sawnergy 1.0.7__py3-none-any.whl → 1.0.8__py3-none-any.whl
This diff represents the content of publicly available package versions that have been released to one of the supported registries. The information contained in this diff is provided for informational purposes only and reflects changes between package versions as they appear in their respective public registries.
Potentially problematic release.
This version of sawnergy might be problematic. Click here for more details.
- sawnergy/embedding/SGNS_pml.py +36 -38
- sawnergy/embedding/SGNS_torch.py +82 -29
- sawnergy/embedding/embedder.py +325 -245
- sawnergy/embedding/visualizer.py +9 -5
- {sawnergy-1.0.7.dist-info → sawnergy-1.0.8.dist-info}/METADATA +39 -40
- {sawnergy-1.0.7.dist-info → sawnergy-1.0.8.dist-info}/RECORD +10 -10
- {sawnergy-1.0.7.dist-info → sawnergy-1.0.8.dist-info}/WHEEL +0 -0
- {sawnergy-1.0.7.dist-info → sawnergy-1.0.8.dist-info}/licenses/LICENSE +0 -0
- {sawnergy-1.0.7.dist-info → sawnergy-1.0.8.dist-info}/licenses/NOTICE +0 -0
- {sawnergy-1.0.7.dist-info → sawnergy-1.0.8.dist-info}/top_level.txt +0 -0
sawnergy/embedding/visualizer.py
CHANGED
|
@@ -23,7 +23,7 @@ _logger = logging.getLogger(__name__)
|
|
|
23
23
|
# HELPERS
|
|
24
24
|
# *----------------------------------------------------*
|
|
25
25
|
|
|
26
|
-
def _safe_svd_pca(X: np.ndarray, k: int) -> tuple[np.ndarray, np.ndarray]:
|
|
26
|
+
def _safe_svd_pca(X: np.ndarray, k: int, *, row_l2: bool = False) -> tuple[np.ndarray, np.ndarray]:
|
|
27
27
|
"""Compute k principal directions via SVD and project onto them."""
|
|
28
28
|
if X.ndim != 2:
|
|
29
29
|
raise ValueError(f"PCA expects 2D array (N, D); got {X.shape}")
|
|
@@ -33,6 +33,9 @@ def _safe_svd_pca(X: np.ndarray, k: int) -> tuple[np.ndarray, np.ndarray]:
|
|
|
33
33
|
if D < k:
|
|
34
34
|
raise ValueError(f"Requested k={k} exceeds feature dim D={D}")
|
|
35
35
|
Xc = X - X.mean(axis=0, keepdims=True)
|
|
36
|
+
if row_l2:
|
|
37
|
+
norms = np.linalg.norm(Xc, axis=1, keepdims=True)
|
|
38
|
+
Xc = Xc / np.clip(norms, 1e-9, None)
|
|
36
39
|
_, _, Vt = np.linalg.svd(Xc, full_matrices=False)
|
|
37
40
|
comps = Vt[:k].copy()
|
|
38
41
|
proj = Xc @ comps.T
|
|
@@ -78,7 +81,8 @@ class Visualizer:
|
|
|
78
81
|
init_elev: float = 35,
|
|
79
82
|
init_azim: float = 45,
|
|
80
83
|
*,
|
|
81
|
-
show: bool = False
|
|
84
|
+
show: bool = False,
|
|
85
|
+
normalize_rows: bool = False,
|
|
82
86
|
) -> None:
|
|
83
87
|
# Backend & pyplot
|
|
84
88
|
visualizer_util.ensure_backend(show)
|
|
@@ -106,7 +110,7 @@ class Visualizer:
|
|
|
106
110
|
self._residue_norm = mpl.colors.Normalize(0, max(1, self.N - 1))
|
|
107
111
|
|
|
108
112
|
# Figure / axes / artists
|
|
109
|
-
self._fig = self._plt.figure(figsize=figsize)
|
|
113
|
+
self._fig = self._plt.figure(figsize=figsize, num="SAWNERGY")
|
|
110
114
|
self._ax = None
|
|
111
115
|
self._scatter = None
|
|
112
116
|
self._marker_size = 30.0
|
|
@@ -115,6 +119,7 @@ class Visualizer:
|
|
|
115
119
|
self.default_node_color = default_node_color
|
|
116
120
|
self._antialiased = bool(antialiased)
|
|
117
121
|
self._depthshade = bool(depthshade)
|
|
122
|
+
self._normalize_rows = bool(normalize_rows)
|
|
118
123
|
|
|
119
124
|
# ------------------------------ PRIVATE ------------------------------ #
|
|
120
125
|
|
|
@@ -143,7 +148,7 @@ class Visualizer:
|
|
|
143
148
|
so that the returned array still has shape (N, 3).
