview/linear_model/_common.py +0 -66
  22. scikit_learn_intelex-2024.0.0.data/data/Lib/site-packages/sklearnex/preview/linear_model/tests/test_preview_linear.py +0 -47
  23. scikit_learn_intelex-2024.0.0.dist-info/RECORD +0 -98
  24. {scikit_learn_intelex-2024.0.0.data → scikit_learn_intelex-2024.0.1.data}/data/Lib/site-packages/sklearnex/__init__.py +0 -0
  25. {scikit_learn_intelex-2024.0.0.data → scikit_learn_intelex-2024.0.1.data}/data/Lib/site-packages/sklearnex/__main__.py +0 -0
  26. {scikit_learn_intelex-2024.0.0.data → scikit_learn_intelex-2024.0.1.data}/data/Lib/site-packages/sklearnex/_config.py +0 -0
  27. {scikit_learn_intelex-2024.0.0.data → scikit_learn_intelex-2024.0.1.data}/data/Lib/site-packages/sklearnex/_device_offload.py +0 -0
  28. {scikit_learn_intelex-2024.0.0.data → scikit_learn_intelex-2024.0.1.data}/data/Lib/site-packages/sklearnex/basic_statistics/__init__.py +0 -0
  29. {scikit_learn_intelex-2024.0.0.data → scikit_learn_intelex-2024.0.1.data}/data/Lib/site-packages/sklearnex/basic_statistics/basic_statistics.py +0 -0
  30. {scikit_learn_intelex-2024.0.0.data → scikit_learn_intelex-2024.0.1.data}/data/Lib/site-packages/sklearnex/cluster/__init__.py +0 -0
  31. {scikit_learn_intelex-2024.0.0.data → scikit_learn_intelex-2024.0.1.data}/data/Lib/site-packages/sklearnex/cluster/dbscan.py +0 -0
  32. {scikit_learn_intelex-2024.0.0.data → scikit_learn_intelex-2024.0.1.data}/data/Lib/site-packages/sklearnex/cluster/k_means.py +0 -0
  33. {scikit_learn_intelex-2024.0.0.data → scikit_learn_intelex-2024.0.1.data}/data/Lib/site-packages/sklearnex/cluster/tests/test_dbscan.py +0 -0
  34. {scikit_learn_intelex-2024.0.0.data → scikit_learn_intelex-2024.0.1.data}/data/Lib/site-packages/sklearnex/cluster/tests/test_kmeans.py +0 -0
  35. {scikit_learn_intelex-2024.0.0.data → scikit_learn_intelex-2024.0.1.data}/data/Lib/site-packages/sklearnex/decomposition/__init__.py +0 -0
  36. {scikit_learn_intelex-2024.0.0.data → scikit_learn_intelex-2024.0.1.data}/data/Lib/site-packages/sklearnex/decomposition/pca.py +0 -0
  37. {scikit_learn_intelex-2024.0.0.data → scikit_learn_intelex-2024.0.1.data}/data/Lib/site-packages/sklearnex/decomposition/tests/test_pca.py +0 -0
  38. {scikit_learn_intelex-2024.0.0.data → scikit_learn_intelex-2024.0.1.data}/data/Lib/site-packages/sklearnex/doc/third-party-programs.txt +0 -0
  39. {scikit_learn_intelex-2024.0.0.data → scikit_learn_intelex-2024.0.1.data}/data/Lib/site-packages/sklearnex/glob/__main__.py +0 -0
  40. {scikit_learn_intelex-2024.0.0.data → scikit_learn_intelex-2024.0.1.data}/data/Lib/site-packages/sklearnex/glob/dispatcher.py +0 -0
  41. {scikit_learn_intelex-2024.0.0.data → scikit_learn_intelex-2024.0.1.data}/data/Lib/site-packages/sklearnex/linear_model/__init__.py +0 -0
  42. {scikit_learn_intelex-2024.0.0.data → scikit_learn_intelex-2024.0.1.data}/data/Lib/site-packages/sklearnex/linear_model/coordinate_descent.py +0 -0
  43. {scikit_learn_intelex-2024.0.0.data → scikit_learn_intelex-2024.0.1.data}/data/Lib/site-packages/sklearnex/linear_model/logistic_path.py +0 -0
  44. {scikit_learn_intelex-2024.0.0.data → scikit_learn_intelex-2024.0.1.data}/data/Lib/site-packages/sklearnex/linear_model/ridge.py +0 -0
  45. {scikit_learn_intelex-2024.0.0.data → scikit_learn_intelex-2024.0.1.data}/data/Lib/site-packages/sklearnex/linear_model/tests/test_logreg.py +0 -0
  46. {scikit_learn_intelex-2024.0.0.data → scikit_learn_intelex-2024.0.1.data}/data/Lib/site-packages/sklearnex/manifold/__init__.py +0 -0
  47. {scikit_learn_intelex-2024.0.0.data → scikit_learn_intelex-2024.0.1.data}/data/Lib/site-packages/sklearnex/manifold/t_sne.py +0 -0
  48. {scikit_learn_intelex-2024.0.0.data → scikit_learn_intelex-2024.0.1.data}/data/Lib/site-packages/sklearnex/manifold/tests/test_tsne.py +0 -0
  49. {scikit_learn_intelex-2024.0.0.data → scikit_learn_intelex-2024.0.1.data}/data/Lib/site-packages/sklearnex/metrics/__init__.py +0 -0
  50. {scikit_learn_intelex-2024.0.0.data → scikit_learn_intelex-2024.0.1.data}/data/Lib/site-packages/sklearnex/metrics/pairwise.py +0 -0
  51. {scikit_learn_intelex-2024.0.0.data → scikit_learn_intelex-2024.0.1.data}/data/Lib/site-packages/sklearnex/metrics/ranking.py +0 -0
  52. {scikit_learn_intelex-2024.0.0.data → scikit_learn_intelex-2024.0.1.data}/data/Lib/site-packages/sklearnex/metrics/tests/test_metrics.py +0 -0
  53. {scikit_learn_intelex-2024.0.0.data → scikit_learn_intelex-2024.0.1.data}/data/Lib/site-packages/sklearnex/model_selection/__init__.py +0 -0
  54. {scikit_learn_intelex-2024.0.0.data → scikit_learn_intelex-2024.0.1.data}/data/Lib/site-packages/sklearnex/model_selection/split.py +0 -0
  55. {scikit_learn_intelex-2024.0.0.data → scikit_learn_intelex-2024.0.1.data}/data/Lib/site-packages/sklearnex/model_selection/tests/test_model_selection.py +0 -0
  56. {scikit_learn_intelex-2024.0.0.data → scikit_learn_intelex-2024.0.1.data}/data/Lib/site-packages/sklearnex/neighbors/__init__.py +0 -0
  57. {scikit_learn_intelex-2024.0.0.data → scikit_learn_intelex-2024.0.1.data}/data/Lib/site-packages/sklearnex/neighbors/common.py +0 -0
  58. {scikit_learn_intelex-2024.0.0.data → scikit_learn_intelex-2024.0.1.data}/data/Lib/site-packages/sklearnex/neighbors/knn_classification.py +0 -0
  59. {scikit_learn_intelex-2024.0.0.data → scikit_learn_intelex-2024.0.1.data}/data/Lib/site-packages/sklearnex/neighbors/knn_regression.py +0 -0
  60. {scikit_learn_intelex-2024.0.0.data → scikit_learn_intelex-2024.0.1.data}/data/Lib/site-packages/sklearnex/neighbors/knn_unsupervised.py +0 -0
  61. {scikit_learn_intelex-2024.0.0.data → scikit_learn_intelex-2024.0.1.data}/data/Lib/site-packages/sklearnex/neighbors/lof.py +0 -0
  62. {scikit_learn_intelex-2024.0.0.data → scikit_learn_intelex-2024.0.1.data}/data/Lib/site-packages/sklearnex/neighbors/tests/test_neighbors.py +0 -0
  63. {scikit_learn_intelex-2024.0.0.data → scikit_learn_intelex-2024.0.1.data}/data/Lib/site-packages/sklearnex/preview/cluster/__init__.py +0 -0
  64. {scikit_learn_intelex-2024.0.0.data → scikit_learn_intelex-2024.0.1.data}/data/Lib/site-packages/sklearnex/preview/cluster/_common.py +0 -0
  65. {scikit_learn_intelex-2024.0.0.data → scikit_learn_intelex-2024.0.1.data}/data/Lib/site-packages/sklearnex/preview/decomposition/__init__.py +0 -0
  66. {scikit_learn_intelex-2024.0.0.data → scikit_learn_intelex-2024.0.1.data}/data/Lib/site-packages/sklearnex/preview/decomposition/pca.py +0 -0
  67. {scikit_learn_intelex-2024.0.0.data → scikit_learn_intelex-2024.0.1.data}/data/Lib/site-packages/sklearnex/preview/decomposition/tests/test_preview_pca.py +0 -0
  68. {scikit_learn_intelex-2024.0.0.data → scikit_learn_intelex-2024.0.1.data}/data/Lib/site-packages/sklearnex/spmd/__init__.py +0 -0
  69. {scikit_learn_intelex-2024.0.0.data → scikit_learn_intelex-2024.0.1.data}/data/Lib/site-packages/sklearnex/spmd/basic_statistics/__init__.py +0 -0
  70. {scikit_learn_intelex-2024.0.0.data → scikit_learn_intelex-2024.0.1.data}/data/Lib/site-packages/sklearnex/spmd/basic_statistics/basic_statistics.py +0 -0
  71. {scikit_learn_intelex-2024.0.0.data → scikit_learn_intelex-2024.0.1.data}/data/Lib/site-packages/sklearnex/spmd/cluster/__init__.py +0 -0
  72. {scikit_learn_intelex-2024.0.0.data → scikit_learn_intelex-2024.0.1.data}/data/Lib/site-packages/sklearnex/spmd/cluster/dbscan.py +0 -0
  73. {scikit_learn_intelex-2024.0.0.data → scikit_learn_intelex-2024.0.1.data}/data/Lib/site-packages/sklearnex/spmd/cluster/kmeans.py +0 -0
  74. {scikit_learn_intelex-2024.0.0.data → scikit_learn_intelex-2024.0.1.data}/data/Lib/site-packages/sklearnex/spmd/decomposition/__init__.py +0 -0
  75. {scikit_learn_intelex-2024.0.0.data → scikit_learn_intelex-2024.0.1.data}/data/Lib/site-packages/sklearnex/spmd/decomposition/pca.py +0 -0
  76. {scikit_learn_intelex-2024.0.0.data → scikit_learn_intelex-2024.0.1.data}/data/Lib/site-packages/sklearnex/spmd/ensemble/__init__.py +0 -0
  77. {scikit_learn_intelex-2024.0.0.data → scikit_learn_intelex-2024.0.1.data}/data/Lib/site-packages/sklearnex/spmd/linear_model/__init__.py +0 -0
  78. {scikit_learn_intelex-2024.0.0.data → scikit_learn_intelex-2024.0.1.data}/data/Lib/site-packages/sklearnex/spmd/linear_model/linear_model.py +0 -0
  79. {scikit_learn_intelex-2024.0.0.data → scikit_learn_intelex-2024.0.1.data}/data/Lib/site-packages/sklearnex/spmd/neighbors/__init__.py +0 -0
  80. {scikit_learn_intelex-2024.0.0.data → scikit_learn_intelex-2024.0.1.data}/data/Lib/site-packages/sklearnex/spmd/neighbors/neighbors.py +0 -0
  81. {scikit_learn_intelex-2024.0.0.data → scikit_learn_intelex-2024.0.1.data}/data/Lib/site-packages/sklearnex/svm/__init__.py +0 -0
  82. {scikit_learn_intelex-2024.0.0.data → scikit_learn_intelex-2024.0.1.data}/data/Lib/site-packages/sklearnex/svm/_common.py +0 -0
  83. {scikit_learn_intelex-2024.0.0.data → scikit_learn_intelex-2024.0.1.data}/data/Lib/site-packages/sklearnex/svm/nusvc.py +0 -0
  84. {scikit_learn_intelex-2024.0.0.data → scikit_learn_intelex-2024.0.1.data}/data/Lib/site-packages/sklearnex/svm/nusvr.py +0 -0
  85. {scikit_learn_intelex-2024.0.0.data → scikit_learn_intelex-2024.0.1.data}/data/Lib/site-packages/sklearnex/svm/svc.py +0 -0
  86. {scikit_learn_intelex-2024.0.0.data → scikit_learn_intelex-2024.0.1.data}/data/Lib/site-packages/sklearnex/svm/svr.py +0 -0
  87. {scikit_learn_intelex-2024.0.0.data → scikit_learn_intelex-2024.0.1.data}/data/Lib/site-packages/sklearnex/svm/tests/test_svm.py +0 -0
  88. {scikit_learn_intelex-2024.0.0.data → scikit_learn_intelex-2024.0.1.data}/data/Lib/site-packages/sklearnex/tests/_models_info.py +0 -0
  89. {scikit_learn_intelex-2024.0.0.data → scikit_learn_intelex-2024.0.1.data}/data/Lib/site-packages/sklearnex/tests/test_config.py +0 -0
  90. {scikit_learn_intelex-2024.0.0.data → scikit_learn_intelex-2024.0.1.data}/data/Lib/site-packages/sklearnex/tests/test_parallel.py +0 -0
  91. {scikit_learn_intelex-2024.0.0.data → scikit_learn_intelex-2024.0.1.data}/data/Lib/site-packages/sklearnex/tests/test_patching.py +0 -0
  92. {scikit_learn_intelex-2024.0.0.data → scikit_learn_intelex-2024.0.1.data}/data/Lib/site-packages/sklearnex/tests/test_run_to_run_stability_tests.py +0 -0
  93. {scikit_learn_intelex-2024.0.0.data → scikit_learn_intelex-2024.0.1.data}/data/Lib/site-packages/sklearnex/tests/utils/_launch_algorithms.py +0 -0
  94. {scikit_learn_intelex-2024.0.0.data → scikit_learn_intelex-2024.0.1.data}/data/Lib/site-packages/sklearnex/utils/__init__.py +0 -0
  95. {scikit_learn_intelex-2024.0.0.data → scikit_learn_intelex-2024.0.1.data}/data/Lib/site-packages/sklearnex/utils/parallel.py +0 -0
  96. {scikit_learn_intelex-2024.0.0.data → scikit_learn_intelex-2024.0.1.data}/data/Lib/site-packages/sklearnex/utils/validation.py +0 -0
  97. {scikit_learn_intelex-2024.0.0.dist-info → scikit_learn_intelex-2024.0.1.dist-info}/LICENSE.txt +0 -0
  98. {scikit_learn_intelex-2024.0.0.dist-info → scikit_learn_intelex-2024.0.1.dist-info}/WHEEL +0 -0
  99. {scikit_learn_intelex-2024.0.0.dist-info → scikit_learn_intelex-2024.0.1.dist-info}/top_level.txt +0 -0
@@ -29,7 +29,7 @@ from onedal.tests.utils._dataframes_support import (
29
29
 
