scdataloader 0.0.2__py3-none-any.whl → 0.0.4__py3-none-any.whl
This diff represents the content of publicly available package versions that have been released to one of the supported registries. The information contained in this diff is provided for informational purposes only and reflects changes between package versions as they appear in their respective public registries.
- scdataloader/VERSION +1 -1
- scdataloader/__init__.py +4 -0
- scdataloader/__main__.py +209 -0
- scdataloader/collator.py +307 -0
- scdataloader/config.py +106 -0
- scdataloader/data.py +181 -218
- scdataloader/datamodule.py +375 -0
- scdataloader/mapped.py +46 -32
- scdataloader/preprocess.py +524 -208
- scdataloader/utils.py +189 -123
- {scdataloader-0.0.2.dist-info → scdataloader-0.0.4.dist-info}/METADATA +77 -7
- scdataloader-0.0.4.dist-info/RECORD +16 -0
- {scdataloader-0.0.2.dist-info → scdataloader-0.0.4.dist-info}/WHEEL +1 -1
- scdataloader-0.0.2.dist-info/RECORD +0 -12
- {scdataloader-0.0.2.dist-info → scdataloader-0.0.4.dist-info}/LICENSE +0 -0
- {scdataloader-0.0.2.dist-info → scdataloader-0.0.4.dist-info}/entry_points.txt +0 -0
scdataloader/VERSION
CHANGED
|
@@ -1 +1 @@
|
|
|
1
|
-
|
|
1
|
+
0.7.0
|
scdataloader/__init__.py
CHANGED
scdataloader/__main__.py
ADDED
|
@@ -0,0 +1,209 @@
|
|
|
1
|
+
import argparse
|
|
2
|
+
from scdataloader.preprocess import (
|
|
3
|
+
LaminPreprocessor,
|
|
4
|
+
additional_preprocess,
|
|
5
|
+
additional_postprocess,
|
|
6
|
+
)
|
|
7
|
+
import lamindb as ln
|
|
8
|
+
from typing import Optional, Union
|
|
9
|
+
|
|
10
|
+
|
|
11
|
+
# scdataloader --instance="laminlabs/cellxgene" --name="cellxgene-census" --version="2023-12-15" --description="preprocessed for scprint" --new_name="scprint main" --start_at=39
|
|
12
|
+
def main():
|
|
13
|
+
parser = argparse.ArgumentParser(
|
|
14
|
+
description="Preprocess datasets in a given lamindb collection."
|
|
15
|
+
)
|
|
16
|
+
parser.add_argument(
|
|
17
|
+
"--name", type=str, required=True, help="Name of the input dataset"
|
|
18
|
+
)
|
|
19
|
+
parser.add_argument(
|
|
20
|
+
"--new_name",
|
|
21
|
+
type=str,
|
|
22
|
+
default="preprocessed dataset",
|
|
23
|
+
help="Name of the preprocessed dataset.",
|
|
24
|
+
)
|
|
25
|
+
parser.add_argument(
|
|
26
|
+
"--description",
|
|
27
|
+
type=str,
|
|
28
|
+
default="preprocessed by scDataLoader",
|
|
29
|
+
help="Description of the preprocessed dataset.",
|
|
30
|
+
)
|
|
31
|
+
parser.add_argument(
|
|
32
|
+
"--start_at", type=int, default=0, help="Position to start preprocessing at."
|
|
33
|
+
)
|
|
34
|
+
parser.add_argument(
|
|
35
|
+
"--new_version",
|
|
36
|
+
type=str,
|
|
37
|
+
default="2",
|
|
38
|
+
help="Version of the output dataset and files.",
|
|
39
|
+
)
|
|
40
|
+
parser.add_argument(
|
|
41
|
+
"--instance",
|
|
42
|
+
type=str,
|
|
43
|
+
default=None,
|
|
44
|
+
help="Instance storing the input dataset, if not local",
|
|
45
|
+
)
|
|
46
|
+
parser.add_argument(
|
|
47
|
+
"--version", type=str, default=None, help="Version of the input dataset."
