scale-nucleus 0.1.22__py3-none-any.whl → 0.6.4__py3-none-any.whl
This diff represents the content of publicly available package versions that have been released to one of the supported registries. The information contained in this diff is provided for informational purposes only and reflects changes between package versions as they appear in their respective public registries.
- cli/client.py +14 -0
- cli/datasets.py +77 -0
- cli/helpers/__init__.py +0 -0
- cli/helpers/nucleus_url.py +10 -0
- cli/helpers/web_helper.py +40 -0
- cli/install_completion.py +33 -0
- cli/jobs.py +42 -0
- cli/models.py +35 -0
- cli/nu.py +42 -0
- cli/reference.py +8 -0
- cli/slices.py +62 -0
- cli/tests.py +121 -0
- nucleus/__init__.py +453 -699
- nucleus/annotation.py +435 -80
- nucleus/autocurate.py +9 -0
- nucleus/connection.py +87 -0
- nucleus/constants.py +12 -2
- nucleus/data_transfer_object/__init__.py +0 -0
- nucleus/data_transfer_object/dataset_details.py +9 -0
- nucleus/data_transfer_object/dataset_info.py +26 -0
- nucleus/data_transfer_object/dataset_size.py +5 -0
- nucleus/data_transfer_object/scenes_list.py +18 -0
- nucleus/dataset.py +1139 -215
- nucleus/dataset_item.py +130 -26
- nucleus/dataset_item_uploader.py +297 -0
- nucleus/deprecation_warning.py +32 -0
- nucleus/errors.py +21 -1
- nucleus/job.py +71 -3
- nucleus/logger.py +9 -0
- nucleus/metadata_manager.py +45 -0
- nucleus/metrics/__init__.py +10 -0
- nucleus/metrics/base.py +117 -0
- nucleus/metrics/categorization_metrics.py +197 -0
- nucleus/metrics/errors.py +7 -0
- nucleus/metrics/filters.py +40 -0
- nucleus/metrics/geometry.py +198 -0
- nucleus/metrics/metric_utils.py +28 -0
- nucleus/metrics/polygon_metrics.py +480 -0
- nucleus/metrics/polygon_utils.py +299 -0
- nucleus/model.py +121 -15
- nucleus/model_run.py +34 -57
- nucleus/payload_constructor.py +30 -18
- nucleus/prediction.py +259 -17
- nucleus/pydantic_base.py +26 -0
- nucleus/retry_strategy.py +4 -0
- nucleus/scene.py +204 -19
- nucleus/slice.py +230 -67
- nucleus/upload_response.py +20 -9
- nucleus/url_utils.py +4 -0
- nucleus/utils.py +139 -35
- nucleus/validate/__init__.py +24 -0
- nucleus/validate/client.py +168 -0
- nucleus/validate/constants.py +20 -0
- nucleus/validate/data_transfer_objects/__init__.py +0 -0
- nucleus/validate/data_transfer_objects/eval_function.py +81 -0
- nucleus/validate/data_transfer_objects/scenario_test.py +19 -0
- nucleus/validate/data_transfer_objects/scenario_test_evaluations.py +11 -0
- nucleus/validate/data_transfer_objects/scenario_test_metric.py +12 -0
- nucleus/validate/errors.py +6 -0
- nucleus/validate/eval_functions/__init__.py +0 -0
- nucleus/validate/eval_functions/available_eval_functions.py +212 -0
- nucleus/validate/eval_functions/base_eval_function.py +60 -0
- nucleus/validate/scenario_test.py +143 -0
- nucleus/validate/scenario_test_evaluation.py +114 -0
- nucleus/validate/scenario_test_metric.py +14 -0
- nucleus/validate/utils.py +8 -0
- {scale_nucleus-0.1.22.dist-info → scale_nucleus-0.6.4.dist-info}/LICENSE +0 -0
- scale_nucleus-0.6.4.dist-info/METADATA +213 -0
- scale_nucleus-0.6.4.dist-info/RECORD +71 -0
- {scale_nucleus-0.1.22.dist-info → scale_nucleus-0.6.4.dist-info}/WHEEL +1 -1
- scale_nucleus-0.6.4.dist-info/entry_points.txt +3 -0
- scale_nucleus-0.1.22.dist-info/METADATA +0 -85
- scale_nucleus-0.1.22.dist-info/RECORD +0 -21
nucleus/dataset.py
CHANGED
@@ -1,65 +1,122 @@
|
|
1
|
+
import os
|
1
2
|
from typing import Any, Dict, List, Optional, Sequence, Union
|
2
3
|
|
3
4
|
import requests
|
4
5
|
|
5
6
|
from nucleus.job import AsyncJob
|
7
|
+
from nucleus.prediction import (
|
8
|
+
BoxPrediction,
|
9
|
+
CategoryPrediction,
|
10
|
+
CuboidPrediction,
|
11
|
+
PolygonPrediction,
|
12
|
+
SegmentationPrediction,
|
13
|
+
from_json,
|
14
|
+
)
|
6
15
|
from nucleus.url_utils import sanitize_string_args
|
7
16
|
from nucleus.utils import (
|
8
17
|
convert_export_payload,
|
9
18
|
format_dataset_item_response,
|
19
|
+
format_prediction_response,
|
10
20
|
serialize_and_write_to_presigned_url,
|
11
21
|
)
|
12
22
|
|
13
23
|
from .annotation import (
|
14
24
|
Annotation,
|
25
|
+
BoxAnnotation,
|
26
|
+
CategoryAnnotation,
|
27
|
+
CuboidAnnotation,
|
28
|
+
MultiCategoryAnnotation,
|
29
|
+
PolygonAnnotation,
|
30
|
+
SegmentationAnnotation,
|
15
31
|
check_all_mask_paths_remote,
|
16
32
|
)
|
17
33
|
from .constants import (
|
18
|
-
|
19
|
-
|
20
|
-
|
21
|
-
|
34
|
+
ANNOTATIONS_KEY,
|
35
|
+
AUTOTAG_SCORE_THRESHOLD,
|
36
|
+
BACKFILL_JOB_KEY,
|
37
|
+
DATASET_ID_KEY,
|
38
|
+
DATASET_IS_SCENE_KEY,
|
22
39
|
DEFAULT_ANNOTATION_UPDATE_MODE,
|
40
|
+
EMBEDDING_DIMENSION_KEY,
|
41
|
+
EMBEDDINGS_URL_KEY,
|
23
42
|
EXPORTED_ROWS,
|
43
|
+
KEEP_HISTORY_KEY,
|
44
|
+
MESSAGE_KEY,
|
24
45
|
NAME_KEY,
|
25
46
|
REFERENCE_IDS_KEY,
|
26
47
|
REQUEST_ID_KEY,
|
27
|
-
|
48
|
+
SLICE_ID_KEY,
|
28
49
|
UPDATE_KEY,
|
29
50
|
)
|
51
|
+
from .data_transfer_object.dataset_info import DatasetInfo
|
52
|
+
from .data_transfer_object.dataset_size import DatasetSize
|
53
|
+
from .data_transfer_object.scenes_list import ScenesList, ScenesListEntry
|
30
54
|
from .dataset_item import (
|
31
55
|
DatasetItem,
|
32
56
|
check_all_paths_remote,
|
33
57
|
check_for_duplicate_reference_ids,
|
34
58
|
)
|
35
|
-
from .
|
59
|
+
from .dataset_item_uploader import DatasetItemUploader
|
60
|
+
from .deprecation_warning import deprecated
|
61
|
+
from .errors import DatasetItemRetrievalError
|
62
|
+
from .metadata_manager import ExportMetadataType, MetadataManager
|
36
63
|
from .payload_constructor import (
|
37
64
|
construct_append_scenes_payload,
|
38
65
|
construct_model_run_creation_payload,
|
39
66
|
construct_taxonomy_payload,
|
40
67
|
)
|
68
|
+
from .scene import LidarScene, Scene, check_all_scene_paths_remote
|
69
|
+
from .slice import Slice
|
70
|
+
from .upload_response import UploadResponse
|
71
|
+
|
72
|
+
# TODO: refactor to reduce this file to under 1000 lines.
|
73
|
+
# pylint: disable=C0302
|
74
|
+
|
41
75
|
|
42
76
|
WARN_FOR_LARGE_UPLOAD = 50000
|
43
77
|
WARN_FOR_LARGE_SCENES_UPLOAD = 5
|
44
78
|
|
45
79
|
|
46
80
|
class Dataset:
|
47
|
-
"""
|
48
|
-
|
49
|
-
|
50
|
-
|
81
|
+
"""Datasets are collections of your data that can be associated with models.
|
82
|
+
|
83
|
+
You can append :class:`DatasetItems<DatasetItem>` or :class:`Scenes<LidarScene>`
|
84
|
+
with metadata to your dataset, annotate it with ground truth, and upload
|
85
|
+
model predictions to evaluate and compare model performance on your data.
|
86
|
+
|
87
|
+
Make sure that the dataset is set up correctly supporting the required datatype (see code sample below).
|
88
|
+
|
89
|
+
Datasets cannot be instantiated directly and instead must be created via API
|
90
|
+
endpoint using :meth:`NucleusClient.create_dataset`, or in the dashboard.