30
30
  @pytest.mark.parametrize("dataframe,queue", get_dataframes_and_queues())
31
31
  def test_sklearnex_import_rf_classifier(dataframe, queue):
32
- from sklearnex.preview.ensemble import RandomForestClassifier
32
+ from sklearnex.ensemble import RandomForestClassifier
33
33
 
34
34
  X, y = make_classification(
35
35
  n_samples=1000,
@@ -42,7 +42,7 @@ def test_sklearnex_import_rf_classifier(dataframe, queue):
42
42
  X = _convert_to_dataframe(X, sycl_queue=queue, target_df=dataframe)
43
43
  y = _convert_to_dataframe(y, sycl_queue=queue, target_df=dataframe)
44
44
  rf = RandomForestClassifier(max_depth=2, random_state=0).fit(X, y)
45
- assert "sklearnex.preview" in rf.__module__
45
+ assert "sklearnex" in rf.__module__
46
46
  assert_allclose([1], _as_numpy(rf.predict([[0, 0, 0, 0]])))
47
47
 
48
48
 
@@ -52,13 +52,13 @@ def test_sklearnex_import_rf_classifier(dataframe, queue):
52
52
  "dataframe,queue", get_dataframes_and_queues(device_filter_="cpu")
53
53
  )
54
54
  def test_sklearnex_import_rf_regression(dataframe, queue):
55
- from sklearnex.preview.ensemble import RandomForestRegressor
55
+ from sklearnex.ensemble import RandomForestRegressor
56
56
 
