sawnergy 1.0.3__py3-none-any.whl → 1.0.9__py3-none-any.whl

This diff represents the content of publicly available package versions that have been released to one of the supported registries. The information contained in this diff is provided for informational purposes only and reflects changes between package versions as they appear in their respective public registries.
sawnergy/__init__.py CHANGED
@@ -3,11 +3,13 @@ from . import logging_util
3
3
  from . import rin
4
4
  from . import visual
5
5
  from . import walks
6
+ from . import embedding
6
7
 
7
8
  __all__ = [
8
9
  "sawnergy_util",
9
10
  "logging_util",
10
11
  "rin",
11
12
  "visual",
12
- "walks"
13
+ "walks",
14
+ "embedding"
13
15
  ]
@@ -3,11 +3,11 @@ from __future__ import annotations
3
3
  # third party
4
4
  import numpy as np
5
5
  from pureml.machinery import Tensor
6
- from pureml.layers import Embedding
7
- from pureml.losses import BCE
6
+ from pureml.layers import Embedding, Affine
7
+ from pureml.losses import BCE, CCE
8
8
  from pureml.general_math import sum as t_sum
9
- from pureml.optimizers import Optim, LRScheduler
10
- from pureml.training_utils import TensorDataset, DataLoader
9
+ from pureml.optimizers import Optim, LRScheduler, SGD
10
+ from pureml.training_utils import TensorDataset, DataLoader, one_hot
11
11
  from pureml.base import NN
12
12
 
13
13
  # built-in
@@ -28,51 +28,98 @@ class SGNS_PureML(NN):
28
28
  """PureML implementation of Skip-Gram with Negative Sampling."""
29
29
 
30
30
  def __init__(self,
31
- V: int,
32
- D: int,
33
- *,
34
- seed: int | None = None,
35
- optim: Type[Optim],
36
- optim_kwargs: dict,
37
- lr_sched: Type[LRScheduler],
38
- lr_sched_kwargs: dict):
31
+ V: int,
32
+ D: int,
33
+ in_weights: Tensor | np.ndarray | None = None,
34
+ out_weights: Tensor | np.ndarray | None = None,
35
+ *,
36
+ seed: int | None = None,
37
+ optim: Type[Optim] = SGD,
38
+ optim_kwargs: dict | None = None,
39
+ lr_sched: Type[LRScheduler] | None = None,
40
+ lr_sched_kwargs: dict | None = None,
41
+ device: str | None = None):
39
42
  """
43
+ Initialize SGNS.
44
+
45
+ Shapes:
46
+ - Embedding tables:
47
+ in_weights: (V, D) or None — row i is the “input” vector for token i.
48
+ out_weights: (V, D) or None — row i is the “output” vector for token i.
49
+
40
50
  Args:
41
- V: Vocabulary size (number of nodes).
51
+ V: Vocabulary size (number of nodes/tokens).
42
52
  D: Embedding dimensionality.
43
- seed: Optional RNG seed for negative sampling.
44
- optim: PureML optimizer class.
45
- optim_kwargs: Keyword arguments forwarded to the optimizer.
46
- lr_sched: PureML learning-rate scheduler class.
47
- lr_sched_kwargs: Keyword arguments forwarded to the scheduler.
53
+ in_weights: Optional starting input-embedding matrix of shape (V, D) as
54
+ :class:`Tensor` or :class:`numpy.ndarray`. If None, the Embedding
55
+ layer initializes it (seeded if `seed` is set).
56
+ out_weights: Optional starting output-embedding matrix of shape (V, D) as
57
+ :class:`Tensor` or :class:`numpy.ndarray`. If None, the Embedding
58
+ layer initializes it (seeded if `seed` is set).
59
+ seed: Optional RNG seed used for **embedding initialization** and for
60
+ **negative sampling** during training.
61
+ optim: Optimizer class to instantiate. Defaults to plain SGD.
62
+ optim_kwargs: Keyword arguments for the optimizer. Defaults to {"lr": 0.1}.
63
+ lr_sched: Optional learning-rate scheduler class.
64
+ lr_sched_kwargs: Keyword arguments for the scheduler (required if lr_sched is provided).
65
+ device: Target device string (e.g., "cuda"); accepted for API parity, ignored by PureML.
48
66
  """
67
+
68
+ optim_kwargs = optim_kwargs or {"lr": 0.1}
69
+
70
+ if lr_sched is not None and lr_sched_kwargs is None:
71
+ raise ValueError("lr_sched_kwargs required when lr_sched is provided")
72
+
49
73
  self.V, self.D = int(V), int(D)
50
- self.in_emb = Embedding(V, D)
51
- self.out_emb = Embedding(V, D)
52
74
 
