scdataloader 0.0.4__py3-none-any.whl → 1.0.1__py3-none-any.whl
This diff represents the content of publicly available package versions that have been released to one of the supported registries. The information contained in this diff is provided for informational purposes only and reflects changes between package versions as they appear in their respective public registries.
- scdataloader/VERSION +1 -1
- scdataloader/__main__.py +3 -0
- scdataloader/collator.py +56 -31
- scdataloader/config.py +6 -0
- scdataloader/data.py +98 -87
- scdataloader/datamodule.py +66 -38
- scdataloader/mapped.py +266 -105
- scdataloader/preprocess.py +3 -207
- scdataloader/utils.py +57 -8
- {scdataloader-0.0.4.dist-info → scdataloader-1.0.1.dist-info}/METADATA +45 -20
- scdataloader-1.0.1.dist-info/RECORD +16 -0
- scdataloader-0.0.4.dist-info/RECORD +0 -16
- {scdataloader-0.0.4.dist-info → scdataloader-1.0.1.dist-info}/LICENSE +0 -0
- {scdataloader-0.0.4.dist-info → scdataloader-1.0.1.dist-info}/WHEEL +0 -0
- {scdataloader-0.0.4.dist-info → scdataloader-1.0.1.dist-info}/entry_points.txt +0 -0
scdataloader/mapped.py
CHANGED
|
@@ -1,20 +1,26 @@
|
|
|
1
|
+
from __future__ import annotations
|
|
2
|
+
|
|
1
3
|
from collections import Counter
|
|
2
4
|
from functools import reduce
|
|
3
|
-
from
|
|
4
|
-
from typing import List, Literal, Optional, Union
|
|
5
|
+
from pathlib import Path
|
|
6
|
+
from typing import TYPE_CHECKING, Dict, List, Literal, Optional, Union
|
|
5
7
|
|
|
6
8
|
import numpy as np
|
|
7
9
|
import pandas as pd
|
|
8
10
|
from lamin_utils import logger
|
|
9
|
-
from
|
|
10
|
-
from lamindb.
|
|
11
|
+
from lamindb_setup.core.upath import UPath
|
|
12
|
+
from lamindb.core._data import _track_run_input
|
|
13
|
+
|
|
14
|
+
from lamindb.core.storage._backed_access import (
|
|
11
15
|
ArrayTypes,
|
|
12
16
|
GroupTypes,
|
|
13
17
|
StorageType,
|
|
14
18
|
_safer_read_index,
|
|
15
19
|
registry,
|
|
16
20
|
)
|
|
17
|
-
|
|
21
|
+
|
|
22
|
+
if TYPE_CHECKING:
|
|
23
|
+
from lamindb_setup.core.types import UPathStr
|
|
18
24
|
|
|
19
25
|
|
|
20
26
|
class _Connect:
|
|
@@ -43,50 +49,118 @@ class _Connect:
|
|
|
43
49
|
|
|
44
50
|
def mapped(
|
|
45
51
|
dataset,
|
|
52
|
+
label_keys: str | list[str] | None = None,
|
|
53
|
+
join: Literal["inner", "outer"] | None = "inner",
|
|
54
|
+
encode_labels: bool | list[str] = True,
|
|
55
|
+
unknown_label: str | dict[str, str] | None = None,
|
|
56
|
+
cache_categories: bool = True,
|
|
57
|
+
parallel: bool = False,
|
|
58
|
+
dtype: str | None = None,
|
|
46
59
|
stream: bool = False,
|
|
47
|
-
is_run_input:
|
|
48
|
-
|
|
49
|
-
) -> "MappedDataset":
|
|
50
|
-
_track_run_input(dataset, is_run_input)
|
|
60
|
+
is_run_input: bool | None = None,
|
|
61
|
+
) -> MappedCollection:
|
|
51
62
|
path_list = []
|
|
52
|
-
for
|
|
53
|
-
if
|
|
54
|
-
logger.warning(f"Ignoring
|
|
63
|
+
for artifact in dataset.artifacts.all():
|
|
64
|
+
if artifact.suffix not in {".h5ad", ".zrad", ".zarr"}:
|
|
65
|
+
logger.warning(f"Ignoring artifact with suffix {artifact.suffix}")
|
|
55
66
|
continue
|
|
56
|
-
elif not stream
|
|
57
|
-
path_list.append(
|
|
67
|
+
elif not stream:
|
|
68
|
+
path_list.append(artifact.stage())
|
|
58
69
|
else:
|
|
59
|
-
path_list.append(
|
|
60
|
-
|
|
70
|
+
path_list.append(artifact.path)
|
|
71
|
+
ds = MappedCollection(
|
|
72
|
+
path_list,
|
|
73
|
+
label_keys,
|
|
74
|
+
join,
|
|
75
|
+
encode_labels,
|
|
76
|
+
unknown_label,
|
|
77
|
+
cache_categories,
|
|
78
|
+
parallel,
|
|
79
|
+
dtype,
|
|
80
|
+
)
|
|
81
|
+
# track only if successful
|
|
82
|
+
_track_run_input(dataset, is_run_input)
|
|
83
|
+
return ds
|
|
61
84
|
|
|
62
85
|
|
|
63
|
-
class
|
|
64
|
-
"""Map-style
|
|
86
|
+
class MappedCollection:
|
|
87
|
+
"""Map-style collection for use in data loaders.
