schubmult 2.0.0__py3-none-any.whl
This diff represents the content of publicly available package versions that have been released to one of the supported registries. The information contained in this diff is provided for informational purposes only and reflects changes between package versions as they appear in their respective public registries.
- schubmult/__init__.py +1 -0
- schubmult/_base_argparse.py +174 -0
- schubmult/perm_lib.py +999 -0
- schubmult/sage_integration/__init__.py +25 -0
- schubmult/sage_integration/_fast_double_schubert_polynomial_ring.py +528 -0
- schubmult/sage_integration/_fast_schubert_polynomial_ring.py +356 -0
- schubmult/sage_integration/_indexing.py +44 -0
- schubmult/schubmult_double/__init__.py +18 -0
- schubmult/schubmult_double/__main__.py +5 -0
- schubmult/schubmult_double/_funcs.py +1590 -0
- schubmult/schubmult_double/_script.py +407 -0
- schubmult/schubmult_double/_vars.py +16 -0
- schubmult/schubmult_py/__init__.py +10 -0
- schubmult/schubmult_py/__main__.py +5 -0
- schubmult/schubmult_py/_funcs.py +111 -0
- schubmult/schubmult_py/_script.py +115 -0
- schubmult/schubmult_py/_vars.py +3 -0
- schubmult/schubmult_q/__init__.py +12 -0
- schubmult/schubmult_q/__main__.py +5 -0
- schubmult/schubmult_q/_funcs.py +304 -0
- schubmult/schubmult_q/_script.py +157 -0
- schubmult/schubmult_q/_vars.py +18 -0
- schubmult/schubmult_q_double/__init__.py +14 -0
- schubmult/schubmult_q_double/__main__.py +5 -0
- schubmult/schubmult_q_double/_funcs.py +507 -0
- schubmult/schubmult_q_double/_script.py +337 -0
- schubmult/schubmult_q_double/_vars.py +21 -0
- schubmult-2.0.0.dist-info/METADATA +455 -0
- schubmult-2.0.0.dist-info/RECORD +36 -0
- schubmult-2.0.0.dist-info/WHEEL +5 -0
- schubmult-2.0.0.dist-info/entry_points.txt +5 -0
- schubmult-2.0.0.dist-info/licenses/LICENSE +674 -0
- schubmult-2.0.0.dist-info/top_level.txt +2 -0
- tests/__init__.py +0 -0
- tests/test_fast_double_schubert.py +145 -0
- tests/test_fast_schubert.py +38 -0
|
@@ -0,0 +1,1590 @@
|
|
|
1
|
+
from bisect import bisect_left
|
|
2
|
+
from functools import cache
|
|
3
|
+
from cachetools import cached
|
|
4
|
+
from cachetools.keys import hashkey
|
|
5
|
+
from symengine import sympify, Add, Mul, Pow, expand, Integer
|
|
6
|
+
from schubmult.perm_lib import (
|
|
7
|
+
elem_sym_perms,
|
|
8
|
+
elem_sym_poly,
|
|
9
|
+
add_perm_dict,
|
|
10
|
+
dominates,
|
|
11
|
+
compute_vpathdicts,
|
|
12
|
+
inverse,
|
|
13
|
+
theta,
|
|
14
|
+
permtrim,
|
|
15
|
+
inv,
|
|
16
|
+
mulperm,
|
|
17
|
+
code,
|
|
18
|
+
uncode,
|
|
19
|
+
elem_sym_func,
|
|
20
|
+
elem_sym_perms_op,
|
|
21
|
+
divdiffable,
|
|
22
|
+
pull_out_var,
|
|
23
|
+
cycle,
|
|
24
|
+
will_formula_work,
|
|
25
|
+
one_dominates,
|
|
26
|
+
is_reducible,
|
|
27
|
+
reduce_coeff,
|
|
28
|
+
reduce_descents,
|
|
29
|
+
try_reduce_u,
|
|
30
|
+
try_reduce_v,
|
|
31
|
+
phi1,
|
|
32
|
+
zero,
|
|
33
|
+
)
|
|
34
|
+
import numpy as np
|
|
35
|
+
import pulp as pu
|
|
36
|
+
import sympy
|
|
37
|
+
import psutil
|
|
38
|
+
from sortedcontainers import SortedList
|
|
39
|
+
from ._vars import (
|
|
40
|
+
n,
|
|
41
|
+
var2,
|
|
42
|
+
var3,
|
|
43
|
+
var_x,
|
|
44
|
+
var_y,
|
|
45
|
+
)
|
|
46
|
+
|
|
47
|
+
|
|
48
|
+
def count_sorted(mn, tp):
|
|
49
|
+
index = bisect_left(mn, tp)
|
|
50
|
+
ct = 0
|
|
51
|
+
if mn[index] == tp:
|
|
52
|
+
while index < len(mn) and mn[index] == tp:
|
|
53
|
+
ct += 1
|
|
54
|
+
return ct
|
|
55
|
+
|
|
56
|
+
|
|
57
|
+
def E(p, k, varl=var_y[1:]):
|
|
58
|
+
return elem_sym_poly(p, k, var_x[1:], varl)
|
|
59
|
+
|
|
60
|
+
|
|
61
|
+
def single_variable(coeff_dict, varnum, var2=var2):
|
|
62
|
+
ret = {}
|
|
63
|
+
for u in coeff_dict:
|
|
64
|
+
if varnum - 1 < len(u):
|
|
65
|
+
ret[u] = ret.get(u, 0) + var2[u[varnum - 1]] * coeff_dict[u]
|
|
66
|
+
else:
|
|
67
|
+
ret[u] = ret.get(u, 0) + var2[varnum] * coeff_dict[u]
|
|
68
|
+
new_perms_k = elem_sym_perms(u, 1, varnum)
|
|
69
|
+
new_perms_km1 = []
|
|
70
|
+
if varnum > 1:
|
|
71
|
+
new_perms_km1 = elem_sym_perms(u, 1, varnum - 1)
|
|
72
|
+
for perm, udiff in new_perms_k:
|
|
73
|
+
if udiff == 1:
|
|
74
|
+
ret[perm] = ret.get(perm, 0) + coeff_dict[u]
|
|
75
|
+
for perm, udiff in new_perms_km1:
|
|
76
|
+
if udiff == 1:
|
|
77
|
+
ret[perm] = ret.get(perm, 0) - coeff_dict[u]
|
|
78
|
+
return ret
|
|
79
|
+
|
|
80
|
+
|
|
81
|
+
def single_variable_down(coeff_dict, varnum):
|
|
82
|
+
ret = {}
|
|
83
|
+
for u in coeff_dict:
|
|
84
|
+
if varnum - 1 < len(u):
|
|
85
|
+
ret[u] = ret.get(u, 0) + var2[u[varnum - 1]] * coeff_dict[u]
|
|
86
|
+
else:
|
|
87
|
+
ret[u] = ret.get(u, 0) + var2[varnum] * coeff_dict[u]
|
|
88
|
+
new_perms_k = elem_sym_perms_op(u, 1, varnum)
|
|
89
|
+
new_perms_km1 = []
|
|
90
|
+
if varnum > 1:
|
|
91
|
+
new_perms_km1 = elem_sym_perms_op(u, 1, varnum - 1)
|
|
92
|
+
for perm, udiff in new_perms_k:
|
|
93
|
+
if udiff == 1:
|
|
94
|
+
ret[perm] = ret.get(perm, 0) + coeff_dict[u]
|
|
95
|
+
for perm, udiff in new_perms_km1:
|
|
96
|
+
if udiff == 1:
|
|
97
|
+
ret[perm] = ret.get(perm, 0) - coeff_dict[u]
|
|
98
|
+
return ret
|
|
99
|
+
|
|
100
|
+
|
|
101
|
+
def mult_poly(coeff_dict, poly, var_x=var_x, var_y=var2):
|
|
102
|
+
if poly in var_x:
|
|
103
|
+
return single_variable(coeff_dict, var_x.index(poly), var_y)
|
|
104
|
+
elif isinstance(poly, Mul):
|
|
105
|
+
ret = coeff_dict
|
|
106
|
+
for a in poly.args:
|
|
107
|
+
ret = mult_poly(ret, a, var_x, var_y)
|
|
108
|
+
return ret
|
|
109
|
+
elif isinstance(poly, Pow):
|
|
110
|
+
base = poly.args[0]
|
|
111
|
+
exponent = int(poly.args[1])
|
|
112
|
+
ret = coeff_dict
|
|
113
|
+
for i in range(int(exponent)):
|
|
114
|
+
ret = mult_poly(ret, base, var_x, var_y)
|
|
115
|
+
return ret
|
|
116
|
+
elif isinstance(poly, Add):
|
|
117
|
+
ret = {}
|
|
118
|
+
for a in poly.args:
|
|
119
|
+
ret = add_perm_dict(ret, mult_poly(coeff_dict, a, var_x, var_y))
|
|
120
|
+
return ret
|
|
121
|
+
else:
|
|
122
|
+
ret = {}
|
|
123
|
+
for perm in coeff_dict:
|
|
124
|
+
ret[perm] = poly * coeff_dict[perm]
|
|
125
|
+
return ret
|
|
126
|
+
|
|
127
|
+
|
|
128
|
+
def mult_poly_down(coeff_dict, poly):
|
|
129
|
+
if poly in var_x:
|
|
130
|
+
return single_variable_down(coeff_dict, var_x.index(poly))
|
|
131
|
+
elif isinstance(poly, Mul):
|
|
132
|
+
ret = coeff_dict
|
|
133
|
+
for a in poly.args:
|
|
134
|
+
ret = mult_poly_down(ret, a)
|
|
135
|
+
return ret
|
|
136
|
+
elif isinstance(poly, Pow):
|
|
137
|
+
base = poly.args[0]
|
|
138
|
+
exponent = int(poly.args[1])
|
|
139
|
+
ret = coeff_dict
|
|
140
|
+
for i in range(int(exponent)):
|
|
141
|
+
ret = mult_poly_down(ret, base)
|
|
142
|
+
return ret
|
|
143
|
+
elif isinstance(poly, Add):
|
|
144
|
+
ret = {}
|
|
145
|
+
for a in poly.args:
|
|
146
|
+
ret = add_perm_dict(ret, mult_poly_down(coeff_dict, a))
|
|
147
|
+
return ret
|
|
148
|
+
else:
|
|
149
|
+
ret = {}
|
|