75
+ # Convert warm-starts from np.ndarray → Tensor if needed
76
+ if isinstance(in_weights, np.ndarray):
77
+ in_weights = Tensor(in_weights, requires_grad=True)
78
+ if isinstance(out_weights, np.ndarray):
79
+ out_weights = Tensor(out_weights, requires_grad=True)
80
+
81
+ # embeddings
82
+ self.in_emb = Embedding(self.V, self.D, W=in_weights, seed=seed)
83
+ self.out_emb = Embedding(self.V, self.D, W=out_weights, seed=seed)
84
+
85
+ # seed + RNG for negative sampling
53
86
  self.seed = None if seed is None else int(seed)
54
87
  self._rng = np.random.default_rng(self.seed)
55
88
 
56
- self.optim: Optim = optim(self.parameters, **optim_kwargs)
57
- self.lr_sched: LRScheduler = lr_sched(**lr_sched_kwargs)
58
- _logger.info("SGNS_PureML init: V=%d D=%d seed=%s", self.V, self.D, self.seed)
89
+ # API compatibility: PureML is CPU-only
90
+ self.device = "cpu"
91
+
92
+ # optimizer / scheduler
93
+ self.optim: Optim = optim(self.parameters, **optim_kwargs)
94
+ self.lr_sched: LRScheduler | None = (
95
+ lr_sched(optim=self.optim, **lr_sched_kwargs) if lr_sched is not None else None
96
+ )
97
+
98
+ _logger.info(
99
+ "SGNS_PureML init: V=%d D=%d device=%s seed=%s",
100
+ self.V, self.D, self.device, self.seed
101
+ )
59
102
 
60
- def _sample_neg(self, B: int, K: int, dist: np.ndarray):
61
- """Draw negative samples according to the provided unigram distribution."""
62
- if dist.ndim != 1 or dist.size != self.V:
63
- raise ValueError(f"noise_dist must be 1-D with length {self.V}; got {dist.shape}")
103
+ def _sample_neg(self, B: int, K: int, dist: np.ndarray) -> np.ndarray:
64
104
  return self._rng.choice(self.V, size=(B, K), replace=True, p=dist)
65
105
 
66
- def predict(self, center: Tensor, pos: Tensor, neg: Tensor) -> Tensor:
67
- """Compute positive/negative logits for SGNS."""
68
- c = self.in_emb(center)
69
- pos_e = self.out_emb(pos)
70
- neg_e = self.out_emb(neg)
71
- pos_logits = t_sum(c * pos_e, axis=-1)
72
- neg_logits = t_sum(c[:, None, :] * neg_e, axis=-1)
73
- # ^^^
74
- # (B,1,D) * (B,K,D) → (B,K,D) → sum D → (B,K)
106
+ def predict(self, center: Tensor, pos: Tensor, neg: Tensor) -> tuple[Tensor, Tensor]:
107
+ """Compute positive/negative logits for SGNS.
75
108
 
109
+ Shapes:
110
+ center: (B,)
111
+ pos: (B,)
112
+ neg: (B, K)
113
+ Returns:
114
+ pos_logits: (B,)
115
+ neg_logits: (B, K)
116
+ """
117
+ c = self.in_emb(center) # (B, D)
118
+ pos_e = self.out_emb(pos) # (B, D)
119
+ neg_e = self.out_emb(neg) # (B, K, D)
120
+
121
+ pos_logits = t_sum(c * pos_e, axis=-1) # (B,)
122
+ neg_logits = t_sum(c[:, None, :] * neg_e, axis=-1) # (B, K)
76
123
  return pos_logits, neg_logits
77
124
 
78
125
  def fit(self,
@@ -89,47 +136,273 @@ class SGNS_PureML(NN):
89
136
  "SGNS_PureML fit: epochs=%d batch=%d negatives=%d shuffle=%s",
90
137
  num_epochs, batch_size, num_negative_samples, shuffle_data
91
138
  )
92
- data = TensorDataset(centers, contexts)
93
139
 