|
|
144
149
|
"""
|
|
145
150
|
k = 3 if X.shape[1] >= 3 else 2
|
|
146
|
-
P, _ = _safe_svd_pca(X, k)
|
|
151
|
+
P, _ = _safe_svd_pca(X, k, row_l2=self._normalize_rows)
|
|
147
152
|
if k == 2:
|
|
148
153
|
P = np.c_[P, np.zeros((P.shape[0], 1), dtype=P.dtype)]
|
|
149
154
|
return P
|
|
@@ -214,7 +219,6 @@ class Visualizer:
|
|
|
214
219
|
for p, nid in zip(P, idx + 1):
|
|
215
220
|
self._labels.append(self._ax.text(p[0], p[1], p[2], str(int(nid)), fontsize=8))
|
|
216
221
|
|
|
217
|
-
# Be friendly to test dummies (they may lack tight_layout/canvas)
|
|
218
222
|
try:
|
|
219
223
|
self._fig.tight_layout()
|
|
220
224
|
except Exception:
|
|
@@ -1,6 +1,6 @@
|
|
|
1
1
|
Metadata-Version: 2.4
|
|
2
2
|
Name: sawnergy
|
|
3
|
-
Version: 1.0.
|
|
3
|
+
Version: 1.0.8
|
|
4
4
|
Summary: Toolkit for transforming molecular dynamics (MD) trajectories into rich graph representations
|
|
5
5
|
Home-page: https://github.com/Yehor-Mishchyriak/SAWNERGY
|
|
6
6
|
Author: Yehor Mishchyriak
|
|
@@ -52,19 +52,31 @@ keeps the full workflow — from `cpptraj` output to skip-gram embeddings (node2
|
|
|
52
52
|
|
|
53
53
|
> **Optional:** For GPU training, install PyTorch separately (e.g., `pip install torch`).
|
|
54
54
|
> **Note:** RIN building requires `cpptraj` (AmberTools). Ensure it is discoverable via `$PATH` or the `CPPTRAJ`
|
|
55
|
-
> environment variable. Probably the easiest solution: install AmberTools via
|
|
55
|
+
> environment variable. Probably the easiest solution: install AmberTools via Conda, activate the environment, and SAWNERGY will find the cpptraj executable on its own, so just run your code and don't worry about it.
|
|
56
56
|
|
|
57
57
|
---
|
|
58
58
|
|
|
59
59
|
# UPDATES:
|
|
60
60
|
|
|
61
|
+
## v1.0.8 — What’s new:
|
|
62
|
+
- **Temporary deprecation of `SGNS_Torch`**
|
|
63
|
+
- `sawnergy.embedding.SGNS_Torch` currently produces noisy embeddings in practice. The issue likely stems from **weight initialization**, although the root cause has not yet been conclusively determined.
|
|
64
|
+
- **Action:** The class and its `__init__` docstring now carry a deprecation notice. Constructing the class emits a **`DeprecationWarning`** and logs a **warning**.
|
|
65
|
+
- **Use instead:** Prefer **`SG_Torch`** (plain Skip-Gram with full softmax) or the PureML backends **`SGNS_PureML`** / **`SG_PureML`**.
|
|
66
|
+
- **Compatibility:** No breaking API changes; imports remain stable. PureML backends are unaffected.
|
|
67
|
+
- **Embedding visualizer update**
|
|
68
|
+
- Now you can L2 normalize your embeddings before display.
|
|
69
|
+
- **Small improvements in the embedding module**
|
|
70
|
+
- Improved API with a lot of good defaults in place to ease usage out of the box.
|
|
71
|
+
- Small internal model tweaks.