150
|
+
for perm in coeff_dict:
|
|
151
|
+
ret[perm] = poly * coeff_dict[perm]
|
|
152
|
+
return ret
|
|
153
|
+
|
|
154
|
+
|
|
155
|
+
def nilhecke_mult(coeff_dict1, coeff_dict2):
|
|
156
|
+
ret = {}
|
|
157
|
+
for w in coeff_dict2:
|
|
158
|
+
w1 = [*w]
|
|
159
|
+
inv_w1 = inv(w1)
|
|
160
|
+
poly = coeff_dict2[w]
|
|
161
|
+
did_mul = mult_poly_down(coeff_dict1, poly)
|
|
162
|
+
for v in did_mul:
|
|
163
|
+
v1 = [*v]
|
|
164
|
+
addperm = mulperm(v1, w1)
|
|
165
|
+
if inv(addperm) == inv(v1) + inv_w1:
|
|
166
|
+
toadd = tuple(permtrim(addperm))
|
|
167
|
+
ret[toadd] = ret.get(toadd, 0) + did_mul[v]
|
|
168
|
+
return ret
|
|
169
|
+
|
|
170
|
+
|
|
171
|
+
def forwardcoeff(u, v, perm, var2=var2, var3=var3):
|
|
172
|
+
th = theta(v)
|
|
173
|
+
muv = uncode(th)
|
|
174
|
+
vmun1 = mulperm(inverse([*v]), muv)
|
|
175
|
+
|
|
176
|
+
w = mulperm([*perm], vmun1)
|
|
177
|
+
if inv(w) == inv(vmun1) + inv(perm):
|
|
178
|
+
coeff_dict = schubmult_one(tuple(permtrim([*u])), tuple(muv), var2, var3)
|
|
179
|
+
return coeff_dict.get(tuple(permtrim(w)), 0)
|
|
180
|
+
return 0
|
|
181
|
+
|
|
182
|
+
|
|
183
|
+
def dualcoeff(u, v, perm, var2=var2, var3=var3):
|
|
184
|
+
if u == (1, 2):
|
|
185
|
+
vp = mulperm([*v], inverse(perm))
|
|
186
|
+
if inv(vp) == inv(v) - inv(perm):
|
|
187
|
+
val = schubpoly(vp, var2, var3)
|
|
188
|
+
else:
|
|
189
|
+
val = 0
|
|
190
|
+
else:
|
|
191
|
+
dpret = []
|
|
192
|
+
if dominates(u, perm):
|
|
193
|
+
dpret = dualpieri([*u], [*v], [*perm])
|
|
194
|
+
else:
|
|
195
|
+
th = theta(u)
|
|
196
|
+
muu = uncode(th)
|
|
197
|
+
umun1 = mulperm(inverse([*u]), muu)
|
|
198
|
+
w = mulperm([*perm], umun1)
|
|
199
|
+
if inv(w) == inv(umun1) + inv(perm):
|
|
200
|
+
dpret = dualpieri(muu, [*v], w)
|
|
201
|
+
ret = 0
|
|
202
|
+
for vlist, vp in dpret:
|
|
203
|
+
toadd = 1
|
|
204
|
+
for i in range(len(vlist)):
|
|
205
|
+
for j in range(len(vlist[i])):
|
|
206
|
+
toadd *= var2[i + 1] - var3[vlist[i][j]]
|
|
207
|
+
toadd *= schubpoly(vp, var2, var3, len(vlist) + 1)
|
|
208
|
+
ret += toadd
|
|
209
|
+
val = ret
|
|
210
|
+
return val
|
|
211
|
+
|
|
212
|
+
|
|
213
|
+
def dualpieri(mu, v, w):
|
|
214
|
+
lm = code(inverse(mu))
|
|
215
|
+
cn1w = code(inverse(w))
|
|
216
|
+
while len(lm) > 0 and lm[-1] == 0:
|
|
217
|
+
lm.pop()
|
|
218
|
+
while len(cn1w) > 0 and cn1w[-1] == 0:
|
|
219
|
+
cn1w.pop()
|
|
220
|
+
if len(cn1w) < len(lm):
|
|
221
|
+
return []
|
|
222
|
+
for i in range(len(lm)):
|
|
223
|
+
if lm[i] > cn1w[i]:
|
|
224
|
+
return []
|
|
225
|
+
c = [1, 2]
|
|
226
|
+
for i in range(len(lm), len(cn1w)):
|
|
227
|
+
c = mulperm(cycle(i - len(lm) + 1, cn1w[i]), c)
|
|
228
|
+
c = permtrim(c)
|
|
229
|
+
res = [[[], v]]
|
|
230
|
+
for i in range(len(lm)):
|
|
231
|
+
res2 = []
|
|
232
|
+
for vlist, vplist in res:
|
|
233
|
+
vp = vplist
|
|
234
|
+
vpl = divdiffable(vp, cycle(lm[i] + 1, cn1w[i] - lm[i]))
|
|
235
|
+
if vpl == []:
|
|
236
|
+
continue
|
|
237
|
+
vl = pull_out_var(lm[i] + 1, vpl)
|
|
238
|
+
for pw, vpl2 in vl:
|
|
239
|
+
res2 += [[vlist + [pw], vpl2]]
|
|
240
|
+
res = res2
|
|
241
|
+
if len(lm) == len(cn1w):
|
|
242
|
+
return res
|
|
243
|
+
else:
|
|
244
|
+
res2 = []
|
|
245
|
+
for vlist, vplist in res:
|
|
246
|
+
vp = vplist
|
|
247
|
+
vpl = divdiffable(vp, c)
|
|
248
|
+
if vpl == []:
|
|
249
|
+
continue
|
|
250
|
+
res2 += [[vlist, vpl]]
|
|
251
|
+
return res2
|
|
252
|
+
|
|
253
|
+
|
|
254
|
+
dimen = 0
|
|
255
|
+
monom_to_vec = {}
|
|
256
|
+
|
|
257
|
+
|
|
258
|
+
@cache
|
|
259
|
+
def schubmult_one(perm1, perm2, var2=var2, var3=var3):
|
|
260
|
+
return schubmult({perm1: 1}, perm2, var2, var3)
|
|
261
|
+
|
|
262
|
+
|
|
263
|
+
def schubmult(perm_dict, v, var2=var2, var3=var3):
|
|
264
|
+
vn1 = inverse(v)
|
|
265
|
+
th = theta(vn1)
|
|
266
|
+
if len(th) == 0:
|
|
267
|
+
return perm_dict
|
|
268
|
+
if th[0] == 0:
|
|
269
|
+
return perm_dict
|
|
270
|
+
mu = permtrim(uncode(th))
|
|
271
|
+
vmu = permtrim(mulperm([*v], mu))
|
|
272
|
+
inv_vmu = inv(vmu)
|
|
273
|
+
inv_mu = inv(mu)
|
|
274
|
+
ret_dict = {}
|
|
275
|
+
while th[-1] == 0:
|
|
276
|
+
th.pop()
|
|
277
|
+
thL = len(th)
|
|
278
|
+
vpathdicts = compute_vpathdicts(th, vmu, True)
|
|
279
|
+
for u, val in perm_dict.items():
|
|
280
|
+
inv_u = inv(u)
|
|
281
|
+
vpathsums = {u: {(1, 2): val}}
|
|
282
|
+
for index in range(thL):
|
|
283
|
+
mx_th = 0
|
|
284
|
+
for vp in vpathdicts[index]:
|
|
285
|
+
for v2, vdiff, s in vpathdicts[index][vp]:
|
|
286
|
+
if th[index] - vdiff > mx_th:
|
|
287
|
+
mx_th = th[index] - vdiff
|
|
288
|
+
newpathsums = {}
|
|
289
|
+
for up in vpathsums:
|
|
290
|
+
inv_up = inv(up)
|
|
291
|
+
newperms = elem_sym_perms(
|
|
292
|
+
up, min(mx_th, (inv_mu - (inv_up - inv_u)) - inv_vmu), th[index]
|
|
293
|
+
)
|
|
294
|
+
for up2, udiff in newperms:
|
|
295
|
+
if up2 not in newpathsums:
|
|
296
|
+
newpathsums[up2] = {}
|
|
297
|
+
for v in vpathdicts[index]:
|
|
298
|
+
sumval = vpathsums[up].get(v, zero)
|
|
299
|
+
if sumval == 0:
|
|
300
|
+
continue
|
|
301
|
+
for v2, vdiff, s in vpathdicts[index][v]:
|
|
302
|
+
newpathsums[up2][v2] = newpathsums[up2].get(
|
|
303
|
+
v2, zero
|
|
304
|
+
) + s * sumval * elem_sym_func(
|
|
305
|
+
th[index],
|
|
306
|
+
index + 1,
|
|
307
|
+
up,
|
|
308
|
+
up2,
|
|
309
|
+
v,
|
|
310
|
+
v2,
|
|
311
|
+
udiff,
|
|
312
|
+
vdiff,
|
|
313
|
+
var2,
|
|
314
|
+
var3,
|
|
315
|
+
)
|
|
316
|
+
vpathsums = newpathsums
|
|
317
|
+
toget = tuple(vmu)
|
|
318
|
+
ret_dict = add_perm_dict({ep: vpathsums[ep].get(toget, 0) for ep in vpathsums}, ret_dict)
|
|
319
|
+
return ret_dict
|
|
320
|
+
|
|
321
|
+
|
|
322
|
+
def schubmult_down(perm_dict, v, var2=var2, var3=var3):
|
|
323
|
+
vn1 = inverse(v)
|
|
324
|
+
th = theta(vn1)
|
|
325
|
+
if th[0] == 0:
|
|
326
|
+
return perm_dict
|
|
327
|
+
mu = permtrim(uncode(th))
|
|
328
|
+
vmu = permtrim(mulperm([*v], mu))
|
|
329
|
+
ret_dict = {}
|
|
330
|
+
|
|
331
|
+
while th[-1] == 0:
|
|
332
|
+
th.pop()
|
|
333
|
+
thL = len(th)
|
|
334
|
+
vpathdicts = compute_vpathdicts(th, vmu, True)
|
|
335
|
+
for u, val in perm_dict.items():
|
|
336
|
+
vpathsums = {u: {(1, 2): val}}
|
|
337
|
+
for index in range(thL):
|
|
338
|
+
mx_th = 0
|
|
339
|
+
for vp in vpathdicts[index]:
|
|
340
|
+
for v2, vdiff, s in vpathdicts[index][vp]:
|
|
341
|
+
if th[index] - vdiff > mx_th:
|
|
342
|
+
mx_th = th[index] - vdiff
|
|
343
|
+
newpathsums = {}
|
|
344
|
+
for up in vpathsums:
|
|
345
|
+
newperms = elem_sym_perms_op(up, mx_th, th[index])
|
|
346
|
+
for up2, udiff in newperms:
|
|
347
|
+
if up2 not in newpathsums:
|
|
348
|
+
newpathsums[up2] = {}
|
|
349
|
+
for v in vpathdicts[index]:
|
|
350
|
+
sumval = vpathsums[up].get(v, zero)
|
|
351
|
+
if sumval == 0:
|
|
352
|
+
continue
|
|
353
|
+
for v2, vdiff, s in vpathdicts[index][v]:
|
|
354
|
+
newpathsums[up2][v2] = newpathsums[up2].get(