140
+ if noise_dist.ndim != 1 or noise_dist.size != self.V:
141
+ raise ValueError(f"noise_dist must be 1-D with length {self.V}; got {noise_dist.shape}")
142
+ dist = np.asarray(noise_dist, dtype=np.float64)
143
+ if np.any(dist < 0):
144
+ raise ValueError("noise_dist has negative entries")
145
+ s = dist.sum()
146
+ if not np.isfinite(s) or s <= 0:
147
+ raise ValueError("noise_dist must have positive finite sum")
148
+ if abs(s - 1.0) > 1e-6:
149
+ dist = dist / s
150
+
151
+ data = TensorDataset(centers, contexts)
94
152
  for epoch in range(1, num_epochs + 1):
95
153
  epoch_loss = 0.0
96
154
  batches = 0
97
- for cen, pos in DataLoader(data, batch_size=batch_size, shuffle=shuffle_data):
98
- neg = self._sample_neg(batch_size, num_negative_samples, noise_dist)
155
+ dl_seed = None if self.seed is None else (self.seed + epoch)
156
+ for cen, pos in DataLoader(data, batch_size=batch_size, shuffle=shuffle_data, seed=dl_seed):
157
+ B = cen.data.shape[0] if isinstance(cen, Tensor) else len(cen)
99
158
 
159
+ neg_idx_np = self._sample_neg(B, num_negative_samples, dist)
160
+ neg = Tensor(neg_idx_np, requires_grad=False)
100
161
  x_pos_logits, x_neg_logits = self(cen, pos, neg)
101
162
 
102
- y_pos = Tensor(np.ones_like(x_pos_logits.data))
103
- y_neg = Tensor(np.zeros_like(x_neg_logits.data))
163
+ y_pos = Tensor(np.ones_like(x_pos_logits.numpy(copy=False)), requires_grad=False)
164
+ y_neg = Tensor(np.zeros_like(x_neg_logits.numpy(copy=False)), requires_grad=False)
104
165
 
105
- loss = BCE(y_pos, x_pos_logits, from_logits=True) + BCE(y_neg, x_neg_logits, from_logits=True)
166
+ K = int(neg.data.shape[1])
167
+ loss = (
168
+ BCE(y_pos, x_pos_logits, from_logits=True)
169
+ + Tensor(K)*BCE(y_neg, x_neg_logits, from_logits=True)
170
+ )
106
171
 
107
172
  self.optim.zero_grad()
108
173
  loss.backward()
109
174
  self.optim.step()
110
-
111
- if lr_step_per_batch:
175
+
176
+ if lr_step_per_batch and self.lr_sched is not None:
112
177
  self.lr_sched.step()
113
178
 
114
- loss_value = float(np.asarray(loss.data).mean())
179
+ loss_value = float(np.asarray(loss.data))
115
180
  epoch_loss += loss_value
116
181
  batches += 1
117
182
  _logger.debug("Epoch %d batch %d loss=%.6f", epoch, batches, loss_value)
118
183
 
119
- if not lr_step_per_batch:
184
+ if (not lr_step_per_batch) and (self.lr_sched is not None):
120
185
  self.lr_sched.step()
121
186
 
122
187
  mean_loss = epoch_loss / max(batches, 1)
123
188
  _logger.info("Epoch %d/%d mean_loss=%.6f", epoch, num_epochs, mean_loss)
124
189
 