|
|
48
|
+
)
|
|
49
|
+
parser.add_argument(
|
|
50
|
+
"--filter_gene_by_counts",
|
|
51
|
+
type=Union[int, bool],
|
|
52
|
+
default=False,
|
|
53
|
+
help="Determines whether to filter genes by counts.",
|
|
54
|
+
)
|
|
55
|
+
parser.add_argument(
|
|
56
|
+
"--filter_cell_by_counts",
|
|
57
|
+
type=Union[int, bool],
|
|
58
|
+
default=False,
|
|
59
|
+
help="Determines whether to filter cells by counts.",
|
|
60
|
+
)
|
|
61
|
+
parser.add_argument(
|
|
62
|
+
"--normalize_sum",
|
|
63
|
+
type=float,
|
|
64
|
+
default=1e4,
|
|
65
|
+
help="Determines whether to normalize the total counts of each cell to a specific value.",
|
|
66
|
+
)
|
|
67
|
+
parser.add_argument(
|
|
68
|
+
"--subset_hvg",
|
|
69
|
+
type=int,
|
|
70
|
+
default=0,
|
|
71
|
+
help="Determines whether to subset highly variable genes.",
|
|
72
|
+
)
|
|
73
|
+
parser.add_argument(
|
|
74
|
+
"--hvg_flavor",
|
|
75
|
+
type=str,
|
|
76
|
+
default="seurat_v3",
|
|
77
|
+
help="Specifies the flavor of highly variable genes selection.",
|
|
78
|
+
)
|
|
79
|
+
parser.add_argument(
|
|
80
|
+
"--binning",
|
|
81
|
+
type=Optional[int],
|
|
82
|
+
default=None,
|
|
83
|
+
help="Determines whether to bin the data into discrete values of number of bins provided.",
|
|
84
|
+
)
|
|
85
|
+
parser.add_argument(
|
|
86
|
+
"--result_binned_key",
|
|
87
|
+
type=str,
|
|
88
|
+
default="X_binned",
|
|
89
|
+
help="Specifies the key of AnnData to store the binned data.",
|
|
90
|
+
)
|
|
91
|
+
parser.add_argument(
|
|
92
|
+
"--length_normalize",
|
|
93
|
+
type=bool,
|
|
94
|
+
default=False,
|
|
95
|
+
help="Determines whether to normalize the length.",
|
|
96
|
+
)
|
|
97
|
+
parser.add_argument(
|
|
98
|
+
"--force_preprocess",
|
|
99
|
+
type=bool,
|
|
100
|
+
default=False,
|
|
101
|
+
help="Determines whether to force preprocessing.",
|
|
102
|
+
)
|
|
103
|
+
parser.add_argument(
|
|
104
|
+
"--min_dataset_size",
|
|
105
|
+
type=int,
|
|
106
|
+
default=100,
|
|
107
|
+
help="Specifies the minimum dataset size.",
|
|
108
|
+
)
|
|
109
|
+
parser.add_argument(
|
|
110
|
+
"--min_valid_genes_id",
|
|
111
|
+
type=int,
|
|
112
|
+
default=10_000,
|
|
113
|
+
help="Specifies the minimum valid genes id.",
|
|
114
|
+
)
|
|
115
|
+
parser.add_argument(
|
|
116
|
+
"--min_nnz_genes",
|
|
117
|
+
type=int,
|
|
118
|
+
default=400,
|
|
119
|
+
help="Specifies the minimum non-zero genes.",
|
|
120
|
+
)
|
|
121
|
+
parser.add_argument(
|
|
122
|
+
"--maxdropamount",
|
|
123
|
+
type=int,
|
|
124
|
+
default=50,
|
|
125
|
+
help="Specifies the maximum drop amount.",
|
|
126
|
+
)
|
|
127
|
+
parser.add_argument(
|
|
128
|
+
"--madoutlier", type=int, default=5, help="Specifies the MAD outlier."
|
|
129
|
+
)
|
|
130
|
+
parser.add_argument(
|
|
131
|
+
"--pct_mt_outlier",
|
|
132
|
+
type=int,
|
|
133
|
+
default=8,
|
|
134
|
+
help="Specifies the percentage of MT outlier.",
|
|
135
|
+
)
|
|
136
|
+
parser.add_argument(
|
|
137
|
+
"--batch_key", type=Optional[str], default=None, help="Specifies the batch key."