|
|
72
|
+
|
|
61
73
|
## v1.0.7 — What’s new:
|
|
62
|
-
- **Added plain
|
|
74
|
+
- **Added plain Skip-Gram model**
|
|
63
75
|
- Now, the user can choose if they want to apply the negative sampling technique (two binary classifiers) or train a single classifier over the vocabulary (full softmax). For more detail, see: [node2vec](https://arxiv.org/pdf/1607.00653), [word2vec](https://arxiv.org/pdf/1301.3781), and [negative_sampling](https://arxiv.org/pdf/1402.3722).
|
|
64
76
|
- **Set a harsher default for low interaction energies pruning during RIN construction**
|
|
65
77
|
- Now we zero out 85% of the lowest interaction energies as opposed to the past 30% default, leading to more meaningful embeddings.
|
|
66
78
|
- **BUG FIX: Visualizer**
|
|
67
|
-
- Previously, the visualizer would silently draw edges of 0 magnitude, meaning they were actually being drawn but were invisible due to full transparency and 0 width. As a result, the displayed image
|
|
79
|
+
- Previously, the visualizer would silently draw edges of 0 magnitude, meaning they were actually being drawn but were invisible due to full transparency and 0 width. As a result, the displayed image/animation would be very laggy. Now, this was fixed, and given the higher pruning default, the displayed interaction networks are clean and smooth under rotations, dragging, etc.
|
|
68
80
|
- **New Embedding Visualizer (3D)**
|
|
69
81
|
- New lightweight viewer for per-frame embeddings that projects embeddings with PCA to a **3D** scatter. Supports the same node coloring semantics, optional node labels, and the same antialiasing/depthshade controls. Works in headless setups using the same backend guard and uses a blocking `show=True` for scripts.
|
|
70
82
|
|
|
@@ -77,7 +89,7 @@ keeps the full workflow — from `cpptraj` output to skip-gram embeddings (node2
|
|
|
77
89
|
- **Deterministic, shareable artifacts**: Every stage produces compressed Zarr archives that contain both data and metadata so runs can be reproduced, shared, or inspected later.
|
|
78
90
|
- **High-performance data handling**: Heavy arrays live in shared memory during walk sampling to allow parallel processing without serialization overhead; archives are written in chunked, compressed form for fast read/write.
|
|
79
91
|
- **Flexible objectives & backends**: Train Skip-Gram with **negative sampling** (`objective="sgns"`) or **plain Skip-Gram** (`objective="sg"`), using either **PureML** (default) or **PyTorch**.
|
|
80
|
-
- **Visualization out of the box**: Plot and animate residue networks without leaving Python, using the data produced by RINBuilder
|
|
92
|
+
- **Visualization out of the box**: Plot and animate residue networks without leaving Python, using the data produced by RINBuilder.
|
|
81
93
|
|
|
82
94
|
---
|
|
83
95
|
|
|
@@ -117,7 +129,7 @@ node indexing, and RNG seeds stay consistent across the toolchain.
|
|
|
117
129
|
* Wraps the AmberTools `cpptraj` executable to:
|
|
118
130
|
- compute per-frame electrostatic (EMAP) and van der Waals (VMAP) energy matrices at the atomic level,
|
|
119
131
|
- project atom–atom interactions to residue–residue interactions using compositional masks,
|
|
120
|
-
- prune, symmetrize, remove self-interactions, and L1-
|
|
132
|
+
- prune, symmetrize, remove self-interactions, and L1-normalize the matrices,
|
|
121
133
|
- compute per-residue centers of mass (COM) over the same frames.
|
|
122
134
|
* Outputs a compressed Zarr archive with transition matrices, optional pre-normalized energies, COM snapshots, and rich
|
|
123
135
|
metadata (frame range, pruning quantile, molecule ID, etc.).
|
|
@@ -142,13 +154,10 @@ node indexing, and RNG seeds stay consistent across the toolchain.
|
|
|
142
154
|
|
|
143
155
|
### `sawnergy.embedding.Embedder`
|
|
144
156
|
|
|
145
|
-
* Consumes walk archives, generates skip-gram pairs, and
|
|
146
|
-
*
|
|
147
|
-
|
|
148
|
-
|
|
149
|
-
* Both `SGNS_PureML` and `SGNS_Torch` accept training hyperparameters such as batch_size, LR, optimizer and LR_scheduler, etc.