|
91
|
+
|
92
|
+
::
|
93
|
+
|
94
|
+
import nucleus
|
95
|
+
|
96
|
+
client = nucleus.NucleusClient(YOUR_SCALE_API_KEY)
|
97
|
+
|
98
|
+
# Create new dataset supporting DatasetItems
|
99
|
+
dataset = client.create_dataset(YOUR_DATASET_NAME, is_scene=False)
|
100
|
+
|
101
|
+
# OR create new dataset supporting LidarScenes
|
102
|
+
dataset = client.create_dataset(YOUR_DATASET_NAME, is_scene=True)
|
103
|
+
|
104
|
+
# Or, retrieve existing dataset by ID
|
105
|
+
# This ID can be fetched using client.list_datasets() or from a dashboard URL
|
106
|
+
existing_dataset = client.get_dataset("YOUR_DATASET_ID")
|
51
107
|
"""
|
52
108
|
|
53
|
-
def __init__(
|
54
|
-
self,
|
55
|
-
dataset_id: str,
|
56
|
-
client: "NucleusClient", # type:ignore # noqa: F821
|
57
|
-
):
|
109
|
+
def __init__(self, dataset_id, client, name=None):
|
58
110
|
self.id = dataset_id
|
59
111
|
self._client = client
|
112
|
+
# NOTE: Optionally set name on creation such that the property access doesn't need to hit the server
|
113
|
+
self._name = name
|
60
114
|
|
61
115
|
def __repr__(self):
|
62
|
-
|
116
|
+
if os.environ.get("NUCLEUS_DEBUG", None):
|
117
|
+
return f"Dataset(name='{self.name}, dataset_id='{self.id}', is_scene='{self.is_scene}', client={self._client})"
|
118
|
+
else:
|
119
|
+
return f"Dataset(name='{self.name}, dataset_id='{self.id}', is_scene='{self.is_scene}')"
|
63
120
|
|
64
121
|
def __eq__(self, other):
|
65
122
|
if self.id == other.id:
|
@@ -69,44 +126,107 @@ class Dataset:
|
|
69
126
|
|
70
127
|
@property
|
71
128
|
def name(self) -> str:
|
72
|
-
|
129
|
+
"""User-defined name of the Dataset."""
|
130
|
+
if self._name is None:
|
131
|
+
self._name = self._client.make_request(
|
132
|
+
{}, f"dataset/{self.id}/name", requests.get
|
133
|
+
)["name"]
|
134
|
+
return self._name
|
135
|
+
|
136
|
+
@property
|
137
|
+
def is_scene(self) -> bool:
|
138
|
+
"""If the dataset can contain scenes or not."""
|
139
|
+
response = self._client.make_request(
|
140
|
+
{}, f"dataset/{self.id}/is_scene", requests.get
|
141
|
+
)[DATASET_IS_SCENE_KEY]
|
142
|
+
return response
|
73
143
|
|
74
144
|
@property
|
75
145
|
def model_runs(self) -> List[str]:
|
76
|
-
|
146
|
+
"""List of all model runs associated with the Dataset."""
|
147
|
+
# TODO: model_runs -> models
|
148
|
+
response = self._client.make_request(
|
149
|
+
{}, f"dataset/{self.id}/model_runs", requests.get
|
150
|
+
)
|
151
|
+
return response
|
77
152
|
|
78
153
|
@property
|
79
154
|
def slices(self) -> List[str]:
|
80
|
-
|
155
|
+
"""List of all Slice IDs created from the Dataset."""
|
156
|
+
response = self._client.make_request(
|
157
|
+
{}, f"dataset/{self.id}/slices", requests.get
|
158
|
+
)
|
159
|
+
return response
|
81
160
|
|
82
161
|
@property
|
83
162
|
def size(self) -> int:
|
84
|
-
|
163
|
+
"""Number of items in the Dataset."""
|
164
|
+
response = self._client.make_request(
|
165
|
+
{}, f"dataset/{self.id}/size", requests.get
|
166
|
+
)
|
167
|
+
dataset_size = DatasetSize.parse_obj(response)
|
168
|
+
return dataset_size.count
|
85
169
|
|
86
170
|
@property
|
87
171
|
def items(self) -> List[DatasetItem]:
|
88
|
-
|
172
|
+
"""List of all DatasetItem objects in the Dataset."""
|
173
|
+
response = self._client.make_request(
|
174
|
+
{}, f"dataset/{self.id}/datasetItems", requests.get
|
175
|
+
)
|
176
|
+
dataset_items = response.get("dataset_items", None)
|
177
|
+
error = response.get("error", None)
|
178
|
+
constructed_dataset_items = []
|
179
|
+
if dataset_items:
|
180
|
+
for item in dataset_items:
|
181
|
+
image_url = item.get("original_image_url")
|
182
|
+
metadata = item.get("metadata", None)
|
183
|
+
ref_id = item.get("ref_id", None)
|
184
|
+
dataset_item = DatasetItem(image_url, ref_id, metadata)
|
185
|
+
constructed_dataset_items.append(dataset_item)
|
186
|
+
elif error:
|
187
|
+
raise DatasetItemRetrievalError(message=error)
|
188
|
+
return constructed_dataset_items
|
189
|
+
|
190
|
+
@property
|
191
|
+
def scenes(self) -> List[ScenesListEntry]:
|
192
|
+
"""List of ID, reference ID, type, and metadata for all scenes in the Dataset."""
|
193
|
+
response = self._client.make_request(
|
194
|
+
{}, f"dataset/{self.id}/scenes_list", requests.get
|
195
|
+
)
|
196
|
+
|
197
|
+
scenes_list = ScenesList.parse_obj(response)
|
198
|
+
return scenes_list.scenes
|
89
199
|
|
90
200
|
@sanitize_string_args
|
91
201
|
def autotag_items(self, autotag_name, for_scores_greater_than=0):
|
92
|
-
"""
|
202
|
+
"""Fetches the autotag's items above the score threshold, sorted by descending score.
|
93
203
|
|
94
|
-
:
|
95
|
-
|
96
|
-
|
97
|
-
|
98
|
-
|
99
|
-
|
100
|
-
|
101
|
-
|
102
|
-
|
103
|
-
|
104
|
-
|
105
|
-
|
106
|
-
|
204
|
+
Parameters:
|
205
|
+
autotag_name: The user-defined name of the autotag.
|
206
|
+
for_scores_greater_than (Optional[int]): Score threshold between -1
|
207
|
+
and 1 above which to include autotag items.
|
208
|
+
|
209
|
+
Returns:
|
210
|
+
List of autotagged items above the given score threshold, sorted by
|
211
|
+
descending score, and autotag info, packaged into a dict as follows::
|
212
|
+
|
213
|
+
{
|
214
|
+
"autotagItems": List[{
|
215
|
+
ref_id: str,
|
216
|
+
score: float,
|
217
|
+
model_prediction_annotation_id: str | None
|
218
|
+
ground_truth_annotation_id: str | None,
|
219
|
+
}],
|
220
|
+
"autotag": {
|
221
|
+
id: str,
|
222
|
+
name: str,
|
223
|
+
status: "started" | "completed",
|
224
|
+
autotag_level: "Image" | "Object"
|
225
|
+
}
|
107
226
|
}
|
108
|
-
|
109
|
-
|
227
|
+
|
228
|
+
Note ``model_prediction_annotation_id`` and ``ground_truth_annotation_id``
|
229
|
+
are only relevant for object autotags.
|
110
230
|
"""
|
111
231
|
response = self._client.make_request(
|
112
232
|
payload={AUTOTAG_SCORE_THRESHOLD: for_scores_greater_than},
|
@@ -116,23 +236,31 @@ class Dataset:
|
|
116
236
|
return response
|
117
237
|
|
118
238
|
def autotag_training_items(self, autotag_name):
|
119
|
-
"""
|
239
|
+
"""Fetches items that were manually selected during refinement of the autotag.
|
120
240
|
|
121
|
-
:
|
122
|
-
|
123
|
-
|
124
|
-
|
125
|
-
|
126
|
-
|
127
|
-
|
128
|
-
|
129
|
-
|
130
|
-
|
131
|
-
|
132
|
-
|
241
|
+
Parameters:
|
242
|
+
autotag_name: The user-defined name of the autotag.
|
243
|
+
|
244
|
+
Returns:
|
245
|
+
List of user-selected positives and autotag info, packaged into a
|
246
|
+
dict as follows::
|
247
|
+
|
248
|
+
{
|
249
|
+
"autotagPositiveTrainingItems": {
|
250
|
+
ref_id: str,
|
251
|
+
model_prediction_annotation_id: str | None,
|
252
|
+
ground_truth_annotation_id: str | None,
|
253
|
+
}[],
|
254
|
+
"autotag": {
|
255
|
+
id: str,
|
256
|
+
name: str,
|
257
|
+
status: "started" | "completed",
|
258
|
+
autotag_level: "Image" | "Object"
|
259
|
+
}
|
133
260
|
}
|
134
|
-
|
135
|
-
|
261
|
+
|
262
|
+
Note ``model_prediction_annotation_id`` and ``ground_truth_annotation_id``
|
263
|
+
are only relevant for object autotags.
|
136
264
|
"""
|
137
265
|
response = self._client.make_request(
|
138
266
|
payload={},
|
@@ -141,19 +269,21 @@ class Dataset:
|
|
141
269
|
)
|
142
270
|
return response
|
143
271
|
|
144
|
-
def info(self) ->
|
145
|
-
"""
|
146
|
-
|
147
|
-
:
|
148
|
-
|
149
|
-
'name': str,
|
150
|
-
'length': int,
|
151
|
-
'model_run_ids': List[str],
|
152
|
-
'slice_ids': List[str]
|
153
|
-
}
|
272
|
+
def info(self) -> DatasetInfo:
|
273
|
+
"""Retrieve information about the dataset
|
274
|
+
|
275
|
+
Returns:
|
276
|
+
:class:`DatasetInfo`
|
154
277
|
"""
|
155
|
-
|
278
|
+
response = self._client.make_request(
|
279
|
+
{}, f"dataset/{self.id}/info", requests.get
|
280
|
+
)
|
281
|
+
dataset_info = DatasetInfo.parse_obj(response)
|
282
|
+
return dataset_info
|
156
283
|
|
284
|
+
@deprecated(
|
285
|
+
"Model runs have been deprecated and will be removed. Use a Model instead"
|
286
|
+
)
|
157
287
|
def create_model_run(
|
158
288
|
self,
|
159
289
|
name: str,
|
@@ -162,22 +292,6 @@ class Dataset:
|
|
162
292
|
metadata: Optional[Dict[str, Any]] = None,
|
163
293
|
annotation_metadata_schema: Optional[Dict] = None,
|
164
294
|
):
|
165
|
-
"""
|
166
|
-
:param name: A name for the model run.
