scdataloader 1.9.2__py3-none-any.whl → 2.0.0__py3-none-any.whl

This diff represents the content of publicly available package versions that have been released to one of the supported registries. The information contained in this diff is provided for informational purposes only and reflects changes between package versions as they appear in their respective public registries.
scdataloader/collator.py CHANGED
@@ -3,7 +3,7 @@ from typing import Optional
3
3
  import numpy as np
4
4
  from torch import Tensor, long
5
5
 
6
- from .utils import downsample_profile, load_genes
6
+ from .utils import load_genes
7
7
 
8
8
 
9
9
  class Collator:
@@ -22,8 +22,6 @@ class Collator:
22
22
  organism_name: str = "organism_ontology_term_id",
23
23
  class_names: list[str] = [],
24
24
  genelist: list[str] = [],
25
- downsample: Optional[float] = None, # don't use it for training!
26
- save_output: Optional[str] = None,
27
25
  ):
28
26
  """
29
27
  This class is responsible for collating data for the scPRINT model. It handles the
@@ -57,13 +55,8 @@ class Collator:
57
55
  class_names (list, optional): List of other classes to be considered. Defaults to [].
58
56
  genelist (list, optional): List of genes to be considered. Defaults to [].
59
57
  If [] all genes will be considered
60
- downsample (float, optional): Downsample the profile to a certain number of cells. Defaults to None.
61
- This is usually done by the scPRINT model during training but this option allows you to do it directly from the collator
62
- save_output (str, optional): If not None, saves the output to a file. Defaults to None.
63
- This is mainly for debugging purposes
64
58
  """
65
59
  self.organisms = organisms
66
- self.genedf = load_genes(organisms)
67
60
  self.max_len = max_len
68
61
  self.n_bins = n_bins
69
62
  self.add_zero_genes = add_zero_genes
@@ -75,14 +68,14 @@ class Collator:
75
68
  self.organism_name = organism_name
76
69
  self.tp_name = tp_name
77
70
  self.class_names = class_names
78
- self.save_output = save_output
79
71
  self.start_idx = {}
80
72
  self.accepted_genes = {}
81
- self.downsample = downsample
82
73
  self.to_subset = {}
83
- self._setup(org_to_id, valid_genes, genelist)
74
+ self._setup(None, org_to_id, valid_genes, genelist)
84
75
 
85
- def _setup(self, org_to_id=None, valid_genes=[], genelist=[]):
76
+ def _setup(self, genedf=None, org_to_id=None, valid_genes=[], genelist=[]):
77
+ if genedf is None:
78
+ genedf = load_genes(self.organisms)
86
79
  self.org_to_id = org_to_id
87
80
  self.to_subset = {}
88
81
  self.accepted_genes = {}
@@ -92,14 +85,17 @@ class Collator:
92
85
  if org_to_id is not None
93
86
  else set(self.organisms)
94
87
  )
88
+ if len(valid_genes) > 0:
89
+ if len(set(valid_genes) - set(genedf.index)) > 0:
90
+ print("Some valid genes are not in the genedf!!!")
91
+ tot = genedf[genedf.index.isin(valid_genes)]
92
+ else:
93
+ tot = genedf
95
94
  for organism in self.organisms:
96
- ogenedf = self.genedf[self.genedf.organism == organism]
