satif-ai 0.2.8__py3-none-any.whl → 0.2.10__py3-none-any.whl

This diff represents the content of publicly available package versions that have been released to one of the supported registries. The information contained in this diff is provided for informational purposes only and reflects changes between package versions as they appear in their respective public registries.
@@ -0,0 +1,372 @@
1
+ import logging
2
+ import shutil
3
+ import tempfile
4
+ import uuid
5
+ from pathlib import Path
6
+ from typing import Any, Dict, List, Optional, Tuple
7
+
8
+ try:
9
+ from xlsx_to_sdif.graph import graph as xlsx_graph
10
+ from xlsx_to_sdif.state import State as XLSXState
11
+ except ImportError:
12
+ xlsx_graph = None # type: ignore
13
+ XLSXState = None # type: ignore
14
+ logging.getLogger(__name__).warning(
15
+ "Failed to import xlsx_to_sdif. AIXLSXStandardizer will not be functional."
16
+ )
17
+
18
+
19
+ from satif_core.standardizers.base import AsyncStandardizer
20
+ from satif_core.types import Datasource, SDIFPath, StandardizationResult
21
+
22
+ from satif_ai.utils.merge_sdif import merge_sdif_files
23
+
24
+ logger = logging.getLogger(__name__)
25
+
26
+
27
+ class AIXLSXStandardizer(AsyncStandardizer):
28
+ """
29
+ An asynchronous standardizer for XLSX files that leverages the `xlsx-to-sdif` library.
30
+
31
+ This standardizer processes one or more XLSX files, converts each to an
32
+ intermediate SDIF (Standardized Data Interchange Format) file using the
33
+ `xlsx-to-sdif` processing graph, and then consolidates these intermediate
34
+ files into a single final SDIF file.
35
+ """
36
+
37
+ def __init__(self, *args: Any, **kwargs: Any):
38
+ """
39
+ Initializes the AIXLSXStandardizer.
40
+
41
+ Args:
42
+ ...
43
+ """
44
+
45
+ async def _invoke_xlsx_graph(
46
+ self, input_file_path: Path, graph_config: Dict[str, Any]
47
+ ) -> Path:
48
+ """
49
+ Invokes the `xlsx-to-sdif` graph for a single XLSX file.
50
+
51
+ Args:
52
+ input_file_path: Path to the input XLSX file.
53
+ graph_config: Configuration for the `xlsx-to-sdif` graph invocation,
54
+ including a unique `thread_id`.
55
+
56
+ Returns:
57
+ Path to the SDIF file produced by the graph.
58
+
59
+ Raises:
60
+ RuntimeError: If the `xlsx-to-sdif` graph is not available, fails to
61
+ return a final state, or does not produce an output path.
62
+ FileNotFoundError: If the graph reports an output file that doesn't exist.
63
+ """
64
+ if not xlsx_graph or not XLSXState:
65
+ raise RuntimeError(
66
+ "xlsx_to_sdif is not available. "
67
+ "Please ensure 'xlsx-to-sdif' library is installed correctly."
68
+ )
69
+
70
+ initial_state: XLSXState = {"spreadsheet_path": str(input_file_path)} # type: ignore
71
+
72
+ thread_id = graph_config.get("configurable", {}).get(
73
+ "thread_id", "unknown_thread"
74
+ )
75
+ logger.info(
76
+ f"Invoking xlsx_to_sdif graph for: {input_file_path.name} with thread_id: {thread_id}"
77
+ )
78
+
79
+ # Stream events for logging or potential progress updates
80
+ async for event in xlsx_graph.astream_events(
81
+ initial_state, graph_config, version="v1"
82
+ ):
83
+ event_type = event["event"]
84
+ event_name = event.get("name", "")
85
+ if event_type in ["on_tool_start", "on_chain_start"]:
86
+ logger.debug(
87
+ f"Graph event for {input_file_path.name} (Thread: {thread_id}): {event_type} - {event_name}"
88
+ )
89
+ elif event_type in ["on_tool_error", "on_chain_error", "on_llm_error"]:
90
+ logger.warning(
91
+ f"Graph error event for {input_file_path.name} (Thread: {thread_id}): {event_type} - {event_name}. Data: {event.get('data')}"
92
+ )
93
+
94
+ final_snapshot = await xlsx_graph.aget_state(graph_config)
95
+ if not final_snapshot or not final_snapshot.values:
96
+ raise RuntimeError(
97
+ f"xlsx_to_sdif graph did not return a final state for {input_file_path.name} (Thread: {thread_id})."