|
167
|
-
:param reference_id: The user-specified reference identifier to associate with the model.
|
168
|
-
The 'model_id' field should be empty if this field is populated,
|
169
|
-
:param model_id: The internally-controlled identifier of the model.
|
170
|
-
The 'reference_id' field should be empty if this field is populated,
|
171
|
-
:param metadata: An arbitrary metadata blob for the current run.
|
172
|
-
:param annotation_metadata_schema: A dictionary that defines schema for annotations.
|
173
|
-
:param segmentation_metadata_schema: A dictionary that defines schema for segmentation.
|
174
|
-
|
175
|
-
:return:
|
176
|
-
{
|
177
|
-
"model_id": str,
|
178
|
-
"model_run_id": str,
|
179
|
-
}
|
180
|
-
"""
|
181
295
|
payload = construct_model_run_creation_payload(
|
182
296
|
name,
|
183
297
|
reference_id,
|
@@ -189,22 +303,64 @@ class Dataset:
|
|
189
303
|
|
190
304
|
def annotate(
|
191
305
|
self,
|
192
|
-
annotations: Sequence[
|
193
|
-
|
306
|
+
annotations: Sequence[
|
307
|
+
Union[
|
308
|
+
BoxAnnotation,
|
309
|
+
PolygonAnnotation,
|
310
|
+
CuboidAnnotation,
|
311
|
+
CategoryAnnotation,
|
312
|
+
MultiCategoryAnnotation,
|
313
|
+
SegmentationAnnotation,
|
314
|
+
]
|
315
|
+
],
|
316
|
+
update: bool = DEFAULT_ANNOTATION_UPDATE_MODE,
|
194
317
|
batch_size: int = 5000,
|
195
318
|
asynchronous: bool = False,
|
196
319
|
) -> Union[Dict[str, Any], AsyncJob]:
|
197
|
-
"""
|
198
|
-
|
199
|
-
|
200
|
-
|
201
|
-
|
202
|
-
|
203
|
-
|
204
|
-
|
205
|
-
|
206
|
-
|
207
|
-
|
320
|
+
"""Uploads ground truth annotations to the dataset.
|
321
|
+
|
322
|
+
Adding ground truth to your dataset in Nucleus allows you to visualize
|
323
|
+
annotations, query dataset items based on the annotations they contain,
|
324
|
+
and evaluate models by comparing their predictions to ground truth.
|
325
|
+
|
326
|
+
Nucleus supports :class:`Box<BoxAnnotation>`, :class:`Polygon<PolygonAnnotation>`,
|
327
|
+
:class:`Cuboid<CuboidAnnotation>`, :class:`Segmentation<SegmentationAnnotation>`,
|
328
|
+
and :class:`Category<CategoryAnnotation>` annotations. Cuboid annotations
|
329
|
+
can only be uploaded to a :class:`pointcloud DatasetItem<LidarScene>`.
|
330
|
+
|
331
|
+
When uploading an annotation, you need to specify which item you are
|
332
|
+
annotating via the reference_id you provided when uploading the image
|
333
|
+
or pointcloud.
|
334
|
+
|
335
|
+
Ground truth uploads can be made idempotent by specifying an optional
|
336
|
+
annotation_id for each annotation. This id should be unique within the
|
337
|
+
dataset_item so that (reference_id, annotation_id) is unique within the
|
338
|
+
dataset.
|
339
|
+
|
340
|
+
See :class:`SegmentationAnnotation` for specific requirements to upload
|
341
|
+
segmentation annotations.
|
342
|
+
|
343
|
+
For ingesting large annotation payloads, see the `Guide for Large Ingestions
|
344
|
+
<https://nucleus.scale.com/docs/large-ingestion>`_.
|
345
|
+
|
346
|
+
Parameters:
|
347
|
+
annotations (Sequence[:class:`Annotation`]): List of annotation
|
348
|
+
objects to upload.
|
349
|
+
update: Whether to ignore or overwrite metadata for conflicting annotations.
|
350
|
+
batch_size: Number of annotations processed in each concurrent batch.
|
351
|
+
Default is 5000.
|
352
|
+
asynchronous: Whether or not to process the upload asynchronously (and
|
353
|
+
return an :class:`AsyncJob` object). Default is False.
|
354
|
+
|
355
|
+
Returns:
|
356
|
+
If synchronous, payload describing the upload result::
|
357
|
+
|
358
|
+
{
|
359
|
+
"dataset_id": str,
|
360
|
+
"annotations_processed": int
|
361
|
+
}
|
362
|
+
|
363
|
+
Otherwise, returns an :class:`AsyncJob` object.
|
208
364
|
"""
|
209
365
|
check_all_mask_paths_remote(annotations)
|
210
366
|
|
@@ -217,45 +373,138 @@ class Dataset:
|
|
217
373
|
route=f"dataset/{self.id}/annotate?async=1",
|
218
374
|
)
|
219
375
|
return AsyncJob.from_json(response, self._client)
|
220
|
-
|
221
376
|
return self._client.annotate_dataset(
|
222
377
|
self.id, annotations, update=update, batch_size=batch_size
|
223
378
|
)
|
224
379
|
|
225
|
-
def ingest_tasks(self, task_ids: dict
|
226
|
-
"""
|
227
|
-
|
228
|
-
|
229
|
-
|
230
|
-
|
231
|
-
|
232
|
-
|
380
|
+
def ingest_tasks(self, task_ids: List[str]) -> dict:
|
381
|
+
"""Ingest specific tasks from an existing Scale or Rapid project into the dataset.
|
382
|
+
|
383
|
+
Note: if you would like to create a new Dataset from an exisiting Scale
|
384
|
+
labeling project, use :meth:`NucleusClient.create_dataset_from_project`.
|
385
|
+
|
386
|
+
For more info, see our `Ingest From Labeling Guide
|
387
|
+
<https://nucleus.scale.com/docs/ingest-from-labeling>`_.
|
388
|
+
|
389
|
+
Parameters:
|
390
|
+
task_ids: List of task IDs to ingest.
|
391
|
+
|
392
|
+
Returns:
|
393
|
+
Payload describing the asynchronous upload result::
|
394
|
+
|
395
|
+
{
|
396
|
+
"ingested_tasks": int,
|
397
|
+
"ignored_tasks": int,
|
398
|
+
"pending_tasks": int
|
399
|
+
}
|
233
400
|
"""
|
234
|
-
|
401
|
+
# TODO(gunnar): Validate right behaviour. Pydantic?
|
402
|
+
return self._client.make_request(
|
403
|
+
{"tasks": task_ids}, f"dataset/{self.id}/ingest_tasks"
|
404
|
+
)
|
235
405
|
|
236
406
|
def append(
|
237
407
|
self,
|
238
408
|
items: Union[Sequence[DatasetItem], Sequence[LidarScene]],
|
239
|
-
update:
|
240
|
-
batch_size:
|
241
|
-
asynchronous=False,
|
242
|
-
) -> Union[
|
243
|
-
"""
|
244
|
-
|
409
|
+
update: bool = False,
|
410
|
+
batch_size: int = 20,
|
411
|
+
asynchronous: bool = False,
|
412
|
+
) -> Union[Dict[Any, Any], AsyncJob, UploadResponse]:
|
413
|
+
"""Appends items or scenes to a dataset.
|
414
|
+
|
415
|
+
.. note::
|
416
|
+
Datasets can only accept one of :class:`DatasetItems <DatasetItem>`
|
417
|
+
or :class:`Scenes <LidarScene>`, never both.
|
418
|
+
|
419
|
+
This behavior is set during Dataset :meth:`creation
|
420
|
+
<NucleusClient.create_dataset>` with the ``is_scene`` flag.
|
421
|
+
|
422
|
+
::
|
423
|
+
|
424
|
+
import nucleus
|
425
|
+
|
426
|
+
client = nucleus.NucleusClient("YOUR_SCALE_API_KEY")
|
427
|
+
dataset = client.get_dataset("YOUR_DATASET_ID")
|
428
|
+
|
429
|
+
local_item = nucleus.DatasetItem(
|
430
|
+
image_location="./1.jpg",
|
431
|
+
reference_id="image_1",
|
432
|
+
metadata={"key": "value"}
|
433
|
+
)
|
434
|
+
remote_item = nucleus.DatasetItem(
|
435
|
+
image_location="s3://your-bucket/2.jpg",
|
436
|
+
reference_id="image_2",
|
437
|
+
metadata={"key": "value"}
|
438
|
+
)
|
439
|
+
|
440
|
+
# default is synchronous upload
|
441
|
+
sync_response = dataset.append(items=[local_item])
|
442
|
+
|
443
|
+
# async jobs have higher throughput but can be more difficult to debug
|
444
|
+
async_job = dataset.append(
|
445
|
+
items=[remote_item], # all items must be remote for async
|
446
|
+
asynchronous=True
|
447
|
+
)
|
448
|
+
print(async_job.status())
|
449
|
+
|
450
|
+
A :class:`Dataset` can be populated with labeled and unlabeled
|
451
|
+
data. Using Nucleus, you can filter down the data inside your dataset
|
452
|
+
using custom metadata about your images.
|
453
|
+
|
454
|
+
For instance, your local dataset may contain ``Sunny``, ``Foggy``, and
|
455
|
+
``Rainy`` folders of images. All of these images can be uploaded into a
|
456
|
+
single Nucleus ``Dataset``, with (queryable) metadata like ``{"weather":
|
457
|
+
"Sunny"}``.
|
458
|
+
|
459
|
+
To update an item's metadata, you can re-ingest the same items with the
|
460
|
+
``update`` argument set to true. Existing metadata will be overwritten
|
461
|
+
for ``DatasetItems`` in the payload that share a ``reference_id`` with a
|
462
|
+
previously uploaded ``DatasetItem``. To retrieve your existing
|
463
|
+
``reference_ids``, use :meth:`Dataset.items`.