97
- if len(valid_genes) > 0:
98
- tot = self.genedf[self.genedf.index.isin(valid_genes)]
99
- else:
100
- tot = self.genedf
101
95
  org = org_to_id[organism] if org_to_id is not None else organism
102
96
  self.start_idx.update({org: np.where(tot.organism == organism)[0][0]})
97
+
98
+ ogenedf = genedf[genedf.organism == organism]
103
99
  if len(valid_genes) > 0:
104
100
  self.accepted_genes.update({org: ogenedf.index.isin(valid_genes)})
105
101
  if len(genelist) > 0:
@@ -254,13 +250,6 @@ class Collator:
254
250
  ret.update({"knn_cells": Tensor(knn_cells)})
255
251
  if len(dataset) > 0:
256
252
  ret.update({"dataset": Tensor(dataset).to(long)})
257
- if self.downsample is not None:
258
- ret["x"] = downsample_profile(ret["x"], self.downsample)
259
- if self.save_output is not None:
260
- with open(self.save_output, "a") as f:
261
- np.savetxt(f, ret["x"].numpy())
262
- with open(self.save_output + "_loc", "a") as f:
263
- np.savetxt(f, gene_locs)
264
253
  return ret
265
254
 
266
255
 
scdataloader/config.py CHANGED
@@ -113,26 +113,34 @@ COARSE_ASSAY = {
113
113
 
114
114
 
115
115
  MAIN_HUMAN_MOUSE_DEV_STAGE_MAP = {
116
- "HsapDv:0010000": [
116
+ "HsapDv:0010000": [ # postnatal stage
117
117
  "MmusDv:0000092", # postnatal stage
118
118
  ],
119
- "HsapDv:0000258": [ # mature stage
119
+ "HsapDv:0000258": [ # mature stage >15
120
120
  "MmusDv:0000110", # mature stage
121
- "HsapDv:0000204", #
121
+ "HsapDv:0000204", #
122
122
  ],
123
- "HsapDv:0000227": [ # late adult stage
123
+ "HsapDv:0000087": [], # adult stage >19
124
+ "HsapDv:0000227": [ # late adult stage > 40
124
125
  "MmusDv:0000091", # 20 month-old stage
125
126
  "MmusDv:0000089", # 18 month-old stage
127
+ "HsapDv:0000091", # > 45
128
+ "HsapDv:0000093", # > 65
129
+ ],
130
+ "HsapDv:0000272": [ # 60-79 year-old stage
131
+ "HsapDv:0000094", # 60-79 year-old stage
126
132
  ],
127
- "HsapDv:0000272": [], # 60-79 year-old stage
128
133
  "HsapDv:0000095": [], # 80 year-old and over stage
129
- "HsapDv:0000267": [ # middle aged stage
134
+ "HsapDv:0000267": [ # middle aged stage >40 <60
130
135
  "MmusDv:0000087", # 16 month-old stage
131
136
  "UBERON:0018241", # prime adult stage
132
137
  "MmusDv:0000083", # 12 month-old stage
133
138
  "HsapDv:0000092", # same
134
139
  ],
135
- "HsapDv:0000266": [ # young adult stage
140
+ "HsapDv:0000266": [ # young adult stage <40
141
+ "HsapDv:0000088", # mature stage
142
+ "HsapDv:0000090", # 25 - 44
143
+ "HsapDv:0000086", # adolescent stage
136
144
  "MmusDv:0000050", # 6 weeks
137
145
  "HsapDv:0000089", # same
138
146
  "MmusDv:0000051", # 7 weeks
@@ -163,22 +171,30 @@ MAIN_HUMAN_MOUSE_DEV_STAGE_MAP = {
163
171
  "MmusDv:0000099", # 26 weeks
164
172
  "MmusDv:0000102", # 29 weeks
165
173
  ],
166
- "HsapDv:0000265": [], # child stage (1-4 yo)
174
+ "HsapDv:0000265": [ # child stage (1-4 yo)
175
+ "HsapDv:0000084", # 2-5 yo
176
+ ],
167
177
  "HsapDv:0000271": [ # juvenile stage (5-14 yo)
