scdataloader 1.6.3__py3-none-any.whl → 1.7.0__py3-none-any.whl
This diff represents the content of publicly available package versions that have been released to one of the supported registries. The information contained in this diff is provided for informational purposes only and reflects changes between package versions as they appear in their respective public registries.
- scdataloader/VERSION +1 -1
- scdataloader/__init__.py +2 -0
- scdataloader/__main__.py +38 -8
- scdataloader/collator.py +6 -2
- scdataloader/config.py +99 -0
- scdataloader/data.py +44 -37
- scdataloader/datamodule.py +124 -41
- scdataloader/mapped.py +700 -0
- scdataloader/preprocess.py +229 -86
- scdataloader/utils.py +212 -27
- {scdataloader-1.6.3.dist-info → scdataloader-1.7.0.dist-info}/METADATA +9 -6
- scdataloader-1.7.0.dist-info/RECORD +15 -0
- {scdataloader-1.6.3.dist-info → scdataloader-1.7.0.dist-info}/WHEEL +1 -1
- scdataloader-1.6.3.dist-info/RECORD +0 -14
- {scdataloader-1.6.3.dist-info → scdataloader-1.7.0.dist-info}/licenses/LICENSE +0 -0
scdataloader/utils.py
CHANGED
|
@@ -147,7 +147,7 @@ def getBiomartTable(
|
|
|
147
147
|
return res
|
|
148
148
|
|
|
149
149
|
|
|
150
|
-
def validate(adata: AnnData, organism: str):
|
|
150
|
+
def validate(adata: AnnData, organism: str, need_all=True):
|
|
151
151
|
"""
|
|
152
152
|
validate checks if the adata object is valid for lamindb
|
|
153
153
|
|
|
@@ -185,7 +185,7 @@ def validate(adata: AnnData, organism: str):
|
|
|
185
185
|
"tissue_ontology_term_id",
|
|
186
186
|
"assay_ontology_term_id",
|
|
187
187
|
]:
|
|
188
|
-
if val not in adata.obs.columns:
|
|
188
|
+
if val not in adata.obs.columns and need_all:
|
|
189
189
|
raise ValueError(
|
|
190
190
|
f"Column '{val}' is missing in the provided anndata object."
|
|
191
191
|
)
|
|
@@ -193,7 +193,9 @@ def validate(adata: AnnData, organism: str):
|
|
|
193
193
|
if not bt.Ethnicity.validate(
|
|
194
194
|
adata.obs["self_reported_ethnicity_ontology_term_id"],
|
|
195
195
|
field="ontology_id",
|
|
196
|
-
).all()
|
|
196
|
+
).all() and not set(adata.obs["self_reported_ethnicity_ontology_term_id"]) == set(
|
|
197
|
+
["unknown"]
|
|
198
|
+
):
|
|
197
199
|
raise ValueError("Invalid ethnicity ontology term id found")
|
|
198
200
|
if not bt.Organism.validate(
|
|
199
201
|
adata.obs["organism_ontology_term_id"], field="ontology_id"
|
|
@@ -201,28 +203,40 @@ def validate(adata: AnnData, organism: str):
|
|
|
201
203
|
raise ValueError("Invalid organism ontology term id found")
|
|
202
204
|
if not bt.Phenotype.validate(
|
|
203
205
|
adata.obs["sex_ontology_term_id"], field="ontology_id"
|
|
204
|
-
).all()
|
|
206
|
+
).all() and not set(adata.obs["self_reported_ethnicity_ontology_term_id"]) == set(
|
|
207
|
+
["unknown"]
|
|
208
|
+
):
|
|
205
209
|