|
464
|
+
|
465
|
+
::
|
466
|
+
|
467
|
+
# overwrite metadata by reuploading the item
|
468
|
+
remote_item.metadata["weather"] = "Sunny"
|
469
|
+
|
470
|
+
async_job_2 = dataset.append(
|
471
|
+
items=[remote_item],
|
472
|
+
update=True,
|
473
|
+
asynchronous=True
|
474
|
+
)
|
245
475
|
|
246
476
|
Parameters:
|
247
|
-
|
248
|
-
|
249
|
-
|
250
|
-
|
251
|
-
|
252
|
-
|
253
|
-
|
254
|
-
|
255
|
-
|
256
|
-
|
257
|
-
|
477
|
+
dataset_items ( \
|
478
|
+
Union[ \
|
479
|
+
Sequence[:class:`DatasetItem`], \
|
480
|
+
Sequence[:class:`LidarScene`] \
|
481
|
+
]): List of items or scenes to upload.
|
482
|
+
batch_size: Size of the batch for larger uploads. Default is 20.
|
483
|
+
update: Whether or not to overwrite metadata on reference ID collision.
|
484
|
+
Default is False.
|
485
|
+
asynchronous: Whether or not to process the upload asynchronously (and
|
486
|
+
return an :class:`AsyncJob` object). This is highly encouraged for
|
487
|
+
3D data to drastically increase throughput. Default is False.
|
488
|
+
|
489
|
+
Returns:
|
490
|
+
For scenes
|
491
|
+
If synchronous, returns a payload describing the upload result::
|
492
|
+
|
493
|
+
{
|
494
|
+
"dataset_id: str,
|
495
|
+
"new_items": int,
|
496
|
+
"updated_items": int,
|
497
|
+
"ignored_items": int,
|
498
|
+
"upload_errors": int
|
499
|
+
}
|
500
|
+
|
501
|
+
Otherwise, returns an :class:`AsyncJob` object.
|
502
|
+
For images
|
503
|
+
If synchronous returns UploadResponse otherwise :class:`AsyncJob`
|
258
504
|
"""
|
505
|
+
assert (
|
506
|
+
batch_size is None or batch_size < 30
|
507
|
+
), "Please specify a batch size smaller than 30 to avoid timeouts."
|
259
508
|
dataset_items = [
|
260
509
|
item for item in items if isinstance(item, DatasetItem)
|
261
510
|
]
|
@@ -265,7 +514,11 @@ class Dataset:
|
|
265
514
|
"You must append either DatasetItems or Scenes to the dataset."
|
266
515
|
)
|
267
516
|
if scenes:
|
268
|
-
|
517
|
+
assert (
|
518
|
+
asynchronous
|
519
|
+
), "In order to avoid timeouts, you must set asynchronous=True when uploading scenes."
|
520
|
+
|
521
|
+
return self._append_scenes(scenes, update, asynchronous)
|
269
522
|
|
270
523
|
check_for_duplicate_reference_ids(dataset_items)
|
271
524
|
|
@@ -288,42 +541,44 @@ class Dataset:
|
|
288
541
|
)
|
289
542
|
return AsyncJob.from_json(response, self._client)
|
290
543
|
|
291
|
-
return self.
|
292
|
-
self.id,
|
544
|
+
return self._upload_items(
|
293
545
|
dataset_items,
|
294
546
|
update=update,
|
295
547
|
batch_size=batch_size,
|
296
548
|
)
|
297
549
|
|
550
|
+
@deprecated("Prefer using Dataset.append instead.")
|
298
551
|
def append_scenes(
|
299
552
|
self,
|
300
553
|
scenes: List[LidarScene],
|
301
554
|
update: Optional[bool] = False,
|
302
555
|
asynchronous: Optional[bool] = False,
|
303
556
|
) -> Union[dict, AsyncJob]:
|
304
|
-
|
305
|
-
|
557
|
+
return self._append_scenes(scenes, update, asynchronous)
|
558
|
+
|
559
|
+
def _append_scenes(
|
560
|
+
self,
|
561
|
+
scenes: List[LidarScene],
|
562
|
+
update: Optional[bool] = False,
|
563
|
+
asynchronous: Optional[bool] = False,
|
564
|
+
) -> Union[dict, AsyncJob]:
|
565
|
+
# TODO: make private in favor of Dataset.append invocation
|
566
|
+
if not self.is_scene:
|
567
|
+
raise Exception(
|
568
|
+
"Your dataset is not a scene dataset but only supports single dataset items. "
|
569
|
+
"In order to be able to add scenes, please create another dataset with "
|
570
|
+
"client.create_dataset(<dataset_name>, is_scene=True) or add the scenes to "
|
571
|
+
"an existing scene dataset."
|
572
|
+
)
|
306
573
|
|
307
|
-
Parameters:
|
308
|
-
:param scenes: scenes to upload
|
309
|
-
:param update: if True, overwrite scene on collision
|
310
|
-
:param asynchronous: if True, return a job object representing asynchronous ingestion job
|
311
|
-
:return:
|
312
|
-
{
|
313
|
-
'dataset_id': str,
|
314
|
-
'new_scenes': int,
|
315
|
-
'ignored_scenes': int,
|
316
|
-
'scenes_errored': int,
|
317
|
-
'errors': List[str],
|
318
|
-
}
|
319
|
-
"""
|
320
574
|
for scene in scenes:
|
321
575
|
scene.validate()
|
322
576
|
|
323
|
-
if
|
577
|
+
if not asynchronous:
|
324
578
|
print(
|
325
|
-
"
|
326
|
-
"
|
579
|
+
"WARNING: Processing lidar pointclouds usually takes several seconds. As a result, sychronous scene upload"
|
580
|
+
"requests are likely to timeout. For large uploads, we recommend using the flag asynchronous=True "
|
581
|
+
"to avoid HTTP timeouts. Please see"
|
327
582
|
"https://dashboard.scale.com/nucleus/docs/api?language=python#guide-for-large-ingestions"
|
328
583
|
" for details."
|
329
584
|
)
|
@@ -347,51 +602,98 @@ class Dataset:
|
|
347
602
|
return response
|
348
603
|
|
349
604
|
def iloc(self, i: int) -> dict:
|
605
|
+
"""Retrieves dataset item by absolute numerical index.
|
606
|
+
|
607
|
+
Parameters:
|
608
|
+
i: Absolute numerical index of the dataset item within the dataset.
|
609
|
+
|
610
|
+
Returns:
|
611
|
+
Payload describing the dataset item and associated annotations::
|
612
|
+
|
613
|
+
{
|
614
|
+
"item": DatasetItem
|
615
|
+
"annotations": {
|
616
|
+
"box": Optional[List[BoxAnnotation]],
|
617
|
+
"cuboid": Optional[List[CuboidAnnotation]],
|
618
|
+
"polygon": Optional[List[PolygonAnnotation]],
|
619
|
+
"segmentation": Optional[List[SegmentationAnnotation]],
|
620
|
+
"category": Optional[List[CategoryAnnotation]],
|
621
|
+
}
|
622
|
+
}
|
350
623
|
"""
|
351
|
-
|
352
|
-
|
353
|
-
|
354
|
-
{
|
355
|
-
"item": DatasetItem,
|
356
|
-
"annotations": List[Union[BoxAnnotation, PolygonAnnotation, CuboidAnnotation, SegmentationAnnotation]],
|
357
|
-
}
|
358
|
-
"""
|
359
|
-
response = self._client.dataitem_iloc(self.id, i)
|
624
|
+
response = self._client.make_request(
|
625
|
+
{}, f"dataset/{self.id}/iloc/{i}", requests.get
|
626
|
+
)
|
360
627
|
return format_dataset_item_response(response)
|
361
628
|
|
629
|
+
@sanitize_string_args
|
362
630
|
def refloc(self, reference_id: str) -> dict:
|
631
|
+
"""Retrieves a dataset item by reference ID.
|
632
|
+
|
633
|
+
Parameters:
|
634
|
+
reference_id: User-defined reference ID of the dataset item.
|
635
|
+
|
636
|
+
Returns:
|
637
|
+
Payload containing the dataset item and associated annotations::
|
638
|
+
|
639
|
+
{
|
640
|
+
"item": DatasetItem
|
641
|
+
"annotations": {
|
642
|
+
"box": Optional[List[BoxAnnotation]],
|
643
|
+
"cuboid": Optional[List[CuboidAnnotation]],
|
644
|
+
"polygon": Optional[List[PolygonAnnotation]],
|
645
|
+
"segmentation": Optional[List[SegmentationAnnotation]],
|
646
|
+
"category": Optional[List[CategoryAnnotation]],
|
647
|
+
}
|
648
|
+
}
|
363
649
|
"""
|
364
|
-
|
365
|
-
|
366
|
-
|
367
|
-
{
|
368
|
-
"item": DatasetItem,
|
369
|
-
"annotations": List[Union[BoxAnnotation, PolygonAnnotation, CuboidAnnotation, SegmentationAnnotation]],
|
370
|
-
}
|
371
|
-
"""
|
372
|
-
response = self._client.dataitem_ref_id(self.id, reference_id)
|
650
|
+
response = self._client.make_request(
|
651
|
+
{}, f"dataset/{self.id}/refloc/{reference_id}", requests.get
|
652
|
+
)
|
373
653
|
return format_dataset_item_response(response)
|
374
654
|
|
375
655
|
def loc(self, dataset_item_id: str) -> dict:
|
656
|
+
"""Retrieves a dataset item by Nucleus-generated ID.
|
657
|
+
|
658
|
+
Parameters:
|
659
|
+
dataset_item_id: Nucleus-generated dataset item ID (starts with ``di_``).
|
660
|
+
This can be retrieved via :meth:`Dataset.items` or a Nucleus dashboard URL.