|
|
355
|
+
v2, zero
|
|
356
|
+
) + s * sumval * elem_sym_func(
|
|
357
|
+
th[index],
|
|
358
|
+
index + 1,
|
|
359
|
+
up2,
|
|
360
|
+
up,
|
|
361
|
+
v,
|
|
362
|
+
v2,
|
|
363
|
+
udiff,
|
|
364
|
+
vdiff,
|
|
365
|
+
var2,
|
|
366
|
+
var3,
|
|
367
|
+
)
|
|
368
|
+
vpathsums = newpathsums
|
|
369
|
+
toget = tuple(vmu)
|
|
370
|
+
ret_dict = add_perm_dict({ep: vpathsums[ep].get(toget, 0) for ep in vpathsums}, ret_dict)
|
|
371
|
+
return ret_dict
|
|
372
|
+
|
|
373
|
+
|
|
374
|
+
def poly_to_vec(poly, vec0=None):
|
|
375
|
+
global dimen, monom_to_vec, base_vec
|
|
376
|
+
poly = expand(poly.xreplace({var3[1]: 0}))
|
|
377
|
+
|
|
378
|
+
dc = poly.as_coefficients_dict()
|
|
379
|
+
|
|
380
|
+
if vec0 is None:
|
|
381
|
+
init_basevec(dc)
|
|
382
|
+
|
|
383
|
+
vec = {}
|
|
384
|
+
for mn in dc:
|
|
385
|
+
cf = dc[mn]
|
|
386
|
+
if cf == 0:
|
|
387
|
+
continue
|
|
388
|
+
cf = abs(int(cf))
|
|
389
|
+
try:
|
|
390
|
+
index = monom_to_vec[mn]
|
|
391
|
+
except KeyError:
|
|
392
|
+
return None
|
|
393
|
+
if vec0 is not None and vec0[index] < cf:
|
|
394
|
+
return None
|
|
395
|
+
vec[index] = cf
|
|
396
|
+
return vec
|
|
397
|
+
|
|
398
|
+
|
|
399
|
+
def shiftsub(pol):
|
|
400
|
+
subs_dict = dict([(var2[i], var2[i + 1]) for i in range(99)])
|
|
401
|
+
return sympify(pol).subs(subs_dict)
|
|
402
|
+
|
|
403
|
+
|
|
404
|
+
def shiftsubz(pol):
|
|
405
|
+
subs_dict = dict([(var3[i], var3[i + 1]) for i in range(99)])
|
|
406
|
+
return sympify(pol).subs(subs_dict)
|
|
407
|
+
|
|
408
|
+
|
|
409
|
+
def init_basevec(dc):
|
|
410
|
+
global dimen, monom_to_vec, base_vec
|
|
411
|
+
monom_to_vec = {}
|
|
412
|
+
index = 0
|
|
413
|
+
for mn in dc:
|
|
414
|
+
if dc[mn] == 0:
|
|
415
|
+
continue
|
|
416
|
+
monom_to_vec[mn] = index
|
|
417
|
+
index += 1
|
|
418
|
+
dimen = index
|
|
419
|
+
base_vec = [0 for i in range(dimen)]
|
|
420
|
+
|
|
421
|
+
|
|
422
|
+
def split_flat_term(arg):
|
|
423
|
+
arg = expand(arg)
|
|
424
|
+
ys = []
|
|
425
|
+
zs = []
|
|
426
|
+
for arg2 in arg.args:
|
|
427
|
+
if str(arg2).find("y") != -1:
|
|
428
|
+
if isinstance(arg2, Mul):
|
|
429
|
+
for i in range(int(arg2.args[0])):
|
|
430
|
+
ys += [arg2.args[1]]
|
|
431
|
+
else:
|
|
432
|
+
ys += [arg2]
|
|
433
|
+
else:
|
|
434
|
+
if isinstance(arg2, Mul):
|
|
435
|
+
for i in range(abs(int(arg2.args[0]))):
|
|
436
|
+
zs += [-arg2.args[1]]
|
|
437
|
+
else:
|
|
438
|
+
zs += [arg2]
|
|
439
|
+
return ys, zs
|
|
440
|
+
|
|
441
|
+
|
|
442
|
+
def is_flat_term(term):
|
|
443
|
+
if isinstance(term, Integer) or isinstance(term, int):
|
|
444
|
+
return True
|
|
445
|
+
dc = expand(term).as_coefficients_dict()
|
|
446
|
+
for t in dc:
|
|
447
|
+
if str(t).count("y") + str(t).count("z") > 1 or str(t).find("**") != -1:
|
|
448
|
+
return False
|
|
449
|
+
return True
|
|
450
|
+
|
|
451
|
+
|
|
452
|
+
def flatten_factors(term, var2=var3, var3=var3):
|
|
453
|
+
found_one = False
|
|
454
|
+
if is_flat_term(term):
|
|
455
|
+
return term, False
|
|
456
|
+
elif isinstance(term, Pow):
|
|
457
|
+
if is_flat_term(term.args[0]) and len(term.args[0].args) > 2:
|
|
458
|
+
ys, zs = split_flat_term(term.args[0])
|
|
459
|
+
terms = [1]
|
|
460
|
+
for i in range(len(ys)):
|
|
461
|
+
terms2 = []
|
|
462
|
+
for j in range(len(term.args[1])):
|
|
463
|
+
for t in terms:
|
|
464
|
+
terms2 += [t * (ys[i] + zs[i])]
|
|
465
|
+
terms = terms2
|
|
466
|
+
return Add(*terms)
|
|
467
|
+
elif is_flat_term(term.args[0]):
|
|
468
|
+
return term, False
|
|
469
|
+
else:
|
|
470
|
+
return flatten_factors(term.args[0]) ** term.args[1], True
|
|
471
|
+
elif isinstance(term, Mul):
|
|
472
|
+
terms = [1]
|
|
473
|
+
for arg in term.args:
|
|
474
|
+
terms2 = []
|
|
475
|
+
if isinstance(arg, Add) and not is_flat_term(expand(arg)):
|
|
476
|
+
found_one = True
|
|
477
|
+
for term3 in terms:
|
|
478
|
+
for arg2 in arg.args:
|
|
479
|
+
flat, found = flatten_factors(arg2)
|
|
480
|
+
terms2 += [term3 * flat]
|
|
481
|
+
elif isinstance(arg, Add) and is_flat_term(arg) and len(arg.args) > 2:
|
|
482
|
+
found_one = True
|
|
483
|
+
ys, zs = split_flat_term(arg)
|
|
484
|
+
for term3 in terms:
|
|
485
|
+
for i in range(len(ys)):
|
|
486
|
+
terms2 += [term3 * (ys[i] + zs[i])]
|
|
487
|
+
else:
|
|
488
|
+
flat, found = flatten_factors(arg)
|
|
489
|
+
if found:
|
|
490
|
+
found_one = True
|
|
491
|
+
for term3 in terms:
|
|
492
|
+
terms2 += [term3 * flat]
|
|
493
|
+
terms = terms2
|
|
494
|
+
if len(terms) == 1:
|
|
495
|
+
term = terms[0]
|
|
496
|
+
else:
|
|
497
|
+
term = Add(*terms)
|
|
498
|
+
return term, found_one
|
|
499
|
+
elif isinstance(term, Add):
|
|
500
|
+
res = 0
|
|
501
|
+
for arg in term.args:
|
|
502
|
+
flat, found = flatten_factors(arg)
|
|
503
|
+
if found:
|
|
504
|
+
found_one = True
|
|
505
|
+
res += flat
|
|
506
|
+
return res, found_one
|
|
507
|
+
|
|
508
|
+
|
|
509
|
+
def fres(v):
|
|
510
|
+
for s in v.free_symbols:
|
|
511
|
+
return s
|
|
512
|
+
|
|
513
|
+
|
|
514
|
+
def split_mul(arg0, var2=var2, var3=var3):
|
|
515
|
+
monoms = SortedList()
|
|
516
|
+
|
|
517
|
+
var2s = {fres(var2[i]): i for i in range(len(var2))}
|
|
518
|
+
var3s = {fres(var3[i]): i for i in range(len(var3))}
|
|
519
|
+
# print(f"{type(arg0)=} {arg0=}")
|
|
520
|
+
if isinstance(arg0, Pow):
|
|
521
|
+
arg = arg0
|
|
522
|
+
arg2 = expand(arg.args[0])
|
|
523
|
+
yval = arg2.args[0]
|
|
524
|
+
zval = arg2.args[1]
|
|
525
|
+
if str(yval).find("z") != -1:
|
|
526
|
+
yval, zval = zval, yval
|
|
527
|
+
if str(zval).find("-") != -1:
|
|
528
|
+
zval = -zval
|
|
529
|
+
if str(yval).find("-") != -1:
|
|
530
|
+
yval = -yval
|
|
531
|
+
tup = (var2s[fres(yval)], var3s[fres(zval)])
|
|
532
|
+
for i in range(int(arg0.args[1])):
|
|
533
|
+
monoms += [tup]
|
|
534
|
+
else:
|
|
535
|
+
for arg in arg0.args:
|
|
536
|
+
if is_flat_term(arg):
|
|
537
|
+
if isinstance(arg, Integer) or isinstance(arg, int):
|
|
538
|
+
continue
|
|
539
|
+
arg = expand(arg)
|
|
540
|
+
if arg == 0:
|
|
541
|
+
break
|
|
542
|
+
yval = arg.args[0]
|
|
543
|
+
zval = arg.args[1]
|
|
544
|
+
if str(yval).find("z") != -1:
|
|
545
|
+
yval, zval = zval, yval
|
|
546
|
+
if str(zval).find("-") != -1:
|
|
547
|
+
zval = -zval
|
|
548
|
+
if str(yval).find("-") != -1:
|
|
549
|
+
yval = -yval
|
|
550
|
+
monoms += [(var2s[fres(yval)], var3s[fres(zval)])]
|
|
551
|
+
elif isinstance(arg, Pow):
|
|
552
|
+
arg2 = arg.args[0]
|
|
553
|
+
yval = arg2.args[0]
|
|
554
|
+
zval = arg2.args[1]
|
|
555
|
+
if str(yval).find("z") != -1:
|
|
556
|
+
yval, zval = zval, yval
|
|
557
|
+
if str(zval).find("-") != -1:
|
|
558
|
+
zval = -zval
|
|
559
|
+
if str(yval).find("-") != -1:
|
|
560
|
+
yval = -yval
|
|
561
|
+
tup = (var2s[fres(yval)], var3s[fres(zval)])
|
|
562
|
+
for i in range(int(arg.args[1])):
|
|
563
|
+
monoms += [tup]
|
|
564
|
+
return monoms
|
|
565
|
+
|
|
566
|
+
|
|