raise ValueError("Invalid sex ontology term id found")
|
|
206
210
|
if not bt.Disease.validate(
|
|
207
211
|
adata.obs["disease_ontology_term_id"], field="ontology_id"
|
|
208
|
-
).all()
|
|
212
|
+
).all() and not set(adata.obs["self_reported_ethnicity_ontology_term_id"]) == set(
|
|
213
|
+
["unknown"]
|
|
214
|
+
):
|
|
209
215
|
raise ValueError("Invalid disease ontology term id found")
|
|
210
216
|
if not bt.CellType.validate(
|
|
211
217
|
adata.obs["cell_type_ontology_term_id"], field="ontology_id"
|
|
212
|
-
).all()
|
|
218
|
+
).all() and not set(adata.obs["self_reported_ethnicity_ontology_term_id"]) == set(
|
|
219
|
+
["unknown"]
|
|
220
|
+
):
|
|
213
221
|
raise ValueError("Invalid cell type ontology term id found")
|
|
214
222
|
if not bt.DevelopmentalStage.validate(
|
|
215
223
|
adata.obs["development_stage_ontology_term_id"],
|
|
216
224
|
field="ontology_id",
|
|
217
|
-
).all()
|
|
225
|
+
).all() and not set(adata.obs["self_reported_ethnicity_ontology_term_id"]) == set(
|
|
226
|
+
["unknown"]
|
|
227
|
+
):
|
|
218
228
|
raise ValueError("Invalid dev stage ontology term id found")
|
|
219
229
|
if not bt.Tissue.validate(
|
|
220
230
|
adata.obs["tissue_ontology_term_id"], field="ontology_id"
|
|
221
|
-
).all()
|
|
231
|
+
).all() and not set(adata.obs["self_reported_ethnicity_ontology_term_id"]) == set(
|
|
232
|
+
["unknown"]
|
|
233
|
+
):
|
|
222
234
|
raise ValueError("Invalid tissue ontology term id found")
|
|
223
235
|
if not bt.ExperimentalFactor.validate(
|
|
224
236
|
adata.obs["assay_ontology_term_id"], field="ontology_id"
|
|
225
|
-
).all()
|
|
237
|
+
).all() and not set(adata.obs["self_reported_ethnicity_ontology_term_id"]) == set(
|
|
238
|
+
["unknown"]
|
|
239
|
+
):
|
|
226
240
|
raise ValueError("Invalid assay ontology term id found")
|
|
227
241
|
if not bt.Gene.validate(
|
|
228
242
|
adata.var.index, field="ensembl_gene_id", organism=organism
|
|
@@ -378,6 +392,169 @@ def load_genes(organisms: Union[str, list] = "NCBITaxon:9606"): # "NCBITaxon:10
|
|
|
378
392
|
]:
|
|
379
393
|
if col in organismdf.columns:
|
|
380
394
|
organismdf.drop(columns=[col], inplace=True)
|
|
395
|
+
# temp fix
|
|
396
|
+
drop = {
|
|
397
|
+
"ENSG00000112096",
|
|
398
|
+
"ENSG00000137808",
|
|
399
|
+
"ENSG00000161149",
|
|
400
|
+
"ENSG00000182230",
|
|
401
|
+
"ENSG00000203812",
|
|
402
|
+
"ENSG00000204092",
|
|
403
|
+
"ENSG00000205485",
|
|
404
|
+
"ENSG00000212951",
|
|
405
|
+
"ENSG00000215271",
|
|
406
|
+
"ENSG00000221995",
|
|
407
|
+
"ENSG00000224739",
|
|
408
|
+
"ENSG00000224745",
|
|
409
|
+
"ENSG00000225178",
|
|
410
|
+
"ENSG00000225932",
|
|
411
|
+
"ENSG00000226377",
|
|
412
|
+
"ENSG00000226380",
|
|
413
|
+
"ENSG00000226403",
|
|
414
|
+
"ENSG00000227021",
|
|
415
|
+
"ENSG00000227220",
|
|
416
|
+
"ENSG00000227902",
|
|
417
|
+
"ENSG00000228139",
