scikit-learn-intelex 2023.2.1__py38-none-win_amd64.whl → 2024.0.1__py38-none-win_amd64.whl
This diff represents the content of publicly available package versions that have been released to one of the supported registries. The information contained in this diff is provided for informational purposes only and reflects changes between package versions as they appear in their respective public registries.
Potentially problematic release.
This version of scikit-learn-intelex might be problematic. Click here for more details.
- {scikit_learn_intelex-2023.2.1.data → scikit_learn_intelex-2024.0.1.data}/data/Lib/site-packages/sklearnex/__init__.py +2 -2
- {scikit_learn_intelex-2023.2.1.data → scikit_learn_intelex-2024.0.1.data}/data/Lib/site-packages/sklearnex/__main__.py +16 -12
- {scikit_learn_intelex-2023.2.1.data → scikit_learn_intelex-2024.0.1.data}/data/Lib/site-packages/sklearnex/_config.py +2 -2
- {scikit_learn_intelex-2023.2.1.data → scikit_learn_intelex-2024.0.1.data}/data/Lib/site-packages/sklearnex/_device_offload.py +90 -56
- scikit_learn_intelex-2024.0.1.data/data/Lib/site-packages/sklearnex/_utils.py +95 -0
- {scikit_learn_intelex-2023.2.1.data → scikit_learn_intelex-2024.0.1.data}/data/Lib/site-packages/sklearnex/basic_statistics/__init__.py +3 -3
- {scikit_learn_intelex-2023.2.1.data → scikit_learn_intelex-2024.0.1.data}/data/Lib/site-packages/sklearnex/basic_statistics/basic_statistics.py +2 -2
- {scikit_learn_intelex-2023.2.1.data → scikit_learn_intelex-2024.0.1.data}/data/Lib/site-packages/sklearnex/cluster/__init__.py +4 -4
- scikit_learn_intelex-2024.0.1.data/data/Lib/site-packages/sklearnex/cluster/dbscan.py +187 -0
- {scikit_learn_intelex-2023.2.1.data → scikit_learn_intelex-2024.0.1.data}/data/Lib/site-packages/sklearnex/cluster/k_means.py +2 -2
- {scikit_learn_intelex-2023.2.1.data → scikit_learn_intelex-2024.0.1.data}/data/Lib/site-packages/sklearnex/cluster/tests/test_dbscan.py +12 -6
- {scikit_learn_intelex-2023.2.1.data → scikit_learn_intelex-2024.0.1.data}/data/Lib/site-packages/sklearnex/cluster/tests/test_kmeans.py +5 -5
- {scikit_learn_intelex-2023.2.1.data → scikit_learn_intelex-2024.0.1.data}/data/Lib/site-packages/sklearnex/decomposition/__init__.py +3 -3
- {scikit_learn_intelex-2023.2.1.data → scikit_learn_intelex-2024.0.1.data}/data/Lib/site-packages/sklearnex/decomposition/pca.py +2 -2
- {scikit_learn_intelex-2023.2.1.data → scikit_learn_intelex-2024.0.1.data}/data/Lib/site-packages/sklearnex/decomposition/tests/test_pca.py +5 -4
- {scikit_learn_intelex-2023.2.1.data → scikit_learn_intelex-2024.0.1.data}/data/Lib/site-packages/sklearnex/dispatcher.py +102 -72
- {scikit_learn_intelex-2023.2.1.data/data/Lib/site-packages/sklearnex/preview → scikit_learn_intelex-2024.0.1.data/data/Lib/site-packages/sklearnex}/ensemble/__init__.py +12 -4
- scikit_learn_intelex-2024.0.1.data/data/Lib/site-packages/sklearnex/ensemble/_forest.py +1947 -0
- scikit_learn_intelex-2024.0.1.data/data/Lib/site-packages/sklearnex/ensemble/tests/test_forest.py +118 -0
- {scikit_learn_intelex-2023.2.1.data → scikit_learn_intelex-2024.0.1.data}/data/Lib/site-packages/sklearnex/glob/__main__.py +31 -16
- {scikit_learn_intelex-2023.2.1.data → scikit_learn_intelex-2024.0.1.data}/data/Lib/site-packages/sklearnex/glob/dispatcher.py +21 -14
- {scikit_learn_intelex-2023.2.1.data → scikit_learn_intelex-2024.0.1.data}/data/Lib/site-packages/sklearnex/linear_model/__init__.py +10 -10
- {scikit_learn_intelex-2023.2.1.data → scikit_learn_intelex-2024.0.1.data}/data/Lib/site-packages/sklearnex/linear_model/coordinate_descent.py +2 -2
- {scikit_learn_intelex-2023.2.1.data/data/Lib/site-packages/sklearnex/preview → scikit_learn_intelex-2024.0.1.data/data/Lib/site-packages/sklearnex}/linear_model/linear.py +173 -83
- {scikit_learn_intelex-2023.2.1.data → scikit_learn_intelex-2024.0.1.data}/data/Lib/site-packages/sklearnex/linear_model/logistic_path.py +3 -3
- {scikit_learn_intelex-2023.2.1.data → scikit_learn_intelex-2024.0.1.data}/data/Lib/site-packages/sklearnex/linear_model/ridge.py +2 -2
- {scikit_learn_intelex-2023.2.1.data → scikit_learn_intelex-2024.0.1.data}/data/Lib/site-packages/sklearnex/linear_model/tests/test_linear.py +23 -7
- {scikit_learn_intelex-2023.2.1.data → scikit_learn_intelex-2024.0.1.data}/data/Lib/site-packages/sklearnex/linear_model/tests/test_logreg.py +4 -3
- {scikit_learn_intelex-2023.2.1.data → scikit_learn_intelex-2024.0.1.data}/data/Lib/site-packages/sklearnex/manifold/__init__.py +3 -3
- {scikit_learn_intelex-2023.2.1.data → scikit_learn_intelex-2024.0.1.data}/data/Lib/site-packages/sklearnex/manifold/t_sne.py +2 -2
- {scikit_learn_intelex-2023.2.1.data → scikit_learn_intelex-2024.0.1.data}/data/Lib/site-packages/sklearnex/manifold/tests/test_tsne.py +4 -3
- {scikit_learn_intelex-2023.2.1.data → scikit_learn_intelex-2024.0.1.data}/data/Lib/site-packages/sklearnex/metrics/__init__.py +5 -5