|
|
65
88
|
|
|
66
|
-
This
|
|
89
|
+
This class virtually concatenates `AnnData` arrays as a `pytorch map-style dataset
|
|
90
|
+
<https://pytorch.org/docs/stable/data.html#map-style-datasets>`__.
|
|
67
91
|
|
|
68
|
-
|
|
92
|
+
If your `AnnData` collection is in the cloud, move them into a local cache
|
|
93
|
+
first for faster access.
|
|
69
94
|
|
|
70
95
|
.. note::
|
|
71
96
|
|
|
72
|
-
|
|
73
|
-
|
|
97
|
+
For a guide, see :doc:`docs:scrna5`.
|
|
98
|
+
|
|
99
|
+
For more convenient use within :class:`~lamindb.core.MappedCollection`,
|
|
100
|
+
see :meth:`~lamindb.Collection.mapped`.
|
|
101
|
+
|
|
102
|
+
This currently only works for collections of `AnnData` objects.
|
|
103
|
+
|
|
104
|
+
The implementation was influenced by the `SCimilarity
|
|
105
|
+
<https://github.com/Genentech/scimilarity>`__ data loader.
|
|
106
|
+
|
|
107
|
+
|
|
108
|
+
Args:
|
|
109
|
+
path_list: A list of paths to `AnnData` objects stored in `.h5ad` or `.zarr` formats.
|
|
110
|
+
label_keys: Columns of the ``.obs`` slot that store labels.
|
|
111
|
+
join: `"inner"` or `"outer"` virtual joins. If ``None`` is passed,
|
|
112
|
+
does not join.
|
|
113
|
+
encode_labels: Encode labels into integers.
|
|
114
|
+
Can be a list with elements from ``label_keys```.
|
|
115
|
+
unknown_label: Encode this label to -1.
|
|
116
|
+
Can be a dictionary with keys from ``label_keys`` if ``encode_labels=True```
|
|
117
|
+
or from ``encode_labels`` if it is a list.
|
|
118
|
+
cache_categories: Enable caching categories of ``label_keys`` for faster access.
|
|
119
|
+
parallel: Enable sampling with multiple processes.
|
|
120
|
+
dtype: Convert numpy arrays from ``.X`` to this dtype on selection.
|
|
74
121
|
"""
|
|
75
122
|
|
|
76
123
|
def __init__(
|
|
77
124
|
self,
|
|
78
|
-
path_list:
|
|
79
|
-
label_keys:
|
|
80
|
-
|
|
81
|
-
encode_labels:
|
|
125
|
+
path_list: list[UPathStr],
|
|
126
|
+
label_keys: str | list[str] | None = None,
|
|
127
|
+
join: Literal["inner", "outer", "auto"] | None = "inner",
|
|
128
|
+
encode_labels: bool | list[str] = True,
|
|
129
|
+
unknown_label: str | dict[str, str] | None = None,
|
|
130
|
+
cache_categories: bool = True,
|
|
82
131
|
parallel: bool = False,
|
|
83
|
-
|
|
132
|
+
dtype: str | None = None,
|
|
84
133
|
):
|
|
85
|
-
|
|
86
|
-
|
|
134
|
+
assert join in {None, "inner", "outer", "auto"}
|
|
135
|
+
|
|
136
|
+
label_keys = [label_keys] if isinstance(label_keys, str) else label_keys
|
|
137
|
+
self.label_keys = label_keys
|
|
138
|
+
|
|
139
|
+
if isinstance(encode_labels, list):
|
|
140
|
+
if len(encode_labels) == 0:
|
|
141
|
+
encode_labels = False
|
|
142
|
+
elif label_keys is None or not all(
|
|
143
|
+
enc_label in label_keys for enc_label in encode_labels
|
|
144
|
+
):
|
|
145
|
+
raise ValueError(
|
|
146
|
+
"All elements of `encode_labels` should be in `label_keys`."