57
57
  X, y = make_regression(n_features=4, n_informative=2, random_state=0, shuffle=False)
58
58
  X = _convert_to_dataframe(X, sycl_queue=queue, target_df=dataframe)
59
59
  y = _convert_to_dataframe(y, sycl_queue=queue, target_df=dataframe)
60
60
  rf = RandomForestRegressor(max_depth=2, random_state=0).fit(X, y)
61
- assert "sklearnex.preview" in rf.__module__
61
+ assert "sklearnex" in rf.__module__
62
62
  pred = _as_numpy(rf.predict([[0, 0, 0, 0]]))
63
63
  if daal_check_version((2024, "P", 0)):
64
64
  assert_allclose([-6.971], pred, atol=1e-2)
@@ -72,7 +72,7 @@ def test_sklearnex_import_rf_regression(dataframe, queue):
72
72
  "dataframe,queue", get_dataframes_and_queues(device_filter_="cpu")
73
73
  )
74
74
  def test_sklearnex_import_et_classifier(dataframe, queue):
75
- from sklearnex.preview.ensemble import ExtraTreesClassifier
75
+ from sklearnex.ensemble import ExtraTreesClassifier
76
76
 
77
77
  X, y = make_classification(
78
78
  n_samples=1000,
@@ -97,19 +97,22 @@ def test_sklearnex_import_et_classifier(dataframe, queue):
97
97
  "dataframe,queue", get_dataframes_and_queues(device_filter_="cpu")
98
98
  )
99
99
  def test_sklearnex_import_et_regression(dataframe, queue):
100
- from sklearnex.preview.ensemble import ExtraTreesRegressor
100
+ from sklearnex.ensemble import ExtraTreesRegressor
101
101
 
102
- X, y = make_regression(n_features=4, n_informative=2, random_state=0, shuffle=False)
102
+ X, y = make_regression(n_features=1, random_state=0, shuffle=False)
103
103
  X = _convert_to_dataframe(X, sycl_queue=queue, target_df=dataframe)
104
104
  y = _convert_to_dataframe(y, sycl_queue=queue, target_df=dataframe)
105
105
  # For the 2023.2 release, random_state is not supported
106
106
  # defaults to seed=777, although it is set to 0
107
- rf = ExtraTreesRegressor(max_depth=2, random_state=0).fit(X, y)
107
+ rf = ExtraTreesRegressor(random_state=0).fit(X, y)
108
108
  assert "sklearnex" in rf.__module__
109
- pred = _as_numpy(rf.predict([[0, 0, 0, 0]]))
110
- if daal_check_version((2024, "P", 0)):
111
- assert_allclose([5.372], pred, atol=1e-2)
112
- elif daal_check_version((2023, "P", 200)):
113
- assert_allclose([27.138], pred, atol=1e-2)
114
- else:
115
- assert_allclose([-2.826], pred, atol=1e-2)
109
+ pred = _as_numpy(
110
+ rf.predict(
111
+ [
112
+ [
113
+ 0,
114
+ ]
115
+ ]
116
+ )
117
+ )
118
+ assert_allclose([0.445], pred, atol=1e-2)
@@ -15,23 +15,61 @@
15
15
  # ===============================================================================
16
16
 
17
17
  import logging
18
+ from abc import ABC
18
19
 
19
20
  from daal4py.sklearn._utils import daal_check_version
20
21
 
22
+
23
+ def get_coef(self):
24
+ return self._coef_
25
+
26
+
27
+ def set_coef(self, value):
28
+ self._coef_ = value
29
+ if hasattr(self, "_onedal_estimator"):
30
+ self._onedal_estimator.coef_ = value
31
+ if not self._is_in_fit:
32
+ del self._onedal_estimator._onedal_model
33
+
34
+
35
+ def get_intercept(self):
36
+ return self._intercept_
37
+
38
+
39
+ def set_intercept(self, value):
40
+ self._intercept_ = value
41
+ if hasattr(self, "_onedal_estimator"):
42
+ self._onedal_estimator.intercept_ = value
43
+ if not self._is_in_fit:
44
+ del self._onedal_estimator._onedal_model
45
+
46
+
47
+ class BaseLinearRegression(ABC):
48
+ def _save_attributes(self):
49
+ self.n_features_in_ = self._onedal_estimator.n_features_in_
50
+ self.fit_status_ = 0
51
+ self._coef_ = self._onedal_estimator.coef_
52
+ self._intercept_ = self._onedal_estimator.intercept_
53
+ self._sparse = False
54
+
55
+ self.coef_ = property(get_coef, set_coef)
56
+ self.intercept_ = property(get_intercept, set_intercept)
57
+
58
+ self._is_in_fit = True
59
+ self.coef_ = self._coef_
60
+ self.intercept_ = self._intercept_
61
+ self._is_in_fit = False
62
+
63
+
21
64
  if daal_check_version((2023, "P", 100)):
22
65
  import numpy as np
23
66
  from sklearn.linear_model import LinearRegression as sklearn_LinearRegression
24
67
 
25
- from daal4py.sklearn._utils import (
26
- get_dtype,
27
- make2d,
28
- sklearn_check_version,
29
- )
68
+ from daal4py.sklearn._utils import get_dtype, make2d, sklearn_check_version
30
69
 
31
- from ..._device_offload import dispatch, wrap_output_data
32
- from ...utils.validation import _assert_all_finite
33
- from ..._utils import PatchingConditionsChain
34
- from ._common import BaseLinearRegression
70
+ from .._device_offload import dispatch, wrap_output_data
71
+ from .._utils import PatchingConditionsChain, get_patch_message
72
+ from ..utils.validation import _assert_all_finite
35
73
 
36
74
  if sklearn_check_version("1.0") and not sklearn_check_version("1.2"):
37
75
  from sklearn.linear_model._base import _deprecate_normalize
@@ -304,9 +342,18 @@ if daal_check_version((2023, "P", 100)):
304
342
  )
305
343
 
306
344
  self._initialize_onedal_estimator()
307
- self._onedal_estimator.fit(X, y, queue=queue)
345
+ try:
346
+ self._onedal_estimator.fit(X, y, queue=queue)
347
+ self._save_attributes()
348
+
349
+ except RuntimeError:
350
+ logging.getLogger("sklearnex").info(
351
+ f"{self.__class__.__name__}.fit "
352
+ + get_patch_message("sklearn_after_onedal")
353
+ )
308
354
 
309
- self._save_attributes()
355
+ del self._onedal_estimator
356
+ super().fit(X, y)
310
357
 
311
358
  def _onedal_predict(self, X, queue=None):
312
359
  X = self._validate_data(X, accept_sparse=False, reset=False)
@@ -321,6 +368,6 @@ else:
321
368
  from daal4py.sklearn.linear_model import LinearRegression
322
369
 
323
370
  logging.warning(
324
- "Preview LinearRegression requires oneDAL version >= 2023.1 "
371
+ "Sklearnex LinearRegression requires oneDAL version >= 2023.1 "
325
372
  "but it was not found"
326
373
  )
@@ -16,22 +16,33 @@
16
16
  # ===============================================================================
17
17
 
18
18
  import numpy as np
19
+ import pytest
19
20
  from numpy.testing import assert_allclose
20
21
  from sklearn.datasets import make_regression
21
22
 
22
23
  from daal4py.sklearn._utils import daal_check_version
24
+ from onedal.tests.utils._dataframes_support import (
25
+ _as_numpy,
26
+ _convert_to_dataframe,
27
+ get_dataframes_and_queues,
28
+ )
23
29
 
24
30
 
25
- def test_sklearnex_import_linear():
31
+ @pytest.mark.parametrize("dataframe,queue", get_dataframes_and_queues())
32
+ def test_sklearnex_import_linear(dataframe, queue):
26
33
  from sklearnex.linear_model import LinearRegression
27
34
 
28
35
  X = np.array([[1, 1], [1, 2], [2, 2], [2, 3]])
29
36
  y = np.dot(X, np.array([1, 2])) + 3
37
+ X = _convert_to_dataframe(X, sycl_queue=queue, target_df=dataframe)
38
+ y = _convert_to_dataframe(y, sycl_queue=queue, target_df=dataframe)
30
39
  linreg = LinearRegression().fit(X, y)
31
- assert "daal4py" in linreg.__module__
40
+ if daal_check_version((2023, "P", 100)):
41
+ assert hasattr(linreg, "_onedal_estimator")
42
+ assert "sklearnex" in linreg.__module__
32
43
  assert linreg.n_features_in_ == 2
33
- assert_allclose(linreg.intercept_, 3.0)
34
- assert_allclose(linreg.coef_, [1.0, 2.0])
44
+ assert_allclose(_as_numpy(linreg.intercept_), 3.0)
45
+ assert_allclose(_as_numpy(linreg.coef_), [1.0, 2.0])
35
46
 