567
|
+
def split_monoms(pos_part, var2, var3):
|
|
568
|
+
arrs = SortedList()
|
|
569
|
+
if isinstance(pos_part, Add):
|
|
570
|
+
for arg0 in pos_part.args:
|
|
571
|
+
monoms = split_mul(arg0, var2, var3)
|
|
572
|
+
arrs += [monoms]
|
|
573
|
+
elif isinstance(pos_part, Mul) or isinstance(pos_part, Pow):
|
|
574
|
+
monoms = split_mul(pos_part, var2, var3)
|
|
575
|
+
arrs += [monoms]
|
|
576
|
+
else:
|
|
577
|
+
return [pos_part]
|
|
578
|
+
return arrs
|
|
579
|
+
|
|
580
|
+
|
|
581
|
+
def is_negative(term):
|
|
582
|
+
sign = 1
|
|
583
|
+
if isinstance(term, Integer) or isinstance(term, int):
|
|
584
|
+
return term < 0
|
|
585
|
+
elif isinstance(term, Mul):
|
|
586
|
+
for arg in term.args:
|
|
587
|
+
if isinstance(arg, Integer):
|
|
588
|
+
sign *= arg
|
|
589
|
+
elif isinstance(arg, Add):
|
|
590
|
+
if str(arg).find("-y") != -1:
|
|
591
|
+
sign *= -1
|
|
592
|
+
elif isinstance(arg, Pow):
|
|
593
|
+
mulsign = 1
|
|
594
|
+
if str(arg.args[0]).find("-y") != -1:
|
|
595
|
+
mulsign = -1
|
|
596
|
+
sign *= mulsign ** term.args[1]
|
|
597
|
+
elif isinstance(term, Pow):
|
|
598
|
+
mulsign = 1
|
|
599
|
+
if str(term.args[0]).find("-y") != -1:
|
|
600
|
+
mulsign = -1
|
|
601
|
+
sign *= mulsign ** term.args[1]
|
|
602
|
+
return sign < 0
|
|
603
|
+
|
|
604
|
+
|
|
605
|
+
def find_base_vectors(monom_list, monom_list_neg, var2, var3, depth):
|
|
606
|
+
size = 0
|
|
607
|
+
mn_fullcount = {}
|
|
608
|
+
# pairs_checked = set()
|
|
609
|
+
monom_list = set([tuple(mn) for mn in monom_list])
|
|
610
|
+
ct = 0
|
|
611
|
+
while ct < depth and size != len(monom_list):
|
|
612
|
+
size = len(monom_list)
|
|
613
|
+
# found = False
|
|
614
|
+
# for mn in mons2:
|
|
615
|
+
# if mn not in monom_list:
|
|
616
|
+
# found = True
|
|
617
|
+
# break
|
|
618
|
+
# if not found:
|
|
619
|
+
# print("Breaking")
|
|
620
|
+
# break
|
|
621
|
+
|
|
622
|
+
monom_list2 = set(monom_list)
|
|
623
|
+
additional_set2 = set()
|
|
624
|
+
for mn in monom_list:
|
|
625
|
+
# res = 1
|
|
626
|
+
# for tp in mn:
|
|
627
|
+
# res *= var2[tp[0]] - var3[tp[1]]
|
|
628
|
+
# if poly_to_vec(res,vec) is None:
|
|
629
|
+
# continue
|
|
630
|
+
|
|
631
|
+
mncount = mn_fullcount.get(mn, {})
|
|
632
|
+
if mncount == {}:
|
|
633
|
+
for tp in mn:
|
|
634
|
+
mncount[tp] = mncount.get(tp, 0) + 1
|
|
635
|
+
mn_fullcount[mn] = mncount
|
|
636
|
+
for mn2 in monom_list:
|
|
637
|
+
# if (mn,mn2) in pairs_checked:
|
|
638
|
+
# continue
|
|
639
|
+
mn2count = mn_fullcount.get(mn2, {})
|
|
640
|
+
if mn2count == {}:
|
|
641
|
+
for tp in mn2:
|
|
642
|
+
mn2count[tp] = mn2count.get(tp, 0) + 1
|
|
643
|
+
mn_fullcount[mn2] = mn2count
|
|
644
|
+
num_diff = 0
|
|
645
|
+
for tp in mncount:
|
|
646
|
+
pt = mn2count.get(tp, 0) - mncount[tp]
|
|
647
|
+
num_diff += abs(pt)
|
|
648
|
+
if num_diff > 1:
|
|
649
|
+
break
|
|
650
|
+
if num_diff == 1:
|
|
651
|
+
diff_term1 = None
|
|
652
|
+
diff_term2 = None
|
|
653
|
+
for tp in mn2count:
|
|
654
|
+
if mn2count[tp] > mncount.get(tp, 0):
|
|
655
|
+
diff_term2 = tp
|
|
656
|
+
break
|
|
657
|
+
for tp2 in mncount:
|
|
658
|
+
if mncount[tp2] > mn2count.get(tp2, 0):
|
|
659
|
+
diff_term1 = tp2
|
|
660
|
+
break
|
|
661
|
+
# print(f"{mn,mn2}")
|
|
662
|
+
if diff_term1 is None or diff_term2 is None:
|
|
663
|
+
print(f"{mn=} {mn2=}")
|
|
664
|
+
exit(1)
|
|
665
|
+
if diff_term2[1] == diff_term1[1]:
|
|
666
|
+
continue
|
|
667
|
+
new_term1 = (diff_term1[0], diff_term2[1])
|
|
668
|
+
new_term2 = (diff_term2[0], diff_term1[1])
|
|
669
|
+
# mn3 = [*mn]
|
|
670
|
+
# mn4 = list(mn2)
|
|
671
|
+
index = bisect_left(mn, diff_term1)
|
|
672
|
+
mn3 = list(mn[:index]) + list(mn[index + 1 :])
|
|
673
|
+
index = bisect_left(mn3, new_term1)
|
|
674
|
+
mn3_t = tuple(mn3[:index] + [new_term1] + mn3[index:])
|
|
675
|
+
index2 = bisect_left(mn2, diff_term2)
|
|
676
|
+
mn4 = list(mn2[:index2]) + list(mn2[index2 + 1 :])
|
|
677
|
+
index2 = bisect_left(mn4, new_term2)
|
|
678
|
+
mn4_t = tuple(mn4[:index2] + [new_term2] + mn4[index2:])
|
|
679
|
+
# res = 1
|
|
680
|
+
# for tp in mn3_t:
|
|
681
|
+
# res *= var2[tp[0]] - var3[tp[1]]
|
|
682
|
+
# if poly_to_vec(res,vec) is not None:
|
|
683
|
+
if mn3_t not in monom_list2:
|
|
684
|
+
additional_set2.add(mn3_t)
|
|
685
|
+
monom_list2.add(mn3_t)
|
|
686
|
+
# res = 1
|
|
687
|
+
# for tp in mn4_t:
|
|
688
|
+
# res *= var2[tp[0]] - var3[tp[1]]
|
|
689
|
+
##
|
|
690
|
+
## additional_set2.add(mn3_t)
|
|
691
|
+
# if poly_to_vec(res,vec) is not None:
|
|
692
|
+
if mn4_t not in monom_list2:
|
|
693
|
+
additional_set2.add(mn4_t)
|
|
694
|
+
monom_list2.add(mn4_t)
|
|
695
|
+
monom_list = monom_list2
|
|
696
|
+
ct += 1
|
|
697
|
+
ret = []
|
|
698
|
+
for mn in monom_list:
|
|
699
|
+
if len(mn) != len(set(mn)):
|
|
700
|
+
continue
|
|
701
|
+
res = 1
|
|
702
|
+
for tp in mn:
|
|
703
|
+
res *= var2[tp[0]] - var3[tp[1]]
|
|
704
|
+
ret += [res]
|
|
705
|
+
return ret, monom_list
|
|
706
|
+
|
|
707
|
+
|
|
708
|
+
def compute_positive_rep(val, var2=var2, var3=var3, msg=False, do_pos_neg=True):
|
|
709
|
+
notint = False
|
|
710
|
+
try:
|
|
711
|
+
int(expand(val))
|
|
712
|
+
val2 = expand(val)
|
|
713
|
+
except Exception:
|
|
714
|
+
notint = True
|
|
715
|
+
if notint:
|
|
716
|
+
frees = val.free_symbols
|
|
717
|
+
var2list = [*var2]
|
|
718
|
+
var3list = [*var3]
|
|
719
|
+
|
|
720
|
+
for i in range(len(var2list)):
|
|
721
|
+
symset = var2list[i].free_symbols
|
|
722
|
+
for sym in symset:
|
|
723
|
+
var2list[i] = sym
|
|
724
|
+
|
|
725
|
+
for i in range(len(var3list)):
|
|
726
|
+
symset = var3list[i].free_symbols
|
|
727
|
+
for sym in symset:
|
|
728
|
+
var3list[i] = sym
|
|
729
|
+
|
|
730
|
+
varsimp2 = [m for m in frees if m in var2list]
|
|
731
|
+
varsimp3 = [m for m in frees if m in var3list]
|
|
732
|
+
varsimp2.sort(key=lambda k: var2list.index(k))
|
|
733
|
+
varsimp3.sort(key=lambda k: var3list.index(k))
|
|
734
|
+
|
|
735
|
+
var22 = [sympy.sympify(m) for m in varsimp2]
|
|
736
|
+
var33 = [sympy.sympify(m) for m in varsimp3]
|
|
737
|
+
n1 = len(varsimp2)
|
|
738
|
+
|
|
739
|
+
for i in range(len(varsimp2)):
|
|
740
|
+
varsimp2[i] = var2[var2list.index(varsimp2[i])]
|
|
741
|
+
for i in range(len(varsimp3)):
|
|
742
|
+
varsimp3[i] = var3[var3list.index(varsimp3[i])]
|
|
743
|
+
|
|
744
|
+
base_vectors = []
|
|
745
|
+
base_monoms = []
|
|
746
|
+
vec = poly_to_vec(val, None)
|
|
747
|
+
|
|
748
|
+
if do_pos_neg:
|
|
749
|
+
smp = val
|
|
750
|
+
flat, found_one = flatten_factors(smp)
|
|
751
|
+
while found_one:
|
|
752
|
+
flat, found_one = flatten_factors(flat, varsimp2, varsimp3)
|
|
753
|
+
pos_part = 0
|
|
754
|
+
neg_part = 0
|
|
755
|
+
if isinstance(flat, Add) and not is_flat_term(flat):
|
|
756
|
+
for arg in flat.args:
|
|
757
|
+
if expand(arg) == 0:
|
|
758
|
+
continue
|
|
759
|
+
if not is_negative(arg):
|
|
760
|
+
pos_part += arg