|
|
150
|
-
* Exposes `embed_frame` (single frame) and `embed_all` (all frames, deterministic seeding per frame) which return the
|
|
151
|
-
learned input embedding matrices and write them to disk when requested.
|
|
157
|
+
* Consumes walk archives, generates skip-gram pairs, and normalizes them to 0-based indices.
|
|
158
|
+
* Selects skip-gram (SG / SGNS) backends dynamically via `model_base="pureml"|"torch"` with per-backend overrides supplied through `model_kwargs`.
|
|
159
|
+
* Handles deterministic per-frame seeding and returns the requested embedding `kind` (`"in"`, `"out"`, or `"avg"`) from `embed_frame` and `embed_all`.
|
|
160
|
+
* Persists per-frame matrices with rich provenance (walk metadata, objective, hyperparameters, RNG seeds) when `embed_all` targets an output archive.
|
|
152
161
|
|
|
153
162
|
### Supporting Utilities
|
|
154
163
|
|
|
@@ -166,11 +175,11 @@ node indexing, and RNG seeds stay consistent across the toolchain.
|
|
|
166
175
|
|---|---|---|
|
|
167
176
|
| **RIN** | `ATTRACTIVE_transitions` → **(T, N, N)**, float32 • `REPULSIVE_transitions` → **(T, N, N)**, float32 (optional) • `ATTRACTIVE_energies` → **(T, N, N)**, float32 (optional) • `REPULSIVE_energies` → **(T, N, N)**, float32 (optional) • `COM` → **(T, N, 3)**, float32 | `time_created` (ISO) • `com_name` = `"COM"` • `molecule_of_interest` (int) • `frame_range` = `(start, end)` inclusive • `frame_batch_size` (int) • `prune_low_energies_frac` (float in [0,1]) • `attractive_transitions_name` / `repulsive_transitions_name` (dataset names or `None`) • `attractive_energies_name` / `repulsive_energies_name` (dataset names or `None`) |
|
|
168
177
|
| **Walks** | `ATTRACTIVE_RWs` → **(T, N·num_RWs, L+1)**, int32 (optional) • `REPULSIVE_RWs` → **(T, N·num_RWs, L+1)**, int32 (optional) • `ATTRACTIVE_SAWs` → **(T, N·num_SAWs, L+1)**, int32 (optional) • `REPULSIVE_SAWs` → **(T, N·num_SAWs, L+1)**, int32 (optional) <br/>_Note:_ node IDs are **1-based**.| `time_created` (ISO) • `seed` (int) • `rng_scheme` = `"SeedSequence.spawn_per_batch_v1"` • `num_workers` (int) • `in_parallel` (bool) • `batch_size_nodes` (int) • `num_RWs` / `num_SAWs` (ints) • `node_count` (N) • `time_stamp_count` (T) • `walk_length` (L) • `walks_per_node` (int) • `attractive_RWs_name` / `repulsive_RWs_name` / `attractive_SAWs_name` / `repulsive_SAWs_name` (dataset names or `None`) • `walks_layout` = `"time_leading_3d"` |
|
|
169
|
-
| **Embeddings** | `FRAME_EMBEDDINGS` → **(
|
|
178
|
+
| **Embeddings** | `FRAME_EMBEDDINGS` → **(T, N, D)**, float32 | `created_at` (ISO) • `frame_embeddings_name` = `"FRAME_EMBEDDINGS"` • `time_stamp_count` = T • `node_count` = N • `embedding_dim` = D • `model_base` = `"torch"` or `"pureml"` • `embedding_kind` = `"in"|"out"|"avg"` • `objective` = `"sgns"` or `"sg"` • `negative_sampling` (bool) • `num_negative_samples` (int) • `num_epochs` (int) • `batch_size` (int) • `window_size` (int) • `alpha` (float) • `lr_step_per_batch` (bool) • `shuffle_data` (bool) • `device_hint` (str) • `model_kwargs_repr` (repr string) • `RIN_type` = `"attr"` or `"repuls"` • `using` = `"RW"|"SAW"|"merged"` • `source_WALKS_path` (str) • `walk_length` (int) • `num_RWs` / `num_SAWs` (ints) • `attractive_*_name` / `repulsive_*_name` (dataset names or `None`) • `master_seed` (int) • `per_frame_seeds` (list[int]) • `arrays_per_chunk` (int) • `compression_level` (int) |
|
|
170
179
|
|
|
171
180
|
**Notes**
|
|
172
181
|
|
|
173
|
-
- In **RIN**, `T` equals the number of frame **batches** written (i.e., `frame_range` swept in steps of `frame_batch_size`). `ATTRACTIVE/REPULSIVE_energies` are **pre-
|
|
182
|
+
- In **RIN**, `T` equals the number of frame **batches** written (i.e., `frame_range` swept in steps of `frame_batch_size`). `ATTRACTIVE/REPULSIVE_energies` are **pre-normalized** absolute energies (written only when `keep_prenormalized_energies=True`), whereas `ATTRACTIVE/REPULSIVE_transitions` are the **row-wise L1-normalized** versions used for sampling.