|
|
147
|
+
)
|
|
148
|
+
else:
|
|
149
|
+
if encode_labels:
|
|
150
|
+
encode_labels = label_keys if label_keys is not None else False
|
|
151
|
+
self.encode_labels = encode_labels
|
|
152
|
+
|
|
153
|
+
if encode_labels and isinstance(unknown_label, dict):
|
|
154
|
+
if not all(unkey in encode_labels for unkey in unknown_label): # type: ignore
|
|
155
|
+
raise ValueError(
|
|
156
|
+
"All keys of `unknown_label` should be in `encode_labels` and `label_keys`."
|
|
157
|
+
)
|
|
158
|
+
self.unknown_label = unknown_label
|
|
159
|
+
|
|
160
|
+
self.storages = [] # type: ignore
|
|
161
|
+
self.conns = [] # type: ignore
|
|
87
162
|
self.parallel = parallel
|
|
88
|
-
self.
|
|
89
|
-
self.path_list = path_list
|
|
163
|
+
self._path_list = path_list
|
|
90
164
|
self._make_connections(path_list, parallel)
|
|
91
165
|
|
|
92
166
|
self.n_obs_list = []
|
|
@@ -98,7 +172,7 @@ class MappedDataset:
|
|
|
98
172
|
if "ensembl_gene_id" in store["var"]
|
|
99
173
|
else store["var"]["_index"]
|
|
100
174
|
)
|
|
101
|
-
if
|
|
175
|
+
if join is None:
|
|
102
176
|
if not all(
|
|
103
177
|
[
|
|
104
178
|
i <= j
|
|
@@ -118,27 +192,21 @@ class MappedDataset:
|
|
|
118
192
|
self.indices = np.hstack([np.arange(n_obs) for n_obs in self.n_obs_list])
|
|
119
193
|
self.storage_idx = np.repeat(np.arange(len(self.storages)), self.n_obs_list)
|
|
120
194
|
|
|
121
|
-
self.join_vars =
|
|
195
|
+
self.join_vars = join
|
|
122
196
|
self.var_indices = None
|
|
123
|
-
if self.join_vars
|
|
197
|
+
if self.join_vars is not None:
|
|
124
198
|
self._make_join_vars()
|
|
125
199
|
|
|
126
|
-
self.
|
|
127
|
-
|
|
128
|
-
|
|
129
|
-
if encode_labels:
|
|
130
|
-
encode_labels = label_keys
|
|
200
|
+
if self.label_keys is not None:
|
|
201
|
+
if cache_categories:
|
|
202
|
+
self._cache_categories(self.label_keys)
|
|
131
203
|
else:
|
|
132
|
-
|
|
133
|
-
|
|
134
|
-
self.
|
|
135
|
-
|
|
136
|
-
|
|
137
|
-
|
|
138
|
-
if unknown_class in self.encoders[label]:
|
|
139
|
-
self.encoders[label][unknown_class] = -1
|
|
140
|
-
else:
|
|
141
|
-
self.encoders = {}
|
|
204
|
+
self._cache_cats: dict = {}
|
|
205
|
+
self.encoders: dict = {}
|
|
206
|
+
if self.encode_labels:
|
|
207
|
+
self._make_encoders(self.encode_labels) # type: ignore
|
|
208
|
+
|
|
209
|
+
self._dtype = dtype
|
|
142
210
|
self._closed = False
|
|
143
211
|
|
|
144
212
|
def _make_connections(self, path_list: list, parallel: bool):
|
|
@@ -154,31 +222,63 @@ class MappedDataset:
|
|
|
154
222
|
self.conns.append(conn)
|
|
155
223
|
self.storages.append(storage)
|
|
156
224
|
|
|
225
|
+
def _cache_categories(self, label_keys: list):
|
|
226
|
+
self._cache_cats = {}
|
|
227
|
+
decode = np.frompyfunc(lambda x: x.decode("utf-8"), 1, 1)
|
|
228
|
+
for label in label_keys:
|
|
229
|
+
self._cache_cats[label] = []
|
|
230
|
+
for storage in self.storages:
|
|
231
|
+
with _Connect(storage) as store:
|
|
232
|
+
cats = self._get_categories(store, label)
|
|
233
|
+
if cats is not None:
|
|
234
|
+
cats = decode(cats) if isinstance(cats[0], bytes) else cats[...]