98
+ )
99
+
100
+ output_sdif_path_str = final_snapshot.values.get("output_sdif_path")
101
+ if not output_sdif_path_str:
102
+ raise RuntimeError(
103
+ f"xlsx_to_sdif graph for {input_file_path.name} (Thread: {thread_id}) "
104
+ f"did not produce an 'output_sdif_path' in its final state. State: {final_snapshot.values}"
105
+ )
106
+
107
+ output_sdif_path = Path(output_sdif_path_str)
108
+ if not output_sdif_path.is_file():
109
+ raise FileNotFoundError(
110
+ f"xlsx_to_sdif graph for {input_file_path.name} (Thread: {thread_id}) "
111
+ f"reported output file '{output_sdif_path}', but it does not exist or is not a file."
112
+ )
113
+
114
+ logger.info(
115
+ f"xlsx_to_sdif graph successfully processed {input_file_path.name} (Thread: {thread_id}). Output at {output_sdif_path}"
116
+ )
117
+ return output_sdif_path
118
+
119
+ async def _resolve_and_filter_input_files(
120
+ self, datasource: Datasource
121
+ ) -> List[Path]:
122
+ """Resolves and validates datasource, returning a list of XLSX file paths."""
123
+ input_files: List[Path]
124
+ if isinstance(datasource, (str, Path)):
125
+ input_files = [Path(datasource)]
126
+ elif isinstance(datasource, list) and all(
127
+ isinstance(p, (str, Path)) for p in datasource
128
+ ):
129
+ input_files = [Path(p) for p in datasource]
130
+ else:
131
+ raise ValueError(
132
+ "Datasource must be a file path (str or Path) or a list of such paths."
133
+ )
134
+
135
+ if not input_files:
136
+ raise ValueError("No input XLSX files provided in the datasource.")
137
+
138
+ xlsx_input_files = []
139
+ for f_path in input_files:
140
+ if not f_path.is_file():
141
+ raise FileNotFoundError(f"Input file not found: {f_path}")
142
+ if f_path.suffix.lower() not in (
143
+ ".xlsx",
144
+ ".xlsm",
145
+ ".xlsb",
146
+ ".xls",
147
+ ): # Common Excel extensions
148
+ logger.warning(
149
+ f"File {f_path.name} is not a typical XLSX file extension, but will be attempted."
150
+ )
151
+ xlsx_input_files.append(f_path)
152
+
153
+ if not xlsx_input_files:
154
+ raise ValueError(
155
+ "No processable XLSX files found in the datasource after filtering."
156
+ )
157
+ return xlsx_input_files
158
+
159
+ def _prepare_final_output_path(
160
+ self, output_path: SDIFPath, overwrite: bool
161
+ ) -> Path:
162
+ """Prepares the final output path, handling overwrites and directory creation."""
163
+ final_output_path = Path(output_path)
164
+ if final_output_path.exists() and not overwrite:
165
+ raise FileExistsError(
166
+ f"Output file {final_output_path} already exists and overwrite is False."
167
+ )
168
+ elif final_output_path.exists() and overwrite:
169
+ logger.info(
170
+ f"Overwrite active: Deleting existing output file {final_output_path}"
171
+ )
172
+ try:
173
+ if (
174
+ final_output_path.is_dir()
175
+ ): # Should not happen if SDIFPath is file path
176
+ raise IsADirectoryError(
177
+ f"Output path {final_output_path} is a directory."
