scib-metrics 0.5.5__py3-none-any.whl → 0.5.6__py3-none-any.whl
This diff represents the content of publicly available package versions that have been released to one of the supported registries. The information contained in this diff is provided for informational purposes only and reflects changes between package versions as they appear in their respective public registries.
- scib_metrics/benchmark/_core.py +25 -17
- scib_metrics/metrics/_kbet.py +46 -47
- {scib_metrics-0.5.5.dist-info → scib_metrics-0.5.6.dist-info}/METADATA +1 -1
- {scib_metrics-0.5.5.dist-info → scib_metrics-0.5.6.dist-info}/RECORD +6 -6
- {scib_metrics-0.5.5.dist-info → scib_metrics-0.5.6.dist-info}/WHEEL +0 -0
- {scib_metrics-0.5.5.dist-info → scib_metrics-0.5.6.dist-info}/licenses/LICENSE +0 -0
scib_metrics/benchmark/_core.py
CHANGED
|
@@ -42,6 +42,7 @@ metric_name_cleaner = {
|
|
|
42
42
|
"clisi_knn": "cLISI",
|
|
43
43
|
"ilisi_knn": "iLISI",
|
|
44
44
|
"kbet_per_label": "KBET",
|
|
45
|
+
"bras": "BRAS",
|
|
45
46
|
"graph_connectivity": "Graph connectivity",
|
|
46
47
|
"pcr_comparison": "PCR comparison",
|
|
47
48
|
}
|
|
@@ -72,7 +73,7 @@ class BatchCorrection:
|
|
|
72
73
|
parameters, such as `X` or `labels`.
|
|
73
74
|
"""
|
|
74
75
|
|
|
75
|
-
|
|
76
|
+
bras: MetricType = True
|
|
76
77
|
ilisi_knn: MetricType = True
|
|
77
78
|
kbet_per_label: MetricType = True
|
|
78
79
|
graph_connectivity: MetricType = True
|
|
@@ -88,7 +89,7 @@ class MetricAnnDataAPI(Enum):
|
|
|
88
89
|
silhouette_label = lambda ad, fn: fn(ad.X, ad.obs[_LABELS])
|
|
89
90
|
clisi_knn = lambda ad, fn: fn(ad.uns["90_neighbor_res"], ad.obs[_LABELS])
|
|
90
91
|
graph_connectivity = lambda ad, fn: fn(ad.uns["15_neighbor_res"], ad.obs[_LABELS])
|
|
91
|
-
|
|
92
|
+
bras = lambda ad, fn: fn(ad.X, ad.obs[_LABELS], ad.obs[_BATCH])
|
|
92
93
|
pcr_comparison = lambda ad, fn: fn(ad.obsm[_X_PRE], ad.X, ad.obs[_BATCH], categorical=True)
|
|
93
94
|
ilisi_knn = lambda ad, fn: fn(ad.uns["90_neighbor_res"], ad.obs[_BATCH])
|
|
94
95
|
kbet_per_label = lambda ad, fn: fn(ad.uns["50_neighbor_res"], ad.obs[_BATCH], ad.obs[_LABELS])
|
|
@@ -156,6 +157,7 @@ class Benchmarker:
|
|
|
156
157
|
self._label_key = label_key
|
|
157
158
|
self._n_jobs = n_jobs
|
|
158
159
|
self._progress_bar = progress_bar
|
|
160
|
+
self._compute_neighbors = True
|
|
159
161
|
|
|
160
162
|
if self._bio_conservation_metrics is None and self._batch_correction_metrics is None:
|
|
161
163
|
raise ValueError("Either batch or bio metrics must be defined.")