125
190
  @property
126
- def embeddings(self) -> np.ndarray:
127
- """Return the input embedding matrix as a NumPy array."""
128
- W: Tensor = self.in_emb.parameters[0]
129
- return np.asarray(W.data)
191
+ def in_embeddings(self) -> np.ndarray:
192
+ W: Tensor = self.in_emb.parameters[0] # (V, D)
193
+ if W.shape != (self.V, self.D):
194
+ raise RuntimeError(
195
+ "Wrong embedding matrix shape: "
196
+ "self.in_emb.parameters[0].shape != (V, D)"
197
+ )
198
+ arr = W.numpy(copy=True, readonly=True) # (V, D)
199
+ _logger.debug("In emb shape: %s", arr.shape)
200
+ return arr
201
+
202
+ @property
203
+ def out_embeddings(self) -> np.ndarray:
204
+ W: Tensor = self.out_emb.parameters[0] # (V, D)
205
+ if W.shape != (self.V, self.D):
206
+ raise RuntimeError(
207
+ "Wrong embedding matrix shape: "
208
+ "self.out_emb.parameters[0].shape != (V, D)"
209
+ )
210
+ arr = W.numpy(copy=True, readonly=True) # (V, D)
211
+ _logger.debug("Out emb shape: %s", arr.shape)
212
+ return arr
213
+
214
+ @property
215
+ def avg_embeddings(self) -> np.ndarray:
216
+ return 0.5 * (self.in_embeddings + self.out_embeddings)
217
+
218
+ class SG_PureML(NN):
219
+ """Plain Skip-Gram (full softmax) in PureML.
220
+
221
+ This variant uses **no bias terms**: both projections are pure linear maps.
222
+
223
+ Computation:
224
+ x = one_hot(center, V) # (B, V)
225
+ y = x @ W_in # (B, D), with W_in ∈ R^{VxD}
226
+ logits = y @ W_out # (B, V), with W_out ∈ R^{DxV}
227
+ loss = CCE(one_hot(context, V), logits, from_logits=True)
228
+
229
+ Embeddings:
230
+ - Input embeddings = rows of W_in → shape (V, D)
231
+ - Output embeddings = rows of W_outᵀ → shape (V, D)
232
+ """
233
+
234
+ def __init__(self,
235
+ V: int,
236
+ D: int,
237
+ in_weights: Tensor | np.ndarray | None = None,
238
+ out_weights: Tensor | np.ndarray | None = None,
239
+ *,
240
+ seed: int | None = None,
241
+ optim: Type[Optim] = SGD,
242
+ optim_kwargs: dict | None = None,
243
+ lr_sched: Type[LRScheduler] | None = None,
244
+ lr_sched_kwargs: dict | None = None,
245
+ device: str | None = None):
246
+ """Initialize the plain Skip-Gram model (full softmax, **no biases**).
247
+
248
+ Shapes:
249
+ - Linear maps (no bias):
250
+ W_in: (V, D) — rows are input embeddings for tokens.
251
+ W_out: (D, V) — maps D→V; rows of W_outᵀ are output embeddings.
252
+
253
+ - Warm-starts:
254
+ in_weights: (V, D) or None — copied into W_in if provided (Tensor or np.ndarray).
255
+ out_weights: (D, V) or None — copied into W_out if provided (Tensor or np.ndarray).
256
+
257
+ Args:
258
+ V: Vocabulary size (number of nodes/tokens).
259
+ D: Embedding dimensionality.
260
+ in_weights: Optional starting matrix for W_in with shape (V, D) as Tensor or np.ndarray.
261
+ out_weights: Optional starting matrix for W_out with shape (D, V) as Tensor or np.ndarray.
262
+ (Note the asymmetry with SGNS; use `.T` if converting from (V, D).)
263
+ seed: Optional RNG seed (used for layer initialization).
264
+ optim: Optimizer class to instantiate. Defaults to plain SGD.
265
+ optim_kwargs: Keyword arguments for the optimizer. Defaults to {"lr": 0.1}.
266
+ lr_sched: Optional learning-rate scheduler class.
267
+ lr_sched_kwargs: Keyword arguments for the scheduler (required if lr_sched is provided).
268
+ device: Device string (e.g., "cuda"). Accepted for parity, ignored by PureML (CPU-only).
269
+ """
270
+
271
+ optim_kwargs = optim_kwargs or {"lr": 0.1}
272
+ if lr_sched is not None and lr_sched_kwargs is None:
273
+ raise ValueError("lr_sched_kwargs required when lr_sched is provided")
274
+
275
+ self.V, self.D = int(V), int(D)
276
+
277
+ # Convert warm-starts from np.ndarray → Tensor if needed
278
+ if isinstance(in_weights, np.ndarray):
279
+ in_weights = Tensor(in_weights, requires_grad=True)
280
+ if isinstance(out_weights, np.ndarray):
281
+ out_weights = Tensor(out_weights, requires_grad=True)
282
+
283
+ # input/output “embedding” projections
284
+ self.in_emb = Affine(self.V, self.D, W=in_weights, bias=False, seed=seed)
285
+ self.out_emb = Affine(self.D, self.V, W=out_weights, bias=False, seed=seed)
286
+
287
+ self.seed = None if seed is None else int(seed)
288
+ self.device = "cpu" # API parity
289
+
290
+ # optimizer / scheduler
291