178
+ )
179
+ final_output_path.unlink()
180
+ except OSError as e:
181
+ raise RuntimeError(
182
+ f"Failed to delete existing output file {final_output_path}: {e}"
183
+ ) from e
184
+
185
+ final_output_path.parent.mkdir(parents=True, exist_ok=True)
186
+ return final_output_path
187
+
188
+ def _setup_temp_directories(self) -> Tuple[Path, Path, Path]:
189
+ """Creates and returns paths for temporary working directories."""
190
+ run_temp_dir = Path(tempfile.mkdtemp(prefix="satif_aixlsx_run_"))
191
+ intermediate_sdif_dir = run_temp_dir / "intermediate_sdifs"
192
+ intermediate_sdif_dir.mkdir()
193
+ temp_input_copies_dir = (
194
+ run_temp_dir / "temp_input_copies"
195
+ ) # Directory for temporary input copies
196
+ temp_input_copies_dir.mkdir()
197
+ return run_temp_dir, intermediate_sdif_dir, temp_input_copies_dir
198
+
199
+ async def _process_single_file_to_intermediate_sdif(
200
+ self,
201
+ input_xlsx_file: Path,
202
+ final_output_path_stem: str,
203
+ temp_input_copies_dir: Path,
204
+ intermediate_sdif_dir: Path,
205
+ ) -> Path:
206
+ """Processes a single XLSX file to an intermediate SDIF in a controlled location."""
207
+ logger.info(f"Processing file: {input_xlsx_file.name}")
208
+ graph_thread_id = f"satif_aixlsx_{final_output_path_stem}_{input_xlsx_file.stem}_{uuid.uuid4().hex[:8]}"
209
+
210
+ temp_input_file_for_graph = (
211
+ temp_input_copies_dir
212
+ / f"{input_xlsx_file.stem}_{graph_thread_id}{input_xlsx_file.suffix}"
213
+ )
214
+ shutil.copy2(input_xlsx_file, temp_input_file_for_graph)
215
+ logger.debug(
216
+ f"Created temporary copy of {input_xlsx_file.name} at {temp_input_file_for_graph}"
217
+ )
218
+
219
+ graph_config_for_file = {
220
+ "configurable": {"thread_id": graph_thread_id},
221
+ "recursion_limit": 50, # Default, make configurable if needed
222
+ }
223
+
224
+ try:
225
+ graph_produced_sdif_path = await self._invoke_xlsx_graph(
226
+ temp_input_file_for_graph, graph_config_for_file
227
+ )
228
+
229
+ target_intermediate_sdif_path = (
230
+ intermediate_sdif_dir
231
+ / f"intermediate_{input_xlsx_file.stem}_{graph_thread_id}.sdif"
232
+ )
233
+ shutil.move(
234
+ str(graph_produced_sdif_path),
235
+ str(target_intermediate_sdif_path),
236
+ )
237
+ logger.info(
238
+ f"Moved graph output for {input_xlsx_file.name} to {target_intermediate_sdif_path}"
239
+ )
240
+ return target_intermediate_sdif_path
241
+ except Exception as e:
242
+ error_msg = f"Failed to process file {input_xlsx_file.name} (using copy {temp_input_file_for_graph.name}) with xlsx-to-sdif graph: {e}"
243
+ logger.error(error_msg, exc_info=True)
244
+ # Re-raise to be caught by the main standardize method's loop or error handling
245
+ raise RuntimeError(
246
+ f"Error processing {input_xlsx_file.name}. Halting batch."
247
+ ) from e
248
+
249
+ async def _consolidate_intermediate_sdifs(
250
+ self, intermediate_sdif_paths: List[Path], final_output_path: Path
251
+ ) -> None:
252
+ """Consolidates intermediate SDIF files into the final output path."""