|
|
@@ -191,19 +193,25 @@ class Benchmarker:
|
|
|
191
193
|
self._emb_adatas[emb_key].obsm[_X_PRE] = self._adata.obsm[self._pre_integrated_embedding_obsm_key]
|
|
192
194
|
|
|
193
195
|
# Compute neighbors
|
|
194
|
-
|
|
195
|
-
|
|
196
|
-
|
|
197
|
-
|
|
198
|
-
|
|
199
|
-
|
|
200
|
-
|
|
201
|
-
|
|
202
|
-
|
|
203
|
-
|
|
204
|
-
|
|
205
|
-
|
|
206
|
-
|
|
196
|
+
if self._compute_neighbors:
|
|
197
|
+
progress = self._emb_adatas.values()
|
|
198
|
+
if self._progress_bar:
|
|
199
|
+
progress = tqdm(progress, desc="Computing neighbors")
|
|
200
|
+
|
|
201
|
+
for ad in progress:
|
|
202
|
+
if neighbor_computer is not None:
|
|
203
|
+
neigh_result = neighbor_computer(ad.X, max(self._neighbor_values))
|
|
204
|
+
else:
|
|
205
|
+
neigh_result = pynndescent(
|
|
206
|
+
ad.X, n_neighbors=max(self._neighbor_values), random_state=0, n_jobs=self._n_jobs
|
|
207
|
+
)
|
|
208
|
+
for n in self._neighbor_values:
|
|
209
|
+
ad.uns[f"{n}_neighbor_res"] = neigh_result.subset_neighbors(n=n)
|
|
210
|
+
else:
|
|
211
|
+
warnings.warn(
|
|
212
|
+
"Computing Neighbors Skipped",
|
|
213
|
+
UserWarning,
|
|
214
|
+
)
|
|
207
215
|
|
|
208
216
|
self._prepared = True
|
|
209
217
|
|
|
@@ -251,7 +259,7 @@ class Benchmarker:
|
|
|
251
259
|
|
|
252
260
|
self._benchmarked = True
|
|
253
261
|
|
|
254
|
-
def get_results(self, min_max_scale: bool =
|
|
262
|
+
def get_results(self, min_max_scale: bool = False, clean_names: bool = True) -> pd.DataFrame:
|
|
255
263
|
"""Return the benchmarking results.
|
|
256
264
|
|
|
257
265
|
Parameters
|
|
@@ -291,7 +299,7 @@ class Benchmarker:
|
|
|
291
299
|
df.loc[_METRIC_TYPE, per_class_score.columns] = _AGGREGATE_SCORE
|
|
292
300
|
return df
|
|
293
301
|
|
|
294
|
-
def plot_results_table(self, min_max_scale: bool =
|
|
302
|
+
def plot_results_table(self, min_max_scale: bool = False, show: bool = True, save_dir: str | None = None) -> Table:
|
|
295
303
|
"""Plot the benchmarking results.
|
|
296
304
|
|
|
297
305
|
Parameters
|
scib_metrics/metrics/_kbet.py
CHANGED
|
@@ -138,14 +138,8 @@ def kbet_per_label(
|
|
|
138
138
|
conn_graph = X.knn_graph_connectivities
|
|
139
139
|
|
|
140
140
|
# prepare call of kBET per cluster
|
|
141
|
-
|
|
142
|
-
|
|
143
|
-
skipped = clusters[counts > 10]
|
|
144
|
-
clusters = clusters[counts <= 10]
|
|
145
|
-
kbet_scores = {"cluster": list(skipped), "kBET": [np.nan] * len(skipped)}
|
|
146
|
-
logger.info(f"{len(skipped)} clusters consist of a single batch or are too small. Skip.")
|
|
147
|
-
|
|
148
|
-
for clus in clusters:
|
|
141
|
+
kbet_scores = {"cluster": [], "kBET": []}
|
|
142
|
+
for clus in np.unique(labels):
|
|
149
143
|
# subset by label
|
|
150
144
|
mask = labels == clus
|
|
151
145
|
conn_graph_sub = conn_graph[mask, :][:, mask]
|
|
@@ -153,55 +147,60 @@ def kbet_per_label(
|
|
|
153
147
|
n_obs = conn_graph_sub.shape[0]
|
|
154
148
|
batches_sub = batches[mask]
|
|
155
149
|
|
|
156
|
-
|
|
157
|
-
|
|
158
|
-
|
|
159
|
-
|
|
160
|
-
k0 = np.floor(size_max / n_obs).astype("int")
|
|
161
|
-
|
|
162
|
-
n_comp, labs = scipy.sparse.csgraph.connected_components(conn_graph_sub, connection="strong")
|
|
163
|
-
|
|
164
|
-
if n_comp == 1: # a single component to compute kBET on
|
|
165
|
-
try:
|
|
166
|
-
diffusion_n_comps = np.min([diffusion_n_comps, n_obs - 1])
|
|
167
|
-
nn_graph_sub = diffusion_nn(conn_graph_sub, k=k0, n_comps=diffusion_n_comps)
|
|
168
|
-
# call kBET
|
|
169
|
-
score, _, _ = kbet(
|
|
170
|
-
nn_graph_sub,
|
|
171
|
-
batches=batches_sub,
|
|
172
|
-
alpha=alpha,
|
|
173
|
-
)
|
|
174
|
-
except ValueError:
|
|
175
|
-
logger.info("Diffusion distance failed. Skip.")