|
|
138
|
+
)
|
|
139
|
+
parser.add_argument(
|
|
140
|
+
"--skip_validate",
|
|
141
|
+
type=bool,
|
|
142
|
+
default=False,
|
|
143
|
+
help="Determines whether to skip validation.",
|
|
144
|
+
)
|
|
145
|
+
parser.add_argument(
|
|
146
|
+
"--do_postp",
|
|
147
|
+
type=bool,
|
|
148
|
+
default=False,
|
|
149
|
+
help="Determines whether to do postprocessing.",
|
|
150
|
+
)
|
|
151
|
+
args = parser.parse_args()
|
|
152
|
+
|
|
153
|
+
# Load the collection
|
|
154
|
+
# if not args.preprocess:
|
|
155
|
+
# print("Only preprocess is available for now")
|
|
156
|
+
# return
|
|
157
|
+
if args.instance is not None:
|
|
158
|
+
collection = (
|
|
159
|
+
ln.Collection.using(instance=args.instance)
|
|
160
|
+
.filter(name=args.name, version=args.version)
|
|
161
|
+
.first()
|
|
162
|
+
)
|
|
163
|
+
else:
|
|
164
|
+
collection = ln.Collection.filter(name=args.name, version=args.version).first()
|
|
165
|
+
|
|
166
|
+
print(
|
|
167
|
+
"using the dataset ", collection, " of size ", len(collection.artifacts.all())
|
|
168
|
+
)
|
|
169
|
+
# Initialize the preprocessor
|
|
170
|
+
preprocessor = LaminPreprocessor(
|
|
171
|
+
filter_gene_by_counts=args.filter_gene_by_counts,
|
|
172
|
+
filter_cell_by_counts=args.filter_cell_by_counts,
|
|
173
|
+
normalize_sum=args.normalize_sum,
|
|
174
|
+
subset_hvg=args.subset_hvg,
|
|
175
|
+
hvg_flavor=args.hvg_flavor,
|
|
176
|
+
binning=args.binning,
|
|
177
|
+
result_binned_key=args.result_binned_key,
|
|
178
|
+
length_normalize=args.length_normalize,
|
|
179
|
+
force_preprocess=args.force_preprocess,
|
|
180
|
+
min_dataset_size=args.min_dataset_size,
|
|
181
|
+
min_valid_genes_id=args.min_valid_genes_id,
|
|
182
|
+
min_nnz_genes=args.min_nnz_genes,
|
|
183
|
+
maxdropamount=args.maxdropamount,
|
|
184
|
+
madoutlier=args.madoutlier,
|
|
185
|
+
pct_mt_outlier=args.pct_mt_outlier,
|
|
186
|
+
batch_key=args.batch_key,
|
|
187
|
+
skip_validate=args.skip_validate,
|
|
188
|
+
do_postp=args.do_postp,
|
|
189
|
+
additional_preprocess=additional_preprocess,
|
|
190
|
+
additional_postprocess=additional_postprocess,
|
|
191
|
+
keep_files=False,
|
|
192
|
+
)
|
|
193
|
+
|
|
194
|
+
# Preprocess the dataset
|
|
195
|
+
preprocessor(
|
|
196
|
+
collection,
|
|
197
|
+
name=args.new_name,
|
|
198
|
+
description=args.description,
|
|
199
|
+
start_at=args.start_at,
|
|
200
|
+
version=args.new_version,
|
|
201
|
+
)
|
|
202
|
+
|
|
203
|
+
print(
|
|
204
|
+
f"Preprocessed dataset saved with version {args.version} and name {args.new_name}."
|
|
205
|
+
)
|
|
206
|
+
|
|
207
|
+
|
|
208
|
+
if __name__ == "__main__":
|
|
209
|
+
main()
|
scdataloader/collator.py
ADDED
|
@@ -0,0 +1,307 @@
|
|
|
1
|
+
import numpy as np
|
|
2
|
+
from .utils import load_genes
|
|
3
|
+
from torch import Tensor, long
|
|
4
|
+
|
|
5
|
+
# class SimpleCollator:
|
|
6
|
+
|
|
7
|
+
|
|
8
|
+
class Collator:
|
|
9
|
+
def __init__(
|
|
10
|
+
self,
|
|
11
|
+
organisms: list,
|
|
12
|
+
how="all",
|
|
13
|
+
org_to_id: dict = None,
|
|
14
|
+
valid_genes: list = [],
|
|
15
|
+
max_len=2000,
|
|
16
|
+
add_zero_genes=0,
|
|
17
|
+
logp1=False,
|
|
18
|
+
norm_to=None,
|
|
19
|
+
n_bins=0,
|
|
20
|
+
tp_name=None,
|
|
21
|
+
organism_name="organism_ontology_term_id",
|
|
22
|
+
class_names=[],
|
|
23
|
+
genelist=[],
|
|
24
|
+
):
|
|
25
|
+
"""
|
|
26
|
+
This class is responsible for collating data for the scPRINT model. It handles the
|
|
27
|
+
organization and preparation of gene expression data from different organisms,
|
|
28
|
+
allowing for various configurations such as maximum gene list length, normalization,
|
|
29
|
+
and selection method for gene expression.