253
+ if not intermediate_sdif_paths:
254
+ # This case should ideally be handled before calling, but as a safeguard:
255
+ raise RuntimeError(
256
+ "No intermediate SDIF files were provided for consolidation."
257
+ )
258
+
259
+ if len(intermediate_sdif_paths) == 1:
260
+ logger.info(
261
+ f"Only one intermediate SDIF generated. Moving {intermediate_sdif_paths[0]} to {final_output_path}"
262
+ )
263
+ shutil.move(str(intermediate_sdif_paths[0]), str(final_output_path))
264
+ else:
265
+ logger.info(
266
+ f"Merging {len(intermediate_sdif_paths)} intermediate SDIF files into {final_output_path}"
267
+ )
268
+ merge_sdif_files(
269
+ source_db_paths=intermediate_sdif_paths,
270
+ target_db_path=final_output_path,
271
+ )
272
+
273
+ async def standardize(
274
+ self,
275
+ datasource: Datasource,
276
+ output_path: SDIFPath,
277
+ *,
278
+ overwrite: bool = False,
279
+ config: Optional[Dict[str, Any]] = None,
280
+ **kwargs: Any,
281
+ ) -> StandardizationResult:
282
+ """
283
+ Standardizes one or more XLSX files into a single SDIF file.
284
+
285
+ Args:
286
+ datasource: A single file path (str or Path) or a list of file paths
287
+ to XLSX files.
288
+ output_path: The path where the final consolidated SDIF file will be saved.
289
+ overwrite: If True, overwrite the output_path if it already exists.
290
+ Defaults to False.
291
+ config: General configuration options (currently not used by this standardizer
292
+ for graph interaction but preserved for API consistency).
293
+ **kwargs: Additional keyword arguments (currently ignored).
294
+
295
+ Returns:
296
+ A StandardizationResult object containing the path to the final SDIF file.
297
+
298
+ Raises:
299
+ ValueError: If the datasource is invalid or no XLSX files are found.
300
+ RuntimeError: If critical errors occur during processing, such as the
301
+ `xlsx-to-sdif` graph not being available or failing.
302
+ FileNotFoundError: If input files are not found or graph outputs are invalid.
303
+ FileExistsError: If output_path exists and overwrite is False.
304
+ """
305
+ if not xlsx_graph or not XLSXState:
306
+ raise RuntimeError(
307
+ "AIXLSXStandardizer cannot operate because `xlsx_to_sdif.graph` or `xlsx_to_sdif.state` is not available. "
308
+ "Please ensure the 'xlsx-to-sdif' library is installed and accessible."
309
+ )
310
+
311
+ xlsx_input_files = await self._resolve_and_filter_input_files(datasource)
312
+ final_output_path = self._prepare_final_output_path(output_path, overwrite)
313
+ run_temp_dir, intermediate_sdif_dir, temp_input_copies_dir = (
314
+ self._setup_temp_directories()
315
+ )
316
+
317
+ intermediate_sdif_paths: List[Path] = []
318
+ processing_errors: List[str] = []
319
+
320
+ try:
321
+ # Process each file sequentially. Consider asyncio.gather for parallel if graph supports it well for many files.
322
+ for i, input_xlsx_file in enumerate(xlsx_input_files):
323
+ try:
324
+ logger.info(
325
+ f"Starting processing for file {i + 1}/{len(xlsx_input_files)}: {input_xlsx_file.name}"
326
+ )
327
+ intermediate_sdif_path = (
328
+ await self._process_single_file_to_intermediate_sdif(
329
+ input_xlsx_file,
330
+ final_output_path.stem, # Pass stem for unique naming
331
+ temp_input_copies_dir,
332
+ intermediate_sdif_dir,
333
+ )
334
+ )
335
+ intermediate_sdif_paths.append(intermediate_sdif_path)
336
+ except Exception:
337
+ logger.error(
338
+ f"Halting standardization due to error processing {input_xlsx_file.name}."