|
|
418
|
+
"ENSG00000228206",
|
|
419
|
+
"ENSG00000228906",
|
|
420
|
+
"ENSG00000229352",
|
|
421
|
+
"ENSG00000231575",
|
|
422
|
+
"ENSG00000232196",
|
|
423
|
+
"ENSG00000232295",
|
|
424
|
+
"ENSG00000233776",
|
|
425
|
+
"ENSG00000236166",
|
|
426
|
+
"ENSG00000236673",
|
|
427
|
+
"ENSG00000236740",
|
|
428
|
+
"ENSG00000236886",
|
|
429
|
+
"ENSG00000236996",
|
|
430
|
+
"ENSG00000237133",
|
|
431
|
+
"ENSG00000237513",
|
|
432
|
+
"ENSG00000237548",
|
|
433
|
+
"ENSG00000237838",
|
|
434
|
+
"ENSG00000239446",
|
|
435
|
+
"ENSG00000239467",
|
|
436
|
+
"ENSG00000239665",
|
|
437
|
+
"ENSG00000244693",
|
|
438
|
+
"ENSG00000244952",
|
|
439
|
+
"ENSG00000249860",
|
|
440
|
+
"ENSG00000251044",
|
|
441
|
+
"ENSG00000253878",
|
|
442
|
+
"ENSG00000254561",
|
|
443
|
+
"ENSG00000254740",
|
|
444
|
+
"ENSG00000255633",
|
|
445
|
+
"ENSG00000255823",
|
|
446
|
+
"ENSG00000256045",
|
|
447
|
+
"ENSG00000256222",
|
|
448
|
+
"ENSG00000256374",
|
|
449
|
+
"ENSG00000256427",
|
|
450
|
+
"ENSG00000256618",
|
|
451
|
+
"ENSG00000256863",
|
|
452
|
+
"ENSG00000256892",
|
|
453
|
+
"ENSG00000258414",
|
|
454
|
+
"ENSG00000258808",
|
|
455
|
+
"ENSG00000258861",
|
|
456
|
+
"ENSG00000259444",
|
|
457
|
+
"ENSG00000259820",
|
|
458
|
+
"ENSG00000259834",
|
|
459
|
+
"ENSG00000259855",
|
|
460
|
+
"ENSG00000260461",
|
|
461
|
+
"ENSG00000261068",
|
|
462
|
+
"ENSG00000261438",
|
|
463
|
+
"ENSG00000261490",
|
|
464
|
+
"ENSG00000261534",
|
|
465
|
+
"ENSG00000261737",
|
|
466
|
+
"ENSG00000261773",
|
|
467
|
+
"ENSG00000261963",
|
|
468
|
+
"ENSG00000262668",
|
|
469
|
+
"ENSG00000263464",
|
|
470
|
+
"ENSG00000267637",
|
|
471
|
+
"ENSG00000268955",
|
|
472
|
+
"ENSG00000269028",
|
|
473
|
+
"ENSG00000269900",
|
|
474
|
+
"ENSG00000269933",
|
|
475
|
+
"ENSG00000269966",
|
|
476
|
+
"ENSG00000270188",
|
|
477
|
+
"ENSG00000270394",
|
|
478
|
+
"ENSG00000270672",
|
|
479
|
+
"ENSG00000271043",
|
|
480
|
+
"ENSG00000271409",
|
|
481
|
+
"ENSG00000271734",
|
|
482
|
+
"ENSG00000271870",
|
|
483
|
+
"ENSG00000272040",
|
|
484
|
+
"ENSG00000272196",
|
|
485
|
+
"ENSG00000272267",
|
|
486
|
+
"ENSG00000272354",
|
|
487
|
+
"ENSG00000272370",
|
|
488
|
+
"ENSG00000272551",
|
|
489
|
+
"ENSG00000272567",
|
|
490
|
+
"ENSG00000272880",
|
|
491
|
+
"ENSG00000272904",
|
|
492
|
+
"ENSG00000272934",
|
|
493
|
+
"ENSG00000273301",
|
|
494
|
+
"ENSG00000273370",
|
|
495
|
+
"ENSG00000273496",
|
|
496
|
+
"ENSG00000273576",
|
|
497
|
+
"ENSG00000273614",
|
|
498
|
+
"ENSG00000273837",
|
|
499
|
+
"ENSG00000273888",
|
|
500
|
+
"ENSG00000273923",
|
|
501
|
+
"ENSG00000276612",
|
|
502
|
+
"ENSG00000276814",
|
|
503
|
+
"ENSG00000277050",
|
|
504
|
+
"ENSG00000277077",
|
|
505
|
+
"ENSG00000277352",
|
|
506
|
+
"ENSG00000277666",
|
|
507
|
+
"ENSG00000277761",
|
|
508
|
+