|
|
30
|
+
|
|
31
|
+
This Collator should work with scVI's dataloader as well!
|
|
32
|
+
|
|
33
|
+
Args:
|
|
34
|
+
organisms (list): List of organisms to be considered for gene expression data.
|
|
35
|
+
it will drop any other organism it sees (might lead to batches of different sizes!)
|
|
36
|
+
how (flag, optional): Method for selecting gene expression. Defaults to "most expr".
|
|
37
|
+
one of ["most expr", "random expr", "all", "some"]:
|
|
38
|
+
"most expr": selects the max_len most expressed genes,
|
|
39
|
+
if less genes are expressed, will sample random unexpressed genes,
|
|
40
|
+
"random expr": uses a random set of max_len expressed genes.
|
|
41
|
+
if less genes are expressed, will sample random unexpressed genes
|
|
42
|
+
"all": uses all genes
|
|
43
|
+
"some": uses only the genes provided through the genelist param
|
|
44
|
+
org_to_id (dict): Dictionary mapping organisms to their respective IDs.
|
|
45
|
+
valid_genes (list, optional): List of genes from the datasets, to be considered. Defaults to [].
|
|
46
|
+
it will drop any other genes from the input expression data (usefull when your model only works on some genes)
|
|
47
|
+
max_len (int, optional): Maximum number of genes to use (for random expr and most expr). Defaults to 2000.
|
|
48
|
+
n_bins (int, optional): Number of bins for binning the data. Defaults to 0. meaning, no binning of expression.
|
|
49
|
+
add_zero_genes (int, optional): Number of additional unexpressed genes to add to the input data. Defaults to 0.
|
|
50
|
+
logp1 (bool, optional): If True, logp1 normalization is applied. Defaults to False.
|
|
51
|
+
norm_to (str, optional): Normalization method to be applied. Defaults to None.
|
|
52
|
+
"""
|
|
53
|
+
self.organisms = organisms
|
|
54
|
+
self.max_len = max_len
|
|
55
|
+
self.n_bins = n_bins
|
|
56
|
+
self.add_zero_genes = add_zero_genes
|
|
57
|
+
self.logp1 = logp1
|
|
58
|
+
self.norm_to = norm_to
|
|
59
|
+
self.org_to_id = org_to_id
|
|
60
|
+
self.how = how
|
|
61
|
+
self.organism_ids = (
|
|
62
|
+
set([org_to_id[k] for k in organisms])
|
|
63
|
+
if org_to_id is not None
|
|
64
|
+
else set(organisms)
|
|
65
|
+
)
|
|
66
|
+
if self.how == "some":
|
|
67
|
+
assert len(genelist) > 0, "if how is some, genelist must be provided"
|
|
68
|
+
self.organism_name = organism_name
|
|
69
|
+
self.tp_name = tp_name
|
|
70
|
+
self.class_names = class_names
|
|
71
|
+
|
|
72
|
+
self.start_idx = {}
|
|
73
|
+
self.accepted_genes = {}
|
|
74
|
+
self.genedf = load_genes(organisms)
|
|
75
|
+
self.to_subset = {}
|
|
76
|
+
for organism in set(self.genedf.organism):
|
|
77
|
+
ogenedf = self.genedf[self.genedf.organism == organism]
|
|
78
|
+
tot = self.genedf[self.genedf.index.isin(valid_genes)]
|
|
79
|
+
org = org_to_id[organism] if org_to_id is not None else organism
|
|
80
|
+
self.start_idx.update({org: np.where(tot.organism == organism)[0][0]})
|
|
81
|
+
if len(valid_genes) > 0:
|
|
82
|
+
self.accepted_genes.update({org: ogenedf.index.isin(valid_genes)})
|
|
83
|
+
if len(genelist) > 0:
|
|
84
|
+
df = ogenedf[ogenedf.index.isin(valid_genes)]
|
|
85
|
+
self.to_subset.update({org: df.index.isin(genelist)})
|
|
86
|
+
|
|
87
|
+
def __call__(self, batch):
|
|
88
|
+
"""
|
|
89
|
+
__call__ applies the collator to a minibatch of data
|
|
90
|
+
|
|
91
|
+
Args:
|
|
92
|
+
batch (list[dict[str: array]]): List of dicts of arrays containing gene expression data.