|
661
|
+
|
662
|
+
Returns:
|
663
|
+
Payload containing the dataset item and associated annotations::
|
664
|
+
|
665
|
+
{
|
666
|
+
"item": DatasetItem
|
667
|
+
"annotations": {
|
668
|
+
"box": Optional[List[BoxAnnotation]],
|
669
|
+
"cuboid": Optional[List[CuboidAnnotation]],
|
670
|
+
"polygon": Optional[List[PolygonAnnotation]],
|
671
|
+
"segmentation": Optional[List[SegmentationAnnotation]],
|
672
|
+
"category": Optional[List[CategoryAnnotation]],
|
673
|
+
}
|
674
|
+
}
|
376
675
|
"""
|
377
|
-
|
378
|
-
|
379
|
-
|
380
|
-
{
|
381
|
-
"item": DatasetItem,
|
382
|
-
"annotations": List[Union[BoxAnnotation, PolygonAnnotation, CuboidAnnotation, SegmentationAnnotation]],
|
383
|
-
}
|
384
|
-
"""
|
385
|
-
response = self._client.dataitem_loc(self.id, dataset_item_id)
|
676
|
+
response = self._client.make_request(
|
677
|
+
{}, f"dataset/{self.id}/loc/{dataset_item_id}", requests.get
|
678
|
+
)
|
386
679
|
return format_dataset_item_response(response)
|
387
680
|
|
388
681
|
def ground_truth_loc(self, reference_id: str, annotation_id: str):
|
389
|
-
"""
|
390
|
-
|
391
|
-
:
|
392
|
-
|
393
|
-
|
394
|
-
|
682
|
+
"""Fetches a single ground truth annotation by id.
|
683
|
+
|
684
|
+
Parameters:
|
685
|
+
reference_id: User-defined reference ID of the dataset item associated
|
686
|
+
with the ground truth annotation.
|
687
|
+
annotation_id: User-defined ID of the ground truth annotation.
|
688
|
+
|
689
|
+
Returns:
|
690
|
+
Union[\
|
691
|
+
:class:`BoxAnnotation`, \
|
692
|
+
:class:`PolygonAnnotation`, \
|
693
|
+
:class:`CuboidAnnotation`, \
|
694
|
+
:class:`SegmentationAnnotation` \
|
695
|
+
:class:`CategoryAnnotation` \
|
696
|
+
]: Ground truth annotation object with the specified annotation ID.
|
395
697
|
"""
|
396
698
|
response = self._client.make_request(
|
397
699
|
{},
|
@@ -404,67 +706,296 @@ class Dataset:
|
|
404
706
|
self,
|
405
707
|
name: str,
|
406
708
|
reference_ids: List[str],
|
407
|
-
):
|
408
|
-
"""
|
409
|
-
Creates a slice from items already present in a dataset.
|
410
|
-
The caller must exclusively use either datasetItemIds or reference_ids
|
411
|
-
as a means of identifying items in the dataset.
|
709
|
+
) -> Slice:
|
710
|
+
"""Creates a :class:`Slice` of dataset items within a dataset.
|
412
711
|
|
413
|
-
:
|
414
|
-
|
712
|
+
Parameters:
|
713
|
+
name: A human-readable name for the slice.
|
714
|
+
reference_ids: List of reference IDs of dataset items to add to the slice::
|
415
715
|
|
416
|
-
:
|
716
|
+
Returns:
|
717
|
+
:class:`Slice`: The newly constructed slice item.
|
417
718
|
"""
|
418
|
-
|
419
|
-
|
719
|
+
payload = {NAME_KEY: name, REFERENCE_IDS_KEY: reference_ids}
|
720
|
+
response = self._client.make_request(
|
721
|
+
payload, f"dataset/{self.id}/create_slice"
|
420
722
|
)
|
723
|
+
return Slice(response[SLICE_ID_KEY], self._client)
|
421
724
|
|
422
|
-
|
423
|
-
|
424
|
-
|
725
|
+
@sanitize_string_args
|
726
|
+
def delete_item(self, reference_id: str) -> dict:
|
727
|
+
"""Deletes an item from the dataset by item reference ID.
|
728
|
+
|
729
|
+
All annotations and predictions associated with the item will be deleted
|
730
|
+
as well.
|
731
|
+
|
732
|
+
Parameters:
|
733
|
+
reference_id: The user-defined reference ID of the item to delete.
|
734
|
+
|
735
|
+
Returns:
|
736
|
+
Payload to indicate deletion invocation.
|
737
|
+
"""
|
738
|
+
return self._client.make_request(
|
739
|
+
{},
|
740
|
+
f"dataset/{self.id}/refloc/{reference_id}",
|
741
|
+
requests.delete,
|
425
742
|
)
|
426
743
|
|
744
|
+
@sanitize_string_args
|
745
|
+
def delete_scene(self, reference_id: str):
|
746
|
+
"""Deletes a Scene associated with the Dataset
|
747
|
+
|
748
|
+
All items, annotations and predictions associated with the scene will be
|
749
|
+
deleted as well.
|
750
|
+
|
751
|
+
Parameters:
|
752
|
+
reference_id: The user-defined reference ID of the item to delete.
|
753
|
+
"""
|
754
|
+
self._client.delete(f"dataset/{self.id}/scene/{reference_id}")
|
755
|
+
|
427
756
|
def list_autotags(self):
|
757
|
+
"""Fetches all autotags of the dataset.
|
758
|
+
|
759
|
+
Returns:
|
760
|
+
List of autotag payloads::
|
761
|
+
|
762
|
+
List[{
|
763
|
+
"id": str,
|
764
|
+
"name": str,
|
765
|
+
"status": "completed" | "pending",
|
766
|
+
"autotag_level": "Image" | "Object"
|
767
|
+
}]
|
768
|
+
"""
|
428
769
|
return self._client.list_autotags(self.id)
|
429
770
|
|
430
|
-
def
|
431
|
-
|
432
|
-
|
433
|
-
|
434
|
-
|
771
|
+
def update_autotag(self, autotag_id):
|
772
|
+
"""Will rerun inference on all dataset items in the dataset.
|
773
|
+
For now this endpoint does not try to skip already inferenced items, but this
|
774
|
+
improvement is planned for the future. This means that for now, you can only
|
775
|
+
have one job running at time, so please await the result using job.sleep_until_complete()
|
776
|
+
before launching another job.
|
777
|
+
|
778
|
+
Parameters:
|
779
|
+
autotag_id: Id of the autotag to re-inference. You can figure out which
|
780
|
+
id you want by using dataset.list_autotags, or by looking at the URL in the
|
781
|
+
manage autotag page.
|
782
|
+
|
783
|
+
Returns:
|
784
|
+
:class:`AsyncJob`: Asynchronous job object to track processing status.
|
785
|
+
"""
|
786
|
+
return AsyncJob.from_json(
|
787
|
+
payload=self._client.make_request(
|
788
|
+
{}, f"autotag/{autotag_id}", requests.post
|
789
|
+
),
|
790
|
+
client=self._client,
|
791
|
+
)
|
792
|
+
|
793
|
+
def create_custom_index(
|
794
|
+
self, embeddings_urls: List[str], embedding_dim: int
|
795
|
+
):
|
796
|
+
"""Processes user-provided embeddings for the dataset to use with autotag and simsearch.
|
797
|
+
|
798
|
+
::
|
799
|
+
|
800
|
+
import nucleus
|
801
|
+
|
802
|
+
client = nucleus.NucleusClient("YOUR_SCALE_API_KEY")
|
803
|
+
dataset = client.get_dataset("YOUR_DATASET_ID")
|
804
|
+
|
805
|
+
embeddings = {
|
806
|
+
"reference_id_0": [0.1, 0.2, 0.3],
|
807
|
+
"reference_id_1": [0.4, 0.5, 0.6],
|
808
|
+
} # uploaded to s3 with the below URL
|
809
|
+
|
810
|
+
embeddings_url = "s3://dataset/embeddings_map.json"
|
811
|
+
|
812
|
+
response = dataset.create_custom_index(
|
813
|
+
embeddings_url=[embeddings_url],
|
814
|
+
embedding_dim=3
|
815
|
+
)
|
816
|
+
|
817
|
+
Parameters:
|
818
|
+
embeddings_urls: List of URLs, each of which pointing to
|
819
|
+
a JSON mapping reference_id -> embedding vector.
|
820
|
+
embedding_dim: The dimension of the embedding vectors. Must be consistent
|
821
|
+
across all embedding vectors in the index.
|
822
|
+
|
823
|
+
Returns:
|
824
|
+
:class:`AsyncJob`: Asynchronous job object to track processing status.
|
825
|
+
"""
|
826
|
+
res = self._client.post(
|
827
|
+
{
|
828
|
+
EMBEDDINGS_URL_KEY: embeddings_urls,
|
829
|
+
EMBEDDING_DIMENSION_KEY: embedding_dim,
|
830
|
+
},
|
831
|
+
f"indexing/{self.id}",
|
832
|
+
)
|
833
|
+
return AsyncJob.from_json(
|
834
|
+
res,
|
835
|
+
self._client,
|
435
836
|
)
|
436
837
|
|
437
838
|
def delete_custom_index(self):
|
839
|
+
"""Deletes the custom index uploaded to the dataset.
|
840
|
+
|
841
|
+
Returns:
|
842
|
+
Payload containing information that can be used to track the job's status::
|
843
|
+
|
844
|
+
{
|
845
|
+
"dataset_id": str,
|
846
|
+
"job_id": str,
|
847
|
+
"message": str
|
848
|
+
}
|
849
|
+
"""
|
438
850
|
return self._client.delete_custom_index(self.id)
|
439
851
|
|
440
852
|
def set_continuous_indexing(self, enable: bool = True):
|
441
|
-
|
853
|
+
"""Toggle whether embeddings are automatically generated for new data.
|
854
|
+
|
855
|
+
Sets continuous indexing for a given dataset, which will automatically
|
856
|
+
generate embeddings for use with autotag whenever new images are uploaded.
|
857
|
+
|
858
|
+
Parameters:
|
859
|
+
enable: Whether to enable or disable continuous indexing. Default is
|
860
|
+
True.