"ENSG00000278198",
|
|
509
|
+
"ENSG00000278782",
|
|
510
|
+
"ENSG00000278927",
|
|
511
|
+
"ENSG00000278955",
|
|
512
|
+
"ENSG00000279226",
|
|
513
|
+
"ENSG00000279765",
|
|
514
|
+
"ENSG00000279769",
|
|
515
|
+
"ENSG00000279948",
|
|
516
|
+
"ENSG00000280058",
|
|
517
|
+
"ENSG00000280095",
|
|
518
|
+
"ENSG00000280250",
|
|
519
|
+
"ENSG00000280346",
|
|
520
|
+
"ENSG00000280374",
|
|
521
|
+
"ENSG00000280710",
|
|
522
|
+
"ENSG00000282080",
|
|
523
|
+
"ENSG00000282246",
|
|
524
|
+
"ENSG00000282965",
|
|
525
|
+
"ENSG00000283486",
|
|
526
|
+
"ENSG00000284299",
|
|
527
|
+
"ENSG00000284741",
|
|
528
|
+
"ENSG00000285106",
|
|
529
|
+
"ENSG00000285162",
|
|
530
|
+
"ENSG00000285476",
|
|
531
|
+
"ENSG00000285762",
|
|
532
|
+
"ENSG00000286065",
|
|
533
|
+
"ENSG00000286228",
|
|
534
|
+
"ENSG00000286601",
|
|
535
|
+
"ENSG00000286699",
|
|
536
|
+
"ENSG00000286949",
|
|
537
|
+
"ENSG00000286996",
|
|
538
|
+
"ENSG00000287116",
|
|
539
|
+
"ENSG00000287388",
|
|
540
|
+
"ENSG00000288541",
|
|
541
|
+
"ENSG00000288546",
|
|
542
|
+
"ENSG00000288630",
|
|
543
|
+
"ENSG00000288639",
|
|
544
|
+
"ENSMUSG00000069518",
|
|
545
|
+
"ENSMUSG00000073682",
|
|
546
|
+
"ENSMUSG00000075014",
|
|
547
|
+
"ENSMUSG00000075015",
|
|
548
|
+
"ENSMUSG00000078091",
|
|
549
|
+
"ENSMUSG00000094958",
|
|
550
|
+
"ENSMUSG00000095547",
|
|
551
|
+
"ENSMUSG00000095891",
|
|
552
|
+
"ENSMUSG00000096385",
|
|
553
|
+
"ENSMUSG00000096519",
|
|
554
|
+
"ENSMUSG00000096923",
|
|
555
|
+
"ENSMUSG00000097078",
|
|
556
|
+
}
|
|
557
|
+
organismdf = organismdf[~organismdf.index.isin(drop)]
|
|
381
558
|
return organismdf
|
|
382
559
|
|
|
383
560
|
|
|
@@ -419,7 +596,7 @@ def populate_my_ontology(
|
|
|
419
596
|
# cell type
|
|
420
597
|
if celltypes is not None:
|
|
421
598
|
if len(celltypes) == 0:
|
|
422
|
-
bt.CellType.
|
|
599
|
+
bt.CellType.import_source()
|
|
423
600
|
else:
|
|
424
601
|
names = bt.CellType.public().df().index if not celltypes else celltypes
|
|
425
602
|
records = bt.CellType.from_values(names, field="ontology_id")
|
|
@@ -434,9 +611,9 @@ def populate_my_ontology(
|
|
|
434
611
|
)
|
|
435
612
|
source = bt.PublicSource.filter(name="ensembl", organism=organism_clade).last()
|
|
436
613
|
records = [
|
|
437
|
-
|
|
438
|
-
for
|
|
439
|
-
bt.Organism.from_source(ontology_id=
|
|
614
|
+
organism_or_organismlist if isinstance(organism_or_organismlist, bt.Organism) else organism_or_organismlist[0]
|
|
615
|
+
for organism_or_organismlist in [
|
|
616
|
+
bt.Organism.from_source(ontology_id=name, source=source) for name in names
|
|
440
617
|
]
|
|
441
618
|
]
|
|
442
619
|
ln.save(records)
|
|
@@ -453,7 +630,7 @@ def populate_my_ontology(
|
|
|
453
630
|
# ethnicity
|
|
454
631
|
if ethnicities is not None:
|
|
455
632
|
if len(ethnicities) == 0:
|
|
456
|
-
bt.Ethnicity.