|
|
174
183
|
- All archives are Zarr v3 groups. ArrayStorage also maintains per-block metadata in root attrs: `array_chunk_size_in_block`, `array_shape_in_block`, and `array_dtype_in_block` (dicts keyed by dataset name). You’ll see these in every archive.
|
|
175
184
|
- In **Embeddings**, `alpha` and `num_negative_samples` apply to **SGNS** only and are ignored for `objective="sg"`.
|
|
176
185
|
|
|
@@ -200,7 +209,7 @@ rin_builder.build_rin(
|
|
|
200
209
|
prune_low_energies_frac=0.85,
|
|
201
210
|
output_path=rin_path,
|
|
202
211
|
include_attractive=True,
|
|
203
|
-
include_repulsive=False
|
|
212
|
+
include_repulsive=False
|
|
204
213
|
)
|
|
205
214
|
|
|
206
215
|
# 2. Sample walks from the RIN
|
|
@@ -208,44 +217,34 @@ walker = Walker(rin_path, seed=123)
|
|
|
208
217
|
walks_path = Path("./WALKS_demo.zip")
|
|
209
218
|
walker.sample_walks(
|
|
210
219
|
walk_length=16,
|
|
211
|
-
walks_per_node=
|
|
220
|
+
walks_per_node=100,
|
|
212
221
|
saw_frac=0.25,
|
|
213
222
|
include_attractive=True,
|
|
214
223
|
include_repulsive=False,
|
|
215
224
|
time_aware=False,
|
|
216
225
|
output_path=walks_path,
|
|
217
|
-
in_parallel=False
|
|
226
|
+
in_parallel=False
|
|
218
227
|
)
|
|
219
228
|
walker.close()
|
|
220
229
|
|
|
221
230
|
# 3. Train embeddings per frame (PyTorch backend)
|
|
222
231
|
import torch
|
|
223
232
|
|
|
224
|
-
embedder = Embedder(walks_path,
|
|
233
|
+
embedder = Embedder(walks_path, seed=999)
|
|
225
234
|
embeddings_path = embedder.embed_all(
|
|
226
235
|
RIN_type="attr",
|
|
227
236
|
using="merged",
|
|
237
|
+
num_epochs=10,
|
|
238
|
+
negative_sampling=False,
|
|
228
239
|
window_size=4,
|
|
229
|
-
|
|
230
|
-
|
|
231
|
-
|
|
232
|
-
batch_size=1024,
|
|
233
|
-
dimensionality=128,
|
|
234
|
-
shuffle_data=True,
|
|
235
|
-
output_path="./EMBEDDINGS_demo.zip",
|
|
236
|
-
sgns_kwargs={
|
|
237
|
-
"optim": torch.optim.Adam,
|
|
238
|
-
"optim_kwargs": {"lr": 1e-3},
|
|
239
|
-
"lr_sched": torch.optim.lr_scheduler.LambdaLR,
|
|
240
|
-
"lr_sched_kwargs": {"lr_lambda": lambda _: 1.0},
|
|
241
|
-
"device": "cuda" if torch.cuda.is_available() else "cpu",
|
|
242
|
-
},
|
|
240
|
+
device="cuda" if torch.cuda.is_available() else "cpu",
|
|
241
|
+
model_base="torch",
|
|
242
|
+
output_path="./EMBEDDINGS_demo.zip"
|
|
243
243
|
)
|
|
244
244
|
print("Embeddings written to", embeddings_path)
|
|
245
245
|
```
|
|
246
246
|
|
|
247
|
-
> For the PureML backend,
|
|
248
|
-
> (for example `optim=pureml.optimizers.Adam`, `lr_sched=pureml.optimizers.CosineAnnealingLR`).