|
|
93
|
+
the first list is for the different samples, the second list is for the different elements with
|
|
94
|
+
elem["x"]: gene expression
|
|
95
|
+
elem["organism_name"]: organism ontology term id
|
|
96
|
+
elem["tp_name"]: heat diff
|
|
97
|
+
elem["class_names.."]: other classes
|
|
98
|
+
|
|
99
|
+
Returns:
|
|
100
|
+
list[Tensor]: List of tensors containing the collated data.
|
|
101
|
+
"""
|
|
102
|
+
# do count selection
|
|
103
|
+
# get the unseen info and don't add any unseen
|
|
104
|
+
# get the I most expressed genes, add randomly some unexpressed genes that are not unseen
|
|
105
|
+
exprs = []
|
|
106
|
+
total_count = []
|
|
107
|
+
other_classes = []
|
|
108
|
+
gene_locs = []
|
|
109
|
+
tp = []
|
|
110
|
+
dataset = []
|
|
111
|
+
nnz_loc = []
|
|
112
|
+
for elem in batch:
|
|
113
|
+
organism_id = elem[self.organism_name]
|
|
114
|
+
if organism_id not in self.organism_ids:
|
|
115
|
+
continue
|
|
116
|
+
if "dataset" in elem:
|
|
117
|
+
dataset.append(elem["dataset"])
|
|
118
|
+
expr = np.array(elem["x"])
|
|
119
|
+
total_count.append(expr.sum())
|
|
120
|
+
if len(self.accepted_genes) > 0:
|
|
121
|
+
expr = expr[self.accepted_genes[organism_id]]
|
|
122
|
+
if self.how == "most expr":
|
|
123
|
+
nnz_loc = np.where(expr > 0)[0]
|
|
124
|
+
ma = self.max_len if self.max_len < len(nnz_loc) else len(nnz_loc)
|
|
125
|
+
loc = np.argsort(expr)[-(ma):][::-1]
|
|
126
|
+
# nnz_loc = [1] * 30_000
|
|
127
|
+
# loc = np.argsort(expr)[-(self.max_len) :][::-1]
|
|
128
|
+
elif self.how == "random expr":
|
|
129
|
+
nnz_loc = np.where(expr > 0)[0]
|
|
130
|
+
loc = nnz_loc[
|
|
131
|
+
np.random.choice(
|
|
132
|
+
len(nnz_loc),
|
|
133
|
+
self.max_len if self.max_len < len(nnz_loc) else len(nnz_loc),
|
|
134
|
+
replace=False,
|
|
135
|
+
# p=(expr.max() + (expr[nnz_loc])*19) / expr.max(), # 20 at most times more likely to be selected
|
|
136
|
+
)
|
|
137
|
+
]
|
|
138
|
+
elif self.how in ["all", "some"]:
|
|
139
|
+
loc = np.arange(len(expr))
|
|
140
|
+
else:
|
|
141
|
+
raise ValueError("how must be either most expr or random expr")
|
|
142
|
+
if (
|
|
143
|
+
(self.add_zero_genes > 0) or (self.max_len > len(nnz_loc))
|
|
144
|
+
) and self.how not in ["all", "some"]:
|
|
145
|
+
zero_loc = np.where(expr == 0)[0]
|
|
146
|
+
zero_loc = zero_loc[
|
|
147
|
+
np.random.choice(
|
|
148
|
+
len(zero_loc),
|
|
149
|
+
self.add_zero_genes
|
|
150
|
+
+ (
|
|
151
|
+
0
|
|
152
|
+
if self.max_len < len(nnz_loc)
|
|
153
|
+
else self.max_len - len(nnz_loc)
|
|
154
|
+
),
|
|
155
|
+
replace=False,
|
|
156
|
+
)
|
|
157
|
+
]
|
|
158
|
+
loc = np.concatenate((loc, zero_loc), axis=None)
|
|
159
|
+
expr = expr[loc]
|
|
160
|
+
loc = loc + self.start_idx[organism_id]
|
|
161
|
+
if self.how == "some":
|
|
162
|
+
expr = expr[self.to_subset[organism_id]]
|
|
163