- {scikit_learn_intelex-2023.2.1.data → scikit_learn_intelex-2024.0.1.data}/data/Lib/site-packages/sklearnex/metrics/pairwise.py +2 -2
- {scikit_learn_intelex-2023.2.1.data → scikit_learn_intelex-2024.0.1.data}/data/Lib/site-packages/sklearnex/metrics/ranking.py +2 -2
- {scikit_learn_intelex-2023.2.1.data → scikit_learn_intelex-2024.0.1.data}/data/Lib/site-packages/sklearnex/metrics/tests/test_metrics.py +8 -6
- {scikit_learn_intelex-2023.2.1.data → scikit_learn_intelex-2024.0.1.data}/data/Lib/site-packages/sklearnex/model_selection/__init__.py +3 -3
- {scikit_learn_intelex-2023.2.1.data → scikit_learn_intelex-2024.0.1.data}/data/Lib/site-packages/sklearnex/model_selection/split.py +2 -2
- {scikit_learn_intelex-2023.2.1.data → scikit_learn_intelex-2024.0.1.data}/data/Lib/site-packages/sklearnex/model_selection/tests/test_model_selection.py +6 -3
- {scikit_learn_intelex-2023.2.1.data → scikit_learn_intelex-2024.0.1.data}/data/Lib/site-packages/sklearnex/neighbors/__init__.py +9 -5
- {scikit_learn_intelex-2023.2.1.data → scikit_learn_intelex-2024.0.1.data}/data/Lib/site-packages/sklearnex/neighbors/common.py +100 -77
- scikit_learn_intelex-2024.0.1.data/data/Lib/site-packages/sklearnex/neighbors/knn_classification.py +331 -0
- scikit_learn_intelex-2024.0.1.data/data/Lib/site-packages/sklearnex/neighbors/knn_regression.py +307 -0
- {scikit_learn_intelex-2023.2.1.data → scikit_learn_intelex-2024.0.1.data}/data/Lib/site-packages/sklearnex/neighbors/knn_unsupervised.py +116 -58
- {scikit_learn_intelex-2023.2.1.data → scikit_learn_intelex-2024.0.1.data}/data/Lib/site-packages/sklearnex/neighbors/lof.py +118 -56
- scikit_learn_intelex-2024.0.1.data/data/Lib/site-packages/sklearnex/neighbors/tests/test_neighbors.py +85 -0
- {scikit_learn_intelex-2023.2.1.data/data/Lib/site-packages/sklearnex/preview/decomposition → scikit_learn_intelex-2024.0.1.data/data/Lib/site-packages/sklearnex/preview}/__init__.py +18 -20
- {scikit_learn_intelex-2023.2.1.data → scikit_learn_intelex-2024.0.1.data}/data/Lib/site-packages/sklearnex/preview/cluster/__init__.py +3 -3
- {scikit_learn_intelex-2023.2.1.data → scikit_learn_intelex-2024.0.1.data}/data/Lib/site-packages/sklearnex/preview/cluster/_common.py +7 -7
- {scikit_learn_intelex-2023.2.1.data → scikit_learn_intelex-2024.0.1.data}/data/Lib/site-packages/sklearnex/preview/cluster/k_means.py +104 -73
- scikit_learn_intelex-2023.2.1.data/data/Lib/site-packages/sklearnex/linear_model/linear.py → scikit_learn_intelex-2024.0.1.data/data/Lib/site-packages/sklearnex/preview/decomposition/__init__.py +4 -1
- {scikit_learn_intelex-2023.2.1.data → scikit_learn_intelex-2024.0.1.data}/data/Lib/site-packages/sklearnex/preview/decomposition/pca.py +128 -100
- scikit_learn_intelex-2023.2.1.data/data/Lib/site-packages/sklearnex/preview/linear_model/tests/test_preview_linear.py → scikit_learn_intelex-2024.0.1.data/data/Lib/site-packages/sklearnex/preview/decomposition/tests/test_preview_pca.py +18 -16
- {scikit_learn_intelex-2023.2.1.data/data/Lib/site-packages/sklearnex/preview/linear_model → scikit_learn_intelex-2024.0.1.data/data/Lib/site-packages/sklearnex/spmd}/__init__.py +24 -22
- {scikit_learn_intelex-2023.2.1.data → scikit_learn_intelex-2024.0.1.data}/data/Lib/site-packages/sklearnex/spmd/basic_statistics/__init__.py +3 -3
- {scikit_learn_intelex-2023.2.1.data → scikit_learn_intelex-2024.0.1.data}/data/Lib/site-packages/sklearnex/spmd/basic_statistics/basic_statistics.py +2 -2
- {scikit_learn_intelex-2023.2.1.data → scikit_learn_intelex-2024.0.1.data}/data/Lib/site-packages/sklearnex/spmd/cluster/__init__.py +11 -5
- scikit_learn_intelex-2024.0.1.data/data/Lib/site-packages/sklearnex/spmd/cluster/dbscan.py +50 -0
- {scikit_learn_intelex-2023.2.1.data → scikit_learn_intelex-2024.0.1.data}/data/Lib/site-packages/sklearnex/spmd/cluster/kmeans.py +2 -2
- {scikit_learn_intelex-2023.2.1.data → scikit_learn_intelex-2024.0.1.data}/data/Lib/site-packages/sklearnex/spmd/decomposition/__init__.py +3 -3
- {scikit_learn_intelex-2023.2.1.data → scikit_learn_intelex-2024.0.1.data}/data/Lib/site-packages/sklearnex/spmd/decomposition/pca.py +2 -2
- {scikit_learn_intelex-2023.2.1.data → scikit_learn_intelex-2024.0.1.data}/data/Lib/site-packages/sklearnex/spmd/ensemble/__init__.py +3 -3
- {scikit_learn_intelex-2023.2.1.data → scikit_learn_intelex-2024.0.1.data}/data/Lib/site-packages/sklearnex/spmd/ensemble/forest.py +16 -14
- {scikit_learn_intelex-2023.2.1.data → scikit_learn_intelex-2024.0.1.data}/data/Lib/site-packages/sklearnex/spmd/linear_model/__init__.py +3 -3
- {scikit_learn_intelex-2023.2.1.data → scikit_learn_intelex-2024.0.1.data}/data/Lib/site-packages/sklearnex/spmd/linear_model/linear_model.py +2 -2
- {scikit_learn_intelex-2023.2.1.data → scikit_learn_intelex-2024.0.1.data}/data/Lib/site-packages/sklearnex/spmd/neighbors/__init__.py +3 -3
- {scikit_learn_intelex-2023.2.1.data → scikit_learn_intelex-2024.0.1.data}/data/Lib/site-packages/sklearnex/spmd/neighbors/neighbors.py +3 -3