|
|
761
|
+
else:
|
|
762
|
+
neg_part -= arg
|
|
763
|
+
if neg_part == 0:
|
|
764
|
+
# print("no neg")
|
|
765
|
+
return pos_part
|
|
766
|
+
depth = 1
|
|
767
|
+
|
|
768
|
+
mons = split_monoms(pos_part, varsimp2, varsimp3)
|
|
769
|
+
mons = set([tuple(mn) for mn in mons])
|
|
770
|
+
mons2 = split_monoms(neg_part, varsimp2, varsimp3)
|
|
771
|
+
mons2 = set([tuple(mn2) for mn2 in mons2])
|
|
772
|
+
|
|
773
|
+
# mons2 = split_monoms(neg_part)
|
|
774
|
+
# for mn in mons2:
|
|
775
|
+
# if mn not in mons:
|
|
776
|
+
# mons.add(mn)
|
|
777
|
+
# print(mons)
|
|
778
|
+
status = 0
|
|
779
|
+
size = len(mons)
|
|
780
|
+
while status != 1:
|
|
781
|
+
base_monoms, mons = find_base_vectors(mons, mons2, varsimp2, varsimp3, depth)
|
|
782
|
+
if len(mons) == size:
|
|
783
|
+
raise ValueError("Found counterexample")
|
|
784
|
+
|
|
785
|
+
size = len(mons)
|
|
786
|
+
base_vectors = []
|
|
787
|
+
bad = False
|
|
788
|
+
bad_vectors = []
|
|
789
|
+
for i in range(len(base_monoms)):
|
|
790
|
+
vec0 = poly_to_vec(base_monoms[i], vec)
|
|
791
|
+
if vec0 is not None:
|
|
792
|
+
base_vectors += [vec0]
|
|
793
|
+
else:
|
|
794
|
+
bad_vectors += [i]
|
|
795
|
+
for j in range(len(bad_vectors) - 1, -1, -1):
|
|
796
|
+
base_monoms.pop(bad_vectors[j])
|
|
797
|
+
|
|
798
|
+
vrs = [
|
|
799
|
+
pu.LpVariable(name=f"a{i}", lowBound=0, cat="Integer")
|
|
800
|
+
for i in range(len(base_vectors))
|
|
801
|
+
]
|
|
802
|
+
lp_prob = pu.LpProblem("Problem", pu.LpMinimize)
|
|
803
|
+
lp_prob += int(0)
|
|
804
|
+
eqs = [*base_vec]
|
|
805
|
+
for j in range(len(base_vectors)):
|
|
806
|
+
for i in base_vectors[j]:
|
|
807
|
+
bvi = base_vectors[j][i]
|
|
808
|
+
if bvi == 1:
|
|
809
|
+
eqs[i] += vrs[j]
|
|
810
|
+
else:
|
|
811
|
+
eqs[i] += bvi * vrs[j]
|
|
812
|
+
for i in range(dimen):
|
|
813
|
+
try:
|
|
814
|
+
lp_prob += eqs[i] == vec[i]
|
|
815
|
+
except TypeError:
|
|
816
|
+
bad = True
|
|
817
|
+
break
|
|
818
|
+
if bad:
|
|
819
|
+
continue
|
|
820
|
+
try:
|
|
821
|
+
solver = pu.PULP_CBC_CMD(msg=msg)
|
|
822
|
+
status = lp_prob.solve(solver)
|
|
823
|
+
except KeyboardInterrupt:
|
|
824
|
+
current_process = psutil.Process()
|
|
825
|
+
children = current_process.children(recursive=True)
|
|
826
|
+
for child in children:
|
|
827
|
+
child_process = psutil.Process(child.pid)
|
|
828
|
+
child_process.terminate()
|
|
829
|
+
child_process.kill()
|
|
830
|
+
raise KeyboardInterrupt()
|
|
831
|
+
status = lp_prob.status
|
|
832
|
+
else:
|
|
833
|
+
val_poly = sympy.poly(expand(val), *var22, *var33)
|
|
834
|
+
vec = poly_to_vec(val)
|
|
835
|
+
mn = val_poly.monoms()
|
|
836
|
+
L1 = tuple([0 for i in range(n1)])
|
|
837
|
+
mn1L = []
|
|
838
|
+
lookup = {}
|
|
839
|
+
for mm0 in mn:
|
|
840
|
+
key = mm0[n1:]
|
|
841
|
+
if key not in lookup:
|
|
842
|
+
lookup[key] = []
|
|
843
|
+
mm0n1 = mm0[:n1]
|
|
844
|
+
st = set(mm0n1)
|
|
845
|
+
if len(st.intersection(set([0, 1]))) == len(st) and 1 in st:
|
|
846
|
+
lookup[key] += [mm0]
|
|
847
|
+
if mm0n1 == L1:
|
|
848
|
+
mn1L += [mm0]
|
|
849
|
+
for mn1 in mn1L:
|
|
850
|
+
comblistmn1 = [1]
|
|
851
|
+
for i in range(n1, len(mn1)):
|
|
852
|
+
if mn1[i] != 0:
|
|
853
|
+
arr = np.array(comblistmn1)
|
|
854
|
+
comblistmn12 = []
|
|
855
|
+
mn1_2 = tuple([*mn1[n1:i]] + [0] + [*mn1[i + 1 :]])
|
|
856
|
+
for mm0 in lookup[mn1_2]:
|
|
857
|
+
comblistmn12 += (
|
|
858
|
+
arr
|
|
859
|
+
* np.prod(
|
|
860
|
+
[
|
|
861
|
+
varsimp2[k] - varsimp3[i - n1]
|
|
862
|
+
for k in range(n1)
|
|
863
|
+
if mm0[k] == 1
|
|
864
|
+
]
|
|
865
|
+
)
|
|
866
|
+
).tolist()
|
|
867
|
+
comblistmn1 = comblistmn12
|
|
868
|
+
for i in range(len(comblistmn1)):
|
|
869
|
+
b1 = comblistmn1[i]
|
|
870
|
+
vec0 = poly_to_vec(b1, vec)
|
|
871
|
+
if vec0 is not None:
|
|
872
|
+
base_vectors += [vec0]
|
|
873
|
+
base_monoms += [b1]
|
|
874
|
+
vrs = [
|
|
875
|
+
pu.LpVariable(name=f"a{i}", lowBound=0, cat="Integer")
|
|
876
|
+
for i in range(len(base_vectors))
|
|
877
|
+
]
|
|
878
|
+
lp_prob = pu.LpProblem("Problem", pu.LpMinimize)
|
|
879
|
+
lp_prob += int(0)
|
|
880
|
+
eqs = [*base_vec]
|
|
881
|
+
for j in range(len(base_vectors)):
|
|
882
|
+
for i in base_vectors[j]:
|
|
883
|
+
bvi = base_vectors[j][i]
|
|
884
|
+
if bvi == 1:
|
|
885
|
+
eqs[i] += vrs[j]
|
|
886
|
+
else:
|
|
887
|
+
eqs[i] += bvi * vrs[j]
|
|
888
|
+
for i in range(dimen):
|
|
889
|
+
lp_prob += eqs[i] == vec[i]
|
|
890
|
+
try:
|
|
891
|
+
solver = pu.PULP_CBC_CMD(msg=msg)
|
|
892
|
+
status = lp_prob.solve(solver)
|
|
893
|
+
except KeyboardInterrupt:
|
|
894
|
+
current_process = psutil.Process()
|
|
895
|
+
children = current_process.children(recursive=True)
|
|
896
|
+
for child in children:
|
|
897
|
+
child_process = psutil.Process(child.pid)
|
|
898
|
+
child_process.terminate()
|
|
899
|
+
child_process.kill()
|
|
900
|
+
raise KeyboardInterrupt()
|
|
901
|
+
# print(f"{pos_part=}")
|
|
902
|
+
# print(f"{neg_part=}")
|
|
903
|
+
# else:
|
|
904
|
+
# print(f"No dice {flat=}")
|
|
905
|
+
# exit(1)
|
|
906
|
+
# #val = pos_part - neg_part
|
|
907
|
+
|
|
908
|
+
# depth+=1
|
|
909
|
+
val2 = 0
|
|
910
|
+
for k in range(len(base_vectors)):
|
|
911
|
+
x = vrs[k].value()
|
|
912
|
+
b1 = base_monoms[k]
|
|
913
|
+
if x != 0 and x is not None:
|
|
914
|
+
val2 += int(x) * b1
|
|
915
|
+
return val2
|
|
916
|
+
|
|
917
|
+
|
|
918
|
+
def is_split_two(u, v, w):
|
|
919
|
+
if inv(w) - inv(u) != 2:
|
|
920
|
+
return False, []
|
|
921
|
+
diff_perm = mulperm(inverse([*u]), [*w])
|
|
922
|
+
identity = [i + 1 for i in range(len(diff_perm))]
|
|
923
|
+
cycles = []
|
|
924
|
+
for i in range(len(identity)):
|
|
925
|
+
if diff_perm[i] != identity[i]:
|
|
926
|
+
cycle0 = set()
|
|
927
|
+
cycle = set([i + 1])
|
|
928
|
+
last = i
|
|
929
|
+
while len(cycle0) != len(cycle):
|
|
930
|
+
cycle0 = cycle
|
|
931
|
+
last = diff_perm[last] - 1
|
|
932
|
+
cycle.add(last + 1)
|
|
933
|
+
if len(cycle) > 1 and cycle not in cycles:
|
|
934
|
+
cycles += [cycle]
|
|
935
|
+
if len(cycles) > 2:
|
|
936
|
+
break
|
|
937
|
+
if len(cycles) == 2:
|
|
938
|
+
return True, cycles
|
|
939
|
+
else:
|
|
940
|
+
return False, []
|
|
941
|
+
|
|
942
|
+
|
|
943
|
+
def is_coeff_irreducible(u, v, w):
|
|
944
|
+
return (
|
|
945
|
+
not will_formula_work(u, v)
|
|
946
|
+
and not will_formula_work(v, u)
|
|
947
|
+
and not one_dominates(u, w)
|
|
948
|
+
and not is_reducible(v)
|
|
949
|
+
and inv(w) - inv(u) > 1
|
|
950
|
+
and not is_split_two(u, v, w)[0]
|
|
951
|
+
and len([i for i in code(v) if i != 0]) > 1
|
|
952
|
+
)
|
|
953
|
+
|
|
954
|
+
|
|
955
|
+
def is_hook(cd):
|
|
956
|
+
started = False
|
|
957
|
+
done = False
|
|
958
|
+
found_zero_after = False
|
|
959
|
+
for i in range(len(cd)):
|
|
960
|
+
if (done or found_zero_after) and cd[i] != 0:
|
|
961
|
+
return False
|
|
962
|
+
if cd[i] == 1 and not started:
|
|
963
|