|
+
loc = loc[self.to_subset[organism_id]]
|
|
164
|
+
exprs.append(expr)
|
|
165
|
+
gene_locs.append(loc)
|
|
166
|
+
|
|
167
|
+
if self.tp_name is not None:
|
|
168
|
+
tp.append(elem[self.tp_name])
|
|
169
|
+
else:
|
|
170
|
+
tp.append(0)
|
|
171
|
+
|
|
172
|
+
other_classes.append([elem[i] for i in self.class_names])
|
|
173
|
+
|
|
174
|
+
expr = np.array(exprs)
|
|
175
|
+
tp = np.array(tp)
|
|
176
|
+
gene_locs = np.array(gene_locs)
|
|
177
|
+
total_count = np.array(total_count)
|
|
178
|
+
other_classes = np.array(other_classes)
|
|
179
|
+
dataset = np.array(dataset)
|
|
180
|
+
|
|
181
|
+
# normalize counts
|
|
182
|
+
if self.norm_to is not None:
|
|
183
|
+
expr = (expr * self.norm_to) / total_count[:, None]
|
|
184
|
+
if self.logp1:
|
|
185
|
+
expr = np.log2(1 + expr)
|
|
186
|
+
|
|
187
|
+
# do binning of counts
|
|
188
|
+
if self.n_bins:
|
|
189
|
+
pass
|
|
190
|
+
|
|
191
|
+
# find the associated gene ids (given the species)
|
|
192
|
+
|
|
193
|
+
# get the NN cells
|
|
194
|
+
|
|
195
|
+
# do encoding / selection a la scGPT
|
|
196
|
+
|
|
197
|
+
# do encoding of graph location
|
|
198
|
+
# encode all the edges in some sparse way
|
|
199
|
+
# normalizing total counts between 0,1
|
|
200
|
+
ret = {
|
|
201
|
+
"x": Tensor(expr),
|
|
202
|
+
"genes": Tensor(gene_locs).int(),
|
|
203
|
+
"class": Tensor(other_classes).int(),
|
|
204
|
+
"tp": Tensor(tp),
|
|
205
|
+
"depth": Tensor(total_count),
|
|
206
|
+
}
|
|
207
|
+
if len(dataset) > 0:
|
|
208
|
+
ret.update({"dataset": Tensor(dataset).to(long)})
|
|
209
|
+
return ret
|
|
210
|
+
|
|
211
|
+
|
|
212
|
+
class AnnDataCollator(Collator):
|
|
213
|
+
def __init__(self, *args, **kwargs):
|
|
214
|
+
"""
|
|
215
|
+
AnnDataCollator Collator to use if working with AnnData's experimental dataloader (it is very slow!!!)
|
|
216
|
+
|
|
217
|
+
Args:
|
|
218
|
+
@see Collator
|
|
219
|
+
"""
|
|
220
|
+
super().__init__(*args, **kwargs)
|
|
221
|
+
|
|
222
|
+
def __call__(self, batch):
|
|
223
|
+
exprs = []
|
|
224
|
+
total_count = []
|
|
225
|
+
other_classes = []
|
|
226
|
+
gene_locs = []
|
|
227
|
+
tp = []
|
|
228
|
+
for elem in batch:
|
|
229
|
+
organism_id = elem.obs[self.organism_name]
|
|
230
|
+
if organism_id.item() not in self.organism_ids:
|
|
231
|
+
print(organism_id)
|
|
232
|
+
expr = np.array(elem.X[0])
|
|
233
|
+
|
|
234
|
+
total_count.append(expr.sum())
|
|
235
|
+
if len(self.accepted_genes) > 0:
|
|
236
|
+
expr = expr[self.accepted_genes[organism_id]]
|
|
237
|
+
if self.how == "most expr":
|
|
238
|
+
loc = np.argsort(expr)[-(self.max_len) :][::-1]
|
|
239
|
+
elif self.how == "random expr":
|
|
240
|
+
nnz_loc = np.where(expr > 0)[0]
|
|
241
|
+
loc = nnz_loc[
|
|
242
|
+
np.random.choice(len(nnz_loc), self.max_len, replace=False)
|
|
243
|
+
]
|
|
244
|
+
else:
|
|
245
|
+