168
178
  "MmusDv:0000048", # 4 weeks
169
179
  "MmusDv:0000049", # 5 weeks
180
+ "HsapDv:0000081", # child
181
+ "HsapDv:0000085", # 6-11 yo
170
182
  ],
171
- "HsapDv:0000260": [ # infant stage
183
+ "HsapDv:0000260": [ # infant stage <2
172
184
  "MmusDv:0000046", # 2 weeks
173
185
  "MmusDv:0000045", # 1 week
174
186
  "MmusDv:0000047", # 3 weeks
175
187
  "HsapDv:0000083",
188
+ "HsapDv:0000256", # under 1 yo
176
189
  ],
177
190
  "HsapDv:0000262": [ # newborn stage (0-28 days)
178
191
  "MmusDv:0000036", # Theiler stage 27
179
192
  "MmusDv:0000037", # Theiler stage 28
180
193
  "MmusDv:0000113", # 4-7 days
194
+ "HsapDv:0000174", # 1 month-old stage
195
+ "HsapDv:0000082", # newborn stage
181
196
  ],
197
+ "HsapDv:0000002": [], # embryonic stage
182
198
  "HsapDv:0000007": [], # Carnegie stage 03
183
199
  "HsapDv:0000008": [], # Carnegie stage 04
184
200
  "HsapDv:0000009": [], # Carnegie stage 05
scdataloader/data.json ADDED
@@ -0,0 +1,384 @@
1
+ 'lung': 42877488
2
+ 'blood': 34180713
3
+ 'brain': 29530595
4
+ 'colon': 25830811
5
+ 'unknown': 23810521
6
+ 'pancreas': 21597602
7
+ 'embryo': 16976623
8
+ 'skin': 12513695
9
+ 'liver': 10683313
10
+ 'breast': 10539762
11
+ 'marrow': 9543512
12
+ 'kidney': 8213043
13
+ 'heart': 4800567
14
+ 'immune system': 4687291
15
+ 'eye': 4677504
16
+ # 'other (310 tissues)': 87200000
17
+ 'UBERON:0002106': 4559701
18
+ 'UBERON:0000029': 4314740
19
+ 'UBERON:0000945': 4244624
20
+ 'UBERON:0001295': 3485757
21
+ 'UBERON:0002049': 3350893
22
+ 'UBERON:0002108': 3226581
23
+ 'UBERON:0001255': 2961628
24
+ 'UBERON:0001434': 2823653
25
+ 'UBERON:0001004': 2588530
26
+ 'UBERON:0002037': 2101623
27
+ 'UBERON:0001015': 1920181
28
+ 'UBERON:0000995': 1864451
29
+ 'UBERON:0001013': 1853702
30
+ 'UBERON:0001017': 1818861
31
+ 'UBERON:0002240': 1704269
32
+ 'UBERON:0009834': 1631471
33
+ 'UBERON:0000002': 1596082
34
+ 'UBERON:0001893': 1565863
35
+ 'UBERON:0001851': 1513857
36
+ 'UBERON:0002771': 1317262
37
+ 'UBERON:0002367': 1301074
38
+ 'UBERON:0002369': 1279963
39
+ 'UBERON:0000956': 1252422
40
+ 'UBERON:0013682': 1195809
41
+ 'UBERON:0000160': 1156931
42
+ 'UBERON:0001987': 1127465
43
+ 'UBERON:0001043': 1015278
44
+ 'UBERON:0001032': 1011915
45
+ 'UBERON:0000992': 948464
46
+ 'UBERON:0000010': 897312
47
+ 'UBERON:0000473': 838235
48
+ 'UBERON:0002368': 814761
49
+ 'UBERON:0002084': 761793
50
+ 'UBERON:0001870': 730928
51
+ 'UBERON:0000344': 655220
52
+ 'UBERON:0001384': 625538
53
+ 'UBERON:0000966': 598023
54
+ 'UBERON:0002421': 578257
55
+ 'UBERON:0001225': 542410
56
+ 'UBERON:0000991': 507126
57
+ 'UBERON:0002116': 506392
58
+ 'UBERON:8440012': 494325
59
+ 'UBERON:0001898': 483451
60
+ 'UBERON:0000990': 440483
61
+ 'UBERON:0002370': 405221
62
+ 'UBERON:0002436': 399661
63
+ 'UBERON:0001965': 387483
64
+ 'UBERON:0000006': 362898
65
+ 'UBERON:0001005': 358584
66
+ 'UBERON:0010225': 343320
67
+ 'UBERON:0002102': 335470
68
+ 'UBERON:0008946': 334444
69
+ 'UBERON:0000053': 310875
70