- {scikit_learn_intelex-2023.2.1.data → scikit_learn_intelex-2024.0.1.data}/data/Lib/site-packages/sklearnex/svm/__init__.py +11 -8
- {scikit_learn_intelex-2023.2.1.data → scikit_learn_intelex-2024.0.1.data}/data/Lib/site-packages/sklearnex/svm/_common.py +56 -56
- {scikit_learn_intelex-2023.2.1.data → scikit_learn_intelex-2024.0.1.data}/data/Lib/site-packages/sklearnex/svm/nusvc.py +110 -55
- {scikit_learn_intelex-2023.2.1.data → scikit_learn_intelex-2024.0.1.data}/data/Lib/site-packages/sklearnex/svm/nusvr.py +65 -31
- {scikit_learn_intelex-2023.2.1.data → scikit_learn_intelex-2024.0.1.data}/data/Lib/site-packages/sklearnex/svm/svc.py +136 -78
- {scikit_learn_intelex-2023.2.1.data → scikit_learn_intelex-2024.0.1.data}/data/Lib/site-packages/sklearnex/svm/svr.py +65 -31
- scikit_learn_intelex-2024.0.1.data/data/Lib/site-packages/sklearnex/svm/tests/test_svm.py +102 -0
- scikit_learn_intelex-2024.0.1.data/data/Lib/site-packages/sklearnex/tests/_models_info.py +170 -0
- {scikit_learn_intelex-2023.2.1.data → scikit_learn_intelex-2024.0.1.data}/data/Lib/site-packages/sklearnex/tests/test_config.py +9 -8
- {scikit_learn_intelex-2023.2.1.data → scikit_learn_intelex-2024.0.1.data}/data/Lib/site-packages/sklearnex/tests/test_memory_usage.py +63 -69
- {scikit_learn_intelex-2023.2.1.data → scikit_learn_intelex-2024.0.1.data}/data/Lib/site-packages/sklearnex/tests/test_monkeypatch.py +55 -53
- scikit_learn_intelex-2024.0.1.data/data/Lib/site-packages/sklearnex/tests/test_parallel.py +50 -0
- {scikit_learn_intelex-2023.2.1.data → scikit_learn_intelex-2024.0.1.data}/data/Lib/site-packages/sklearnex/tests/test_patching.py +8 -7
- scikit_learn_intelex-2024.0.1.data/data/Lib/site-packages/sklearnex/tests/test_run_to_run_stability_tests.py +428 -0
- {scikit_learn_intelex-2023.2.1.data → scikit_learn_intelex-2024.0.1.data}/data/Lib/site-packages/sklearnex/tests/utils/_launch_algorithms.py +39 -39
- {scikit_learn_intelex-2023.2.1.data → scikit_learn_intelex-2024.0.1.data}/data/Lib/site-packages/sklearnex/utils/__init__.py +3 -3
- scikit_learn_intelex-2024.0.1.data/data/Lib/site-packages/sklearnex/utils/parallel.py +59 -0
- {scikit_learn_intelex-2023.2.1.data → scikit_learn_intelex-2024.0.1.data}/data/Lib/site-packages/sklearnex/utils/validation.py +2 -2
- {scikit_learn_intelex-2023.2.1.dist-info → scikit_learn_intelex-2024.0.1.dist-info}/METADATA +34 -35
- scikit_learn_intelex-2024.0.1.dist-info/RECORD +90 -0
- scikit_learn_intelex-2023.2.1.data/data/Lib/site-packages/sklearnex/_utils.py +0 -82
- scikit_learn_intelex-2023.2.1.data/data/Lib/site-packages/sklearnex/cluster/dbscan.py +0 -18
- scikit_learn_intelex-2023.2.1.data/data/Lib/site-packages/sklearnex/ensemble/__init__.py +0 -20
- scikit_learn_intelex-2023.2.1.data/data/Lib/site-packages/sklearnex/ensemble/forest.py +0 -18
- scikit_learn_intelex-2023.2.1.data/data/Lib/site-packages/sklearnex/ensemble/tests/test_forest.py +0 -46
- scikit_learn_intelex-2023.2.1.data/data/Lib/site-packages/sklearnex/neighbors/knn_classification.py +0 -228
- scikit_learn_intelex-2023.2.1.data/data/Lib/site-packages/sklearnex/neighbors/knn_regression.py +0 -213
- scikit_learn_intelex-2023.2.1.data/data/Lib/site-packages/sklearnex/neighbors/tests/test_neighbors.py +0 -57
- scikit_learn_intelex-2023.2.1.data/data/Lib/site-packages/sklearnex/preview/__init__.py +0 -18
- scikit_learn_intelex-2023.2.1.data/data/Lib/site-packages/sklearnex/preview/decomposition/tests/test_preview_pca.py +0 -28
- scikit_learn_intelex-2023.2.1.data/data/Lib/site-packages/sklearnex/preview/ensemble/extra_trees.py +0 -1261
- scikit_learn_intelex-2023.2.1.data/data/Lib/site-packages/sklearnex/preview/ensemble/forest.py +0 -1155
- scikit_learn_intelex-2023.2.1.data/data/Lib/site-packages/sklearnex/preview/ensemble/tests/test_preview_ensemble.py +0 -67
- scikit_learn_intelex-2023.2.1.data/data/Lib/site-packages/sklearnex/preview/linear_model/_common.py +0 -66
- scikit_learn_intelex-2023.2.1.data/data/Lib/site-packages/sklearnex/spmd/__init__.py +0 -23
- scikit_learn_intelex-2023.2.1.data/data/Lib/site-packages/sklearnex/svm/tests/test_svm.py +0 -63
- scikit_learn_intelex-2023.2.1.data/data/Lib/site-packages/sklearnex/tests/_models_info.py +0 -159
- scikit_learn_intelex-2023.2.1.data/data/Lib/site-packages/sklearnex/tests/test_run_to_run_stability_tests.py +0 -383
- scikit_learn_intelex-2023.2.1.dist-info/RECORD +0 -95
- {scikit_learn_intelex-2023.2.1.data → scikit_learn_intelex-2024.0.1.data}/data/Lib/site-packages/sklearnex/doc/third-party-programs.txt +0 -0
- {scikit_learn_intelex-2023.2.1.dist-info → scikit_learn_intelex-2024.0.1.dist-info}/LICENSE.txt +0 -0
- {scikit_learn_intelex-2023.2.1.dist-info → scikit_learn_intelex-2024.0.1.dist-info}/WHEEL +0 -0
- {scikit_learn_intelex-2023.2.1.dist-info → scikit_learn_intelex-2024.0.1.dist-info}/top_level.txt +0 -0