+
started = True
|
|
964
|
+
if cd[i] > 1:
|
|
965
|
+
done = True
|
|
966
|
+
if started and cd[i] == 0:
|
|
967
|
+
found_zero_after = True
|
|
968
|
+
if started or done:
|
|
969
|
+
return True
|
|
970
|
+
return False
|
|
971
|
+
|
|
972
|
+
|
|
973
|
+
def div_diff(i, poly):
|
|
974
|
+
return sympify(
|
|
975
|
+
sympy.div(sympy.sympify(poly - permy(poly, i)), sympy.sympify(var2[i] - var2[i + 1]))[0]
|
|
976
|
+
)
|
|
977
|
+
|
|
978
|
+
|
|
979
|
+
def skew_div_diff(u, w, poly):
|
|
980
|
+
d = -1
|
|
981
|
+
for i in range(len(w) - 1):
|
|
982
|
+
if w[i] > w[i + 1]:
|
|
983
|
+
d = i
|
|
984
|
+
break
|
|
985
|
+
d2 = -1
|
|
986
|
+
for i in range(len(u) - 1):
|
|
987
|
+
if u[i] > u[i + 1]:
|
|
988
|
+
d2 = i
|
|
989
|
+
break
|
|
990
|
+
if d == -1:
|
|
991
|
+
if d2 == -1:
|
|
992
|
+
return poly
|
|
993
|
+
return 0
|
|
994
|
+
w2 = [*w]
|
|
995
|
+
w2[d], w2[d + 1] = w2[d + 1], w2[d]
|
|
996
|
+
if d < len(u) - 1 and u[d] > u[d + 1]:
|
|
997
|
+
u2 = [*u]
|
|
998
|
+
u2[d], u2[d + 1] = u2[d + 1], u2[d]
|
|
999
|
+
return skew_div_diff(u2, w2, permy(poly, d + 1))
|
|
1000
|
+
else:
|
|
1001
|
+
return skew_div_diff(u, w2, div_diff(d + 1, poly))
|
|
1002
|
+
|
|
1003
|
+
|
|
1004
|
+
@cached(
|
|
1005
|
+
cache={},
|
|
1006
|
+
key=lambda val,
|
|
1007
|
+
u2,
|
|
1008
|
+
v2,
|
|
1009
|
+
w2,
|
|
1010
|
+
var2=var2,
|
|
1011
|
+
var3=var3,
|
|
1012
|
+
msg=False,
|
|
1013
|
+
do_pos_neg=True,
|
|
1014
|
+
sign_only=False: hashkey(u2, v2, w2, var2, var3, msg, do_pos_neg, sign_only),
|
|
1015
|
+
)
|
|
1016
|
+
def posify(val, u2, v2, w2, var2=var2, var3=var3, msg=False, do_pos_neg=True, sign_only=False):
|
|
1017
|
+
if inv(u2) + inv(v2) - inv(w2) == 0:
|
|
1018
|
+
return val
|
|
1019
|
+
cdv = code(v2)
|
|
1020
|
+
if set(cdv) == set([0, 1]) and do_pos_neg:
|
|
1021
|
+
return val
|
|
1022
|
+
# if is_hook(cdv):
|
|
1023
|
+
# print(f"Could've {cdv}")
|
|
1024
|
+
if not sign_only and expand(val) == 0:
|
|
1025
|
+
return 0
|
|
1026
|
+
|
|
1027
|
+
u, v, w = try_reduce_v(u2, v2, w2)
|
|
1028
|
+
if is_coeff_irreducible(u, v, w):
|
|
1029
|
+
u, v, w = try_reduce_u(u2, v2, w2)
|
|
1030
|
+
if is_coeff_irreducible(u, v, w):
|
|
1031
|
+
u, v, w = [*u2], [*v2], [*w2]
|
|
1032
|
+
if is_coeff_irreducible(u, v, w):
|
|
1033
|
+
w0 = [*w]
|
|
1034
|
+
u, v, w = reduce_descents(u, v, w)
|
|
1035
|
+
if is_coeff_irreducible(u, v, w):
|
|
1036
|
+
u, v, w = reduce_coeff(u, v, w)
|
|
1037
|
+
if is_coeff_irreducible(u, v, w):
|
|
1038
|
+
while is_coeff_irreducible(u, v, w) and tuple(permtrim(w0)) != tuple(
|
|
1039
|
+
permtrim([*w])
|
|
1040
|
+
):
|
|
1041
|
+
w0 = w
|
|
1042
|
+
u, v, w = reduce_descents(u, v, w)
|
|
1043
|
+
if is_coeff_irreducible(u, v, w):
|
|
1044
|
+
u, v, w = reduce_coeff(u, v, w)
|
|
1045
|
+
u = tuple(u)
|
|
1046
|
+
v = tuple(v)
|
|
1047
|
+
w = tuple(w)
|
|
1048
|
+
|
|
1049
|
+
if w != w2 and sign_only:
|
|
1050
|
+
return 0
|
|
1051
|
+
|
|
1052
|
+
if is_coeff_irreducible(u, v, w):
|
|
1053
|
+
u3, v3, w3 = try_reduce_v(u, v, w)
|
|
1054
|
+
if not is_coeff_irreducible(u3, v3, w3):
|
|
1055
|
+
u, v, w = u3, v3, w3
|
|
1056
|
+
else:
|
|
1057
|
+
u3, v3, w3 = try_reduce_u(u, v, w)
|
|
1058
|
+
if not is_coeff_irreducible(u3, v3, w3):
|
|
1059
|
+
u, v, w = u3, v3, w3
|
|
1060
|
+
split_two_b, split_two = is_split_two(u, v, w)
|
|
1061
|
+
|
|
1062
|
+
if len([i for i in code(v) if i != 0]) == 1:
|
|
1063
|
+
if sign_only:
|
|
1064
|
+
return 0
|
|
1065
|
+
cv = code(v)
|
|
1066
|
+
for i in range(len(cv)):
|
|
1067
|
+
if cv[i] != 0:
|
|
1068
|
+
k = i + 1
|
|
1069
|
+
p = cv[i]
|
|
1070
|
+
break
|
|
1071
|
+
inv_u = inv(u)
|
|
1072
|
+
r = inv(w) - inv_u
|
|
1073
|
+
val = 0
|
|
1074
|
+
w2 = w
|
|
1075
|
+
hvarset = (
|
|
1076
|
+
[w2[i] for i in range(min(len(w2), k))]
|
|
1077
|
+
+ [i + 1 for i in range(len(w2), k)]
|
|
1078
|
+
+ [w2[b] for b in range(k, len(u)) if u[b] != w2[b]]
|
|
1079
|
+
+ [w2[b] for b in range(len(u), len(w2))]
|
|
1080
|
+
)
|
|
1081
|
+
val = elem_sym_poly(
|
|
1082
|
+
p - r,
|
|
1083
|
+
k + p - 1,
|
|
1084
|
+
[-var3[i] for i in range(1, n)],
|
|
1085
|
+
[-var2[i] for i in hvarset],
|
|
1086
|
+
)
|
|
1087
|
+
elif will_formula_work(v, u) or dominates(u, w):
|
|
1088
|
+
if sign_only:
|
|
1089
|
+
return 0
|
|
1090
|
+
val = dualcoeff(u, v, w, var2, var3)
|
|
1091
|
+
elif inv(w) - inv(u) == 1:
|
|
1092
|
+
if sign_only:
|
|
1093
|
+
return 0
|
|
1094
|
+
a, b = -1, -1
|
|
1095
|
+
for i in range(len(w)):
|
|
1096
|
+
if a == -1 and u[i] != w[i]:
|
|
1097
|
+
a = i
|
|
1098
|
+
elif i >= len(u) and w[i] != i + 1:
|
|
1099
|
+
b = i
|
|
1100
|
+
elif b == -1 and u[i] != w[i]:
|
|
1101
|
+
b = i
|
|
1102
|
+
arr = [[[], v]]
|
|
1103
|
+
d = -1
|
|
1104
|
+
for i in range(len(v) - 1):
|
|
1105
|
+
if v[i] > v[i + 1]:
|
|
1106
|
+
d = i + 1
|
|
1107
|
+
for i in range(d):
|
|
1108
|
+
arr2 = []
|
|
1109
|
+
if i in [a, b]:
|
|
1110
|
+
continue
|
|
1111
|
+
i2 = 1
|
|
1112
|
+
if i > b:
|
|
1113
|
+
i2 += 2
|
|
1114
|
+
elif i > a:
|
|
1115
|
+
i2 += 1
|
|
1116
|
+
for vr, v2 in arr:
|
|
1117
|
+
dpret = pull_out_var(i2, [*v2])
|
|
1118
|
+
for v3r, v3 in dpret:
|
|
1119
|
+
arr2 += [[vr + [v3r], v3]]
|
|
1120
|
+
arr = arr2
|
|
1121
|
+
val = 0
|
|
1122
|
+
for L in arr:
|
|
1123
|
+
v3 = [*L[-1]]
|
|
1124
|
+
if v3[0] < v3[1]:
|
|
1125
|
+
continue
|
|
1126
|
+
else:
|
|
1127
|
+
v3[0], v3[1] = v3[1], v3[0]
|
|
1128
|
+
toadd = 1
|
|
1129
|
+
for i in range(d):
|
|
1130
|
+
if i in [a, b]:
|
|
1131
|
+
continue
|
|
1132
|
+
i2 = i
|
|
1133
|
+
if i > b:
|
|
1134
|
+
i2 = i - 2
|
|
1135
|
+
elif i > a:
|
|
1136
|
+
i2 = i - 1
|
|
1137
|
+
oaf = L[0][i2]
|
|
1138
|
+
if i >= len(w):
|
|
1139
|
+
yv = i + 1
|
|
1140
|
+
else:
|
|
1141
|
+
yv = w[i]
|
|
1142
|
+
for j in range(len(oaf)):
|
|
1143
|
+
toadd *= var2[yv] - var3[oaf[j]]
|
|
1144
|
+
toadd *= schubpoly(v3, [0, var2[w[a]], var2[w[b]]], var3)
|
|
1145
|
+
val += toadd
|
|
1146
|
+
elif split_two_b:
|
|
1147
|
+
if sign_only:
|
|
1148
|
+
return 0
|
|
1149
|
+
cycles = split_two
|
|
1150
|
+
a1, b1 = cycles[0]
|
|
1151
|
+
a2, b2 = cycles[1]
|
|
1152
|
+
a1 -= 1
|
|
1153
|
+
b1 -= 1
|
|
1154
|
+
a2 -= 1
|
|
1155
|
+
b2 -= 1
|
|
1156
|
+
spo = sorted([a1, b1, a2, b2])
|
|
1157
|
+
real_a1 = min(spo.index(a1), spo.index(b1))
|
|
1158
|
+
real_a2 = min(spo.index(a2), spo.index(b2))
|
|
1159
|
+
real_b1 = max(spo.index(a1), spo.index(b1))
|
|
1160
|
+
real_b2 = max(spo.index(a2), spo.index(b2))
|
|
1161
|
+
|
|
1162
|
+
good1 = False
|
|
1163
|
+
good2 = False
|
|
1164
|
+
if real_b1 - real_a1 == 1:
|
|
1165
|
+
good1 = True
|
|
1166
|
+
if real_b2 - real_a2 == 1:
|
|
1167
|
+
good2 = True
|
|
1168
|
+
a, b = -1, -1
|
|
1169
|
+
if good1 and not good2:
|
|
1170
|
+
a, b = min(a2, b2), max(a2, b2)
|
|
1171
|
+
if good2 and not good1:
|
|
1172
|
+
a, b = min(a1, b1), max(a1, b1)
|
|
1173
|
+
arr = [[[], v]]
|
|
1174
|
+
d = -1