|
861
|
+
|
862
|
+
Returns:
|
863
|
+
Response payload::
|
864
|
+
|
865
|
+
{
|
866
|
+
"dataset_id": str,
|
867
|
+
"message": str
|
868
|
+
"backfill_job": AsyncJob,
|
869
|
+
}
|
870
|
+
"""
|
871
|
+
preprocessed_response = self._client.set_continuous_indexing(
|
872
|
+
self.id, enable
|
873
|
+
)
|
874
|
+
response = {
|
875
|
+
DATASET_ID_KEY: preprocessed_response[DATASET_ID_KEY],
|
876
|
+
MESSAGE_KEY: preprocessed_response[MESSAGE_KEY],
|
877
|
+
}
|
878
|
+
if enable:
|
879
|
+
response[BACKFILL_JOB_KEY] = (
|
880
|
+
AsyncJob.from_json(preprocessed_response, self._client),
|
881
|
+
)
|
882
|
+
return response
|
442
883
|
|
443
884
|
def create_image_index(self):
|
885
|
+
"""Creates or updates image index by generating embeddings for images that do not already have embeddings.
|
886
|
+
|
887
|
+
The embeddings are used for autotag and similarity search.
|
888
|
+
|
889
|
+
This endpoint is limited to index up to 2 million images at a time and the
|
890
|
+
job will fail for payloads that exceed this limit.
|
891
|
+
|
892
|
+
Response:
|
893
|
+
:class:`AsyncJob`: Asynchronous job object to track processing status.
|
894
|
+
"""
|
444
895
|
response = self._client.create_image_index(self.id)
|
445
896
|
return AsyncJob.from_json(response, self._client)
|
446
897
|
|
898
|
+
def create_object_index(
|
899
|
+
self, model_run_id: str = None, gt_only: bool = None
|
900
|
+
):
|
901
|
+
"""Creates or updates object index by generating embeddings for objects that do not already have embeddings.
|
902
|
+
|
903
|
+
These embeddings are used for autotag and similarity search. This endpoint
|
904
|
+
only supports indexing objects sourced from the predictions of a specific
|
905
|
+
model or the ground truth annotations of the dataset.
|
906
|
+
|
907
|
+
This endpoint is idempotent. If this endpoint is called again for a model
|
908
|
+
whose predictions were indexed in the past, the previously indexed predictions
|
909
|
+
will not have new embeddings recomputed. The same is true for ground truth
|
910
|
+
annotations.
|
911
|
+
|
912
|
+
Note that this means if you change update a prediction or ground truth
|
913
|
+
bounding box that already has an associated embedding, the embedding will
|
914
|
+
not be updated, even with another call to this endpoint. For now, we
|
915
|
+
recommend deleting the prediction or ground truth annotation and
|
916
|
+
re-inserting it to force generate a new embedding.
|
917
|
+
|
918
|
+
This endpoint is limited to generating embeddings for 3 million objects
|
919
|
+
at a time and the job will fail for payloads that exceed this limit.
|
920
|
+
|
921
|
+
Parameters:
|
922
|
+
model_run_id: The ID of the model whose predictions should be indexed.
|
923
|
+
Default is None, but must be supplied in the absence of ``gt_only``.
|
924
|
+
|
925
|
+
.. todo ::
|
926
|
+
Deprecate model run
|
927
|
+
|
928
|
+
gt_only: Whether to only generate embeddings for the ground truth
|
929
|
+
annotations of the dataset. Default is None, but must be supplied
|
930
|
+
in the absence of ``model_run_id``.
|
931
|
+
|
932
|
+
Returns:
|
933
|
+
Payload containing an :class:`AsyncJob` object to monitor progress.
|
934
|
+
"""
|
935
|
+
response = self._client.create_object_index(
|
936
|
+
self.id, model_run_id, gt_only
|
937
|
+
)
|
938
|
+
return AsyncJob.from_json(response, self._client)
|
939
|
+
|
447
940
|
def add_taxonomy(
|
448
941
|
self,
|
449
942
|
taxonomy_name: str,
|
450
943
|
taxonomy_type: str,
|
451
944
|
labels: List[str],
|
945
|
+
update: bool = False,
|
452
946
|
):
|
453
|
-
"""
|
454
|
-
|
455
|
-
|
456
|
-
|
457
|
-
|
458
|
-
|
947
|
+
"""Creates a new taxonomy.
|
948
|
+
::
|
949
|
+
|
950
|
+
import nucleus
|
951
|
+
client = nucleus.NucleusClient("YOUR_SCALE_API_KEY")
|
952
|
+
dataset = client.get_dataset("YOUR_DATASET_ID")
|
953
|
+
|
954
|
+
response = dataset.add_taxonomy(
|
955
|
+
taxonomy_name="clothing_type",
|
956
|
+
taxonomy_type="category",
|
957
|
+
labels=["shirt", "trousers", "dress"],
|
958
|
+
update=False
|
959
|
+
)
|
960
|
+
|
961
|
+
Parameters:
|
962
|
+
taxonomy_name: The name of the taxonomy. Taxonomy names must be
|
963
|
+
unique within a dataset.
|
964
|
+
taxonomy_type: The type of this taxonomy as a string literal.
|
965
|
+
Currently, the only supported taxonomy type is "category".
|
966
|
+
labels: The list of possible labels for the taxonomy.
|
967
|
+
update: Whether or not to update taxonomy labels on taxonomy name collision. Default is False. Note that taxonomy labels will not be deleted on update, they can only be appended.
|
968
|
+
|
969
|
+
Returns:
|
970
|
+
Returns a response with dataset_id, taxonomy_name and status of the add taxonomy operation.
|
459
971
|
"""
|
460
972
|
return self._client.make_request(
|
461
|
-
construct_taxonomy_payload(
|
973
|
+
construct_taxonomy_payload(
|
974
|
+
taxonomy_name, taxonomy_type, labels, update
|
975
|
+
),
|
462
976
|
f"dataset/{self.id}/add_taxonomy",
|
463
977
|
requests_command=requests.post,
|
464
978
|
)
|
465
979
|
|
466
|
-
def
|
467
|
-
|
980
|
+
def delete_taxonomy(
|
981
|
+
self,
|
982
|
+
taxonomy_name: str,
|
983
|
+
):
|
984
|
+
"""Deletes the given taxonomy.
|
985
|
+
|
986
|
+
All annotations and predictions associated with the taxonomy will be deleted as well.
|
987
|
+
|
988
|
+
Parameters:
|
989
|
+
taxonomy_name: The name of the taxonomy.
|
990
|
+
|
991
|
+
Returns:
|
992
|
+
Returns a response with dataset_id, taxonomy_name and status of the delete taxonomy operation.
|
993
|
+
"""
|
994
|
+
return self._client.make_request(
|
995
|
+
{},
|
996
|
+
f"dataset/{self.id}/taxonomy/{taxonomy_name}",
|
997
|
+
requests.delete,
|
998
|
+
)
|
468
999
|
|
469
1000
|
def items_and_annotations(
|
470
1001
|
self,
|
@@ -472,12 +1003,18 @@ class Dataset:
|
|
472
1003
|
"""Returns a list of all DatasetItems and Annotations in this slice.
|
473
1004
|
|
474
1005
|
Returns:
|
475
|
-
A list,
|
476
|
-
|
477
|
-
|
478
|
-
|
479
|
-
|
480
|
-
|
1006
|
+
A list of dicts, each with two keys representing a row in the dataset::
|
1007
|
+
|
1008
|
+
List[{
|
1009
|
+
"item": DatasetItem,
|
1010
|
+
"annotations": {
|
1011
|
+
"box": Optional[List[BoxAnnotation]],
|
1012
|
+
"cuboid": Optional[List[CuboidAnnotation]],
|
1013
|
+
"polygon": Optional[List[PolygonAnnotation]],
|
1014
|
+
"segmentation": Optional[List[SegmentationAnnotation]],
|
1015
|
+
"category": Optional[List[CategoryAnnotation]],
|
1016
|
+
}
|
1017
|
+
}]
|
481
1018
|
"""
|
482
1019
|
api_payload = self._client.make_request(
|
483
1020
|
payload=None,
|
@@ -489,25 +1026,412 @@ class Dataset:
|
|
489
1026
|
def export_embeddings(
|
490
1027
|
self,
|
491
1028
|
) -> List[Dict[str, Union[str, List[float]]]]:
|
492
|
-
"""
|
1029
|
+
"""Fetches a pd.DataFrame-ready list of dataset embeddings.
|
493
1030
|
|
494
1031
|
Returns:
|
495
1032
|
A list, where each item is a dict with two keys representing a row
|
496
|
-
in the dataset
|
497
|
-
|
498
|
-
|
1033
|
+
in the dataset::
|
1034
|
+
|
1035
|
+
List[{
|
1036
|
+
"reference_id": str,
|
1037
|
+
"embedding_vector": List[float]
|
1038
|
+
}]
|
499
1039
|
"""
|
500
1040
|
api_payload = self._client.make_request(
|
501
1041
|
payload=None,
|
502
1042
|
route=f"dataset/{self.id}/embeddings",
|
503
1043
|
requests_command=requests.get,
|
504
1044
|
)
|
505
|
-
return api_payload
|
1045
|
+
return api_payload # type: ignore
|
506
1046
|
|
507
1047
|
def delete_annotations(
|
508
1048
|
self, reference_ids: list = None, keep_history=False
|
509
|
-
):
|
510
|
-
|
511
|
-
|
1049
|
+
) -> AsyncJob:
|
1050
|
+
"""Deletes all annotations associated with the specified item reference IDs.
|
1051
|
+
|
1052
|
+
Parameters:
|
1053
|
+
reference_ids: List of user-defined reference IDs of the dataset items
|
1054
|
+
from which to delete annotations.
|
1055
|
+
keep_history: Whether to preserve version history. If False, all
|
1056
|
+
previous versions will be deleted along with the annotations. If
|
1057
|
+
True, the version history (including deletion) wil persist.