36
47
 
37
48
  def test_sklearnex_import_ridge():
@@ -15,4 +15,4 @@
15
15
  # limitations under the License.
16
16
  # ==============================================================================
17
17
 
18
- __all__ = ["cluster", "decomposition", "linear_model", "ensemble"]
18
+ __all__ = ["cluster", "decomposition"]
@@ -290,7 +290,9 @@ if daal_check_version((2023, "P", 200)):
290
290
  )
291
291
 
292
292
  def _onedal_predict(self, X, queue=None):
293
- X = self._validate_data(X, accept_sparse=False, reset=False)
293
+ X = self._validate_data(
294
+ X, accept_sparse=False, reset=False, dtype=[np.float64, np.float32]
295
+ )
294
296
  if not hasattr(self, "_onedal_estimator"):
295
297
  self._initialize_onedal_estimator()
296
298
  self._onedal_estimator.cluster_centers_ = self.cluster_centers_
@@ -19,12 +19,8 @@ from abc import ABC
19
19
  from onedal.spmd.ensemble import RandomForestClassifier as onedal_RandomForestClassifier
20
20
  from onedal.spmd.ensemble import RandomForestRegressor as onedal_RandomForestRegressor
21
21
 
22
- from ...preview.ensemble.forest import (
23
- RandomForestClassifier as RandomForestClassifier_Batch,
24
- )
25
- from ...preview.ensemble.forest import (
26
- RandomForestRegressor as RandomForestRegressor_Batch,
27
- )
22
+ from ...ensemble import RandomForestClassifier as RandomForestClassifier_Batch
23
+ from ...ensemble import RandomForestRegressor as RandomForestRegressor_Batch
28
24
 
29
25
 
30
26
  class BaseForestSPMD(ABC):
@@ -31,15 +31,6 @@ from sklearnex import get_patch_map
31
31
  from sklearnex.metrics import pairwise_distances, roc_auc_score
32
32
  from sklearnex.model_selection import train_test_split
33
33
  from sklearnex.preview.decomposition import PCA as PreviewPCA
34
- from sklearnex.preview.ensemble import ExtraTreesClassifier as PreviewExtraTreesClassifier
35
- from sklearnex.preview.ensemble import ExtraTreesRegressor as PreviewExtraTreesRegressor
36
- from sklearnex.preview.ensemble import (
37
- RandomForestClassifier as PreviewRandomForestClassifier,
38
- )
39
- from sklearnex.preview.ensemble import (
40
- RandomForestRegressor as PreviewRandomForestRegressor,
41
- )
42
- from sklearnex.preview.linear_model import LinearRegression as PreviewLinearRegression
43
34
  from sklearnex.utils import _assert_all_finite
44
35
 
45
36
 
@@ -109,11 +100,6 @@ BANNED_ESTIMATORS = (
109
100
  )
110
101
  estimators = [
111
102
  PreviewPCA,
112
- PreviewLinearRegression,
113
- PreviewRandomForestClassifier,
114
- PreviewRandomForestRegressor,
115
- PreviewExtraTreesClassifier,
116
- PreviewExtraTreesRegressor,
117
103
  TrainTestSplitEstimator,
118
104
  FiniteCheckEstimator,
119
105
  CosineDistancesEstimator,
@@ -115,7 +115,7 @@ def test_unpatch_by_list_many_estimators():
115
115
  from sklearn.neighbors import KNeighborsRegressor
116
116
  from sklearn.svm import SVC
117
117
 
118
- assert RandomForestRegressor.__module__.startswith("daal4py")
118
+ assert RandomForestRegressor.__module__.startswith("sklearnex")
119
119
  assert KNeighborsRegressor.__module__.startswith(
120
120
  "daal4py"
121
121
  ) or KNeighborsRegressor.__module__.startswith("sklearnex")
@@ -174,10 +174,10 @@ def test_preview_namespace():
174
174
  assert sklearnex.dispatcher._is_preview_enabled()
175
175
 
176
176
  lr, pca, dbscan, svc, rfc = get_estimators()
177
- assert "sklearnex.preview" in rfc.__module__
177
+ assert "sklearnex" in rfc.__module__
178
178
 
179
179
  if daal_check_version((2023, "P", 100)):
180
- assert "sklearnex.preview" in lr.__module__
180
+ assert "sklearnex" in lr.__module__
181
181
  else:
182
182
  assert "daal4py" in lr.__module__
183
183
 
@@ -199,9 +199,12 @@ def test_preview_namespace():
199
199
  assert not sklearnex.dispatcher._is_preview_enabled()
200
200
 
201
201
  lr, pca, dbscan, svc, rfc = get_estimators()
202
- assert "daal4py" in lr.__module__
202
+ if daal_check_version((2023, "P", 100)):
203
+ assert "sklearnex" in lr.__module__
204
+ else:
205
+ assert "daal4py" in lr.__module__
203
206
  assert "daal4py" in pca.__module__
204
- assert "daal4py" in rfc.__module__
207
+ assert "sklearnex" in rfc.__module__
205
208
  assert "sklearnex" in dbscan.__module__
206
209
  assert "sklearnex" in svc.__module__
207
210
  sklearnex.unpatch_sklearn()
@@ -1,10 +1,10 @@
1
1
  Metadata-Version: 2.1
2
2
  Name: scikit-learn-intelex
3
- Version: 2024.0.0
3
+ Version: 2024.0.1
4
4
  Summary: Intel(R) Extension for Scikit-learn is a seamless way to speed up your Scikit-learn application.
5
5
  Home-page: https://github.com/intel/scikit-learn-intelex
6
6
  Author: Intel Corporation
7
- Author-email: scripting@intel.com
7
+ Author-email: onedal.maintainers@intel.com
8
8
  Maintainer-email: onedal.maintainers@intel.com
9
9
  License: Apache-2.0
10
10
  Project-URL: Bug Tracker, https://github.com/intel/scikit-learn-intelex/issues
@@ -18,21 +18,20 @@ Classifier: Intended Audience :: Developers
18
18
  Classifier: Intended Audience :: Other Audience
19
19
  Classifier: Intended Audience :: Science/Research
20
20
  Classifier: License :: OSI Approved :: Apache Software License
21
- Classifier: Operating System :: MacOS :: MacOS X
22
21
  Classifier: Operating System :: Microsoft :: Windows
23
22
  Classifier: Operating System :: POSIX :: Linux
24
- Classifier: Programming Language :: Python :: 3
25
- Classifier: Programming Language :: Python :: 3.6
26
- Classifier: Programming Language :: Python :: 3.7
27
23
  Classifier: Programming Language :: Python :: 3.8
28
24
  Classifier: Programming Language :: Python :: 3.9
25
+ Classifier: Programming Language :: Python :: 3.10
26
+ Classifier: Programming Language :: Python :: 3.11
27
+ Classifier: Programming Language :: Python :: 3.12
29
28
  Classifier: Topic :: Scientific/Engineering
30
29
  Classifier: Topic :: System
31
30
  Classifier: Topic :: Software Development
32
31
  Requires-Python: >=3.7
33
32
  Description-Content-Type: text/markdown
34
33
  License-File: LICENSE.txt
35
- Requires-Dist: daal4py (==2024.0.0)
34
+ Requires-Dist: daal4py (==2024.0.1)
36
35
  Requires-Dist: scikit-learn (>=0.22)
37
36
 
38
37
 
@@ -44,13 +43,13 @@ Requires-Dist: scikit-learn (>=0.22)
44
43
  [![PyPI Version](https://img.shields.io/pypi/v/scikit-learn-intelex)](https://pypi.org/project/scikit-learn-intelex/)
45
44
  [![Conda Version](https://img.shields.io/conda/vn/conda-forge/scikit-learn-intelex)](https://anaconda.org/conda-forge/scikit-learn-intelex)
46
45
 