raise ValueError("how must be either most expr or random expr")
|
|
246
|
+
if self.add_zero_genes > 0:
|
|
247
|
+
zero_loc = np.where(expr == 0)[0]
|
|
248
|
+
zero_loc = [
|
|
249
|
+
np.random.choice(len(zero_loc), self.add_zero_genes, replace=False)
|
|
250
|
+
]
|
|
251
|
+
loc = np.concatenate((loc, zero_loc), axis=None)
|
|
252
|
+
exprs.append(expr[loc])
|
|
253
|
+
gene_locs.append(loc + self.start_idx[organism_id.item()])
|
|
254
|
+
|
|
255
|
+
if self.tp_name is not None:
|
|
256
|
+
tp.append(elem.obs[self.tp_name])
|
|
257
|
+
else:
|
|
258
|
+
tp.append(0)
|
|
259
|
+
|
|
260
|
+
other_classes.append([elem.obs[i].values[0] for i in self.class_names])
|
|
261
|
+
|
|
262
|
+
expr = np.array(exprs)
|
|
263
|
+
tp = np.array(tp)
|
|
264
|
+
gene_locs = np.array(gene_locs)
|
|
265
|
+
total_count = np.array(total_count)
|
|
266
|
+
other_classes = np.array(other_classes)
|
|
267
|
+
return {
|
|
268
|
+
"x": Tensor(expr),
|
|
269
|
+
"genes": Tensor(gene_locs).int(),
|
|
270
|
+
"depth": Tensor(total_count),
|
|
271
|
+
"class": Tensor(other_classes),
|
|
272
|
+
}
|
|
273
|
+
|
|
274
|
+
|
|
275
|
+
class GeneformerCollator(Collator):
|
|
276
|
+
def __init__(self, *args, gene_norm_list: list, **kwargs):
|
|
277
|
+
"""
|
|
278
|
+
GeneformerCollator to finish
|
|
279
|
+
|
|
280
|
+
Args:
|
|
281
|
+
gene_norm_list (list): the normalization of expression through all datasets, per gene.
|
|
282
|
+
"""
|
|
283
|
+
super().__init__(*args, **kwargs)
|
|
284
|
+
self.gene_norm_list = gene_norm_list
|
|
285
|
+
|
|
286
|
+
def __call__(self, batch):
|
|
287
|
+
super().__call__(batch)
|
|
288
|
+
# normlization per gene
|
|
289
|
+
|
|
290
|
+
# tokenize the empty locations
|
|
291
|
+
|
|
292
|
+
|
|
293
|
+
class scGPTCollator(Collator):
|
|
294
|
+
"""
|
|
295
|
+
scGPTCollator to finish
|
|
296
|
+
"""
|
|
297
|
+
|
|
298
|
+
def __call__(self, batch):
|
|
299
|
+
super().__call__(batch)
|
|
300
|
+
# binning
|
|
301
|
+
|
|
302
|
+
# tokenize the empty locations
|
|
303
|
+
|
|
304
|
+
|
|
305
|
+
class scPRINTCollator(Collator):
|
|
306
|
+
def __call__(self, batch):
|
|
307
|
+
super().__call__(batch)
|
scdataloader/config.py
ADDED
|
@@ -0,0 +1,106 @@
|
|
|
1
|
+
LABELS_TOADD = {
|
|
2
|
+
"assay_ontology_term_id": {
|
|
3
|
+
"10x transcription profiling": "EFO:0030003",
|
|
4
|
+
"spatial transcriptomics": "EFO:0008994",
|
|
5
|
+
"10x 3' transcription profiling": "EFO:0030003",
|
|
6
|
+
"10x 5' transcription profiling": "EFO:0030004",
|
|
7
|
+
},
|
|
8
|
+
"disease_ontology_term_id": {
|
|
9
|
+
"metabolic disease": "MONDO:0005066",
|
|
10
|
+
"chronic kidney disease": "MONDO:0005300",
|
|
11
|
+
"chromosomal disorder": "MONDO:0019040",
|
|
12
|
+
"infectious disease": "MONDO:0005550",
|
|
13
|
+
"inflammatory disease": "MONDO:0021166",
|
|
14
|
+
# "immune system disease",
|