|
|
176
|
-
score = 0 # i.e. 100% rejection
|
|
177
|
-
|
|
150
|
+
# check if neighborhood size too small or only one batch in subset
|
|
151
|
+
if np.logical_or(n_obs < 10, len(np.unique(batches_sub)) == 1):
|
|
152
|
+
logger.info(f"{clus} consists of a single batch or is too small. Skip.")
|
|
153
|
+
score = np.nan
|
|
178
154
|
else:
|
|
179
|
-
|
|
180
|
-
|
|
181
|
-
# check
|
|
182
|
-
|
|
183
|
-
|
|
184
|
-
|
|
185
|
-
|
|
186
|
-
if len(idx_nonan) / len(labs) >= 0.75:
|
|
187
|
-
# create another subset of components, assume they are not visited in a diffusion process
|
|
188
|
-
conn_graph_sub_sub = conn_graph_sub[idx_nonan, :][:, idx_nonan]
|
|
189
|
-
conn_graph_sub_sub.sort_indices()
|
|
155
|
+
quarter_mean = np.floor(np.mean(pd.Series(batches_sub).value_counts()) / 4).astype("int")
|
|
156
|
+
k0 = np.min([70, np.max([10, quarter_mean])])
|
|
157
|
+
# check k0 for reasonability
|
|
158
|
+
if k0 * n_obs >= size_max:
|
|
159
|
+
k0 = np.floor(size_max / n_obs).astype("int")
|
|
160
|
+
|
|
161
|
+
n_comp, labs = scipy.sparse.csgraph.connected_components(conn_graph_sub, connection="strong")
|
|
190
162
|
|
|
163
|
+
if n_comp == 1: # a single component to compute kBET on
|
|
191
164
|
try:
|
|
192
|
-
diffusion_n_comps = np.min([diffusion_n_comps,
|
|
193
|
-
|
|
165
|
+
diffusion_n_comps = np.min([diffusion_n_comps, n_obs - 1])
|
|
166
|
+
nn_graph_sub = diffusion_nn(conn_graph_sub, k=k0, n_comps=diffusion_n_comps)
|
|
194
167
|
# call kBET
|
|
195
168
|
score, _, _ = kbet(
|
|
196
|
-
|
|
197
|
-
batches=batches_sub
|
|
169
|
+
nn_graph_sub,
|
|
170
|
+
batches=batches_sub,
|
|
198
171
|
alpha=alpha,
|
|
199
172
|
)
|
|
200
173
|
except ValueError:
|
|
201
174
|
logger.info("Diffusion distance failed. Skip.")
|
|
202
175
|
score = 0 # i.e. 100% rejection
|
|
203
|
-
|
|
204
|
-
|
|
176
|
+
|
|
177
|
+
else:
|
|
178
|
+
# check the number of components where kBET can be computed upon
|
|
179
|
+
comp_size = pd.Series(labs).value_counts()
|
|
180
|
+
# check which components are small
|
|
181
|
+
comp_size_thresh = 3 * k0
|
|
182
|
+
idx_nonan = np.flatnonzero(np.in1d(labs, comp_size[comp_size >= comp_size_thresh].index))
|
|
183
|
+
|
|
184
|
+
# check if 75% of all cells can be used for kBET run
|
|
185
|
+
if len(idx_nonan) / len(labs) >= 0.75:
|
|
186
|
+
# create another subset of components, assume they are not visited in a diffusion process
|
|
187
|
+
conn_graph_sub_sub = conn_graph_sub[idx_nonan, :][:, idx_nonan]
|
|
188
|
+
conn_graph_sub_sub.sort_indices()
|
|
189
|
+
|
|
190
|
+
try:
|
|
191
|
+
diffusion_n_comps = np.min([diffusion_n_comps, conn_graph_sub_sub.shape[0] - 1])
|
|
192
|
+
nn_results_sub_sub = diffusion_nn(conn_graph_sub_sub, k=k0, n_comps=diffusion_n_comps)
|
|
193
|
+
# call kBET
|
|
194
|
+
score, _, _ = kbet(
|
|
195
|
+
nn_results_sub_sub,
|
|
196
|
+
batches=batches_sub[idx_nonan],
|
|
197
|
+
alpha=alpha,
|
|
198
|
+
)
|
|
199
|
+
except ValueError:
|
|
200
|
+
logger.info("Diffusion distance failed. Skip.")