47
- Intel(R) Extension for Scikit-learn is a seamless way to speed up your Scikit-learn application. The acceleration is achieved through the use of the Intel(R) oneAPI Data Analytics Library ([oneDAL](https://github.com/oneapi-src/oneDAL)). Patching scikit-learn makes it a well-suited machine learning framework for dealing with real-life problems.
46
+ With Intel(R) Extension for Scikit-learn you can accelerate your Scikit-learn applications and still have full conformance with all Scikit-Learn APIs and algorithms. This is a free software AI accelerator that brings over 10-100X acceleration across a variety of applications. And you do not even need to change the existing code!
47
+
48
+ The acceleration is achieved through the use of the Intel(R) oneAPI Data Analytics Library ([oneDAL](https://github.com/oneapi-src/oneDAL)). Patching scikit-learn makes it a well-suited machine learning framework for dealing with real-life problems.
48
49
 
49
50
  ⚠️Intel(R) Extension for Scikit-learn contains scikit-learn patching functionality that was originally available in [**daal4py**](https://github.com/intel/scikit-learn-intelex/tree/master/daal4py) package. All future updates for the patches will be available only in Intel(R) Extension for Scikit-learn. We recommend you to use scikit-learn-intelex package instead of daal4py.
50
51
  You can learn more about daal4py in [daal4py documentation](https://intelpython.github.io/daal4py).
51
52
 
52
- Running the latest scikit-learn test suite with Intel(R) Extension for Scikit-learn: [![CircleCI](https://circleci.com/gh/intel/scikit-learn-intelex.svg?style=svg)](https://circleci.com/gh/intel/scikit-learn-intelex)
53
-
54
53
  ## 👀 Follow us on Medium
55
54
 
56
55
  We publish blogs on Medium, so [follow us](https://medium.com/intel-analytics-software/tagged/machine-learning) to learn tips and tricks for more efficient data analysis with the help of Intel(R) Extension for Scikit-learn. Here are our latest blogs:
@@ -99,40 +98,41 @@ pip install scikit-learn-intelex
99
98
  - Anaconda Cloud from Conda-Forge channel (recommended for conda users by default)
100
99
 
101
100
  ```bash
102
- conda install scikit-learn-intelex -c conda-forge
101
+ conda config --add channels conda-forge
102
+ conda config --set channel_priority strict
103
+ conda install scikit-learn-intelex
103
104
  ```
104
105
 
105
106
  - Anaconda Cloud from Intel channel (recommended for Intel® Distribution for Python users)
106
107
 
107
108
  ```bash
108
- conda install scikit-learn-intelex -c intel
109
+ conda config --add channels intel
110
+ conda config --set channel_priority strict
111
+ conda install scikit-learn-intelex
109
112
  ```
110
113
 
111
114
  <details><summary>[Click to expand] ℹ️ Supported configurations </summary>
112
115
 
113
116
  #### 📦 PyPi channel
114
117
 
115
- | OS / Python version | **Python 3.6** | **Python 3.7** | **Python 3.8**| **Python 3.9**|
116
- | :-----------------------| :------------: | :-------------:| :------------:| :------------:|
117
- | **Linux** | [CPU, GPU] | [CPU, GPU] | [CPU, GPU] ||
118
- | **Windows** | [CPU, GPU] | [CPU, GPU] | [CPU, GPU] ||
119
- | **OsX** | [CPU] | [CPU] | [CPU] | ❌ |
118
+ | OS / Python version | **Python 3.8** | **Python 3.9** | **Python 3.10**| **Python 3.11**| **Python 3.12**|
119
+ | :-----------------------| :------------: | :-------------:| :------------: | :------------: | :------------: |
120
+ | **Linux** | [CPU, GPU] | [CPU, GPU] | [CPU, GPU] | [CPU, GPU] | [CPU, GPU] |
121
+ | **Windows** | [CPU, GPU] | [CPU, GPU] | [CPU, GPU] | [CPU, GPU] | [CPU, GPU] |
120
122
 
121
123
  #### 📦 Anaconda Cloud: Conda-Forge channel
122
124
 
123
- | OS / Python version | **Python 3.6** | **Python 3.7** | **Python 3.8**| **Python 3.9**|
124
- | :-----------------------| :------------: | :------------: | :------------:| :------------:|
125
- | **Linux** | [CPU] | [CPU] | [CPU] | [CPU] |
126
- | **Windows** | [CPU] | [CPU] | [CPU] | [CPU] |
127
- | **OsX** | [CPU] | [CPU] | [CPU] | [CPU] |
125
+ | OS / Python version | **Python 3.8** | **Python 3.9** | **Python 3.10**| **Python 3.11**| **Python 3.12**|
126
+ | :-----------------------| :------------: | :------------: | :------------: | :------------: | :------------: |
127
+ | **Linux** | [CPU] | [CPU] | [CPU] | [CPU] | [CPU] |
128
+ | **Windows** | [CPU] | [CPU] | [CPU] | [CPU] | [CPU] |
128
129
 
129
130
  #### 📦 Anaconda Cloud: Intel channel
130
131
 
131
- | OS / Python version | **Python 3.6** | **Python 3.7** | **Python 3.8**| **Python 3.9**|
132
- | :-----------------------| :------------: | :-------------:| :------------:| :------------:|
133
- | **Linux** | [CPU, GPU] | [CPU, GPU] | [CPU, GPU] | ❌ |
134
- | **Windows** | [CPU, GPU] | [CPU, GPU] | [CPU, GPU] | ❌ |
135
- | **OsX** | [CPU] | [CPU] | [CPU] | ❌ |
132
+ | OS / Python version | **Python 3.8** | **Python 3.9** | **Python 3.10**| **Python 3.11**| **Python 3.12**|
133
+ | :-----------------------| :------------: | :-------------:| :------------: | :------------: | :------------: |
134
+ | **Linux** | [CPU, GPU] | [CPU, GPU] | [CPU, GPU] | [CPU, GPU] | [CPU, GPU] |
135
+ | **Windows** | [CPU, GPU] | [CPU, GPU] | [CPU, GPU] | [CPU, GPU] | [CPU, GPU] |
136
136
 
137
137
  </details>
138
138
 
@@ -175,15 +175,15 @@ clustering = DBSCAN(eps=3, min_samples=2).fit(X)
175
175
  Intel GPU optimizations patching
176
176
  ```py
177
177
  import numpy as np
178
- from sklearnex import patch_sklearn
179
- from daal4py.oneapi import sycl_context
178
+ import dpctl
179
+ from sklearnex import patch_sklearn, config_context
180
180
  patch_sklearn()
181
181
 
182
182
  from sklearn.cluster import DBSCAN
183
183
 
184
184
  X = np.array([[1., 2.], [2., 2.], [2., 3.],
185
185
  [8., 7.], [8., 8.], [25., 80.]], dtype=np.float32)
186
- with sycl_context("gpu"):
186
+ with config_context(target_offload="gpu:0"):
187
187
  clustering = DBSCAN(eps=3, min_samples=2).fit(X)
188
188
  ```
189
189
 
@@ -201,25 +201,24 @@ Configurations:
201
201
  - With Intel® Extension for Scikit-learn enabled:
202
202
 
203
203
  ```bash
204
- python runner.py --configs configs/blogs/skl_conda_config.json report
204
+ python runner.py --configs configs/blogs/skl_conda_config.json -–report
205
205
  ```
206
206
 
207
207
  - With the original Scikit-learn:
208
208
 
209
209
  ```bash
210
- python runner.py --configs configs/blogs/skl_conda_config.json report --no-intel-optimized
210
+ python runner.py --configs configs/blogs/skl_conda_config.json -–report --no-intel-optimized
211
211
  ```
212
212
  </details>
213
213
 
214
214
  Intel(R) Extension for Scikit-learn patching affects performance of specific Scikit-learn functionality. Refer to the [list of supported algorithms and parameters](https://intel.github.io/scikit-learn-intelex/algorithms.html) for details. In cases when unsupported parameters are used, the package fallbacks into original Scikit-learn. If the patching does not cover your scenarios, [submit an issue on GitHub](https://github.com/intel/scikit-learn-intelex/issues).
215
215
 
216
- ⚠️ We support optimizations for the last four versions of scikit-learn. The latest release of Intel(R) Extension for Scikit-learn 2021.3.X supports scikit-learn 0.22.X,
217
- 0.23.X, 0.24.X and 1.0.X.
216
+ ⚠️ We support optimizations for the last four versions of scikit-learn. The latest release of scikit-learn-intelex-2024.0.X supports scikit-learn 1.0.X, 1.1.X, 1.2.X and 1.3.X.
218
217
 