339
+ )
340
+ raise # Re-raise the exception to be caught by the outer try/finally
341
+
342
+ if not intermediate_sdif_paths:
343
+ # This condition might be redundant if _process_single_file_to_intermediate_sdif always raises on failure
344
+ # and we re-raise immediately.
345
+ if processing_errors: # This list would be empty if we fail fast
346
+ raise RuntimeError(
347
+ f"No XLSX files were successfully processed. Errors: {'; '.join(processing_errors)}"
348
+ )
349
+ else:
350
+ raise RuntimeError(
351
+ "No intermediate SDIF files were generated, though no specific errors were caught."
352
+ )
353
+
354
+ await self._consolidate_intermediate_sdifs(
355
+ intermediate_sdif_paths, final_output_path
356
+ )
357
+
358
+ logger.info(f"Successfully created final SDIF: {final_output_path}")
359
+ return StandardizationResult(
360
+ output_path=final_output_path, file_configs=None
361
+ ) # file_configs not available from this process
362
+
363
+ finally:
364
+ if run_temp_dir.exists():
365
+ try:
366
+ shutil.rmtree(run_temp_dir)
367
+ logger.debug(f"Cleaned up temporary directory: {run_temp_dir}")
368
+ except Exception as e_clean:
369
+ logger.error(
370
+ f"Error cleaning up temporary directory {run_temp_dir}: {e_clean}",
371
+ exc_info=True,
372
+ )
satif_ai/transform.py ADDED
@@ -0,0 +1,155 @@
1
+ from pathlib import Path
2
+ from typing import Any, Dict, List, Optional
3
+
4
+ from fastmcp import Client, FastMCP
5
+ from fastmcp.client.transports import FastMCPTransport
6
+ from satif_core.code_executors.base import CodeExecutor
7
+ from satif_core.transformation_builders.base import AsyncTransformationBuilder
8
+ from satif_core.types import (
9
+ FilePath,
10
+ SDIFPath,
11
+ TransformationResult,
12
+ )
13
+ from satif_sdk.code_executors.local_executor import LocalCodeExecutor
14
+ from satif_sdk.transformers.code import CodeTransformer
15
+ from sdif_mcp.server import mcp
16
+
17
+ from satif_ai.transformation_builders.syncpulse import SyncpulseTransformationBuilder
18
+ from satif_ai.utils.openai_mcp import OpenAICompatibleMCP
19
+
20
+
21
+ async def atransform(
22
+ sdif: SDIFPath,
23
+ output_target_files: Dict[FilePath, str] | List[FilePath] | FilePath,
24
+ instructions: Optional[str] = None,
25
+ output_path: FilePath = Path("."),
26
+ *,
27
+ transformation_code: Optional[str] = None,
28
+ transformation_builder: Optional[AsyncTransformationBuilder] = None,
29
+ code_executor: Optional[CodeExecutor] = None,
30
+ mcp_server: Optional[FastMCP] = None,
31
+ mcp_client: Optional[Client] = None,
32
+ llm_model: str = "o4-mini",
33
+ schema_only: bool = False,
34
+ representer_kwargs: Optional[Dict[str, Any]] = None,
35
+ ) -> TransformationResult:
36
+ """
37
+ Asynchronously transforms an SDIF (Standard Data Interchange Format) input using
38
+ an AI-generated or provided transformation code.
39
+
40
+ This function orchestrates the process of:
41
+ 1. Optionally generating transformation code using an AI model via a `TransformationBuilder`
42
+ if `transformation_code` is not provided.
43
+ explicitly passed.
44
+ 2. Executing the transformation code using a `CodeTransformer` and a `CodeExecutor`.
45
+ 3. Exporting the results to the specified output.
46
+
47
+ Args:
48
+ sdif: Path to the input SDIF file or an `SDIFDatabase` object.