|
1058
|
+
Default is False.
|
1059
|
+
|
1060
|
+
Returns:
|
1061
|
+
:class:`AsyncJob`: Empty payload response.
|
1062
|
+
"""
|
1063
|
+
payload = {KEEP_HISTORY_KEY: keep_history}
|
1064
|
+
if reference_ids:
|
1065
|
+
payload[REFERENCE_IDS_KEY] = reference_ids
|
1066
|
+
response = self._client.make_request(
|
1067
|
+
payload,
|
1068
|
+
f"annotation/{self.id}",
|
1069
|
+
requests_command=requests.delete,
|
512
1070
|
)
|
513
1071
|
return AsyncJob.from_json(response, self._client)
|
1072
|
+
|
1073
|
+
def get_scene(self, reference_id: str) -> Scene:
|
1074
|
+
"""Fetches a single scene in the dataset by its reference ID.
|
1075
|
+
|
1076
|
+
Parameters:
|
1077
|
+
reference_id: User-defined reference ID of the scene.
|
1078
|
+
|
1079
|
+
Returns:
|
1080
|
+
:class:`Scene<LidarScene>`: A scene object containing frames, which
|
1081
|
+
in turn contain pointcloud or image items.
|
1082
|
+
"""
|
1083
|
+
return LidarScene.from_json(
|
1084
|
+
self._client.make_request(
|
1085
|
+
payload=None,
|
1086
|
+
route=f"dataset/{self.id}/scene/{reference_id}",
|
1087
|
+
requests_command=requests.get,
|
1088
|
+
)
|
1089
|
+
)
|
1090
|
+
|
1091
|
+
def export_predictions(self, model):
|
1092
|
+
"""Fetches all predictions of a model that were uploaded to the dataset.
|
1093
|
+
|
1094
|
+
Parameters:
|
1095
|
+
model (:class:`Model`): The model whose predictions to retrieve.
|
1096
|
+
|
1097
|
+
Returns:
|
1098
|
+
List[Union[\
|
1099
|
+
:class:`BoxPrediction`, \
|
1100
|
+
:class:`PolygonPrediction`, \
|
1101
|
+
:class:`CuboidPrediction`, \
|
1102
|
+
:class:`SegmentationPrediction` \
|
1103
|
+
]]: List of prediction objects from the model.
|
1104
|
+
|
1105
|
+
"""
|
1106
|
+
json_response = self._client.make_request(
|
1107
|
+
payload=None,
|
1108
|
+
route=f"dataset/{self.id}/model/{model.id}/export",
|
1109
|
+
requests_command=requests.get,
|
1110
|
+
)
|
1111
|
+
return format_prediction_response({ANNOTATIONS_KEY: json_response})
|
1112
|
+
|
1113
|
+
def calculate_evaluation_metrics(self, model, options: dict = None):
|
1114
|
+
"""Starts computation of evaluation metrics for a model on the dataset.
|
1115
|
+
|
1116
|
+
To update matches and metrics calculated for a model on a given dataset you
|
1117
|
+
can call this endpoint. This is required in order to sort by IOU, view false
|
1118
|
+
positives/false negatives, and view model insights.
|
1119
|
+
|
1120
|
+
You can add predictions from a model to a dataset after running the
|
1121
|
+
calculation of the metrics. However, the calculation of metrics will have
|
1122
|
+
to be retriggered for the new predictions to be matched with ground truth
|
1123
|
+
and appear as false positives/negatives, or for the new predictions effect
|
1124
|
+
on metrics to be reflected in model run insights.
|
1125
|
+
|
1126
|
+
During IoU calculation, bounding box Predictions are compared to
|
1127
|
+
GroundTruth using a greedy matching algorithm that matches prediction and
|
1128
|
+
ground truth boxes that have the highest ious first. By default the
|
1129
|
+
matching algorithm is class-agnostic: it will greedily create matches
|
1130
|
+
regardless of the class labels.
|
1131
|
+
|
1132
|
+
The algorithm can be tuned to classify true positives between certain
|
1133
|
+
classes, but not others. This is useful if the labels in your ground truth
|
1134
|
+
do not match the exact strings of your model predictions, or if you want
|
1135
|
+
to associate multiple predictions with one ground truth label, or multiple
|
1136
|
+
ground truth labels with one prediction. To recompute metrics based on
|
1137
|
+
different matching, you can re-commit the run with new request parameters.
|
1138
|
+
|
1139
|
+
::
|
1140
|
+
|
1141
|
+
import nucleus
|
1142
|
+
|
1143
|
+
client = nucleus.NucleusClient("YOUR_SCALE_API_KEY")
|
1144
|
+
dataset = client.get_dataset(dataset_id="YOUR_DATASET_ID")
|
1145
|
+
|
1146
|
+
model = client.get_model(
|
1147
|
+
model_id="YOUR_MODEL_PRJ_ID",
|
1148
|
+
dataset_id="YOUR_DATASET_ID"
|
1149
|
+
)
|
1150
|
+
|
1151
|
+
# Compute all evaluation metrics including IOU-based matching:
|
1152
|
+
dataset.calculate_evaluation_metrics(model)
|
1153
|
+
|
1154
|
+
# Match car and bus bounding boxes (for IOU computation)
|
1155
|
+
# Otherwise enforce that class labels must match
|
1156
|
+
dataset.calculate_evaluation_metrics(model, options={
|
1157
|
+
'allowed_label_matches': [
|
1158
|
+
{
|
1159
|
+
'ground_truth_label': 'car',
|
1160
|
+
'model_prediction_label': 'bus'
|
1161
|
+
},
|
1162
|
+
{
|
1163
|
+
'ground_truth_label': 'bus',
|
1164
|
+
'model_prediction_label': 'car'
|
1165
|
+
}
|
1166
|
+
]
|
1167
|
+
})
|
1168
|
+
|
1169
|
+
Parameters:
|
1170
|
+
model (:class:`Model`): The model object for which to calculate metrics.
|
1171
|
+
options: Dictionary of specific options to configure metrics calculation.
|
1172
|
+
|
1173
|
+
class_agnostic
|
1174
|
+
Whether ground truth and prediction classes can differ when
|
1175
|
+
being matched for evaluation metrics. Default is True.
|
1176
|
+
|
1177
|
+
allowed_label_matches
|
1178
|
+
Pairs of ground truth and prediction classes that should
|
1179
|
+
be considered matchable when computing metrics. If supplied,
|
1180
|
+
``class_agnostic`` must be False.
|
1181
|
+
|
1182
|
+
::
|
1183
|
+
|
1184
|
+
{
|
1185
|
+
"class_agnostic": bool,
|
1186
|
+
"allowed_label_matches": List[{
|
1187
|
+
"ground_truth_label": str,
|
1188
|
+
"model_prediction_label": str
|
1189
|
+
}]
|
1190
|
+
}
|
1191
|
+
"""
|
1192
|
+
if options is None:
|
1193
|
+
options = {}
|
1194
|
+
return self._client.make_request(
|
1195
|
+
payload=options,
|
1196
|
+
route=f"dataset/{self.id}/model/{model.id}/calculateEvaluationMetrics",
|
1197
|
+
)
|
1198
|
+
|
1199
|
+
def upload_predictions(
|
1200
|
+
self,
|
1201
|
+
model,
|
1202
|
+
predictions: List[
|
1203
|
+
Union[
|
1204
|
+
BoxPrediction,
|
1205
|
+
PolygonPrediction,
|
1206
|
+
CuboidPrediction,
|
1207
|
+
SegmentationPrediction,
|
1208
|
+
CategoryPrediction,
|
1209
|
+
]
|
1210
|
+
],
|
1211
|
+
update: bool = False,
|
1212
|
+
asynchronous: bool = False,
|
1213
|
+
):
|
1214
|
+
"""Uploads predictions and associates them with an existing :class:`Model`.
|
1215
|
+
|
1216
|
+
Adding predictions to your dataset in Nucleus allows you to visualize
|
1217
|
+
discrepancies against ground truth, query dataset items based on the
|
1218
|
+
predictions they contain, and evaluate your models by comparing their
|
1219
|
+
predictions to ground truth.
|
1220
|
+
|
1221
|
+
Nucleus supports :class:`Box<BoxPrediction>`, :class:`Polygon<PolygonPrediction>`,
|
1222
|
+
:class:`Cuboid<CuboidPrediction>`, :class:`Segmentation<SegmentationPrediction>`,
|
1223
|
+
and :class:`Category<CategoryPrediction>` predictions. Cuboid predictions
|
1224
|
+
can only be uploaded to a :class:`pointcloud DatasetItem<LidarScene>`.
|
1225
|
+
|
1226
|
+
When uploading an prediction, you need to specify which item you are
|
1227
|
+
annotating via the reference_id you provided when uploading the image
|
1228
|
+
or pointcloud.
|
1229
|
+
|
1230
|
+
Ground truth uploads can be made idempotent by specifying an optional
|
1231
|
+
annotation_id for each prediction. This id should be unique within the
|
1232
|
+
dataset_item so that (reference_id, annotation_id) is unique within the
|
1233
|
+
dataset.
|
1234
|
+
|
1235
|
+
See :class:`SegmentationPrediction` for specific requirements to upload
|
1236
|
+
segmentation predictions.
|
1237
|
+
|
1238
|
+
For ingesting large prediction payloads, see the `Guide for Large Ingestions
|
1239
|
+
<https://nucleus.scale.com/docs/large-ingestion>`_.
|
1240
|
+
|
1241
|
+
Parameters:
|
1242
|
+
model (:class:`Model`): Nucleus-generated model ID (starts with ``prj_``). This can
|
1243
|
+
be retrieved via :meth:`list_models` or a Nucleus dashboard URL.
|
1244
|
+
predictions (List[Union[\
|
1245
|
+
:class:`BoxPrediction`, \
|
1246
|
+
:class:`PolygonPrediction`, \
|
1247
|
+
:class:`CuboidPrediction`, \
|
1248
|
+
:class:`SegmentationPrediction`, \
|
1249
|
+
:class:`CategoryPrediction` \
|
1250
|
+
]]): List of prediction objects to upload.