219
218
  ## 📜 Intel(R) Extension for Scikit-learn verbose
220
219
 
221
220
  To find out which implementation of the algorithm is currently used (Intel(R) Extension for Scikit-learn or original Scikit-learn), set the environment variable:
222
- - On Linux and Mac OS: `export SKLEARNEX_VERBOSE=INFO`
221
+ - On Linux: `export SKLEARNEX_VERBOSE=INFO`
223
222
  - On Windows: `set SKLEARNEX_VERBOSE=INFO`
224
223
 
225
224
  For example, for DBSCAN you get one of these print statements depending on which implementation is used:
@@ -0,0 +1,90 @@
1
+ scikit_learn_intelex-2024.0.1.data/data/Lib/site-packages/sklearnex/__init__.py,sha256=tEVwU6DfbDy6ZRz-ii8lKaNvvSeACNL7ckci-Mxgk9I,1580
2
+ scikit_learn_intelex-2024.0.1.data/data/Lib/site-packages/sklearnex/__main__.py,sha256=8OjFE_Dr4GxqRHE407tvqoVlaQ3Tq7OMLoVafTuwFlg,1943
3
+ scikit_learn_intelex-2024.0.1.data/data/Lib/site-packages/sklearnex/_config.py,sha256=6WS3UuS4-0DxIJyGn7yQMosj-mGkLybLQrg3W7dED5o,3928
4
+ scikit_learn_intelex-2024.0.1.data/data/Lib/site-packages/sklearnex/_device_offload.py,sha256=J0tZqj6tfvIFonWR01PadtTLgloQk_QEfXeCoqEvJlk,7710
5
+ scikit_learn_intelex-2024.0.1.data/data/Lib/site-packages/sklearnex/_utils.py,sha256=hpPk7iIEMOUSzK6YnSNBdpJqUWD6BRPgJLZS-0R_C94,3401
6
+ scikit_learn_intelex-2024.0.1.data/data/Lib/site-packages/sklearnex/dispatcher.py,sha256=RpmYFWWxyv-FQujLxMm88nAdle0x2mw8WMl4u4Ys3D4,11797
7
+ scikit_learn_intelex-2024.0.1.data/data/Lib/site-packages/sklearnex/basic_statistics/__init__.py,sha256=vR2aU4OXaukmuNhI1BgAZNwQcjXBGqjTrxoU0zv6AsU,843
8
+ scikit_learn_intelex-2024.0.1.data/data/Lib/site-packages/sklearnex/basic_statistics/basic_statistics.py,sha256=j5jBZ3DgXjoyjCBEFfYQHyl3LgLXEWWFnNHwInThdZw,796
9
+ scikit_learn_intelex-2024.0.1.data/data/Lib/site-packages/sklearnex/cluster/__init__.py,sha256=0wLPkqPWr6O3-SaL6bshmuuLN2i61WYlnCKuTHDx2Eg,876
10
+ scikit_learn_intelex-2024.0.1.data/data/Lib/site-packages/sklearnex/cluster/dbscan.py,sha256=2wc8mi0OTsjmGGyNJViyBv_L906xGq4NscHb7IuyGbE,6625
11
+ scikit_learn_intelex-2024.0.1.data/data/Lib/site-packages/sklearnex/cluster/k_means.py,sha256=1NQNXdyBDX7XrrdUB8kuU4z2pHOSqK2TbJtRrU1sltQ,829
12
+ scikit_learn_intelex-2024.0.1.data/data/Lib/site-packages/sklearnex/cluster/tests/test_dbscan.py,sha256=N04puPOBMI0aW2w19AHI17iqyQFMeoebJNwxzcmR9qY,1487
13
+ scikit_learn_intelex-2024.0.1.data/data/Lib/site-packages/sklearnex/cluster/tests/test_kmeans.py,sha256=SOKXULDw_h0YTOnUKMJ3e5tUobdYffsnSa6-bTTzy1A,1236
14
+ scikit_learn_intelex-2024.0.1.data/data/Lib/site-packages/sklearnex/decomposition/__init__.py,sha256=iWLonuyjtG2OtGodiWdgHsylgCODZEd4T-7BynHRJlc,828
15
+ scikit_learn_intelex-2024.0.1.data/data/Lib/site-packages/sklearnex/decomposition/pca.py,sha256=JXCmMFf6MFSYMh3dej5-A6mQN8q8RMAB3LAxk1Fb4Qg,832
16
+ scikit_learn_intelex-2024.0.1.data/data/Lib/site-packages/sklearnex/decomposition/tests/test_pca.py,sha256=oYsMN7BtqfBqR1Ubsmv6it46R7KdMQWF4ozi16p0iYE,1169
17
+ scikit_learn_intelex-2024.0.1.data/data/Lib/site-packages/sklearnex/doc/third-party-programs.txt,sha256=qA1XbOqYkMRnp29p8VxXjfcH0kHE8NSO5s2heea83-8,21773
18
+ scikit_learn_intelex-2024.0.1.data/data/Lib/site-packages/sklearnex/ensemble/__init__.py,sha256=YgWzjycWS5jWcGr52fjqnnU2RJbn9yoiFgiqcLbXEf4,1058
19
+ scikit_learn_intelex-2024.0.1.data/data/Lib/site-packages/sklearnex/ensemble/_forest.py,sha256=mFf7byarVtAUGQdfDSIyvs6P4cj9w2tDVHjnUiKke3g,69905
20
+ scikit_learn_intelex-2024.0.1.data/data/Lib/site-packages/sklearnex/ensemble/tests/test_forest.py,sha256=STPvCRAlxBaKl229jPF9bIZ-L9KqnwK_6rthUg3uyi0,4539
21
+ scikit_learn_intelex-2024.0.1.data/data/Lib/site-packages/sklearnex/glob/__main__.py,sha256=aeuJrm_SpvNje7wNhuI8wMxt2eJFPv-sdGJoCH6YDpA,2554
22
+ scikit_learn_intelex-2024.0.1.data/data/Lib/site-packages/sklearnex/glob/dispatcher.py,sha256=xcorUAME9Iex2AgROH20GV4z2RNiXrBL4TlFkBVgnSI,3041
23
+ scikit_learn_intelex-2024.0.1.data/data/Lib/site-packages/sklearnex/linear_model/__init__.py,sha256=jTSIlC5SusySbs1ertugjQA2z_7YRcvWQFOpsVDy5tU,1123
24
+ scikit_learn_intelex-2024.0.1.data/data/Lib/site-packages/sklearnex/linear_model/coordinate_descent.py,sha256=l_8PcqbCIgVKEuV_X7nbT2kfvQlmDBKWccTo5N-3Gr4,845
25
+ scikit_learn_intelex-2024.0.1.data/data/Lib/site-packages/sklearnex/linear_model/linear.py,sha256=_9rUZzhCasNYZL8yB20eqMS_odZrlgf1uJF4m6-aYls,13488
26
+ scikit_learn_intelex-2024.0.1.data/data/Lib/site-packages/sklearnex/linear_model/logistic_path.py,sha256=tcJTtn1jaUFcAozVI9IVfPoJSzAvQ_NMavW40TEEvSc,872
27
+ scikit_learn_intelex-2024.0.1.data/data/Lib/site-packages/sklearnex/linear_model/ridge.py,sha256=XHSwzQc1k8PkYUDNGvodRG2EgsIJJYNNOXvXyf_4o5s,833
28
+ scikit_learn_intelex-2024.0.1.data/data/Lib/site-packages/sklearnex/linear_model/tests/test_linear.py,sha256=sxivv1E6O33BOphV-W3xxUs52-3k9qEFIbzCDqyV_Yo,2924
29
+ scikit_learn_intelex-2024.0.1.data/data/Lib/site-packages/sklearnex/linear_model/tests/test_logreg.py,sha256=PDJZiVu0TFCh995-7OCud3-XnraJzfHTIIp_SORfc70,1198
30
+ scikit_learn_intelex-2024.0.1.data/data/Lib/site-packages/sklearnex/manifold/__init__.py,sha256=6KtNG4ZRbJUg_Iu1AdCz4h5fM5GhMz-2e4PMOOVdKCE,832
31
+ scikit_learn_intelex-2024.0.1.data/data/Lib/site-packages/sklearnex/manifold/t_sne.py,sha256=AaHGbnbqQFX_9zxqi-lShihoB7Rs4iDDWD8pftycxtU,828
32
+ scikit_learn_intelex-2024.0.1.data/data/Lib/site-packages/sklearnex/manifold/tests/test_tsne.py,sha256=_6eB-NPHvDFRuaXIoVAOOUe0DY3u2G8dVuwivp9UHSQ,1086