49
+ output_target_files: A dictionary mapping original example file paths (or string identifiers)
50
+ to their desired agent-facing filenames, or a list of output example
51
+ file paths, or a single output file path. These are used by the AI to understand the target
52
+ format and structure, and also by the `CodeTransformer` to determine
53
+ output filenames if the transformation result keys match.
54
+ instructions: Optional. Natural language instructions for the AI to generate
55
+ the transformation code. Used if `transformation_code` is None.
56
+ output_path: Path to the directory where transformation outputs will be saved.
57
+ transformation_code: Optional. Pre-existing Python code for the transformation.
58
+ If None, code will be generated by the `transformation_builder`.
59
+ transformation_builder: Optional. An `AsyncTransformationBuilder` instance responsible for generating
60
+ the transformation code if `transformation_code` is not provided.
61
+ If None, a `SyncpulseTransformationBuilder` is instantiated.
62
+ code_executor: Optional. A `CodeExecutor` instance for running the transformation
63
+ code. If None, a `LocalCodeExecutor` is used.
64
+ mcp_server: Optional. A `FastMCP` server instance for the AI code builder.
65
+ Defaults to the global `mcp` instance if `transformation_builder` is None and
66
+ a new `SyncpulseTransformationBuilder` is being created.
67
+ mcp_client: Optional. A user-provided `Client` instance. If provided when
68
+ `transformation_builder` is None, it will be used by the internally
69
+ created `SyncpulseTransformationBuilder`. The caller is responsible for
70
+ managing the lifecycle of a provided client.
71
+ llm_model: The language model to use for code generation (e.g., "o4-mini").
72
+ Used if `transformation_builder` is None.
73
+ schema_only: If True, the transformation aims to match only the schema (headers)
74
+ of the `output_target_files`, and input samples may be omitted or marked
75
+ as empty for the AI. This is useful for structural transformations
76
+ without processing actual data rows.
77
+ representer_kwargs: Optional dictionary of keyword arguments to pass to the
78
+ representer when analyzing `output_target_files`.
79
+
80
+ Returns:
81
+ A `TransformationResult` object containing the path to the output
82
+ and the transformation code used.
83
+ """
84
+ current_transformation_code: Optional[str] = transformation_code
85
+ active_builder: Optional[AsyncTransformationBuilder] = transformation_builder
86
+
87
+ _openai_mcp_instance: Optional[OpenAICompatibleMCP] = None
88
+ openai_mcp_managed_locally = False
89
+
90
+ # If code isn't provided, we need a builder. If a builder isn't provided, we create one.
91
+ if current_transformation_code is None:
92
+ if active_builder is None:
93
+ # Create SyncpulseTransformationBuilder
94
+ _effective_mcp_server = mcp_server if mcp_server is not None else mcp
95
+
96
+ _openai_mcp_instance = OpenAICompatibleMCP(mcp=_effective_mcp_server)
97
+ await _openai_mcp_instance.connect()
98
+ openai_mcp_managed_locally = True
99
+
100
+ if mcp_client is None: # No user-provided client, create and manage one
101
+ mcp_transport = FastMCPTransport(mcp=_effective_mcp_server)
102
+ async with Client(mcp_transport) as new_client:
103
+ active_builder = SyncpulseTransformationBuilder(
104
+ mcp_server=_openai_mcp_instance,
105
+ mcp_session=new_client.session,
106
+ llm_model=llm_model,
107
+ )
108
+ current_transformation_code = await active_builder.build(
109
+ sdif=sdif,
110
+ output_target_files=output_target_files,
111
+ instructions=instructions,
112
+ schema_only=schema_only,
113
+ representer_kwargs=representer_kwargs,
114
+ )
115
+ else:
116
+ active_builder = SyncpulseTransformationBuilder(
117
+ mcp_server=_openai_mcp_instance,
118
+ mcp_session=mcp_client, # Use the provided client
119
+ llm_model=llm_model,
120
+ )
121
+ current_transformation_code = await active_builder.build(
122
+ sdif=sdif,
123
+ output_target_files=output_target_files,
124
+ instructions=instructions,
125
+ schema_only=schema_only,
126
+ representer_kwargs=representer_kwargs,
127
+ )
128
+
129
+ # Disconnect OpenAICompatibleMCP if it was created and connected locally
130
+ if (
131
+ openai_mcp_managed_locally
132
+ and _openai_mcp_instance
133
+ and _openai_mcp_instance._is_connected
134
+ ):
135
+ await _openai_mcp_instance.cleanup()
136
+
137
+ if current_transformation_code is None:
138
+ raise ValueError("Transformation code could not be obtained or generated.")