|
|
235
|
+
self._cache_cats[label].append(cats)
|
|
236
|
+
|
|
237
|
+
def _make_encoders(self, encode_labels: list):
|
|
238
|
+
for label in encode_labels:
|
|
239
|
+
cats = self.get_merged_categories(label)
|
|
240
|
+
encoder = {}
|
|
241
|
+
if isinstance(self.unknown_label, dict):
|
|
242
|
+
unknown_label = self.unknown_label.get(label, None)
|
|
243
|
+
else:
|
|
244
|
+
unknown_label = self.unknown_label
|
|
245
|
+
if unknown_label is not None and unknown_label in cats:
|
|
246
|
+
cats.remove(unknown_label)
|
|
247
|
+
encoder[unknown_label] = -1
|
|
248
|
+
cats = list(cats)
|
|
249
|
+
cats.sort()
|
|
250
|
+
encoder.update({cat: i for i, cat in enumerate(cats)})
|
|
251
|
+
self.encoders[label] = encoder
|
|
252
|
+
|
|
157
253
|
def _make_join_vars(self):
|
|
158
254
|
var_list = []
|
|
159
255
|
for storage in self.storages:
|
|
160
256
|
with _Connect(storage) as store:
|
|
161
257
|
var_list.append(_safer_read_index(store["var"]))
|
|
162
|
-
|
|
163
|
-
|
|
164
|
-
|
|
165
|
-
|
|
166
|
-
|
|
167
|
-
|
|
168
|
-
|
|
258
|
+
|
|
259
|
+
self.var_joint = None
|
|
260
|
+
vars_eq = all(var_list[0].equals(vrs) for vrs in var_list[1:])
|
|
261
|
+
if vars_eq:
|
|
262
|
+
self.join_vars = None
|
|
263
|
+
self.var_joint = var_list[0]
|
|
264
|
+
return
|
|
169
265
|
if self.join_vars == "inner":
|
|
170
266
|
self.var_joint = reduce(pd.Index.intersection, var_list)
|
|
171
267
|
if len(self.var_joint) == 0:
|
|
172
268
|
raise ValueError(
|
|
173
|
-
"The provided AnnData objects don't have shared varibales
|
|
269
|
+
"The provided AnnData objects don't have shared varibales.\n"
|
|
270
|
+
"Use join='outer'."
|
|
174
271
|
)
|
|
175
272
|
self.var_indices = [vrs.get_indexer(self.var_joint) for vrs in var_list]
|
|
273
|
+
elif self.join_vars == "outer":
|
|
274
|
+
self.var_joint = reduce(pd.Index.union, var_list)
|
|
275
|
+
self.var_indices = [self.var_joint.get_indexer(vrs) for vrs in var_list]
|
|
176
276
|
|
|
177
277
|
def _check_aligned_vars(self, vars: list):
|
|
178
278
|
i = 0
|
|
179
279
|
for storage in self.storages:
|
|
180
280
|
with _Connect(storage) as store:
|
|
181
|
-
if
|
|
281
|
+
if len(set(_safer_read_index(store["var"]).tolist()) - set(vars)) == 0:
|
|
182
282
|
i += 1
|
|
183
283
|
print("{}% are aligned".format(i * 100 / len(self.storages)))
|
|
184
284
|
|
|
@@ -189,46 +289,75 @@ class MappedDataset:
|
|
|
189
289
|
obs_idx = self.indices[idx]
|
|
190
290
|
storage_idx = self.storage_idx[idx]
|
|
191
291
|
if self.var_indices is not None:
|
|
192
|
-
|
|
292
|
+
var_idxs_join = self.var_indices[storage_idx]
|
|
193
293
|
else:
|
|
194
|
-
|
|
294
|
+
var_idxs_join = None
|
|
295
|
+
|
|
195
296
|
with _Connect(self.storages[storage_idx]) as store:
|
|
196
|
-
out = {"x": self.