33
+ scikit_learn_intelex-2024.0.1.data/data/Lib/site-packages/sklearnex/metrics/__init__.py,sha256=Ktd6l7mbJwSd7y23z90mC43NbnbJfzYZU8iN9wuBaFM,930
34
+ scikit_learn_intelex-2024.0.1.data/data/Lib/site-packages/sklearnex/metrics/pairwise.py,sha256=8zSV7GhfBI2I-4eJ15CTs2RWIXRo5B1K3fXjPQHAqMI,841
35
+ scikit_learn_intelex-2024.0.1.data/data/Lib/site-packages/sklearnex/metrics/ranking.py,sha256=9QcnfnNbQIeLLtH5GbA0XDw5LPwpx9ONDp5Pn8J964g,836
36
+ scikit_learn_intelex-2024.0.1.data/data/Lib/site-packages/sklearnex/metrics/tests/test_metrics.py,sha256=tZYVjntV60QQPRJhidWF6071rG5kZfRzYi4hMR4dK18,1602
37
+ scikit_learn_intelex-2024.0.1.data/data/Lib/site-packages/sklearnex/model_selection/__init__.py,sha256=Frgfgmn9VxIZZUDc7QuwiIegeUcVB_QzVYMbuzbFtzQ,865
38
+ scikit_learn_intelex-2024.0.1.data/data/Lib/site-packages/sklearnex/model_selection/split.py,sha256=KFcH_Khll_tPwGVKzzxJaH-4UEOPLXLQOU-sk-2wfuU,847
39
+ scikit_learn_intelex-2024.0.1.data/data/Lib/site-packages/sklearnex/model_selection/tests/test_model_selection.py,sha256=rDJrR3b8vmGuOneQZAEV6MiERN2Uzu6NpG46d__C_aY,1361
40
+ scikit_learn_intelex-2024.0.1.data/data/Lib/site-packages/sklearnex/neighbors/__init__.py,sha256=ECtrr26pXdyHiRDGZ5TNI3vMo6Lc9FV_ObjJBQeuCbw,1100
41
+ scikit_learn_intelex-2024.0.1.data/data/Lib/site-packages/sklearnex/neighbors/common.py,sha256=m6vHNHT_wnZmKf3DfkJbfnARuMtwXuI4Hs6ff6060sM,10805
42
+ scikit_learn_intelex-2024.0.1.data/data/Lib/site-packages/sklearnex/neighbors/knn_classification.py,sha256=Vv4GVTcTSwjmXIeyqRY2DLn0waOW5Vff_AA3r1vz5To,10908
43
+ scikit_learn_intelex-2024.0.1.data/data/Lib/site-packages/sklearnex/neighbors/knn_regression.py,sha256=VQBiT7izukJ30Xq6-5Aft8zGkCODyuEoBR2pdr8H8ag,9827
44
+ scikit_learn_intelex-2024.0.1.data/data/Lib/site-packages/sklearnex/neighbors/knn_unsupervised.py,sha256=NjhAzqn6L3CAICFDn4AMrSiqz5EN3Sw4zlhFZN2f7DQ,7497
45
+ scikit_learn_intelex-2024.0.1.data/data/Lib/site-packages/sklearnex/neighbors/lof.py,sha256=l6m3qk8ikDStT6KYQGd_cnw1ao4U0qYZi6cTpXCgcuo,16287
46
+ scikit_learn_intelex-2024.0.1.data/data/Lib/site-packages/sklearnex/neighbors/tests/test_neighbors.py,sha256=4DfPmbm2_95oSmjecrHqICAvUgts_DqxZzdP0c0cBSU,3588
47
+ scikit_learn_intelex-2024.0.1.data/data/Lib/site-packages/sklearnex/preview/__init__.py,sha256=wHze7Itms2CEgqDAyVsgUUkoby4V29DQ3jq7sWjM7sw,805
48
+ scikit_learn_intelex-2024.0.1.data/data/Lib/site-packages/sklearnex/preview/cluster/__init__.py,sha256=DVm0fd9GY7NPqWivFaFDRC8-RgYmx8_LGrb_9lQO5H8,816
49
+ scikit_learn_intelex-2024.0.1.data/data/Lib/site-packages/sklearnex/preview/cluster/_common.py,sha256=bgpzijxgyrAtdNCCHyCNsZ-N70KQYNwMuoCTNdUna6o,2718
50
+ scikit_learn_intelex-2024.0.1.data/data/Lib/site-packages/sklearnex/preview/cluster/k_means.py,sha256=6PHbqYkoLB9HQnwrvGRsuD65Dn9Vg_GwWPk0s5rZoZA,12908
51
+ scikit_learn_intelex-2024.0.1.data/data/Lib/site-packages/sklearnex/preview/decomposition/__init__.py,sha256=EqdGlm-BdYa7B68ANaBAJmVrpXnI2IGeEqYDJKCLmis,828
52
+ scikit_learn_intelex-2024.0.1.data/data/Lib/site-packages/sklearnex/preview/decomposition/pca.py,sha256=yzGY5jOwDPfMadB86HWpCOGklf6im39N5xeJdXVqsLw,14579
53
+ scikit_learn_intelex-2024.0.1.data/data/Lib/site-packages/sklearnex/preview/decomposition/tests/test_preview_pca.py,sha256=lTcgVUhmGq_tLmKvB5YaIjqQ5zxrU0yciFW02cMnoDk,1539
54
+ scikit_learn_intelex-2024.0.1.data/data/Lib/site-packages/sklearnex/spmd/__init__.py,sha256=8cxQy-oCFy1TJto0qoRf4lt98siPx2c-YV99YC-sk6s,871
55
+ scikit_learn_intelex-2024.0.1.data/data/Lib/site-packages/sklearnex/spmd/basic_statistics/__init__.py,sha256=NA5RGlwcp27UEeCgz0ngzYYd3MAIRpxlTy86uhM2-RE,821
56
+ scikit_learn_intelex-2024.0.1.data/data/Lib/site-packages/sklearnex/spmd/basic_statistics/basic_statistics.py,sha256=_dQ9mhVYxeuChATEpAmHpXDpgW3YvtK1qrG-kLr2MtI,886
57
+ scikit_learn_intelex-2024.0.1.data/data/Lib/site-packages/sklearnex/spmd/cluster/__init__.py,sha256=qBBfrCHh6_82EROLbu54XKk7SmmRwS1XJyCj0zwkoUw,1029
58
+ scikit_learn_intelex-2024.0.1.data/data/Lib/site-packages/sklearnex/spmd/cluster/dbscan.py,sha256=23YNzPhx4MZijU0md-E3ZkHpTkhUh5cmtS3loHe-KhI,1824
59
+ scikit_learn_intelex-2024.0.1.data/data/Lib/site-packages/sklearnex/spmd/cluster/kmeans.py,sha256=Rnb9tr9LXVto5vCAumk7ZJfa9BYYDhdD1qUWL-QK5bY,868
60
+ scikit_learn_intelex-2024.0.1.data/data/Lib/site-packages/sklearnex/spmd/decomposition/__init__.py,sha256=dBh0ZMIiaqdf3DKbt8FWNB2K9Iacs395m8OxaDFQg_M,784
61
+ scikit_learn_intelex-2024.0.1.data/data/Lib/site-packages/sklearnex/spmd/decomposition/pca.py,sha256=CUrsVD2jae-A9H8RB_emza_fe82CwnFa5PEy0fW_EZ8,871
62
+ scikit_learn_intelex-2024.0.1.data/data/Lib/site-packages/sklearnex/spmd/ensemble/__init__.py,sha256=B3yi7hWoVogMIiw0QRT_x5atsAFS-OO72YPLGeUQJ8M,873
63
+ scikit_learn_intelex-2024.0.1.data/data/Lib/site-packages/sklearnex/spmd/ensemble/forest.py,sha256=ao6lyzcxoRW-RG9xIYwtDFyM7JIjlF8wmQKpOv_oSRQ,3113
64
+ scikit_learn_intelex-2024.0.1.data/data/Lib/site-packages/sklearnex/spmd/linear_model/__init__.py,sha256=eCJGleo00O6c280G97i18KNmSvi6uwX7wM1ZN5JMqhw,819
65
+ scikit_learn_intelex-2024.0.1.data/data/Lib/site-packages/sklearnex/spmd/linear_model/linear_model.py,sha256=7QPCIQTWKBiZBTDZZbpZXi-REgxQCfRMt6rHPJAnc5E,883
66
+ scikit_learn_intelex-2024.0.1.data/data/Lib/site-packages/sklearnex/spmd/neighbors/__init__.py,sha256=S16sH8N_18LN_8AgC_wGK5EDSNyuN-F-gI6GVlaiWVE,906