+ 'UBERON:0008933': 310653
71
+ 'UBERON:0001117': 308212
72
+ 'UBERON:0001007': 307511
73
+ 'UBERON:0000059': 288232
74
+ 'UBERON:0002080': 286423
75
+ 'UBERON:0002094': 284283
76
+ 'UBERON:0000362': 283305
77
+ 'UBERON:0002365': 282382
78
+ 'UBERON:0002103': 264447
79
+ 'UBERON:0001891': 249305
80
+ 'UBERON:0001894': 249065
81
+ 'UBERON:0000411': 236082
82
+ 'UBERON:0002728': 221808
83
+ 'UBERON:0000451': 219655
84
+ 'UBERON:0001161': 214938
85
+ 'UBERON:0000030': 207230
86
+ 'UBERON:0009835': 206197
87
+ 'UBERON:0000988': 204168
88
+ 'UBERON:0001707': 198868
89
+ 'UBERON:0016538': 192147
90
+ 'UBERON:0002450': 189973
91
+ 'UBERON:0016540': 187526
92
+ 'UBERON:0000977': 185185
93
+ 'UBERON:0001913': 183332
94
+ 'UBERON:0001786': 179309
95
+ 'UBERON:0034751': 145757
96
+ 'UBERON:0001040': 144260
97
+ 'UBERON:0016530': 141537
98
+ 'UBERON:0001238': 136529
99
+ 'UBERON:0003889': 132985
100
+ 'UBERON:0000453': 125672
101
+ 'UBERON:0001723': 125523
102
+ 'UBERON:0002098': 120306
103
+ 'UBERON:0016525': 118039
104
+ 'UBERON:0000004': 114936
105
+ 'UBERON:0002686': 110752
106
+ 'UBERON:0022352': 110671
107
+ 'UBERON:0002351': 107573
108
+ 'UBERON:0001828': 105079
109
+ 'UBERON:0001003': 104237
110
+ 'UBERON:0002067': 100247
111
+ 'UBERON:0002190': 99711
112
+ 'UBERON:0005290': 99110
113
+ 'UBERON:0002811': 98536
114
+ 'UBERON:0001871': 97537
115
+ 'UBERON:0003688': 92733
116
+ 'UBERON:0010410': 91248
117
+ 'UBERON:0000403': 90975
118
+ 'UBERON:0000175': 90741
119
+ 'UBERON:0001976': 87947
120
+ 'UBERON:0002822': 87214
121
+ 'UBERON:0001890': 86604
122
+ 'UBERON:0014454': 86134
123
+ 'UBERON:0002810': 85525
124
+ 'UBERON:0002079': 82676
125
+ 'UBERON:0010414': 80085
126
+ 'UBERON:0003126': 79986
127
+ 'UBERON:0003027': 75807
128
+ 'UBERON:0008345': 73634
129
+ 'UBERON:0002352': 73045
130
+ 'UBERON:8410025': 72957
131
+ 'UBERON:0001393': 72549
132
+ 'UBERON:0010412': 71752
133
+ 'UBERON:0001159': 69025
134
+ 'UBERON:0014918': 65710
135
+ 'UBERON:0002078': 64486
136
+ 'UBERON:0007650': 64093
137
+ 'UBERON:0002808': 63227
138
+ 'UBERON:0007644': 62647
139
+ 'UBERON:8410010': 61264
140
+ 'UBERON:0001157': 60907
141
+ 'UBERON:0002185': 59377
142
+ 'UBERON:0002114': 59363
143
+ 'UBERON:0000916': 59001
144
+ 'UBERON:0014455': 58536
145
+ 'UBERON:0002661': 58226
146
+ 'UBERON:0001873': 57571
147
+ 'UBERON:0001769': 57422
148
+ 'UBERON:0008953': 56919
149
+ 'UBERON:0002372': 56899
150
+ 'UBERON:0002509': 55694
151
+ 'UBERON:0000397': 55666
152
+ 'UBERON:0001156': 54735
153
+ 'UBERON:0023787': 54666
154
+ 'UBERON:0002299': 54085
155
+ 'UBERON:0034893': 53956
156
+ 'UBERON:0001872': 53269
157
+ 'UBERON:0007177': 49990
158
+ 'UBERON:0004026': 48185
159
+ 'UBERON:0012648': 48068
160
+ 'UBERON:0001630': 47291
161
+ 'UBERON:0002803': 47176
162
+ 'UBERON:0016632': 45130
163
+ 'UBERON:0008803': 43943
164
+ 'UBERON:0001049': 43485
165
+ 'UBERON:0016475': 42323
166
+ 'UBERON:0002363': 42319
167
+ 'UBERON:0001874': 41277
168
+ 'UBERON:0000964': 40990
169
+ 'UBERON:0011189': 40231