|
@@ -0,0 +1,50 @@
|
|
|
1
|
+
# ==============================================================================
|
|
2
|
+
# Copyright 2023 Intel Corporation
|
|
3
|
+
#
|
|
4
|
+
# Licensed under the Apache License, Version 2.0 (the "License");
|
|
5
|
+
# you may not use this file except in compliance with the License.
|
|
6
|
+
# You may obtain a copy of the License at
|
|
7
|
+
#
|
|
8
|
+
# http://www.apache.org/licenses/LICENSE-2.0
|
|
9
|
+
#
|
|
10
|
+
# Unless required by applicable law or agreed to in writing, software
|
|
11
|
+
# distributed under the License is distributed on an "AS IS" BASIS,
|
|
12
|
+
# WITHOUT WARRANTIES OR CONDITIONS OF ANY KIND, either express or implied.
|
|
13
|
+
# See the License for the specific language governing permissions and
|
|
14
|
+
# limitations under the License.
|
|
15
|
+
# ==============================================================================
|
|
16
|
+
import pytest
|
|
17
|
+
|
|
18
|
+
from sklearnex import config_context, patch_sklearn
|
|
19
|
+
|
|
20
|
+
patch_sklearn()
|
|
21
|
+
|
|
22
|
+
from sklearn.datasets import make_classification
|
|
23
|
+
from sklearn.ensemble import BaggingClassifier
|
|
24
|
+
from sklearn.svm import SVC
|
|
25
|
+
|
|
26
|
+
try:
|
|
27
|
+
import dpctl
|
|
28
|
+
|
|
29
|
+
dpctl_is_available = True
|
|
30
|
+
gpu_is_available = dpctl.has_gpu_devices()
|
|
31
|
+
except (ImportError, ModuleNotFoundError):
|
|
32
|
+
dpctl_is_available = False
|
|
33
|
+
|
|
34
|
+
|
|
35
|
+
@pytest.mark.skipif(
|
|
36
|
+
not dpctl_is_available or gpu_is_available,
|
|
37
|
+
reason="GPU device should not be available for this test "
|
|
38
|
+
"to see raised 'SyclQueueCreationError'. "
|
|
39
|
+
"'dpctl' module is required for test.",
|
|
40
|
+
)
|
|
41
|
+
def test_config_context_in_parallel():
|
|
42
|
+
x, y = make_classification(random_state=42)
|
|
43
|
+
try:
|
|
44
|
+
with config_context(target_offload="gpu", allow_fallback_to_host=False):
|
|
45
|
+
BaggingClassifier(SVC(), n_jobs=2).fit(x, y)
|
|
46
|
+
raise ValueError(
|
|
47
|
+
"'SyclQueueCreationError' wasn't raised " "for non-existing 'gpu' device"
|
|
48
|
+
)
|
|
49
|
+
except dpctl._sycl_queue.SyclQueueCreationError:
|
|
50
|
+
pass
|
|
@@ -1,4 +1,4 @@
|
|
|
1
|
-
#
|
|
1
|
+
# ==============================================================================
|
|
2
2
|
# Copyright 2021 Intel Corporation
|
|
3
3
|
#
|
|
4
4
|
# Licensed under the Apache License, Version 2.0 (the "License");
|
|
@@ -12,7 +12,7 @@
|
|
|
12
12
|
# WITHOUT WARRANTIES OR CONDITIONS OF ANY KIND, either express or implied.
|
|
13
13
|
# See the License for the specific language governing permissions and
|
|
14
14
|
# limitations under the License.
|
|
15
|
-
#
|
|
15
|
+
# ==============================================================================
|
|
16
16
|
|
|
17
17
|
import os
|
|
18
18
|
import pathlib
|
|
@@ -99,8 +99,11 @@ def _load_all_models(patched):
|
|
|
99
99
|
models = []
|
|
100
100
|
for patch_infos in get_patch_map().values():
|
|
101
101
|
maybe_class = getattr(patch_infos[0][0][0], patch_infos[0][0][1])
|
|
102
|
-
if
|
|
103
|
-
|
|
102
|
+
if (
|
|
103
|
+
maybe_class is not None
|
|
104
|
+
and isclass(maybe_class)
|
|
105
|
+
and issubclass(maybe_class, BaseEstimator)
|
|
106
|
+
):
|
|
104
107
|
models.append(maybe_class())
|
|
105
108
|
|
|
106
109
|
if patched:
|
|
@@ -113,9 +116,7 @@ PATCHED_MODELS = _load_all_models(patched=True)
|
|
|
113
116
|
UNPATCHED_MODELS = _load_all_models(patched=False)
|
|
114
117
|
|
|
115
118
|
|
|
116
|
-
@pytest.mark.parametrize(
|
|
117
|
-
("patched", "unpatched"), zip(PATCHED_MODELS, UNPATCHED_MODELS)
|
|
118
|
-
)
|
|
119
|
+
@pytest.mark.parametrize(("patched", "unpatched"), zip(PATCHED_MODELS, UNPATCHED_MODELS))
|
|
119
120
|
def test_is_patched_instance(patched, unpatched):
|
|
120
121
|
assert is_patched_instance(patched), f"{patched} is a patched instance"
|
|
121
122
|
assert not is_patched_instance(unpatched), f"{unpatched} is an unpatched instance"
|
|
@@ -0,0 +1,428 @@
|
|
|
1
|
+
# ===============================================================================
|
|
2
|
+
# Copyright 2020 Intel Corporation
|
|
3
|
+
#
|
|
4
|
+
# Licensed under the Apache License, Version 2.0 (the "License");
|
|
5
|
+
# you may not use this file except in compliance with the License.
|
|
6
|
+
# You may obtain a copy of the License at
|
|
7
|
+
#
|
|
8
|
+
# http://www.apache.org/licenses/LICENSE-2.0
|
|
9
|
+
#
|
|
10
|
+
# Unless required by applicable law or agreed to in writing, software
|
|
11
|
+
# distributed under the License is distributed on an "AS IS" BASIS,
|
|
12
|
+
# WITHOUT WARRANTIES OR CONDITIONS OF ANY KIND, either express or implied.
|
|
13
|
+
# See the License for the specific language governing permissions and
|
|
14
|
+
# limitations under the License.
|
|
15
|
+
# ===============================================================================
|
|
16
|
+
|
|
17
|
+
import random
|
|
18
|
+
|
|
19
|
+
import numpy as np
|
|