|
|
297
|
+
out = {"x": self._get_data_idx(store, obs_idx, var_idxs_join)}
|
|
298
|
+
out["_storage_idx"] = storage_idx
|
|
197
299
|
if self.label_keys is not None:
|
|
198
|
-
for
|
|
199
|
-
|
|
200
|
-
|
|
201
|
-
|
|
300
|
+
for label in self.label_keys:
|
|
301
|
+
if label in self._cache_cats:
|
|
302
|
+
cats = self._cache_cats[label][storage_idx]
|
|
303
|
+
if cats is None:
|
|
304
|
+
cats = []
|
|
202
305
|
else:
|
|
203
|
-
|
|
204
|
-
|
|
306
|
+
cats = None
|
|
307
|
+
label_idx = self._get_label_idx(store, obs_idx, label, cats)
|
|
308
|
+
if label in self.encoders:
|
|
309
|
+
label_idx = self.encoders[label][label_idx]
|
|
310
|
+
out[label] = label_idx
|
|
205
311
|
return out
|
|
206
312
|
|
|
207
|
-
def
|
|
313
|
+
def _get_data_idx(
|
|
208
314
|
self,
|
|
209
|
-
storage: StorageType,
|
|
315
|
+
storage: StorageType, # type: ignore
|
|
210
316
|
idx: int,
|
|
211
|
-
|
|
212
|
-
layer_key:
|
|
317
|
+
var_idxs_join: list | None = None,
|
|
318
|
+
layer_key: str | None = None,
|
|
213
319
|
):
|
|
214
320
|
"""Get the index for the data."""
|
|
215
|
-
layer = storage["X"] if layer_key is None else storage["layers"][layer_key] # type: ignore
|
|
321
|
+
layer = storage["X"] if layer_key is None else storage["layers"][layer_key] # type: ignore
|
|
216
322
|
if isinstance(layer, ArrayTypes): # type: ignore
|
|
217
|
-
|
|
218
|
-
|
|
219
|
-
|
|
323
|
+
layer_idx = layer[idx]
|
|
324
|
+
if self.join_vars is None:
|
|
325
|
+
result = layer_idx
|
|
326
|
+
if self._dtype is not None:
|
|
327
|
+
result = result.astype(self._dtype, copy=False)
|
|
328
|
+
elif self.join_vars == "outer":
|
|
329
|
+
dtype = layer_idx.dtype if self._dtype is None else self._dtype
|
|
330
|
+
result = np.zeros(len(self.var_joint), dtype=dtype)
|
|
331
|
+
result[var_idxs_join] = layer_idx
|
|
332
|
+
else: # inner join
|
|
333
|
+
result = layer_idx[var_idxs_join]
|
|
334
|
+
if self._dtype is not None:
|
|
335
|
+
result = result.astype(self._dtype, copy=False)
|
|
336
|
+
return result
|
|
220
337
|
else: # assume csr_matrix here
|
|
221
338
|
data = layer["data"]
|
|
222
339
|
indices = layer["indices"]
|
|
223
340
|
indptr = layer["indptr"]
|
|
224
341
|
s = slice(*(indptr[idx : idx + 2]))
|
|
225
|
-
|
|
226
|
-
|
|
227
|
-
|
|
228
|
-
|
|
229
|
-
|
|
342
|
+
data_s = data[s]
|
|
343
|
+
dtype = data_s.dtype if self._dtype is None else self._dtype
|
|
344
|
+
if self.join_vars == "outer":
|
|
345
|
+
layer_idx = np.zeros(len(self.var_joint), dtype=dtype)
|
|
346
|
+
layer_idx[var_idxs_join[indices[s]]] = data_s
|
|
347
|
+
else:
|
|
348
|
+
layer_idx = np.zeros(layer.attrs["shape"][1], dtype=dtype)
|
|
349
|
+
layer_idx[indices[s]] = data_s
|
|
350
|
+
if self.join_vars == "inner":
|
|
351
|
+
layer_idx = layer_idx[var_idxs_join]
|
|
352
|
+
return layer_idx
|
|
230
353
|
|
|
231
|
-
def
|
|
354
|
+
def _get_label_idx(
|
|
355
|
+
self,
|
|
356
|
+
storage: StorageType,
|
|
357
|
+
idx: int,
|
|
358
|
+
label_key: str,
|
|
359
|
+
categories: list | None = None,
|
|
360
|
+
):
|
|
232
361
|
"""Get the index for the label by key."""