170
+ 'UBERON:0036288': 36574
171
+ 'UBERON:0008954': 35284
172
+ 'UBERON:0018131': 34687
173
+ 'UBERON:0004648': 34173
174
+ 'UBERON:0034891': 34153
175
+ 'UBERON:0001775': 34132
176
+ 'UBERON:0018707': 33610
177
+ 'UBERON:0003661': 32722
178
+ 'UBERON:0003403': 32138
179
+ 'UBERON:0035328': 31696
180
+ 'UBERON:0001728': 31325
181
+ 'UBERON:0001388': 30877
182
+ 'UBERON:0008952': 29895
183
+ 'UBERON:0000080': 29606
184
+ 'UBERON:0004024': 29064
185
+ 'UBERON:0035886': 28873
186
+ 'UBERON:0004023': 28857
187
+ 'UBERON:0013473': 28621
188
+ 'UBERON:0018105': 28367
189
+ 'UBERON:0005969': 27736
190
+ 'UBERON:0012168': 27154
191
+ 'UBERON:0001886': 27092
192
+ 'UBERON:0000400': 27087
193
+ 'UBERON:0001911': 26952
194
+ 'UBERON:0000088': 26853
195
+ 'UBERON:0001153': 25865
196
+ 'UBERON:0001471': 24982
197
+ 'UBERON:0001085': 24807
198
+ 'UBERON:0000057': 24700
199
+ 'UBERON:0006761': 24573
200
+ 'UBERON:0002809': 24445
201
+ 'UBERON:0001158': 23887
202
+ 'UBERON:0008972': 23110
203
+ 'UBERON:0002807': 22796
204
+ 'UBERON:0010506': 22652
205
+ 'UBERON:0001459': 21633
206
+ 'UBERON:8410000': 21592
207
+ 'UBERON:0001831': 21003
208
+ 'UBERON:0003544': 20212
209
+ 'UBERON:0002110': 19880
210
+ 'UBERON:0014614': 19650
211
+ 'UBERON:8300000': 19408
212
+ 'UBERON:0035895': 18814
213
+ 'UBERON:0035213': 18775
214
+ 'UBERON:0001162': 18404
215
+ 'UBERON:0000056': 18354
216
+ 'UBERON:0001228': 17958
217
+ 'UBERON:0008971': 17831
218
+ 'UBERON:0013756': 17625
219
+ 'UBERON:0001052': 16913
220
+ 'UBERON:0012474': 16607
221
+ 'UBERON:0039167': 16527
222
+ 'UBERON:0002317': 15963
223
+ 'UBERON:0002115': 15762
224
+ 'UBERON:0014648': 15580
225
+ 'UBERON:8480028': 15307
226
+ 'UBERON:0000014': 15215
227
+ 'UBERON:0002489': 15127
228
+ 'UBERON:0001836': 14502
229
+ 'UBERON:0005343': 14336
230
+ 'UBERON:8410026': 14090
231
+ 'UBERON:0002132': 13953
232
+ 'UBERON:0000965': 13900
233
+ 'UBERON:0010415': 12330
234
+ 'UBERON:0000017': 11977
235
+ 'UBERON:0018303': 11937
236
+ 'UBERON:0002382': 11898
237
+ 'UBERON:0002046': 11840
238
+ 'UBERON:0001087': 11702
239
+ 'UBERON:0009958': 11377
240
+ 'UBERON:0005616': 11243
241
+ 'UBERON:8480009': 10533
242
+ 'UBERON:0013535': 9915
243
+ 'UBERON:0007106': 9898
244
+ 'UBERON:0001513': 9887
245
+ 'UBERON:0015790': 9816
246
+ 'UBERON:0001068': 9773
247
+ 'UBERON:0035894': 9667
248
+ 'UBERON:0015476': 9656
249
+ 'UBERON:0001637': 9652
250
+ 'UBERON:0002129': 9649
251
+ 'UBERON:0010033': 9467
252
+ 'UBERON:0000947': 9290
253
+ 'UBERON:0001511': 9288
254
+ 'UBERON:0004946': 9195
255
+ 'UBERON:0016435': 9097
256
+ 'UBERON:0002420': 9000
257
+ 'UBERON:0001868': 8799
258
+ 'UBERON:0002021': 8799
259
+ 'UBERON:0001542': 8683
260
+ 'UBERON:0002081': 8279
261
+ 'UBERON:0004070': 8033
262
+ 'UBERON:0008612': 7825
263
+ 'UBERON:0001901': 7228
264
+ 'UBERON:0004929': 7133
265
+ 'UBERON:0003528': 6670
266
+ 'UBERON:0002427': 6529
267
+ 'UBERON:0004025': 6448
268
+ 'UBERON:0009472': 6348
269
+ 'UBERON:0002756': 6279
270