|
15
|
+
"disorder of development or morphogenesis": "MONDO:0021147",
|
|
16
|
+
"mitochondrial disease": "MONDO:0044970",
|
|
17
|
+
"psychiatric disorder": "MONDO:0002025",
|
|
18
|
+
"cancer or benign tumor": "MONDO:0002025",
|
|
19
|
+
"neoplasm": "MONDO:0005070",
|
|
20
|
+
},
|
|
21
|
+
"cell_type_ontology_term_id": {
|
|
22
|
+
"progenitor cell": "CL:0011026",
|
|
23
|
+
"hematopoietic cell": "CL:0000988",
|
|
24
|
+
"myoblast": "CL:0000056",
|
|
25
|
+
"myeloid cell": "CL:0000763",
|
|
26
|
+
"neuron": "CL:0000540",
|
|
27
|
+
"electrically active cell": "CL:0000211",
|
|
28
|
+
"epithelial cell": "CL:0000066",
|
|
29
|
+
"secretory cell": "CL:0000151",
|
|
30
|
+
"stem cell": "CL:0000034",
|
|
31
|
+
"non-terminally differentiated cell": "CL:0000055",
|
|
32
|
+
"supporting cell": "CL:0000630",
|
|
33
|
+
},
|
|
34
|
+
}
|
|
35
|
+
|
|
36
|
+
COARSE_TISSUE = {
|
|
37
|
+
"adipose tissue": "",
|
|
38
|
+
"bladder organ": "",
|
|
39
|
+
"blood": "",
|
|
40
|
+
"bone marrow": "",
|
|
41
|
+
"brain": "",
|
|
42
|
+
"breast": "",
|
|
43
|
+
"esophagus": "",
|
|
44
|
+
"eye": "",
|
|
45
|
+
"embryo": "",
|
|
46
|
+
"fallopian tube": "",
|
|
47
|
+
"gall bladder": "",
|
|
48
|
+
"heart": "",
|
|
49
|
+
"intestine": "",
|
|
50
|
+
"kidney": "",
|
|
51
|
+
"liver": "",
|
|
52
|
+
"lung": "",
|
|
53
|
+
"lymph node": "",
|
|
54
|
+
"musculature of body": "",
|
|
55
|
+
"nose": "",
|
|
56
|
+
"ovary": "",
|
|
57
|
+
"pancreas": "",
|
|
58
|
+
"placenta": "",
|
|
59
|
+
"skin of body": "",
|
|
60
|
+
"spinal cord": "",
|
|
61
|
+
"spleen": "",
|
|
62
|
+
"stomach": "",
|
|
63
|
+
"thymus": "",
|
|
64
|
+
"thyroid gland": "",
|
|
65
|
+
"tongue": "",
|
|
66
|
+
"uterus": "",
|
|
67
|
+
}
|
|
68
|
+
|
|
69
|
+
COARSE_ANCESTRY = {
|
|
70
|
+
"African": "",
|
|
71
|
+
"Chinese": "",
|
|
72
|
+
"East Asian": "",
|
|
73
|
+
"Eskimo": "",
|
|
74
|
+
"European": "",
|
|
75
|
+
"Greater Middle Eastern (Middle Eastern, North African or Persian)": "",
|
|
76
|
+
"Hispanic or Latin American": "",
|
|
77
|
+
"Native American": "",
|
|
78
|
+
"Oceanian": "",
|
|
79
|
+
"South Asian": "",
|
|
80
|
+
}
|
|
81
|
+
|
|
82
|
+
COARSE_DEVELOPMENT_STAGE = {
|
|
83
|
+
"Embryonic human": "",
|
|
84
|
+
"Fetal": "",
|
|
85
|
+
"Immature": "",
|
|
86
|
+
"Mature": "",
|
|
87
|
+
}
|
|
88
|
+
|
|
89
|
+
COARSE_ASSAY = {
|
|
90
|
+
"10x 3'": "",
|
|
91
|
+
"10x 5'": "",
|
|
92
|
+
"10x multiome": "",
|
|
93
|
+
"CEL-seq2": "",
|
|
94
|
+
"Drop-seq": "",
|
|
95
|
+
"GEXSCOPE technology": "",
|
|
96
|
+
"inDrop": "",
|
|
97
|
+
"microwell-seq": "",
|
|
98
|
+
"sci-Plex": "",
|
|
99
|
+
"sci-RNA-seq": "",
|
|
100
|
+
"Seq-Well": "",
|
|
101
|
+
"Slide-seq": "",
|
|
102
|
+
"Smart-seq": "",
|
|
103
|
+
"SPLiT-seq": "",
|
|
104
|
+
"TruDrop": "",
|
|
105
|
+
"Visium Spatial Gene Expression": "",
|
|
106
|
+
}
|