|
|
1175
|
+
for i in range(len(v) - 1):
|
|
1176
|
+
if v[i] > v[i + 1]:
|
|
1177
|
+
d = i + 1
|
|
1178
|
+
for i in range(d):
|
|
1179
|
+
arr2 = []
|
|
1180
|
+
|
|
1181
|
+
if i in [a1, b1, a2, b2]:
|
|
1182
|
+
continue
|
|
1183
|
+
i2 = 1
|
|
1184
|
+
i2 += len([aa for aa in [a1, b1, a2, b2] if i > aa])
|
|
1185
|
+
for vr, v2 in arr:
|
|
1186
|
+
dpret = pull_out_var(i2, [*v2])
|
|
1187
|
+
for v3r, v3 in dpret:
|
|
1188
|
+
arr2 += [[vr + [(v3r, i + 1)], v3]]
|
|
1189
|
+
arr = arr2
|
|
1190
|
+
val = 0
|
|
1191
|
+
|
|
1192
|
+
if good1:
|
|
1193
|
+
arr2 = []
|
|
1194
|
+
for L in arr:
|
|
1195
|
+
v3 = [*L[-1]]
|
|
1196
|
+
if v3[real_a1] < v3[real_b1]:
|
|
1197
|
+
continue
|
|
1198
|
+
else:
|
|
1199
|
+
v3[real_a1], v3[real_b1] = v3[real_b1], v3[real_a1]
|
|
1200
|
+
arr2 += [[L[0], v3]]
|
|
1201
|
+
arr = arr2
|
|
1202
|
+
if not good2:
|
|
1203
|
+
for i in range(4):
|
|
1204
|
+
arr2 = []
|
|
1205
|
+
|
|
1206
|
+
if i in [real_a2, real_b2]:
|
|
1207
|
+
continue
|
|
1208
|
+
if i == real_a1:
|
|
1209
|
+
var_index = min(a1, b1) + 1
|
|
1210
|
+
elif i == real_b1:
|
|
1211
|
+
var_index = max(a1, b1) + 1
|
|
1212
|
+
i2 = 1
|
|
1213
|
+
i2 += len([aa for aa in [real_a2, real_b2] if i > aa])
|
|
1214
|
+
for vr, v2 in arr:
|
|
1215
|
+
dpret = pull_out_var(i2, [*v2])
|
|
1216
|
+
for v3r, v3 in dpret:
|
|
1217
|
+
arr2 += [[vr + [(v3r, var_index)], v3]]
|
|
1218
|
+
arr = arr2
|
|
1219
|
+
if good2:
|
|
1220
|
+
arr2 = []
|
|
1221
|
+
for L in arr:
|
|
1222
|
+
v3 = [*L[-1]]
|
|
1223
|
+
try:
|
|
1224
|
+
if v3[real_a2] < v3[real_b2]:
|
|
1225
|
+
continue
|
|
1226
|
+
else:
|
|
1227
|
+
v3[real_a2], v3[real_b2] = v3[real_b2], v3[real_a2]
|
|
1228
|
+
except IndexError:
|
|
1229
|
+
continue
|
|
1230
|
+
arr2 += [[L[0], v3]]
|
|
1231
|
+
arr = arr2
|
|
1232
|
+
if not good1:
|
|
1233
|
+
for i in range(4):
|
|
1234
|
+
arr2 = []
|
|
1235
|
+
|
|
1236
|
+
if i in [real_a1, real_b1]:
|
|
1237
|
+
continue
|
|
1238
|
+
i2 = 1
|
|
1239
|
+
i2 += len([aa for aa in [real_a1, real_b1] if i > aa])
|
|
1240
|
+
if i == real_a2:
|
|
1241
|
+
var_index = min(a2, b2) + 1
|
|
1242
|
+
elif i == real_b2:
|
|
1243
|
+
var_index = max(a2, b2) + 1
|
|
1244
|
+
for vr, v2 in arr:
|
|
1245
|
+
dpret = pull_out_var(i2, [*v2])
|
|
1246
|
+
for v3r, v3 in dpret:
|
|
1247
|
+
arr2 += [[vr + [(v3r, var_index)], v3]]
|
|
1248
|
+
arr = arr2
|
|
1249
|
+
|
|
1250
|
+
for L in arr:
|
|
1251
|
+
v3 = [*L[-1]]
|
|
1252
|
+
tomul = 1
|
|
1253
|
+
doschubpoly = True
|
|
1254
|
+
if (not good1 or not good2) and v3[0] < v3[1] and (good1 or good2):
|
|
1255
|
+
continue
|
|
1256
|
+
elif (good1 or good2) and (not good1 or not good2):
|
|
1257
|
+
v3[0], v3[1] = v3[1], v3[0]
|
|
1258
|
+
elif not good1 and not good2:
|
|
1259
|
+
doschubpoly = False
|
|
1260
|
+
if v3[0] < v3[1]:
|
|
1261
|
+
dual_u = uncode([2, 0])
|
|
1262
|
+
dual_w = [4, 2, 1, 3]
|
|
1263
|
+
coeff = permy(dualcoeff(dual_u, v3, dual_w, var2, var3), 2)
|
|
1264
|
+
|
|
1265
|
+
elif len(v3) < 3 or v3[1] < v3[2]:
|
|
1266
|
+
if len(v3) <= 3 or v3[2] < v3[3]:
|
|
1267
|
+
coeff = 0
|
|
1268
|
+
continue
|
|
1269
|
+
else:
|
|
1270
|
+
v3[0], v3[1] = v3[1], v3[0]
|
|
1271
|
+
v3[2], v3[3] = v3[3], v3[2]
|
|
1272
|
+
coeff = permy(schubpoly(v3, var2, var3), 2)
|
|
1273
|
+
elif len(v3) <= 3 or v3[2] < v3[3]:
|
|
1274
|
+
if len(v3) <= 3:
|
|
1275
|
+
v3 += [4]
|
|
1276
|
+
v3[2], v3[3] = v3[3], v3[2]
|
|
1277
|
+
coeff = permy(
|
|
1278
|
+
posify(
|
|
1279
|
+
schubmult_one((1, 3, 2), tuple(permtrim([*v3])), var2, var3).get(
|
|
1280
|
+
(2, 4, 3, 1), 0
|
|
1281
|
+
),
|
|
1282
|
+
(1, 3, 2),
|
|
1283
|
+
tuple(permtrim([*v3])),
|
|
1284
|
+
(2, 4, 3, 1),
|
|
1285
|
+
var2,
|
|
1286
|
+
var3,
|
|
1287
|
+
msg,
|
|
1288
|
+
do_pos_neg,
|
|
1289
|
+
),
|
|
1290
|
+
2,
|
|
1291
|
+
)
|
|
1292
|
+
else:
|
|
1293
|
+
coeff = permy(
|
|
1294
|
+
schubmult_one((1, 3, 2), tuple(permtrim([*v3])), var2, var3).get(
|
|
1295
|
+
(2, 4, 1, 3), 0
|
|
1296
|
+
),
|
|
1297
|
+
2,
|
|
1298
|
+
)
|
|
1299
|
+
tomul = sympify(coeff)
|
|
1300
|
+
toadd = 1
|
|
1301
|
+
for i in range(len(L[0])):
|
|
1302
|
+
var_index = L[0][i][1]
|
|
1303
|
+
oaf = L[0][i][0]
|
|
1304
|
+
if var_index - 1 >= len(w):
|
|
1305
|
+
yv = var_index
|
|
1306
|
+
else:
|
|
1307
|
+
yv = w[var_index - 1]
|
|
1308
|
+
for j in range(len(oaf)):
|
|
1309
|
+
toadd *= var2[yv] - var3[oaf[j]]
|
|
1310
|
+
if (not good1 or not good2) and (good1 or good2):
|
|
1311
|
+
varo = [0, var2[w[a]], var2[w[b]]]
|
|
1312
|
+
else:
|
|
1313
|
+
varo = [0, *[var2[w[spo[k]]] for k in range(4)]]
|
|
1314
|
+
if doschubpoly:
|
|
1315
|
+
toadd *= schubpoly(v3, varo, var3)
|
|
1316
|
+
else:
|
|
1317
|
+
subs_dict3 = {var2[i]: varo[i] for i in range(len(varo))}
|
|
1318
|
+
toadd *= tomul.subs(subs_dict3)
|
|
1319
|
+
val += toadd
|
|
1320
|
+
elif will_formula_work(u, v):
|
|
1321
|
+
if sign_only:
|
|
1322
|
+
return 0
|
|
1323
|
+
val = forwardcoeff(u, v, w, var2, var3)
|
|
1324
|
+
# elif inv(w) - inv(u) == 2:
|
|
1325
|
+
# indices = []
|
|
1326
|
+
# for i in range(len(w)):
|
|
1327
|
+
# if i>=len(u) or u[i]!=w[i]:
|
|
1328
|
+
# indices += [i+1]
|
|
1329
|
+
# arr = [[[],v]]
|
|
1330
|
+
# d = -1
|
|
1331
|
+
# for i in range(len(v)-1):
|
|
1332
|
+
# if v[i]>v[i+1]:
|
|
1333
|
+
# d = i + 1
|
|
1334
|
+
# for i in range(d):
|
|
1335
|
+
# arr2 = []
|
|
1336
|
+
#
|
|
1337
|
+
# if i+1 in indices:
|
|
1338
|
+
# continue
|
|
1339
|
+
# i2 = 1
|
|
1340
|
+
# i2 += len([aa for aa in indices if i+1>aa])
|
|
1341
|
+
# for vr, v2 in arr:
|
|
1342
|
+
# dpret = pull_out_var(i2,[*v2])
|
|
1343
|
+
# for v3r, v3 in dpret:
|
|
1344
|
+
# arr2 += [[vr + [(v3r,i+1)],v3]]
|
|
1345
|
+
# arr = arr2
|
|
1346
|
+
# val = 0
|
|
1347
|
+
#
|
|
1348
|
+
# for L in arr:
|
|
1349
|
+
# v3 = [*L[-1]]
|
|
1350
|
+
# tomul = 1
|
|
1351
|
+
# pooly = skew_div_diff(u,w,schubpoly(v3,[0,*[var2[a] for a in indices]],var3))
|
|
1352
|
+
# coeff = compute_positive_rep(pooly,var2,var3,msg,False)
|
|
1353
|
+
# if coeff == -1:
|
|
1354
|
+
# return -1
|
|
1355
|
+
# tomul = sympify(coeff)
|
|
1356
|
+
# toadd = 1
|
|
1357
|
+
# for i in range(len(L[0])):
|
|
1358
|
+
# var_index = L[0][i][1]
|
|
1359
|
+
# oaf = L[0][i][0]
|
|
1360
|
+
# if var_index-1>=len(w):
|
|
1361
|
+
# yv = var_index
|
|
1362
|
+
# else:
|
|
1363
|
+
# yv = w[var_index-1]
|
|
1364
|
+
# for j in range(len(oaf)):
|
|
1365
|
+
# toadd*= var2[yv] - var3[oaf[j]]
|
|
1366
|
+
# toadd*=tomul#.subs(subs_dict3)
|
|
1367
|
+
# val += toadd
|
|
1368
|
+
else:
|
|
1369
|
+
c01 = code(u)
|
|
1370
|
+
c02 = code(w)
|
|
1371
|
+
c03 = code(v)
|
|
1372
|
+
|
|
1373
|
+
c1 = code(inverse(u))
|
|
1374
|
+
c2 = code(inverse(w))
|
|
1375
|
+
|
|
1376
|
+
if one_dominates(u, w):
|
|
1377
|
+
if sign_only:
|
|
1378
|
+
return 0
|
|
1379
|
+
while c1[0] != c2[0]:
|
|
1380
|
+
w = [*w]
|
|
1381
|
+
v = [*v]
|
|
1382
|
+