+ 'UBERON:0001832': 6196
271
+ 'UBERON:0002378': 6142
272
+ 'UBERON:0004167': 5874
273
+ 'UBERON:0002228': 5725
274
+ 'UBERON:0003968': 5625
275
+ 'UBERON:0001154': 5515
276
+ 'UBERON:0001046': 5420
277
+ 'UBERON:0010032': 5367
278
+ 'UBERON:0004339': 4969
279
+ 'UBERON:0002385': 4881
280
+ 'UBERON:0001621': 4867
281
+ 'UBERON:0001416': 4808
282
+ 'UBERON:0001638': 4395
283
+ 'UBERON:0002429': 4355
284
+ 'UBERON:0001165': 4028
285
+ 'UBERON:0008989': 3997
286
+ 'UBERON:0001902': 3883
287
+ 'UBERON:0003532': 3443
288
+ 'UBERON:0003428': 3406
289
+ 'UBERON:0002082': 3226
290
+ 'UBERON:0001296': 3025
291
+ 'UBERON:0015143': 3014
292
+ 'UBERON:0000074': 3011
293
+ 'UBERON:0002245': 2971
294
+ 'UBERON:0001293': 2693
295
+ 'UBERON:0007625': 2348
296
+ 'UBERON:0003547': 2344
297
+ 'UBERON:0022277': 2333
298
+ 'UBERON:0001554': 2272
299
+ 'UBERON:0001348': 2223
300
+ 'UBERON:0005406': 2121
301
+ 'UBERON:0001811': 2084
302
+ 'UBERON:0013531': 2055
303
+ 'UBERON:0008934': 1866
304
+ 'UBERON:0001103': 1858
305
+ 'UBERON:0005636': 1651
306
+ 'UBERON:0007225': 1594
307
+ 'UBERON:0007224': 1564
308
+ 'UBERON:0000016': 1520
309
+ 'UBERON:8440075': 1482
310
+ 'UBERON:0004264': 1475
311
+ 'UBERON:0001773': 1431
312
+ 'UBERON:0013706': 1150
313
+ 'UBERON:0023852': 1143
314
+ 'UBERON:0001294': 849
315
+ 'UBERON:0001134': 835
316
+ 'UBERON:0003902': 675
317
+ 'UBERON:0001224': 569
318
+ 'UBERON:0005564': 399
319
+ 'UBERON:0001817': 248
320
+ 'UBERON:0002802': 163
321
+ 'UBERON:0003072': 146
322
+ 'UBERON:0000926': 139
323
+ 'UBERON:0000416': 82
324
+ 'UBERON:0003517': 48
325
+ 'UBERON:0001483': 37
326
+ 'UBERON:1000021': 37
327
+ 'UBERON:0002023': 1
328
+
329
+
330
+
331
+ human: 230822337
332
+ mouse: 102753838
333
+ # other 14070000
334
+ macaque: 3161179
335
+ zebrafish: 3117237
336
+ pig: 1641179
337
+ thale cress: 1564711
338
+ drosophila: 1564460
339
+ chicken: 606680
340
+ nake mole rat: 441042
341
+ rabbit: 417091
342
+ cow: 390675
343
+ corn: 336166
344
+ chimpanzee: 293472
345
+ c. elegans: 251759
346
+ sheep: 177871
347
+ marmoset: 115584
348
+
349
+ 10x 3': 146909525
350
+ 10x 3' v2: 12021763
351
+ 10x 3' v3: 121241920
352
+ # 10x 3': 280173208
353
+ 10x 5' v1: 4716686
354
+ 10x 5' v2: 3104399
355
+ 10x 5': 28919386
356
+ # 10x 5': 36740471
357
+ 10x multiome: 6942314
358
+ 10x (vdj): 1620181
359
+ 10x (CITE): 1580477
360
+ # 10x multiome: 10142972
361
+ sciRNA-seq: 14924076
362
+ slide-seq: 1867286
363
+ scalebio: 685024
364
+ microwell: 599459
365
+ sciPlex: 581480
366
+ drop-seq: 517799
367
+ # other (17 assays): 1423506
368
+ EFO:0010961: 286087
369
+ EFO:0008931: 192101
370
+ EFO:0700003: 146278
371
+ EFO:0700010: 133430
372
+ EFO:0700016: 128855
373
+ EFO:0030007: 105584
374
+ EFO:0008919: 87181
375
+ EFO:0009901: 76022
376
+ EFO:0008796: 68645
377
+ EFO:0009919: 68544
378
+ EFO:0700011: 58981
379
+ EFO:0030019: 31775
380
+ EFO:0008780: 25652
381
+ EFO:0010010: 5231
382
+ EFO:0008953: 4693
383
+ EFO:0008720: 2768
384
+ EFO:0008930: 1679