67
+ scikit_learn_intelex-2024.0.1.data/data/Lib/site-packages/sklearnex/spmd/neighbors/neighbors.py,sha256=SiKAS_RVt34MUcGytBS5pHnI_5vFNxJn8jqt1MOhDh8,940
68
+ scikit_learn_intelex-2024.0.1.data/data/Lib/site-packages/sklearnex/svm/__init__.py,sha256=X-iZnbXkz-ulBilzsBJXKC1hDzH5E7epiQbk-LxmT88,1079
69
+ scikit_learn_intelex-2024.0.1.data/data/Lib/site-packages/sklearnex/svm/_common.py,sha256=Dt1Iyz1g04zOW6hn9cHa9ruzM_MHAIq0ZEEIxh5s7nI,7167
70
+ scikit_learn_intelex-2024.0.1.data/data/Lib/site-packages/sklearnex/svm/nusvc.py,sha256=JEITTg810wcFBLOfmGy_3VTcKVlRai2GTrNYBJEWu7E,8850
71
+ scikit_learn_intelex-2024.0.1.data/data/Lib/site-packages/sklearnex/svm/nusvr.py,sha256=WqIBW2ALTq1J1HEjeL_lcRJph553qWLFOkJ1gdETj7E,5124
72
+ scikit_learn_intelex-2024.0.1.data/data/Lib/site-packages/sklearnex/svm/svc.py,sha256=Yph6bTgqahimBSHLCod0Tywv3Nw-oFoAPD1DTHfxSuY,10132
73
+ scikit_learn_intelex-2024.0.1.data/data/Lib/site-packages/sklearnex/svm/svr.py,sha256=z3MDzTtbod2wt22TUzgBhK5L_XoRyNTCvG31ijl4280,5128
74
+ scikit_learn_intelex-2024.0.1.data/data/Lib/site-packages/sklearnex/svm/tests/test_svm.py,sha256=9_jjPNCmlGnxgt6Ga1vOauKF3wGE-KYQ4jTdZUBxNXg,4213
75
+ scikit_learn_intelex-2024.0.1.data/data/Lib/site-packages/sklearnex/tests/_models_info.py,sha256=xhjvnU3TvQg8J5Cih2hphWAOSsT8DnKmCyYbtwa0Qvs,4785
76
+ scikit_learn_intelex-2024.0.1.data/data/Lib/site-packages/sklearnex/tests/test_config.py,sha256=SnSJjxAAysISDyC3bYKSJiRHStkB9X-yjLeF11LpRog,1372
77
+ scikit_learn_intelex-2024.0.1.data/data/Lib/site-packages/sklearnex/tests/test_memory_usage.py,sha256=-9S5EY9Ivy6WRW18IJEY1uyJxo9073GwXHybnFrJULc,7381
78
+ scikit_learn_intelex-2024.0.1.data/data/Lib/site-packages/sklearnex/tests/test_monkeypatch.py,sha256=YlnYNEFNE9jUZmWSHt0JJl8hseWQmipjIvvGkhxJk6I,7586
79
+ scikit_learn_intelex-2024.0.1.data/data/Lib/site-packages/sklearnex/tests/test_parallel.py,sha256=bMu22noUvGiDX4oyxKIHPiOEoBP9lRQQUq6wq8ZD730,1776
80
+ scikit_learn_intelex-2024.0.1.data/data/Lib/site-packages/sklearnex/tests/test_patching.py,sha256=6H0Um6N5qhD5OZ875HhAcKPFXM81les5XWCCsaNyMb8,3759
81
+ scikit_learn_intelex-2024.0.1.data/data/Lib/site-packages/sklearnex/tests/test_run_to_run_stability_tests.py,sha256=4HDOeJruA1EDILbyQJtsHFmEXC0D1upSHuOT-KyTlEc,14008
82
+ scikit_learn_intelex-2024.0.1.data/data/Lib/site-packages/sklearnex/tests/utils/_launch_algorithms.py,sha256=pJT5tAW9rWvk7GT37R-B0-e8SLz8e9FSZw8yu4LWNJ4,3724
83
+ scikit_learn_intelex-2024.0.1.data/data/Lib/site-packages/sklearnex/utils/__init__.py,sha256=I8mbJQ3Zsm_F3sCLAhJQb7tUrG30kVsQ-wZoqA8vDdA,842
84
+ scikit_learn_intelex-2024.0.1.data/data/Lib/site-packages/sklearnex/utils/parallel.py,sha256=VBcS-KUdyq7XpJUN6ygmNjyWtYLroghbvCxQ8nVU3YI,2085
85
+ scikit_learn_intelex-2024.0.1.data/data/Lib/site-packages/sklearnex/utils/validation.py,sha256=w1MhNVEK59O5xK1wwzej9llsHXCU2yHjhcnskZseDdg,850
86
+ scikit_learn_intelex-2024.0.1.dist-info/LICENSE.txt,sha256=rVeK6nE7qRmAwbwjnG9ENguRsDgzEkFn5MZL2IU6QgY,10999
87
+ scikit_learn_intelex-2024.0.1.dist-info/METADATA,sha256=vsGdi_IiSd5Rc8B2RlsgrANFW0ktwW6fJ2Gsk0U_wP4,12448
88
+ scikit_learn_intelex-2024.0.1.dist-info/WHEEL,sha256=XoKki0KLAVNudIEzWXw23yrSNzEQs-OWXWdxw5aEl88,100
89
+ scikit_learn_intelex-2024.0.1.dist-info/top_level.txt,sha256=AbpHGcgLb-kRsJGnwFEktk7uzpZOCcBY74-YBdrKVGs,1
90
+ scikit_learn_intelex-2024.0.1.dist-info/RECORD,,
@@ -1,20 +0,0 @@
1
- #!/usr/bin/env python
2
- # ==============================================================================
3
- # Copyright 2023 Intel Corporation
4
- #
5
- # Licensed under the Apache License, Version 2.0 (the "License");
6
- # you may not use this file except in compliance with the License.
7
- # You may obtain a copy of the License at
8
- #
9
- # http://www.apache.org/licenses/LICENSE-2.0
10
- #
11
- # Unless required by applicable law or agreed to in writing, software
12
- # distributed under the License is distributed on an "AS IS" BASIS,
13
- # WITHOUT WARRANTIES OR CONDITIONS OF ANY KIND, either express or implied.
14
- # See the License for the specific language governing permissions and
15
- # limitations under the License.
16
- # ==============================================================================
17
-
18
- from .forest import RandomForestClassifier, RandomForestRegressor
19
-
20
- __all__ = ["RandomForestClassifier", "RandomForestRegressor"]
@@ -1,18 +0,0 @@
1
- #!/usr/bin/env python
2
- # ==============================================================================
3
- # Copyright 2021 Intel Corporation
4
- #
5
- # Licensed under the Apache License, Version 2.0 (the "License");
6
- # you may not use this file except in compliance with the License.
7
- # You may obtain a copy of the License at
8
- #
9
- # http://www.apache.org/licenses/LICENSE-2.0
10
- #
11
- # Unless required by applicable law or agreed to in writing, software
12
- # distributed under the License is distributed on an "AS IS" BASIS,
13
- # WITHOUT WARRANTIES OR CONDITIONS OF ANY KIND, either express or implied.
14
- # See the License for the specific language governing permissions and
15
- # limitations under the License.
16
- # ==============================================================================
17
-
18
- from daal4py.sklearn.ensemble import RandomForestClassifier, RandomForestRegressor