|
|
633
|
+
bt.Ethnicity.import_source()
|
|
457
634
|
else:
|
|
458
635
|
names = bt.Ethnicity.public().df().index if not ethnicities else ethnicities
|
|
459
636
|
records = bt.Ethnicity.from_values(names, field="ontology_id")
|
|
@@ -464,7 +641,7 @@ def populate_my_ontology(
|
|
|
464
641
|
# ExperimentalFactor
|
|
465
642
|
if assays is not None:
|
|
466
643
|
if len(assays) == 0:
|
|
467
|
-
bt.ExperimentalFactor.
|
|
644
|
+
bt.ExperimentalFactor.import_source()
|
|
468
645
|
else:
|
|
469
646
|
names = bt.ExperimentalFactor.public().df().index if not assays else assays
|
|
470
647
|
records = bt.ExperimentalFactor.from_values(names, field="ontology_id")
|
|
@@ -475,7 +652,7 @@ def populate_my_ontology(
|
|
|
475
652
|
# Tissue
|
|
476
653
|
if tissues is not None:
|
|
477
654
|
if len(tissues) == 0:
|
|
478
|
-
bt.Tissue.
|
|
655
|
+
bt.Tissue.import_source()
|
|
479
656
|
else:
|
|
480
657
|
names = bt.Tissue.public().df().index if not tissues else tissues
|
|
481
658
|
records = bt.Tissue.from_values(names, field="ontology_id")
|
|
@@ -484,9 +661,9 @@ def populate_my_ontology(
|
|
|
484
661
|
# DevelopmentalStage
|
|
485
662
|
if dev_stages is not None:
|
|
486
663
|
if len(dev_stages) == 0:
|
|
487
|
-
bt.DevelopmentalStage.
|
|
664
|
+
bt.DevelopmentalStage.import_source()
|
|
488
665
|
source = bt.PublicSource.filter(organism="mouse", name="mmusdv").last()
|
|
489
|
-
bt.DevelopmentalStage.
|
|
666
|
+
bt.DevelopmentalStage.import_source(source=source)
|
|
490
667
|
else:
|
|
491
668
|
names = (
|
|
492
669
|
bt.DevelopmentalStage.public().df().index
|
|
@@ -500,7 +677,7 @@ def populate_my_ontology(
|
|
|
500
677
|
# Disease
|
|
501
678
|
if diseases is not None:
|
|
502
679
|
if len(diseases) == 0:
|
|
503
|
-
bt.Disease.
|
|
680
|
+
bt.Disease.import_source()
|
|
504
681
|
else:
|
|
505
682
|
names = bt.Disease.public().df().index if not diseases else diseases
|
|
506
683
|
records = bt.Disease.from_values(names, field="ontology_id")
|
|
@@ -575,18 +752,26 @@ def translate(
|
|
|
575
752
|
dict: the mapping for the translation
|
|
576
753
|
"""
|
|
577
754
|
if t == "cell_type_ontology_term_id":
|
|
578
|
-
obj = bt.CellType
|
|
755
|
+
obj = bt.CellType
|
|
579
756
|
elif t == "assay_ontology_term_id":
|
|
580
|
-
obj = bt.ExperimentalFactor
|
|
757
|
+
obj = bt.ExperimentalFactor
|
|
581
758
|
elif t == "tissue_ontology_term_id":
|
|
582
|
-
obj = bt.Tissue
|
|
759
|
+
obj = bt.Tissue
|
|
760
|
+
elif t in [
|
|
761
|
+
"development_stage_ontology_term_id",
|
|
762
|
+
"simplified_dev_stage",
|
|
763
|
+
"age_group",
|
|
764
|
+
]:
|
|
765
|
+
obj = bt.DevelopmentalStage
|
|
766
|
+
elif t == "disease_ontology_term_id":
|
|
767
|
+
obj = bt.Disease
|
|
768
|
+
elif t == "self_reported_ethnicity_ontology_term_id":
|
|
769
|
+
obj = bt.Ethnicity
|
|
583
770
|
else:
|
|
584
771
|
return None
|
|
585
772
|
if type(val) is str:
|
|
586
|
-
return {val: obj.
|
|
773
|
+
return {val: obj.filter(ontology_id=val).one().name}
|
|
587
774
|
elif type(val) is list or type(val) is set:
|
|
588
|
-
return {i: obj.