20
|
+
import pytest
|
|
21
|
+
|
|
22
|
+
import daal4py as d4p
|
|
23
|
+
from sklearnex import patch_sklearn
|
|
24
|
+
|
|
25
|
+
patch_sklearn()
|
|
26
|
+
|
|
27
|
+
from scipy import sparse
|
|
28
|
+
from sklearn.cluster import DBSCAN, KMeans
|
|
29
|
+
from sklearn.datasets import (
|
|
30
|
+
load_breast_cancer,
|
|
31
|
+
load_diabetes,
|
|
32
|
+
load_iris,
|
|
33
|
+
make_classification,
|
|
34
|
+
make_regression,
|
|
35
|
+
)
|
|
36
|
+
from sklearn.decomposition import PCA
|
|
37
|
+
from sklearn.ensemble import RandomForestClassifier, RandomForestRegressor
|
|
38
|
+
from sklearn.linear_model import (
|
|
39
|
+
ElasticNet,
|
|
40
|
+
Lasso,
|
|
41
|
+
LinearRegression,
|
|
42
|
+
LogisticRegression,
|
|
43
|
+
LogisticRegressionCV,
|
|
44
|
+
Ridge,
|
|
45
|
+
)
|
|
46
|
+
from sklearn.manifold import TSNE
|
|
47
|
+
from sklearn.metrics import pairwise_distances, roc_auc_score
|
|
48
|
+
from sklearn.model_selection import train_test_split
|
|
49
|
+
from sklearn.neighbors import (
|
|
50
|
+
KNeighborsClassifier,
|
|
51
|
+
KNeighborsRegressor,
|
|
52
|
+
LocalOutlierFactor,
|
|
53
|
+
NearestNeighbors,
|
|
54
|
+
)
|
|
55
|
+
from sklearn.svm import SVC, SVR, NuSVC, NuSVR
|
|
56
|
+
|
|
57
|
+
from daal4py.sklearn._utils import daal_check_version
|
|
58
|
+
|
|
59
|
+
# to reproduce errors even in CI
|
|
60
|
+
d4p.daalinit(nthreads=100)
|
|
61
|
+
|
|
62
|
+
|
|
63
|
+
def get_class_name(x):
|
|
64
|
+
return x.__class__.__name__
|
|
65
|
+
|
|
66
|
+
|
|
67
|
+
def method_processing(X, clf, methods):
|
|
68
|
+
res = []
|
|
69
|
+
name = []
|
|
70
|
+
for i in methods:
|
|
71
|
+
if i == "predict":
|
|
72
|
+
res.append(clf.predict(X))
|
|
73
|
+
name.append(get_class_name(clf) + ".predict(X)")
|
|
74
|
+
elif i == "predict_proba":
|
|
75
|
+
res.append(clf.predict_proba(X))
|
|
76
|
+
name.append(get_class_name(clf) + ".predict_proba(X)")
|
|
77
|
+
elif i == "decision_function":
|
|
78
|
+
res.append(clf.decision_function(X))
|
|
79
|
+
name.append(get_class_name(clf) + ".decision_function(X)")
|
|
80
|
+
elif i == "kneighbors":
|
|
81
|
+
dist, idx = clf.kneighbors(X)
|
|
82
|
+
res.append(dist)
|
|
83
|
+
name.append("dist")
|
|
84
|
+
res.append(idx)
|
|
85
|
+
name.append("idx")
|
|
86
|
+
elif i == "fit_predict":
|
|
87
|
+
predict = clf.fit_predict(X)
|
|
88
|
+
res.append(predict)
|
|
89
|
+
name.append(get_class_name(clf) + ".fit_predict")
|
|
90
|
+
elif i == "fit_transform":
|
|
91
|
+
res.append(clf.fit_transform(X))
|
|
92
|
+
name.append(get_class_name(clf) + ".fit_transform")
|
|
93
|
+
elif i == "transform":
|
|
94
|
+
res.append(clf.transform(X))
|
|
95
|
+
name.append(get_class_name(clf) + ".transform(X)")
|
|
96
|
+
elif i == "get_covariance":
|
|
97
|
+
res.append(clf.get_covariance())
|
|
98
|
+
name.append(get_class_name(clf) + ".get_covariance()")
|
|
99
|
+
elif i == "get_precision":
|
|
100
|
+
res.append(clf.get_precision())
|
|
101
|
+
name.append(get_class_name(clf) + ".get_precision()")
|
|
102
|
+
elif i == "score_samples":
|
|
103
|
+
res.append(clf.score_samples(X))
|
|
104
|
+
name.append(get_class_name(clf) + ".score_samples(X)")
|
|
105
|
+
return res, name
|
|
106
|
+
|
|
107
|
+
|
|
108
|
+
def func(X, Y, clf, methods):
|
|
109
|
+
clf.fit(X, Y)
|
|
110
|
+
res, name = method_processing(X, clf, methods)
|
|
111
|
+
|
|
112
|
+
for i in clf.__dict__.keys():
|
|
113
|
+
ans = getattr(clf, i)
|
|
114
|
+
if isinstance(ans, (bool, float, int, np.ndarray, np.float64)):
|
|
115
|
+
if isinstance(ans, np.ndarray) and None in ans:
|
|
116
|
+
continue
|
|
117
|
+
res.append(ans)
|
|
118
|
+
name.append(get_class_name(clf) + "." + i)
|
|
119
|
+
return res, name
|
|
120
|
+
|
|
121
|
+
|
|
122
|
+
def _run_test(model, methods, dataset):
|
|
123
|
+
datasets = []
|
|
124
|
+
if dataset in ["blobs", "classifier", "sparse"]:
|
|
125
|
+
X1, y1 = load_iris(return_X_y=True)
|
|
126
|
+
if dataset == "sparse":
|
|
127
|
+
X1 = sparse.csr_matrix(X1)
|
|
128
|
+
datasets.append((X1, y1))
|
|
129
|
+
X2, y2 = load_breast_cancer(return_X_y=True)
|
|
130
|
+
if dataset == "sparse":
|
|
131
|
+
X2 = sparse.csr_matrix(X2)
|
|
132
|
+
datasets.append((X2, y2))
|
|
133
|
+
elif dataset == "regression":
|
|
134
|
+
X1, y1 = make_regression(
|
|
135
|
+
n_samples=500, n_features=10, noise=64.0, random_state=42
|
|
136
|
+
)
|
|
137
|
+
datasets.append((X1, y1))
|
|
138
|
+
X2, y2 = load_diabetes(return_X_y=True)
|
|
139
|
+
datasets.append((X2, y2))
|
|
140
|
+
else:
|
|
141
|
+
raise ValueError("Unknown dataset type")
|
|
142
|
+
|
|
143
|
+
for X, y in datasets:
|
|
144
|
+
baseline, name = func(X, y, model, methods)
|
|
145
|
+
for i in range(10):
|
|
146
|
+
res, _ = func(X, y, model, methods)
|
|
147
|
+
|
|
148
|
+
for a, b, n in zip(res, baseline, name):
|
|
149
|
+
np.testing.assert_allclose(
|
|
150
|
+
a, b, rtol=0.0, atol=0.0, err_msg=str(n + " is incorrect")
|
|
151
|
+
)
|
|
152
|
+
|
|
153
|
+
|
|
154
|
+
MODELS_INFO = [
|
|
155
|
+
{
|
|
156
|
+
"model": KNeighborsClassifier(
|
|