|
|
247
|
+
> For the PureML backend, set `model_base="pureml"` and pass the optimizer / scheduler classes inside `model_kwargs`.
|
|
249
248
|
|
|
250
249
|
---
|
|
251
250
|
|
|
@@ -270,7 +269,7 @@ v.build_frame(1,
|
|
|
270
269
|
```python
|
|
271
270
|
from sawnergy.embedding import Visualizer
|
|
272
271
|
|
|
273
|
-
viz =
|
|
272
|
+
viz = Visualizer("./EMBEDDINGS_demo.zip", normalize_rows=True)
|
|
274
273
|
viz.build_frame(1, show=True)
|
|
275
274
|
```
|
|
276
275
|
|
|
@@ -280,8 +279,7 @@ viz.build_frame(1, show=True)
|
|
|
280
279
|
|
|
281
280
|
- **Time-aware walks**: Set `time_aware=True`, provide `stickiness` and `on_no_options` when calling `Walker.sample_walks`.
|
|
282
281
|
- **Shared memory lifecycle**: Call `Walker.close()` (or use a context manager) to release shared-memory segments.
|
|
283
|
-
- **PureML vs PyTorch**:
|
|
284
|
-
constructor kwargs through `sgns_kwargs` (optimizer, scheduler, device).
|
|
282
|
+
- **PureML vs PyTorch**: Select the backend at call time with `model_base="pureml"|"torch"` (defaults to `"pureml"`) and pass optimizer / scheduler overrides through `model_kwargs`.
|
|
285
283
|
- **ArrayStorage utilities**: Use `ArrayStorage` directly to peek into archives, append arrays, or manage metadata.
|
|
286
284
|
|
|
287
285
|
---
|
|
@@ -292,8 +290,9 @@ viz.build_frame(1, show=True)
|
|
|
292
290
|
├── sawnergy/
|
|
293
291
|
│ ├── rin/ # RINBuilder and cpptraj integration helpers
|
|
294
292
|
│ ├── walks/ # Walker class and shared-memory utilities
|
|
295
|
-
│ ├── embedding/ # Embedder + SGNS backends (PureML / PyTorch)
|
|
293
|
+
│ ├── embedding/ # Embedder + SG/SGNS backends (PureML / PyTorch)
|
|
296
294
|
│ ├── visual/ # Visualizer and palette utilities
|
|
295
|
+
│ │
|
|
297
296
|
│ ├── logging_util.py
|
|
298
297
|
│ └── sawnergy_util.py
|
|
299
298
|
│
|
|
@@ -302,7 +301,7 @@ viz.build_frame(1, show=True)
|
|
|
302
301
|
|
|
303
302
|
---
|
|
304
303
|
|
|
305
|
-
##
|
|
304
|
+
## Acknowledgments
|
|
306
305
|
|
|
307
306
|
SAWNERGY builds on the AmberTools `cpptraj` ecosystem, NumPy, Matplotlib, Zarr, and PyTorch (for GPU acceleration if necessary; PureML is available by default).
|
|
308
307
|
Big thanks to the upstream communities whose work makes this toolkit possible.