|
|
201
|
+
score = 0 # i.e. 100% rejection
|
|
202
|
+
else: # if there are too many too small connected components, set kBET score to 0
|
|
203
|
+
score = 0 # i.e. 100% rejection
|
|
205
204
|
|
|
206
205
|
kbet_scores["cluster"].append(clus)
|
|
207
206
|
kbet_scores["kBET"].append(score)
|
|
@@ -2,11 +2,11 @@ scib_metrics/__init__.py,sha256=Vejvv3Nhi8fTlIKij3CAMe484URT9quMUD9MlwVvZBg,971
|
|
|
2
2
|
scib_metrics/_settings.py,sha256=Rd4ymmbFoNTOfxnB87TU2-CFfQ4OJDZ94mJxhJTyS6A,4261
|
|
3
3
|
scib_metrics/_types.py,sha256=yp76iBm1XjWhTmU_cbufJwrgiwUz4-L3J7DV3imiAhk,201
|
|
4
4
|
scib_metrics/benchmark/__init__.py,sha256=HVUERJlRrEZV7BhpKJIsmOd1D_4XPoG2bp48AMlR3wY,130
|
|
5
|
-
scib_metrics/benchmark/_core.py,sha256=
|
|
5
|
+
scib_metrics/benchmark/_core.py,sha256=lEGxUZnjTrWHrz2T5i4txO222soTKCd5aqYbHH30rG4,16505
|
|
6
6
|
scib_metrics/metrics/__init__.py,sha256=coYlfeP21IrXdB4KG9T5K4i8C3WTl_uyX2ANu23sIkg,685
|
|
7
7
|
scib_metrics/metrics/_graph_connectivity.py,sha256=jFc10EINB4AohbgAjV7-m1SGfAgu5tBeUk9ZcuoaSwY,1076
|
|
8
8
|
scib_metrics/metrics/_isolated_labels.py,sha256=HkZKRop-I561rm_2H_23hsLFgCT36BHIyEWjzq2GYOc,2457
|
|
9
|
-
scib_metrics/metrics/_kbet.py,sha256=
|
|
9
|
+
scib_metrics/metrics/_kbet.py,sha256=JAmudHHv2EZ8l09fVTgFL_mgs99lgwHidx3zmKMEMvU,8419
|
|
10
10
|
scib_metrics/metrics/_lisi.py,sha256=Le-1qCeJP_O1gnFgxaNXhirJU6QcK1j6km4nb28Oa7k,3503
|
|
11
11
|
scib_metrics/metrics/_nmi_ari.py,sha256=kNKxPeEJKPVQXpMHFrENCTQdHLH84zdthq84xslsecg,4683
|
|
12
12
|
scib_metrics/metrics/_pcr_comparison.py,sha256=dxj8uKhsMMmD-GrryfVgJyTlzhdRu08kujd8-e9SC8g,1983
|
|
@@ -24,7 +24,7 @@ scib_metrics/utils/_pca.py,sha256=uXYwX9gZkA1bCKGpOtbe6aKgnfMoL-SK3u5q7CACXWA,42
|
|
|
24
24
|
scib_metrics/utils/_pcr.py,sha256=wORbVtZrStbhFHWNMuY5F6qajyn3jnESoc5oTT9sjXI,2466
|
|
25
25
|
scib_metrics/utils/_silhouette.py,sha256=JlxlEDW55KgrlxJSCYCukg1MBnILnFFludcjQyn9Z7Q,6644
|
|
26
26
|
scib_metrics/utils/_utils.py,sha256=CRzgQykQPK0XTM46Ukpr7nI2yE5_rIAgZbotj5ZqDJs,1999
|
|
27
|
-
scib_metrics-0.5.
|
|
28
|
-
scib_metrics-0.5.
|
|
29
|
-
scib_metrics-0.5.
|
|
30
|
-
scib_metrics-0.5.
|
|
27
|
+
scib_metrics-0.5.6.dist-info/METADATA,sha256=F_rf6lsKCIN25eA0anYEprtCbMJOSvoSTZOKFAi-uKw,8210
|
|
28
|
+
scib_metrics-0.5.6.dist-info/WHEEL,sha256=qtCwoSJWgHk21S1Kb4ihdzI2rlJ1ZKaIurTj_ngOhyQ,87
|
|
29
|
+
scib_metrics-0.5.6.dist-info/licenses/LICENSE,sha256=GRRQaq9hdMbxLTKedbegvvcbeF-Vh8UeHYIXoYUXXKM,1519
|
|
30
|
+
scib_metrics-0.5.6.dist-info/RECORD,,
|
|
File without changes
|
|
File without changes
|