157
|
+
n_neighbors=10, algorithm="brute", weights="uniform"
|
|
158
|
+
),
|
|
159
|
+
"methods": ["predict", "predict_proba", "kneighbors"],
|
|
160
|
+
"dataset": "classifier",
|
|
161
|
+
},
|
|
162
|
+
{
|
|
163
|
+
"model": KNeighborsClassifier(
|
|
164
|
+
n_neighbors=10, algorithm="brute", weights="distance"
|
|
165
|
+
),
|
|
166
|
+
"methods": ["predict", "predict_proba", "kneighbors"],
|
|
167
|
+
"dataset": "classifier",
|
|
168
|
+
},
|
|
169
|
+
{
|
|
170
|
+
"model": KNeighborsClassifier(
|
|
171
|
+
n_neighbors=10, algorithm="kd_tree", weights="uniform"
|
|
172
|
+
),
|
|
173
|
+
"methods": ["predict", "predict_proba", "kneighbors"],
|
|
174
|
+
"dataset": "classifier",
|
|
175
|
+
},
|
|
176
|
+
{
|
|
177
|
+
"model": KNeighborsClassifier(
|
|
178
|
+
n_neighbors=10, algorithm="kd_tree", weights="distance"
|
|
179
|
+
),
|
|
180
|
+
"methods": ["predict", "predict_proba", "kneighbors"],
|
|
181
|
+
"dataset": "classifier",
|
|
182
|
+
},
|
|
183
|
+
{
|
|
184
|
+
"model": KNeighborsRegressor(
|
|
185
|
+
n_neighbors=10, algorithm="kd_tree", weights="distance"
|
|
186
|
+
),
|
|
187
|
+
"methods": ["predict", "kneighbors"],
|
|
188
|
+
"dataset": "regression",
|
|
189
|
+
},
|
|
190
|
+
{
|
|
191
|
+
"model": KNeighborsRegressor(
|
|
192
|
+
n_neighbors=10, algorithm="kd_tree", weights="uniform"
|
|
193
|
+
),
|
|
194
|
+
"methods": ["predict", "kneighbors"],
|
|
195
|
+
"dataset": "regression",
|
|
196
|
+
},
|
|
197
|
+
{
|
|
198
|
+
"model": KNeighborsRegressor(
|
|
199
|
+
n_neighbors=10, algorithm="brute", weights="distance"
|
|
200
|
+
),
|
|
201
|
+
"methods": ["predict", "kneighbors"],
|
|
202
|
+
"dataset": "regression",
|
|
203
|
+
},
|
|
204
|
+
{
|
|
205
|
+
"model": KNeighborsRegressor(
|
|
206
|
+
n_neighbors=10, algorithm="brute", weights="uniform"
|
|
207
|
+
),
|
|
208
|
+
"methods": ["predict", "kneighbors"],
|
|
209
|
+
"dataset": "regression",
|
|
210
|
+
},
|
|
211
|
+
{
|
|
212
|
+
"model": NearestNeighbors(n_neighbors=10, algorithm="brute"),
|
|
213
|
+
"methods": ["kneighbors"],
|
|
214
|
+
"dataset": "blobs",
|
|
215
|
+
},
|
|
216
|
+
{
|
|
217
|
+
"model": NearestNeighbors(n_neighbors=10, algorithm="kd_tree"),
|
|
218
|
+
"methods": ["kneighbors"],
|
|
219
|
+
"dataset": "blobs",
|
|
220
|
+
},
|
|
221
|
+
{
|
|
222
|
+
"model": LocalOutlierFactor(n_neighbors=10, novelty=False),
|
|
223
|
+
"methods": ["fit_predict"],
|
|
224
|
+
"dataset": "blobs",
|
|
225
|
+
},
|
|
226
|
+
{
|
|
227
|
+
"model": LocalOutlierFactor(n_neighbors=10, novelty=True),
|
|
228
|
+
"methods": ["predict"],
|
|
229
|
+
"dataset": "blobs",
|
|
230
|
+
},
|
|
231
|
+
{
|
|
232
|
+
"model": DBSCAN(algorithm="brute", n_jobs=-1),
|
|
233
|
+
"methods": [],
|
|
234
|
+
"dataset": "blobs",
|
|
235
|
+
},
|
|
236
|
+
{
|
|
237
|
+
"model": SVC(kernel="rbf"),
|
|
238
|
+
"methods": ["predict", "decision_function"],
|
|
239
|
+
"dataset": "classifier",
|
|
240
|
+
},
|
|
241
|
+
{
|
|
242
|
+
"model": SVC(kernel="rbf"),
|
|
243
|
+
"methods": ["predict", "decision_function"],
|
|
244
|
+
"dataset": "sparse",
|
|
245
|
+
},
|
|
246
|
+
{
|
|
247
|
+
"model": NuSVC(kernel="rbf"),
|
|
248
|
+
"methods": ["predict", "decision_function"],
|
|
249
|
+
"dataset": "classifier",
|
|
250
|
+
},
|
|
251
|
+
{
|
|
252
|
+
"model": SVR(kernel="rbf"),
|
|
253
|
+
"methods": ["predict"],
|
|
254
|
+
"dataset": "regression",
|
|
255
|
+
},
|
|
256
|
+
{
|
|
257
|
+
"model": NuSVR(kernel="rbf"),
|
|
258
|
+
"methods": ["predict"],
|
|
259
|
+
"dataset": "regression",
|
|
260
|
+
},
|
|
261
|
+
{
|
|
262
|
+
"model": TSNE(random_state=0),
|
|
263
|
+
"methods": ["fit_transform"],
|
|
264
|
+
"dataset": "classifier",
|
|
265
|
+
},
|
|
266
|
+
{
|
|
267
|
+
"model": KMeans(random_state=0, init="k-means++"),
|
|
268
|
+
"methods": ["predict"],
|
|
269
|
+
"dataset": "blobs",
|
|
270
|
+
},
|
|
271
|
+
{
|
|
272
|
+
"model": KMeans(random_state=0, init="random"),
|
|
273
|
+
"methods": ["predict"],
|
|
274
|
+
"dataset": "blobs",
|
|
275
|
+
},
|
|
276
|
+
{
|
|
277
|
+
"model": KMeans(random_state=0, init="k-means++"),
|
|
278
|
+
"methods": ["predict"],
|
|
279
|
+
"dataset": "sparse",
|
|
280
|
+
},
|
|
281
|
+
{
|
|
282
|
+
"model": KMeans(random_state=0, init="random"),
|
|
283
|
+
"methods": ["predict"],
|
|
284
|
+
"dataset": "sparse",
|
|
285
|
+
},
|
|
286
|
+
{
|
|
287
|
+
"model": ElasticNet(random_state=0),
|
|
288
|
+
"methods": ["predict"],
|
|
289
|
+
"dataset": "regression",
|
|
290
|
+
},
|
|
291
|
+
{
|
|
292
|
+
"model": Lasso(random_state=0),
|
|
293
|
+
"methods": ["predict"],
|
|
294
|
+
"dataset": "regression",
|
|
295
|
+
},
|
|
296
|
+
{
|
|
297
|
+
"model": PCA(n_components=0.5, svd_solver="full", random_state=0),
|
|
298
|
+
"methods": ["transform", "get_covariance", "get_precision", "score_samples"],
|
|
299
|
+
"dataset": "classifier",
|
|
300
|
+
},
|
|
301
|
+
{
|
|
302
|
+
"model": RandomForestClassifier(
|
|
303
|
+
random_state=0, oob_score=True, max_samples=0.5, max_features="sqrt"
|
|
304
|
+
),
|
|
305
|