|
|
@@ -1,11 +1,11 @@
|
|
|
1
1
|
sawnergy/__init__.py,sha256=Dq1U38ah6nPRFEDKN41mYphcTynKfnItca6QkYkpSbs,248
|
|
2
2
|
sawnergy/logging_util.py,sha256=mfYw8IsYtOfCXayjkd4g9jHuupluxRNbqyFegRkiAhQ,1476
|
|
3
3
|
sawnergy/sawnergy_util.py,sha256=Htx9wr0S8TXt5aHT2mtEdYf1TCo_BC1IUwNNuZdIR-4,49432
|
|
4
|
-
sawnergy/embedding/SGNS_pml.py,sha256
|
|
5
|
-
sawnergy/embedding/SGNS_torch.py,sha256=
|
|
4
|
+
sawnergy/embedding/SGNS_pml.py,sha256=-S7K7qwbDGUO_KW4gnA3dGyxuezN1ZK-WikPm7krEvs,14291
|
|
5
|
+
sawnergy/embedding/SGNS_torch.py,sha256=NgVQnMtRSYY0IsPhB3XV7K1-uVSah0P77a8ID8zZ7Qw,13940
|
|
6
6
|
sawnergy/embedding/__init__.py,sha256=T1YXb7S5Zyy_kIqlarDSX3imd_FGFH6nDuvLQ3hMKsE,1764
|
|
7
|
-
sawnergy/embedding/embedder.py,sha256=
|
|
8
|
-
sawnergy/embedding/visualizer.py,sha256=
|
|
7
|
+
sawnergy/embedding/embedder.py,sha256=02pcf3ies3Nuo19sCoJdMAYg7BFUHj4-wf4AZ5R6PAE,32492
|
|
8
|
+
sawnergy/embedding/visualizer.py,sha256=x0BiSG9_nk9AUQm9RsZ2syKeCiaxX1gTlC85aYycMXY,8830
|
|
9
9
|
sawnergy/rin/__init__.py,sha256=z19hLfEIp3bwzY-eCHQBQf0NRTCJzVz_FLIpVV5q0W4,162
|
|
10
10
|
sawnergy/rin/rin_builder.py,sha256=d1cC4KKY9zzNlqhxHWTFM-QyXRXubd2zlCrSM-dV5pc,44624
|
|
11
11
|
sawnergy/rin/rin_util.py,sha256=5TKywA5qfm76Gl4Cyz7oBPasmE5chclR7UM4hawwQOg,14939
|
|
@@ -15,9 +15,9 @@ sawnergy/visual/visualizer_util.py,sha256=7y3kWjHxDQMoG0dmimceHKTC5veVChoyvW7d0q
|
|
|
15
15
|
sawnergy/walks/__init__.py,sha256=Z_Kaffhn3oUX13z9jbY0V5Ncdwj9Cnr--n9D-s7gh5k,250
|
|
16
16
|
sawnergy/walks/walker.py,sha256=scvfZFrSL4AwpmspD0Jb0uhnrVIRRwE_hPCE3bG6zpg,37729
|
|
17
17
|
sawnergy/walks/walker_util.py,sha256=ETdyPNIDwDQCA8Z5t38keBhYBJ56_ksT_0NhOCY-tHE,15361
|
|
18
|
-
sawnergy-1.0.
|
|
19
|
-
sawnergy-1.0.
|
|
20
|
-
sawnergy-1.0.
|
|
21
|
-
sawnergy-1.0.
|
|
22
|
-
sawnergy-1.0.
|
|
23
|
-
sawnergy-1.0.
|
|
18
|
+
sawnergy-1.0.8.dist-info/licenses/LICENSE,sha256=cElK4bCsDhyAEON3H05s35bQZvxBcXBiCOrOdiUhDCY,11346
|
|
19
|
+
sawnergy-1.0.8.dist-info/licenses/NOTICE,sha256=eVTbuSasZrmMJVtKoWOzsKyu4ZNm7Ks7dzI3Tx5tEHc,109
|
|
20
|
+
sawnergy-1.0.8.dist-info/METADATA,sha256=_0u1smFM5oMqaO0xuc4ZX094B6F2swQqUrolOkpikVM,16084
|
|
21
|
+
sawnergy-1.0.8.dist-info/WHEEL,sha256=_zCd3N1l69ArxyTb8rzEoP9TpbYXkqRFSNOD5OuxnTs,91
|
|
22
|
+
sawnergy-1.0.8.dist-info/top_level.txt,sha256=-67FQD6FD9Gjt74WTmO9hNYA3MLB4HaSxci0sEKC5Lo,9
|
|
23
|
+
sawnergy-1.0.8.dist-info/RECORD,,
|
|
File without changes
|
|
File without changes
|
|
File without changes
|
|
File without changes
|