|
|
775
|
+
return {i: obj.filter(ontology_id=i).one().name for i in set(val)}
|
|
589
776
|
elif type(val) is dict or type(val) is Counter:
|
|
590
|
-
return {
|
|
591
|
-
obj.search(k, field=obj.ontology_id).name.iloc[0]: v for k, v in val.items()
|
|
592
|
-
}
|
|
777
|
+
return {obj.filter(ontology_id=k).one().name: v for k, v in val.items()}
|
|
@@ -1,23 +1,24 @@
|
|
|
1
|
-
Metadata-Version: 2.
|
|
1
|
+
Metadata-Version: 2.4
|
|
2
2
|
Name: scdataloader
|
|
3
|
-
Version: 1.
|
|
3
|
+
Version: 1.7.0
|
|
4
4
|
Summary: a dataloader for single cell data in lamindb
|
|
5
5
|
Project-URL: repository, https://github.com/jkobject/scDataLoader
|
|
6
6
|
Author-email: jkobject <jkobject@gmail.com>
|
|
7
|
-
License: MIT
|
|
7
|
+
License-Expression: MIT
|
|
8
|
+
License-File: LICENSE
|
|
8
9
|
Keywords: dataloader,lamindb,pytorch,scPRINT,scRNAseq
|
|
9
|
-
Requires-Python: <3.
|
|
10
|
+
Requires-Python: <3.14,>=3.10
|
|
10
11
|
Requires-Dist: anndata>=0.9.0
|
|
11
12
|
Requires-Dist: biomart>=0.9.0
|
|
12
13
|
Requires-Dist: cellxgene-census>=0.1.0
|
|
13
14
|
Requires-Dist: django>=4.0.0
|
|
14
15
|
Requires-Dist: harmonypy>=0.0.10
|
|
15
16
|
Requires-Dist: ipykernel>=6.20.0
|
|
16
|
-
Requires-Dist: lamindb[bionty]==0.
|
|
17
|
+
Requires-Dist: lamindb[bionty]==0.77.2
|
|
17
18
|
Requires-Dist: leidenalg>=0.8.0
|
|
18
19
|
Requires-Dist: lightning>=2.0.0
|
|
19
20
|
Requires-Dist: matplotlib>=3.5.0
|
|
20
|
-
Requires-Dist: numpy
|
|
21
|
+
Requires-Dist: numpy==1.26.0
|
|
21
22
|
Requires-Dist: palantir>=1.3.3
|
|
22
23
|
Requires-Dist: pandas>=2.0.0
|
|
23
24
|
Requires-Dist: scikit-misc>=0.5.0
|
|
@@ -50,6 +51,8 @@ Description-Content-Type: text/markdown
|
|
|
50
51
|
[](https://github.com/psf/black)
|
|
51
52
|
[](https://doi.org/10.1101/2024.07.29.605556)
|
|
52
53
|
|
|
54
|
+
<img src="scdataloader.png" width="600">
|
|
55
|
+
|
|
53
56
|
This single cell pytorch dataloader / lighting datamodule is designed to be used with:
|
|
54
57
|
|
|
55
58
|
- [lamindb](https://lamin.ai/)
|
|
@@ -0,0 +1,15 @@
|
|
|
1
|
+
scdataloader/VERSION,sha256=u3Mg2DHnoVGqkBw15zJsdS-i71Ak8wdoxCMZuL7Rce0,6
|
|
2
|
+
scdataloader/__init__.py,sha256=4sSZSnNM-gtyiB28M_FM3o8lNabmsofct9SWWry1_zA,170
|
|
3
|
+
scdataloader/__main__.py,sha256=CcvUnvgnF2d1QQHjkIhhzeK9vgplbhdHiGMawmxhq6g,7454
|
|
4
|
+