+
"methods": ["predict", "predict_proba"],
|
|
306
|
+
"dataset": "classifier",
|
|
307
|
+
},
|
|
308
|
+
{
|
|
309
|
+
"model": LogisticRegression(random_state=0, solver="newton-cg", max_iter=1000),
|
|
310
|
+
"methods": ["predict", "predict_proba"],
|
|
311
|
+
"dataset": "classifier",
|
|
312
|
+
},
|
|
313
|
+
{
|
|
314
|
+
"model": LogisticRegression(random_state=0, solver="lbfgs", max_iter=1000),
|
|
315
|
+
"methods": ["predict", "predict_proba"],
|
|
316
|
+
"dataset": "classifier",
|
|
317
|
+
},
|
|
318
|
+
{
|
|
319
|
+
"model": LogisticRegressionCV(
|
|
320
|
+
random_state=0, solver="newton-cg", n_jobs=-1, max_iter=1000
|
|
321
|
+
),
|
|
322
|
+
"methods": ["predict", "predict_proba"],
|
|
323
|
+
"dataset": "classifier",
|
|
324
|
+
},
|
|
325
|
+
{
|
|
326
|
+
"model": LogisticRegressionCV(
|
|
327
|
+
random_state=0, solver="lbfgs", n_jobs=-1, max_iter=1000
|
|
328
|
+
),
|
|
329
|
+
"methods": ["predict", "predict_proba"],
|
|
330
|
+
"dataset": "classifier",
|
|
331
|
+
},
|
|
332
|
+
{
|
|
333
|
+
"model": RandomForestRegressor(
|
|
334
|
+
random_state=0, oob_score=True, max_samples=0.5, max_features="sqrt"
|
|
335
|
+
),
|
|
336
|
+
"methods": ["predict"],
|
|
337
|
+
"dataset": "regression",
|
|
338
|
+
},
|
|
339
|
+
{
|
|
340
|
+
"model": LinearRegression(),
|
|
341
|
+
"methods": ["predict"],
|
|
342
|
+
"dataset": "regression",
|
|
343
|
+
},
|
|
344
|
+
{
|
|
345
|
+
"model": Ridge(random_state=0),
|
|
346
|
+
"methods": ["predict"],
|
|
347
|
+
"dataset": "regression",
|
|
348
|
+
},
|
|
349
|
+
]
|
|
350
|
+
|
|
351
|
+
TO_SKIP = [
|
|
352
|
+
"TSNE", # Absolute diff is 1e-10, potential problem in KNN,
|
|
353
|
+
# will be fixed for next release. (UPD. KNN is fixed but there is a problem
|
|
354
|
+
# with stability of stock sklearn. It is already stable in master, so, we
|
|
355
|
+
# need to wait for the next sklearn release)
|
|
356
|
+
"LogisticRegression", # Absolute diff is 1e-8, will be fixed for next release
|
|
357
|
+
"LogisticRegressionCV", # Absolute diff is 1e-10, will be fixed for next release
|
|
358
|
+
"RandomForestRegressor", # Absolute diff is 1e-14 in OOB score,
|
|
359
|
+
# will be fixed for next release
|
|
360
|
+
]
|
|
361
|
+
|
|
362
|
+
|
|
363
|
+
@pytest.mark.parametrize("model_head", MODELS_INFO)
|
|
364
|
+
def test_models(model_head):
|
|
365
|
+
stable_algos = []
|
|
366
|
+
if get_class_name(model_head["model"]) in stable_algos and daal_check_version(
|
|
367
|
+
(2021, "P", 300)
|
|
368
|
+
):
|
|
369
|
+
try:
|
|
370
|
+
TO_SKIP.remove(get_class_name(model_head["model"]))
|
|
371
|
+
except ValueError:
|
|
372
|
+
pass
|
|
373
|
+
if get_class_name(model_head["model"]) in TO_SKIP:
|
|
374
|
+
pytest.skip("Unstable", allow_module_level=False)
|
|
375
|
+
_run_test(model_head["model"], model_head["methods"], model_head["dataset"])
|
|
376
|
+
|
|
377
|
+
|
|
378
|
+
@pytest.mark.parametrize("features", range(5, 10))
|
|
379
|
+
def test_train_test_split(features):
|
|
380
|
+
X, y = make_classification(
|
|
381
|
+
n_samples=4000,
|
|
382
|
+
n_features=features,
|
|
383
|
+
n_informative=features,
|
|
384
|
+
n_redundant=0,
|
|
385
|
+
n_clusters_per_class=8,
|
|
386
|
+
random_state=0,
|
|
387
|
+
)
|
|
388
|
+
(
|
|
389
|
+
baseline_X_train,
|
|
390
|
+
baseline_X_test,
|
|
391
|
+
baseline_y_train,
|
|
392
|
+
baseline_y_test,
|
|
393
|
+
) = train_test_split(X, y, test_size=0.33, random_state=0)
|
|
394
|
+
baseline = [baseline_X_train, baseline_X_test, baseline_y_train, baseline_y_test]
|
|
395
|
+
for _ in range(10):
|
|
396
|
+
X_train, X_test, y_train, y_test = train_test_split(
|
|
397
|
+
X, y, test_size=0.33, random_state=0
|
|
398
|
+
)
|
|
399
|
+
res = [X_train, X_test, y_train, y_test]
|
|
400
|
+
for a, b in zip(res, baseline):
|
|
401
|
+
np.testing.assert_allclose(
|
|
402
|
+
a, b, rtol=0.0, atol=0.0, err_msg=str("train_test_split is incorrect")
|
|
403
|
+
)
|
|
404
|
+
|
|
405
|
+
|
|
406
|
+
@pytest.mark.parametrize("metric", ["cosine", "correlation"])
|
|
407
|
+
def test_pairwise_distances(metric):
|
|
408
|
+
X = np.random.rand(1000)
|
|
409
|
+
X = np.array(X, dtype=np.float64)
|
|
410
|
+
baseline = pairwise_distances(X.reshape(1, -1), metric=metric)
|
|
411
|
+
for _ in range(5):
|
|
412
|
+
res = pairwise_distances(X.reshape(1, -1), metric=metric)
|
|
413
|
+
for a, b in zip(res, baseline):
|
|
414
|
+
np.testing.assert_allclose(
|
|
415
|
+
a, b, rtol=0.0, atol=0.0, err_msg=str("pairwise_distances is incorrect")
|
|
416
|
+
)
|
|
417
|
+
|
|
418
|
+
|
|
419
|
+
@pytest.mark.parametrize("array_size", [100, 1000, 10000])
|
|
420
|
+
def test_roc_auc(array_size):
|
|
421
|
+
a = [random.randint(0, 1) for i in range(array_size)]
|
|
422
|
+
b = [random.randint(0, 1) for i in range(array_size)]
|
|
423
|
+
baseline = roc_auc_score(a, b)
|
|
424
|
+
for _ in range(5):
|
|
425
|
+
res = roc_auc_score(a, b)
|
|
426
|
+
np.testing.assert_allclose(
|
|
427
|
+
baseline, res, rtol=0.0, atol=0.0, err_msg=str("roc_auc is incorrect")
|
|
428
|
+
)