|
1251
|
+
update: Whether or not to overwrite metadata or ignore on reference ID
|
1252
|
+
collision. Default is False.
|
1253
|
+
asynchronous: Whether or not to process the upload asynchronously (and
|
1254
|
+
return an :class:`AsyncJob` object). Default is False.
|
1255
|
+
|
1256
|
+
Returns:
|
1257
|
+
Payload describing the synchronous upload::
|
1258
|
+
|
1259
|
+
{
|
1260
|
+
"dataset_id": str,
|
1261
|
+
"model_run_id": str,
|
1262
|
+
"predictions_processed": int,
|
1263
|
+
"predictions_ignored": int,
|
1264
|
+
}
|
1265
|
+
"""
|
1266
|
+
if asynchronous:
|
1267
|
+
check_all_mask_paths_remote(predictions)
|
1268
|
+
|
1269
|
+
request_id = serialize_and_write_to_presigned_url(
|
1270
|
+
predictions, self.id, self._client
|
1271
|
+
)
|
1272
|
+
response = self._client.make_request(
|
1273
|
+
payload={REQUEST_ID_KEY: request_id, UPDATE_KEY: update},
|
1274
|
+
route=f"dataset/{self.id}/model/{model.id}/uploadPredictions?async=1",
|
1275
|
+
)
|
1276
|
+
return AsyncJob.from_json(response, self._client)
|
1277
|
+
else:
|
1278
|
+
return self._client.predict(
|
1279
|
+
model_run_id=None,
|
1280
|
+
dataset_id=self.id,
|
1281
|
+
model_id=model.id,
|
1282
|
+
annotations=predictions,
|
1283
|
+
update=update,
|
1284
|
+
)
|
1285
|
+
|
1286
|
+
def predictions_iloc(self, model, index):
|
1287
|
+
"""Fetches all predictions of a dataset item by its absolute index.
|
1288
|
+
|
1289
|
+
Parameters:
|
1290
|
+
model (:class:`Model`): Model object from which to fetch the prediction.
|
1291
|
+
index (int): Absolute index of the dataset item within the dataset.
|
1292
|
+
|
1293
|
+
Returns:
|
1294
|
+
Dict[str, List[Union[BoxPrediction, PolygonPrediction, CuboidPrediction,
|
1295
|
+
SegmentationPrediction, CategoryPrediction]]]: Dictionary mapping prediction
|
1296
|
+
type to a list of such prediction objects from the given model::
|
1297
|
+
|
1298
|
+
{
|
1299
|
+
"box": List[BoxPrediction],
|
1300
|
+
"polygon": List[PolygonPrediction],
|
1301
|
+
"cuboid": List[CuboidPrediction],
|
1302
|
+
"segmentation": List[SegmentationPrediction],
|
1303
|
+
"category": List[CategoryPrediction],
|
1304
|
+
}
|
1305
|
+
"""
|
1306
|
+
return format_prediction_response(
|
1307
|
+
self._client.make_request(
|
1308
|
+
payload=None,
|
1309
|
+
route=f"dataset/{self.id}/model/{model.id}/iloc/{index}",
|
1310
|
+
requests_command=requests.get,
|
1311
|
+
)
|
1312
|
+
)
|
1313
|
+
|
1314
|
+
def predictions_refloc(self, model, reference_id):
|
1315
|
+
"""Fetches all predictions of a dataset item by its reference ID.
|
1316
|
+
|
1317
|
+
Parameters:
|
1318
|
+
model (:class:`Model`): Model object from which to fetch the prediction.
|
1319
|
+
reference_id (str): User-defined ID of the dataset item from which to fetch
|
1320
|
+
all predictions.
|
1321
|
+
|
1322
|
+
Returns:
|
1323
|
+
Dict[str, List[Union[BoxPrediction, PolygonPrediction, CuboidPrediction,
|
1324
|
+
SegmentationPrediction, CategoryPrediction]]]: Dictionary mapping prediction
|
1325
|
+
type to a list of such prediction objects from the given model::
|
1326
|
+
|
1327
|
+
{
|
1328
|
+
"box": List[BoxPrediction],
|
1329
|
+
"polygon": List[PolygonPrediction],
|
1330
|
+
"cuboid": List[CuboidPrediction],
|
1331
|
+
"segmentation": List[SegmentationPrediction],
|
1332
|
+
"category": List[CategoryPrediction],
|
1333
|
+
}
|
1334
|
+
"""
|
1335
|
+
return format_prediction_response(
|
1336
|
+
self._client.make_request(
|
1337
|
+
payload=None,
|
1338
|
+
route=f"dataset/{self.id}/model/{model.id}/referenceId/{reference_id}",
|
1339
|
+
requests_command=requests.get,
|
1340
|
+
)
|
1341
|
+
)
|
1342
|
+
|
1343
|
+
def prediction_loc(self, model, reference_id, annotation_id):
|
1344
|
+
"""Fetches a single ground truth annotation by id.
|
1345
|
+
|
1346
|
+
Parameters:
|
1347
|
+
model (:class:`Model`): Model object from which to fetch the prediction.
|
1348
|
+
reference_id (str): User-defined reference ID of the dataset item
|
1349
|
+
associated with the model prediction.
|
1350
|
+
annotation_id (str): User-defined ID of the ground truth annotation.
|
1351
|
+
|
1352
|
+
Returns:
|
1353
|
+
Union[\
|
1354
|
+
:class:`BoxPrediction`, \
|
1355
|
+
:class:`PolygonPrediction`, \
|
1356
|
+
:class:`CuboidPrediction`, \
|
1357
|
+
:class:`SegmentationPrediction` \
|
1358
|
+
:class:`CategoryPrediction` \
|
1359
|
+
]: Model prediction object with the specified annotation ID.
|
1360
|
+
"""
|
1361
|
+
return from_json(
|
1362
|
+
self._client.make_request(
|
1363
|
+
payload=None,
|
1364
|
+
route=f"dataset/{self.id}/model/{model.id}/loc/{reference_id}/{annotation_id}",
|
1365
|
+
requests_command=requests.get,
|
1366
|
+
)
|
1367
|
+
)
|
1368
|
+
|
1369
|
+
def _upload_items(
|
1370
|
+
self,
|
1371
|
+
dataset_items: List[DatasetItem],
|
1372
|
+
batch_size: int = 20,
|
1373
|
+
update: bool = False,
|
1374
|
+
) -> UploadResponse:
|
1375
|
+
"""
|
1376
|
+
Appends images to a dataset with given dataset_id.
|
1377
|
+
Overwrites images on collision if updated.
|
1378
|
+
|
1379
|
+
Args:
|
1380
|
+
dataset_items: Items to Upload
|
1381
|
+
batch_size: size of the batch for long payload
|
1382
|
+
update: Update records on conflict otherwise overwrite
|
1383
|
+
Returns:
|
1384
|
+
UploadResponse
|
1385
|
+
"""
|
1386
|
+
if self.is_scene:
|
1387
|
+
raise Exception(
|
1388
|
+
"Your dataset is a scene dataset and does not support the upload of single dataset items. "
|
1389
|
+
"In order to be able to add dataset items, please create another dataset with "
|
1390
|
+
"client.create_dataset(<dataset_name>, is_scene=False) or add the dataset items to "
|
1391
|
+
"an existing dataset supporting dataset items."
|
1392
|
+
)
|
1393
|
+
|
1394
|
+
populator = DatasetItemUploader(self.id, self._client)
|
1395
|
+
return populator.upload(dataset_items, batch_size, update)
|
1396
|
+
|
1397
|
+
def update_scene_metadata(self, mapping: Dict[str, dict]):
|
1398
|
+
"""
|
1399
|
+
Update (merge) scene metadata for each reference_id given in the mapping.
|
1400
|
+
The backed will join the specified mapping metadata to the exisiting metadata.
|
1401
|
+
If there is a key-collision, the value given in the mapping will take precedence.
|
1402
|
+
|
1403
|
+
Args:
|
1404
|
+
mapping: key-value pair of <reference_id>: <metadata>
|
1405
|
+
|
1406
|
+
Examples:
|
1407
|
+
>>> mapping = {"scene_ref_1": {"new_key": "foo"}, "scene_ref_2": {"some_value": 123}}
|
1408
|
+
>>> dataset.update_scene_metadata(mapping)
|
1409
|
+
|
1410
|
+
Returns:
|
1411
|
+
A dictionary outlining success or failures.
|
1412
|
+
"""
|
1413
|
+
mm = MetadataManager(
|
1414
|
+
self.id, self._client, mapping, ExportMetadataType.SCENES
|
1415
|
+
)
|
1416
|
+
return mm.update()
|
1417
|
+
|
1418
|
+
def update_item_metadata(self, mapping: Dict[str, dict]):
|
1419
|
+
"""
|
1420
|
+
Update (merge) dataset item metadata for each reference_id given in the mapping.
|
1421
|
+
The backed will join the specified mapping metadata to the exisiting metadata.
|
1422
|
+
If there is a key-collision, the value given in the mapping will take precedence.
|
1423
|
+
|
1424
|
+
Args:
|
1425
|
+
mapping: key-value pair of <reference_id>: <metadata>
|
1426
|
+
|
1427
|
+
Examples:
|
1428
|
+
>>> mapping = {"item_ref_1": {"new_key": "foo"}, "item_ref_2": {"some_value": 123}}
|
1429
|
+
>>> dataset.update_item_metadata(mapping)
|
1430
|
+
|
1431
|
+
Returns:
|
1432
|
+
A dictionary outlining success or failures.
|
1433
|
+
"""
|
1434
|
+
mm = MetadataManager(
|
1435
|
+
self.id, self._client, mapping, ExportMetadataType.DATASET_ITEMS
|
1436
|
+
)
|
1437
|
+
return mm.update()
|