+ self.optim: Optim = optim(self.parameters, **optim_kwargs)
292
+ self.lr_sched: LRScheduler | None = (
293
+ lr_sched(optim=self.optim, **lr_sched_kwargs) if lr_sched is not None else None
294
+ )
295
+
296
+ _logger.info(
297
+ "SG_PureML init: V=%d D=%d device=%s seed=%s",
298
+ self.V, self.D, self.device, self.seed
299
+ )
300
+
301
+ def predict(self, center: Tensor) -> Tensor:
302
+ """Return vocabulary logits for each center index.
303
+
304
+ Args:
305
+ center: Tensor of center indices with shape `(B,)` and integer dtype.
306
+
307
+ Returns:
308
+ Tensor: Logits over the vocabulary with shape `(B, V)`.
309
+ """
310
+ c = one_hot(dims=self.V, label=center) # (B, V)
311
+ y = self.in_emb(c) # (B, D)
312
+ z = self.out_emb(y) # (B, V)
313
+ return z
314
+
315
+ def fit(self,
316
+ centers: np.ndarray,
317
+ contexts: np.ndarray,
318
+ num_epochs: int,
319
+ batch_size: int,
320
+ shuffle_data: bool,
321
+ lr_step_per_batch: bool,
322
+ **_ignore):
323
+ """Train Skip-Gram with full softmax on center/context pairs.
324
+
325
+ Args:
326
+ centers: Array of center indices, shape `(N,)`, dtype integer in `[0, V)`.
327
+ contexts: Array of context (target) indices, shape `(N,)`, dtype integer.
328
+ num_epochs: Number of passes over the dataset.
329
+ batch_size: Mini-batch size.
330
+ shuffle_data: Whether to shuffle pairs each epoch.
331
+ lr_step_per_batch: If True, call `lr_sched.step()` after every batch
332
+ (when a scheduler is provided). If False, step once per epoch.
333
+ **_ignore: Ignored kwargs for API compatibility with SGNS.
334
+
335
+ Optimization:
336
+ Uses `CCE(one_hot(context), logits, from_logits=True)` where
337
+ `logits = predict(center)`. Scheduler stepping obeys `lr_step_per_batch`.
338
+ """
339
+ _logger.info(
340
+ "SG_PureML fit: epochs=%d batch=%d shuffle=%s",
341
+ num_epochs, batch_size, shuffle_data
342
+ )
343
+ data = TensorDataset(centers, contexts)
344
+
345
+ for epoch in range(1, num_epochs + 1):
346
+ epoch_loss = 0.0
347
+ batches = 0
348
+ dl_seed = None if self.seed is None else (self.seed + epoch)
349
+ for cen, ctx in DataLoader(data, batch_size=batch_size, shuffle=shuffle_data, seed=dl_seed):
350
+ logits = self(cen) # (B, V)
351
+ y = one_hot(dims=self.V, label=ctx) # (B, V)
352
+ loss = CCE(y, logits, from_logits=True) # scalar
353
+
354
+ self.optim.zero_grad()
355
+ loss.backward()
356
+ self.optim.step()
357
+
358
+ if lr_step_per_batch and self.lr_sched is not None:
359
+ self.lr_sched.step()
360
+
361
+ loss_value = float(np.asarray(loss.data))
362
+ epoch_loss += loss_value
363
+ batches += 1
364
+ _logger.debug("Epoch %d batch %d loss=%.6f", epoch, batches, loss_value)
365
+
366
+ if (not lr_step_per_batch) and (self.lr_sched is not None):
367
+ self.lr_sched.step()
368
+
369
+ mean_loss = epoch_loss / max(batches, 1)
370
+ _logger.info("Epoch %d/%d mean_loss=%.6f", epoch, num_epochs, mean_loss)
371
+
372
+ @property
373
+ def in_embeddings(self) -> np.ndarray:
374
+ """Input embeddings matrix `W_in` as `(V, D)` (copy, read-only)."""
375
+ W = self.in_emb.parameters[0] # (V, D)
376
+ if W.shape != (self.V, self.D):
377
+ raise RuntimeError(
378
+ "Wrong embedding matrix shape: "
379
+ "self.in_emb.parameters[0].shape != (V, D)"
380
+ )
381
+ arr = W.numpy(copy=True, readonly=True) # (V, D)
382
+ _logger.debug("In emb shape: %s", arr.shape)
383
+ return arr
384
+
385
+ @property
386
+ def out_embeddings(self) -> np.ndarray:
387
+ """Output embeddings matrix `W_outᵀ` as `(V, D)` (copy, read-only).
388
+ (`out_emb.parameters[0]` is `(D, V)`, so we transpose.)"""
389
+ W = self.out_emb.parameters[0] # (D, V)
390
+ if W.shape != (self.D, self.V):
391
+ raise RuntimeError(
392
+ "Wrong embedding matrix shape: "
393
+ "self.out_emb.parameters[0].shape != (D, V)"
394
+ )
395
+ arr = W.numpy(copy=True, readonly=True).T # (V, D)
396
+ _logger.debug("Out emb shape: %s", arr.shape)
397
+ return arr
398
+
399
+ @property
400
+ def avg_embeddings(self) -> np.ndarray:
401
+ """Elementwise average of input/output embeddings, shape `(V, D)`."""
402
+ return 0.5 * (self.in_embeddings + self.out_embeddings) # (V, D)
130
403
 
131
404
 
132
- __all__ = ["SGNS_PureML"]
405
+ __all__ = ["SGNS_PureML", "SG_PureML"]
133
406
 
134
407
  if __name__ == "__main__":
135
408
  pass