w[c2[0] - 1], w[c2[0]] = w[c2[0]], w[c2[0] - 1]
|
|
1383
|
+
v[c2[0] - 1], v[c2[0]] = v[c2[0]], v[c2[0] - 1]
|
|
1384
|
+
w = tuple(w)
|
|
1385
|
+
v = tuple(v)
|
|
1386
|
+
c2 = code(inverse(w))
|
|
1387
|
+
c03 = code(v)
|
|
1388
|
+
c01 = code(u)
|
|
1389
|
+
c02 = code(w)
|
|
1390
|
+
|
|
1391
|
+
if is_reducible(v):
|
|
1392
|
+
if sign_only:
|
|
1393
|
+
return 0
|
|
1394
|
+
newc = []
|
|
1395
|
+
elemc = []
|
|
1396
|
+
for i in range(len(c03)):
|
|
1397
|
+
if c03[i] > 0:
|
|
1398
|
+
newc += [c03[i] - 1]
|
|
1399
|
+
elemc += [1]
|
|
1400
|
+
else:
|
|
1401
|
+
break
|
|
1402
|
+
v3 = uncode(newc)
|
|
1403
|
+
coeff_dict = schubmult_one(
|
|
1404
|
+
tuple(permtrim([*u])), tuple(permtrim(uncode(elemc))), var2, var3
|
|
1405
|
+
)
|
|
1406
|
+
val = 0
|
|
1407
|
+
for new_w in coeff_dict:
|
|
1408
|
+
tomul = coeff_dict[new_w]
|
|
1409
|
+
newval = schubmult_one(new_w, tuple(permtrim(uncode(newc))), var2, var3).get(
|
|
1410
|
+
tuple(permtrim([*w])), 0
|
|
1411
|
+
)
|
|
1412
|
+
newval = posify(
|
|
1413
|
+
newval,
|
|
1414
|
+
new_w,
|
|
1415
|
+
tuple(permtrim(uncode(newc))),
|
|
1416
|
+
w,
|
|
1417
|
+
var2,
|
|
1418
|
+
var3,
|
|
1419
|
+
msg,
|
|
1420
|
+
do_pos_neg,
|
|
1421
|
+
)
|
|
1422
|
+
val += tomul * shiftsubz(newval)
|
|
1423
|
+
elif c01[0] == c02[0] and c01[0] != 0:
|
|
1424
|
+
if sign_only:
|
|
1425
|
+
return 0
|
|
1426
|
+
varl = c01[0]
|
|
1427
|
+
u3 = uncode([0] + c01[1:])
|
|
1428
|
+
w3 = uncode([0] + c02[1:])
|
|
1429
|
+
val = 0
|
|
1430
|
+
val = schubmult_one(tuple(permtrim(u3)), tuple(permtrim([*v])), var2, var3).get(
|
|
1431
|
+
tuple(permtrim(w3)), 0
|
|
1432
|
+
)
|
|
1433
|
+
val = posify(
|
|
1434
|
+
val,
|
|
1435
|
+
tuple(permtrim(u3)),
|
|
1436
|
+
tuple(permtrim([*v])),
|
|
1437
|
+
tuple(permtrim(w3)),
|
|
1438
|
+
var2,
|
|
1439
|
+
var3,
|
|
1440
|
+
msg,
|
|
1441
|
+
do_pos_neg,
|
|
1442
|
+
)
|
|
1443
|
+
for i in range(varl):
|
|
1444
|
+
val = permy(val, i + 1)
|
|
1445
|
+
elif c1[0] == c2[0]:
|
|
1446
|
+
if sign_only:
|
|
1447
|
+
return 0
|
|
1448
|
+
vp = pull_out_var(c1[0] + 1, [*v])
|
|
1449
|
+
u3 = tuple(permtrim(phi1(u)))
|
|
1450
|
+
w3 = tuple(permtrim(phi1(w)))
|
|
1451
|
+
val = 0
|
|
1452
|
+
for arr, v3 in vp:
|
|
1453
|
+
tomul = 1
|
|
1454
|
+
for i in range(len(arr)):
|
|
1455
|
+
tomul *= var2[1] - var3[arr[i]]
|
|
1456
|
+
|
|
1457
|
+
val2 = schubmult_one(tuple(permtrim(u3)), tuple(permtrim(v3)), var2, var3).get(
|
|
1458
|
+
tuple(permtrim(w3)), 0
|
|
1459
|
+
)
|
|
1460
|
+
val2 = posify(val2, u3, tuple(permtrim(v3)), w3, var2, var3, msg, do_pos_neg)
|
|
1461
|
+
val += tomul * shiftsub(val2)
|
|
1462
|
+
# elif inv(w)-inv(u)==2 and len(trimcode(u)) == len(trimcode(w)):
|
|
1463
|
+
# indices = []
|
|
1464
|
+
# for i in range(len(w)):
|
|
1465
|
+
# if i>=len(u) or u[i]!=w[i]:
|
|
1466
|
+
# indices += [i+1]
|
|
1467
|
+
# arr = [[[],v]]
|
|
1468
|
+
# d = -1
|
|
1469
|
+
# for i in range(len(v)-1):
|
|
1470
|
+
# if v[i]>v[i+1]:
|
|
1471
|
+
# d = i + 1
|
|
1472
|
+
# for i in range(d):
|
|
1473
|
+
# arr2 = []
|
|
1474
|
+
#
|
|
1475
|
+
# if i+1 in indices:
|
|
1476
|
+
# continue
|
|
1477
|
+
# i2 = 1
|
|
1478
|
+
# i2 += len([aa for aa in indices if i+1>aa])
|
|
1479
|
+
# for vr, v2 in arr:
|
|
1480
|
+
# dpret = pull_out_var(i2,[*v2])
|
|
1481
|
+
# for v3r, v3 in dpret:
|
|
1482
|
+
# arr2 += [[vr + [(v3r,i+1)],v3]]
|
|
1483
|
+
# arr = arr2
|
|
1484
|
+
# val = 0
|
|
1485
|
+
#
|
|
1486
|
+
# for L in arr:
|
|
1487
|
+
# v3 = [*L[-1]]
|
|
1488
|
+
# tomul = 1
|
|
1489
|
+
# toadd = 1
|
|
1490
|
+
# for i in range(len(L[0])):
|
|
1491
|
+
# var_index = L[0][i][1]
|
|
1492
|
+
# oaf = L[0][i][0]
|
|
1493
|
+
# if var_index-1>=len(w):
|
|
1494
|
+
# yv = var_index
|
|
1495
|
+
# else:
|
|
1496
|
+
# yv = w[var_index-1]
|
|
1497
|
+
# for j in range(len(oaf)):
|
|
1498
|
+
# toadd*= var2[yv] - var3[oaf[j]]
|
|
1499
|
+
# pooly = skew_div_diff(u,w,schubpoly(v3,[0,*[var2[a] for a in indices]],var3))
|
|
1500
|
+
# if toadd == 0:
|
|
1501
|
+
# continue
|
|
1502
|
+
# if pooly !=0:
|
|
1503
|
+
# coeff = compute_positive_rep(pooly,var2,var3,msg,False)
|
|
1504
|
+
# else:
|
|
1505
|
+
# coeff = 0
|
|
1506
|
+
# if coeff == -1:
|
|
1507
|
+
# return -1
|
|
1508
|
+
# tomul = sympify(coeff)
|
|
1509
|
+
# toadd*=tomul#.subs(subs_dict3)
|
|
1510
|
+
# val += toadd
|
|
1511
|
+
else:
|
|
1512
|
+
if not sign_only:
|
|
1513
|
+
if inv(u) + inv(v) - inv(w) == 1:
|
|
1514
|
+
val2 = compute_positive_rep(val, var2, var3, msg, False)
|
|
1515
|
+
else:
|
|
1516
|
+
val2 = compute_positive_rep(val, var2, var3, msg, do_pos_neg)
|
|
1517
|
+
if val2 is not None:
|
|
1518
|
+
val = val2
|
|
1519
|
+
else:
|
|
1520
|
+
# st = str(expand(val))
|
|
1521
|
+
# if st.find("-")!=-1:
|
|
1522
|
+
# return -1
|
|
1523
|
+
# else:
|
|
1524
|
+
# return val
|
|
1525
|
+
d = expand(val).as_coefficients_dict()
|
|
1526
|
+
for v in d.values():
|
|
1527
|
+
if v < 0:
|
|
1528
|
+
return -1
|
|
1529
|
+
return 1
|
|
1530
|
+
return val
|
|
1531
|
+
|
|
1532
|
+
|
|
1533
|
+
def split_perms(perms):
|
|
1534
|
+
perms2 = [perms[0]]
|
|
1535
|
+
for perm in perms[1:]:
|
|
1536
|
+
cd = code(perm)
|
|
1537
|
+
index = -1
|
|
1538
|
+
not_zero = False
|
|
1539
|
+
did = False
|
|
1540
|
+
for i in range(len(cd)):
|
|
1541
|
+
if cd[i] != 0:
|
|
1542
|
+
not_zero = True
|
|
1543
|
+
elif not_zero and cd[i] == 0:
|
|
1544
|
+
not_zero = False
|
|
1545
|
+
index = i
|
|
1546
|
+
num_zeros_to_miss = 0
|
|
1547
|
+
for j in range(index):
|
|
1548
|
+
if cd[j] != 0:
|
|
1549
|
+
num_zeros_to_miss = max(num_zeros_to_miss, cd[j] - (index - 1 - j))
|
|
1550
|
+
num_zeros = 0
|
|
1551
|
+
for j in range(index, len(cd)):
|
|
1552
|
+
if cd[j] != 0:
|
|
1553
|
+
break
|
|
1554
|
+
else:
|
|
1555
|
+
num_zeros += 1
|
|
1556
|
+
if num_zeros >= num_zeros_to_miss:
|
|
1557
|
+
cd1 = cd[:index]
|
|
1558
|
+
cd2 = [0 for i in range(index)] + cd[index:]
|
|
1559
|
+
perms2 += [
|
|
1560
|
+
tuple(permtrim(uncode(cd1))),
|
|
1561
|
+
tuple(permtrim(uncode(cd2))),
|
|
1562
|
+
]
|
|
1563
|
+
did = True
|
|
1564
|
+
break
|
|
1565
|
+
if not did:
|
|
1566
|
+
perms2 += [perm]
|
|
1567
|
+
return perms2
|
|
1568
|
+
|
|
1569
|
+
|
|
1570
|
+
def schubpoly(v, var2=var2, var3=var3, start_var=1):
|
|
1571
|
+
n = 0
|
|
1572
|
+
for j in range(len(v) - 2, -1, -1):
|
|
1573
|
+
if v[j] > v[j + 1]:
|
|
1574
|
+
n = j + 1
|
|
1575
|
+
break
|
|
1576
|
+
if n == 0:
|
|
1577
|
+
return 1
|
|
1578
|
+
lst = pull_out_var(n, v)
|
|
1579
|
+
ret = 0
|
|
1580
|
+
for pw, vp in lst:
|
|
1581
|
+
tomul = 1
|
|
1582
|
+
for p in pw:
|
|
1583
|
+
tomul *= var2[start_var + n - 1] - var3[p]
|
|
1584
|
+
ret += tomul * schubpoly(vp, var2, var3, start_var)
|
|
1585
|
+
return ret
|
|
1586
|
+
|
|
1587
|
+
|
|
1588
|
+
def permy(val, i):
|
|
1589
|
+
subsdict = {var2[i]: var2[i + 1], var2[i + 1]: var2[i]}
|
|
1590
|
+
return sympify(val).subs(subsdict)
|