|
|
233
362
|
obs = storage["obs"] # type: ignore
|
|
234
363
|
# how backwards compatible do we want to be here actually?
|
|
@@ -240,25 +369,29 @@ class MappedDataset:
|
|
|
240
369
|
label = labels[idx]
|
|
241
370
|
else:
|
|
242
371
|
label = labels["codes"][idx]
|
|
243
|
-
|
|
244
|
-
|
|
245
|
-
|
|
372
|
+
if categories is not None:
|
|
373
|
+
cats = categories
|
|
374
|
+
else:
|
|
375
|
+
cats = self._get_categories(storage, label_key)
|
|
376
|
+
if cats is not None and len(cats) > 0:
|
|
246
377
|
label = cats[label]
|
|
247
378
|
if isinstance(label, bytes):
|
|
248
379
|
label = label.decode("utf-8")
|
|
249
380
|
return label
|
|
250
381
|
|
|
251
|
-
def get_label_weights(self, label_keys:
|
|
252
|
-
"""Get all weights for
|
|
253
|
-
if
|
|
382
|
+
def get_label_weights(self, label_keys: str | list[str], scaler: int = 10):
|
|
383
|
+
"""Get all weights for the given label keys."""
|
|
384
|
+
if isinstance(label_keys, str):
|
|
254
385
|
label_keys = [label_keys]
|
|
255
|
-
|
|
256
|
-
|
|
257
|
-
|
|
258
|
-
|
|
259
|
-
|
|
260
|
-
|
|
261
|
-
|
|
386
|
+
labels_list = []
|
|
387
|
+
for label_key in label_keys:
|
|
388
|
+
labels_to_str = self.get_merged_labels(label_key).astype(str).astype("O")
|
|
389
|
+
labels_list.append(labels_to_str)
|
|
390
|
+
if len(labels_list) > 1:
|
|
391
|
+
labels = reduce(lambda a, b: a + b, labels_list)
|
|
392
|
+
else:
|
|
393
|
+
labels = labels_list[0]
|
|
394
|
+
|
|
262
395
|
counter = Counter(labels) # type: ignore
|
|
263
396
|
rn = {n: i for i, n in enumerate(counter.keys())}
|
|
264
397
|
labels = np.array([rn[label] for label in labels])
|
|
@@ -267,14 +400,17 @@ class MappedDataset:
|
|
|
267
400
|
return weights, labels
|
|
268
401
|
|
|
269
402
|
def get_merged_labels(self, label_key: str):
|
|
270
|
-
"""Get merged labels
|
|
403
|
+
"""Get merged labels for `label_key` from all `.obs`."""
|
|
271
404
|
labels_merge = []
|
|
272
405
|
decode = np.frompyfunc(lambda x: x.decode("utf-8"), 1, 1)
|
|
273
|
-
for storage in self.storages:
|
|
406
|
+
for i, storage in enumerate(self.storages):
|
|
274
407
|
with _Connect(storage) as store:
|
|
275
|
-
codes = self.
|
|
408
|
+
codes = self._get_codes(store, label_key)
|
|
276
409
|
labels = decode(codes) if isinstance(codes[0], bytes) else codes
|
|
277
|
-
|
|
410
|
+
if label_key in self._cache_cats:
|
|
411
|
+
cats = self._cache_cats[label_key][i]
|
|
412
|
+
else:
|
|
413
|
+
cats = self._get_categories(store, label_key)
|
|
278
414
|
if cats is not None:
|
|
279
415
|
cats = decode(cats) if isinstance(cats[0], bytes) else cats
|
|
280
416
|
labels = cats[labels]
|
|
@@ -282,22 +418,25 @@ class MappedDataset:
|
|
|
282
418
|
return np.hstack(labels_merge)
|
|
283
419
|
|
|
284
420
|
def get_merged_categories(self, label_key: str):
|
|
285
|
-
"""Get merged categories
|
|
421
|
+
"""Get merged categories for `label_key` from all `.obs`."""