|
|
@@ -1,4 +1,4 @@
|
|
|
1
|
-
|
|
1
|
+
# ==============================================================================
|
|
2
2
|
# Copyright 2021 Intel Corporation
|
|
3
3
|
#
|
|
4
4
|
# Licensed under the Apache License, Version 2.0 (the "License");
|
|
@@ -12,25 +12,25 @@
|
|
|
12
12
|
# WITHOUT WARRANTIES OR CONDITIONS OF ANY KIND, either express or implied.
|
|
13
13
|
# See the License for the specific language governing permissions and
|
|
14
14
|
# limitations under the License.
|
|
15
|
-
|
|
15
|
+
# ==============================================================================
|
|
16
16
|
|
|
17
|
-
import numpy as np
|
|
18
17
|
import logging
|
|
19
18
|
import random
|
|
20
19
|
|
|
20
|
+
import numpy as np
|
|
21
|
+
|
|
21
22
|
from sklearnex import patch_sklearn
|
|
23
|
+
|
|
22
24
|
patch_sklearn()
|
|
23
25
|
|
|
26
|
+
import pathlib
|
|
27
|
+
import sys
|
|
28
|
+
|
|
29
|
+
from sklearn.datasets import load_diabetes, load_iris, make_regression
|
|
24
30
|
from sklearn.metrics import pairwise_distances, roc_auc_score
|
|
25
|
-
from sklearn.datasets import (
|
|
26
|
-
make_regression,
|
|
27
|
-
load_iris,
|
|
28
|
-
load_diabetes)
|
|
29
31
|
|
|
30
|
-
import sys
|
|
31
|
-
import pathlib
|
|
32
32
|
absolute_path = str(pathlib.Path(__file__).parent.absolute())
|
|
33
|
-
sys.path.append(absolute_path +
|
|
33
|
+
sys.path.append(absolute_path + "/../")
|
|
34
34
|
from _models_info import MODELS_INFO, TYPES
|
|
35
35
|
|
|
36
36
|
|
|
@@ -39,80 +39,80 @@ def get_class_name(x):
|
|
|
39
39
|
|
|
40
40
|
|
|
41
41
|
def generate_dataset(name, dtype, model_name):
|
|
42
|
-
if model_name ==
|
|
42
|
+
if model_name == "LinearRegression":
|
|
43
43
|
X, y = make_regression(n_samples=1000, n_features=5)
|
|
44
|
-
elif name in [
|
|
44
|
+
elif name in ["blobs", "classifier"]:
|
|
45
45
|
X, y = load_iris(return_X_y=True)
|
|
46
|
-
elif name ==
|
|
46
|
+
elif name == "regression":
|
|
47
47
|
X, y = load_diabetes(return_X_y=True)
|
|
48
48
|
else:
|
|
49
|
-
raise ValueError(
|
|
49
|
+
raise ValueError("Unknown dataset type")
|
|
50
50
|
X = np.array(X, dtype=dtype)
|
|
51
51
|
y = np.array(y, dtype=dtype)
|
|
52
52
|
return (X, y)
|
|
53
53
|
|
|
54
54
|
|
|
55
55
|
def run_patch(model_info, dtype):
|
|
56
|
-
print(get_class_name(model_info[
|
|
57
|
-
X, y = generate_dataset(
|
|
58
|
-
|
|
59
|
-
|
|
60
|
-
model = model_info[
|
|
56
|
+
print(get_class_name(model_info["model"]), dtype.__name__)
|
|
57
|
+
X, y = generate_dataset(
|
|
58
|
+
model_info["dataset"], dtype, get_class_name(model_info["model"])
|
|
59
|
+
)
|
|
60
|
+
model = model_info["model"]
|
|
61
61
|
model.fit(X, y)
|
|
62
|
-
logging.info(
|
|
63
|
-
for i in model_info[
|
|
64
|
-
if i ==
|
|
62
|
+
logging.info("fit")
|
|
63
|
+
for i in model_info["methods"]:
|
|
64
|
+
if i == "predict":
|
|
65
65
|
model.predict(X)
|
|
66
|
-
elif i ==
|
|
66
|
+
elif i == "predict_proba":
|
|
67
67
|
model.predict_proba(X)
|
|
68
|
-
elif i ==
|
|
68
|
+
elif i == "predict_log_proba":
|
|
69
69
|
model.predict_log_proba(X)
|
|
70
|
-
elif i ==
|
|
70
|
+
elif i == "decision_function":
|
|
71
71
|
model.decision_function(X)
|
|
72
|
-
elif i ==
|
|
72
|
+
elif i == "fit_predict":
|
|
73
73
|
model.fit_predict(X)
|
|
74
|
-
elif i ==
|
|
74
|
+
elif i == "transform":
|
|
75
75
|
model.transform(X)
|
|
76
|
-
elif i ==
|
|
76
|
+
elif i == "fit_transform":
|
|
77
77
|
model.fit_transform(X)
|
|
78
|
-
elif i ==
|
|
78
|
+
elif i == "kneighbors":
|
|
79
79
|
model.kneighbors(X)
|
|
80
|
-
elif i ==
|
|
80
|
+
elif i == "score":
|
|
81
81
|
model.score(X, y)
|
|
82
82
|
else:
|
|
83
|
-
raise ValueError(i +
|
|
83
|
+
raise ValueError(i + " is wrong method")
|
|
84
84
|
logging.info(i)
|
|
85
85
|
|
|
86
86
|
|
|
87
87
|
def run_algotithms():
|
|
88
88
|
for info in MODELS_INFO:
|
|
89
89
|
for t in TYPES:
|
|
90
|
-
model_name = get_class_name(info[
|
|
91
|
-
if model_name in [
|
|
90
|
+
model_name = get_class_name(info["model"])
|
|
91
|
+
if model_name in ["Ridge", "LinearRegression"] and t.__name__ == "uint32":
|
|
92
92
|
continue
|
|
93
93
|
run_patch(info, t)
|
|
94
94
|
|
|
95
95
|
|
|
96
96
|
def run_utils():
|
|
97
97
|
# pairwise_distances
|
|
98
|
-
for metric in [
|
|
98
|
+
for metric in ["cosine", "correlation"]:
|
|
99
99
|
for t in TYPES:
|
|
100
100
|
X = np.random.rand(1000)
|
|
101
101
|
X = np.array(X, dtype=t)
|
|
102
|
-
print(
|
|
102
|
+
print("pairwise_distances", t.__name__)
|
|
103
103
|
_ = pairwise_distances(X.reshape(1, -1), metric=metric)
|
|
104
|
-
logging.info(
|
|
104
|
+
logging.info("pairwise_distances")
|
|
105
105
|
# roc_auc_score
|
|
106
106
|
for t in [np.float32, np.float64]:
|
|
107
107
|
a = [random.randint(0, 1) for i in range(1000)]
|
|
108
108
|
b = [random.randint(0, 1) for i in range(1000)]
|
|
109
109
|
a = np.array(a, dtype=t)
|
|
110
110
|
b = np.array(b, dtype=t)
|
|
111
|
-
print(
|
|
111
|
+
print("roc_auc_score", t.__name__)
|
|
112
112
|
_ = roc_auc_score(a, b)
|
|
113
|
-
logging.info(
|
|
113
|
+
logging.info("roc_auc_score")
|
|
114
114
|
|
|
115
115
|
|
|
116
|
-
if __name__ ==
|
|
116
|
+
if __name__ == "__main__":
|
|
117
117
|
run_algotithms()
|
|
118
118
|
run_utils()
|
|
@@ -1,4 +1,4 @@
|
|
|
1
|
-
|
|
1
|
+
# ===============================================================================
|
|
2
2
|
# Copyright 2022 Intel Corporation
|
|
3
3
|
#
|
|
4
4
|
# Licensed under the Apache License, Version 2.0 (the "License");
|
|
@@ -12,8 +12,8 @@
|
|
|
12
12
|
# WITHOUT WARRANTIES OR CONDITIONS OF ANY KIND, either express or implied.
|
|
13
13
|
# See the License for the specific language governing permissions and
|
|
14
14
|
# limitations under the License.
|
|
15
|
-
|
|
15
|
+
# ===============================================================================
|
|
16
16
|
|
|
17
17
|
from .validation import _assert_all_finite
|
|
18
18
|
|
|
19
|
-
__all__ = [
|
|
19
|
+
__all__ = ["_assert_all_finite"]
|