scdataloader/base.py,sha256=M1gD59OffRdLOgS1vHKygOomUoAMuzjpRtAfM3SBKF8,338
|
|
5
|
+
scdataloader/collator.py,sha256=NmbMAxkFZLufWpn0yBY6d1me2nUKdV0VG11Js8rgghU,11560
|
|
6
|
+
scdataloader/config.py,sha256=tu9hkUiU2HfaIiVzdmrjbzt73yV4zP-t8lDuJqyGcDA,6546
|
|
7
|
+
scdataloader/data.py,sha256=K0r_RlLBza3WsWQVzybZjskKDfwFe8qMqLcJwdZ1yuw,15172
|
|
8
|
+
scdataloader/datamodule.py,sha256=-GumOkOXDn7DJnqo2yhmPpEcIZUtw0LulFOnl3nkouw,20193
|
|
9
|
+
scdataloader/mapped.py,sha256=u3vo7vcE4Q72qY0j7uHpZvlTTYr4yc3RaRrwE7AAhaE,27122
|
|
10
|
+
scdataloader/preprocess.py,sha256=feaXGQYNfChbISZCWCnIZL1qwmzfwmNygbL-xVTwC0o,34595
|
|
11
|
+
scdataloader/utils.py,sha256=MRuqbRcCkb45k_G4QCwog0C6-Az4ZcklVPn47aZJLGs,27870
|
|
12
|
+
scdataloader-1.7.0.dist-info/METADATA,sha256=r0oXvOe1kqoRlbYJim4MTqgRADjP3t_xDaxXGrGomkM,9907
|
|
13
|
+
scdataloader-1.7.0.dist-info/WHEEL,sha256=qtCwoSJWgHk21S1Kb4ihdzI2rlJ1ZKaIurTj_ngOhyQ,87
|
|
14
|
+
scdataloader-1.7.0.dist-info/licenses/LICENSE,sha256=OXLcl0T2SZ8Pmy2_dmlvKuetivmyPd5m1q-Gyd-zaYY,35149
|
|
15
|
+
scdataloader-1.7.0.dist-info/RECORD,,
|
|
@@ -1,14 +0,0 @@
|
|
|
1
|
-
scdataloader/VERSION,sha256=hvj6gyp2NYIB1uL88LtHcn7-LbI69zDbZM6tZSd3a-o,6
|
|
2
|
-
scdataloader/__init__.py,sha256=5y9VzRhOAUWeYMn2MrRRRlzgdiMjRFytr7gcn-I6IkE,147
|
|
3
|
-
scdataloader/__main__.py,sha256=VXrt2IykBypnIXWydwA7NfF7LtRGc-0Khjtm5OIBNpI,6527
|
|
4
|
-
scdataloader/base.py,sha256=M1gD59OffRdLOgS1vHKygOomUoAMuzjpRtAfM3SBKF8,338
|
|
5
|
-
scdataloader/collator.py,sha256=gzHiuixUwK8JClhAbG12kgWMU_VTKkowibA-tDFpbwo,11341
|
|
6
|
-
scdataloader/config.py,sha256=rrW2DZxG4J2_pmpDbXXsaKJkpNC57w5dIlItiFbANYw,2905
|
|
7
|
-
scdataloader/data.py,sha256=3dCp-lIAfOkCi76SH5W3iSqFmAWZslwARkN9v5mylz8,14907
|
|
8
|
-
scdataloader/datamodule.py,sha256=B-udBevPSPF__hfy0pOz1dGovgE95K2pxPupjB7RblI,16936
|
|
9
|
-
scdataloader/preprocess.py,sha256=pH4EPrcRqH34o3t5X3A4kETiYdCZngih5SdP_PPfgOo,29178
|
|
10
|
-
scdataloader/utils.py,sha256=7tgt3sPj_XTKb-UlJDAZWvQr0_DG9VTC6ioiLdBWFFE,22498
|
|
11
|
-
scdataloader-1.6.3.dist-info/METADATA,sha256=iBh6pruWqZArL8vFjEEuc6FL2m1amZixVLTwQ5mpXcM,9833
|
|
12
|
-
scdataloader-1.6.3.dist-info/WHEEL,sha256=C2FUgwZgiLbznR-k0b_5k3Ai_1aASOXDss3lzCUsUug,87
|
|
13
|
-
scdataloader-1.6.3.dist-info/licenses/LICENSE,sha256=OXLcl0T2SZ8Pmy2_dmlvKuetivmyPd5m1q-Gyd-zaYY,35149
|
|
14
|
-
scdataloader-1.6.3.dist-info/RECORD,,
|
|
File without changes
|