|
|
286
422
|
cats_merge = set()
|
|
287
423
|
decode = np.frompyfunc(lambda x: x.decode("utf-8"), 1, 1)
|
|
288
|
-
for storage in self.storages:
|
|
424
|
+
for i, storage in enumerate(self.storages):
|
|
289
425
|
with _Connect(storage) as store:
|
|
290
|
-
|
|
426
|
+
if label_key in self._cache_cats:
|
|
427
|
+
cats = self._cache_cats[label_key][i]
|
|
428
|
+
else:
|
|
429
|
+
cats = self._get_categories(store, label_key)
|
|
291
430
|
if cats is not None:
|
|
292
431
|
cats = decode(cats) if isinstance(cats[0], bytes) else cats
|
|
293
432
|
cats_merge.update(cats)
|
|
294
433
|
else:
|
|
295
|
-
codes = self.
|
|
434
|
+
codes = self._get_codes(store, label_key)
|
|
296
435
|
codes = decode(codes) if isinstance(codes[0], bytes) else codes
|
|
297
436
|
cats_merge.update(codes)
|
|
298
437
|
return cats_merge
|
|
299
438
|
|
|
300
|
-
def
|
|
439
|
+
def _get_categories(self, storage: StorageType, label_key: str): # type: ignore
|
|
301
440
|
"""Get categories."""
|
|
302
441
|
obs = storage["obs"] # type: ignore
|
|
303
442
|
if isinstance(obs, ArrayTypes): # type: ignore
|
|
@@ -324,8 +463,9 @@ class MappedDataset:
|
|
|
324
463
|
return labels.attrs["categories"]
|
|
325
464
|
else:
|
|
326
465
|
return None
|
|
466
|
+
return None
|
|
327
467
|
|
|
328
|
-
def
|
|
468
|
+
def _get_codes(self, storage: StorageType, label_key: str): # type: ignore
|
|
329
469
|
"""Get codes."""
|
|
330
470
|
obs = storage["obs"] # type: ignore
|
|
331
471
|
if isinstance(obs, ArrayTypes): # type: ignore
|
|
@@ -338,7 +478,10 @@ class MappedDataset:
|
|
|
338
478
|
return label["codes"][...]
|
|
339
479
|
|
|
340
480
|
def close(self):
|
|
341
|
-
"""Close
|
|
481
|
+
"""Close connections to array streaming backend.
|
|
482
|
+
|
|
483
|
+
No effect if `parallel=True`.
|
|
484
|
+
"""
|
|
342
485
|
for storage in self.storages:
|
|
343
486
|
if hasattr(storage, "close"):
|
|
344
487
|
storage.close()
|
|
@@ -349,6 +492,10 @@ class MappedDataset:
|
|
|
349
492
|
|
|
350
493
|
@property
|
|
351
494
|
def closed(self):
|
|
495
|
+
"""Check if connections to array streaming backend are closed.
|
|
496
|
+
|
|
497
|
+
Does not matter if `parallel=True`.
|
|
498
|
+
"""
|
|
352
499
|
return self._closed
|
|
353
500
|
|
|
354
501
|
def __enter__(self):
|
|
@@ -356,3 +503,17 @@ class MappedDataset:
|
|
|
356
503
|
|
|
357
504
|
def __exit__(self, exc_type, exc_val, exc_tb):
|
|
358
505
|
self.close()
|
|
506
|
+
|
|
507
|
+
@staticmethod
|
|
508
|
+
def torch_worker_init_fn(worker_id):
|
|
509
|
+
"""`worker_init_fn` for `torch.utils.data.DataLoader`.
|
|
510
|
+
|
|
511
|
+
Improves performance for `num_workers > 1`.
|
|
512
|
+
"""
|
|
513
|
+
from torch.utils.data import get_worker_info
|
|
514
|
+
|
|
515
|
+
mapped = get_worker_info().dataset
|
|
516
|
+
mapped.parallel = False
|
|
517
|
+
mapped.storages = []
|
|
518
|
+
mapped.conns = []
|
|
519
|
+
mapped._make_connections(mapped._path_list, parallel=False)
|