139
+
140
+ # Code Executor and Transformation
141
+ _code_executor = code_executor if code_executor is not None else LocalCodeExecutor()
142
+
143
+ transformer = CodeTransformer(
144
+ function=current_transformation_code,
145
+ code_executor=_code_executor,
146
+ )
147
+
148
+ exported_artifact_path = transformer.export(
149
+ sdif=sdif,
150
+ output_path=output_path,
151
+ )
152
+
153
+ return TransformationResult(
154
+ output_path=exported_artifact_path, function_code=current_transformation_code
155
+ )
@@ -8,7 +8,9 @@ from typing import Any, Dict, List, Optional, Union
8
8
  from agents import Agent, Runner, function_tool
9
9
  from agents.mcp.server import MCPServer
10
10
  from mcp import ClientSession
11
- from satif_core import AsyncCodeBuilder, CodeBuilder, SDIFDatabase
11
+ from satif_core import AsyncTransformationBuilder
12
+ from satif_core.types import FilePath
13
+ from satif_sdk.code_executors.local_executor import LocalCodeExecutor
12
14
  from satif_sdk.comparators import get_comparator
13
15
  from satif_sdk.representers import get_representer
14
16
  from satif_sdk.transformers import CodeTransformer
@@ -61,7 +63,10 @@ async def execute_transformation(code: str) -> str:
61
63
  if INPUT_SDIF_PATH is None or OUTPUT_TARGET_FILES is None:
62
64
  return "Error: Transformation context not initialized"
63
65
 
64
- code_transformer = CodeTransformer(function=code)
66
+ code_transformer = CodeTransformer(
67
+ function=code,
68
+ code_executor=LocalCodeExecutor(disable_security_warning=True),
69
+ )
65
70
  generated_output_path = code_transformer.export(INPUT_SDIF_PATH)
66
71
 
67
72
  comparisons = []
@@ -120,19 +125,7 @@ async def execute_transformation(code: str) -> str:
120
125
  return "\n".join(comparisons)
121
126
 
122
127
 
123
- class TransformationCodeBuilder(CodeBuilder):
124
- def __init__(self, output_example: Path | List[Path] | Dict[str, Path]):
125
- self.output_example = output_example
126
-
127
- def build(
128
- self,
129
- sdif: Path | SDIFDatabase,
130
- instructions: Optional[str] = None,
131
- ) -> str:
132
- pass
133
-
134
-
135
- class TransformationAsyncCodeBuilder(AsyncCodeBuilder):
128
+ class SyncpulseTransformationBuilder(AsyncTransformationBuilder):
136
129
  """This class is used to build a transformation code that will be used to transform a SDIF database into a set of files following the format of the given output files."""
137
130
 
138
131
  def __init__(
@@ -147,23 +140,18 @@ class TransformationAsyncCodeBuilder(AsyncCodeBuilder):
147
140
 
148
141
  async def build(
149
142
  self,
150
- sdif: Path, # This will now be relative to project root (MCP server CWD)
151
- output_target_files: Dict[Union[str, Path], str] | List[Path],
152
- output_sdif: Optional[Path] = None, # This will now be relative or None
143
+ sdif: Path,
144
+ output_target_files: Dict[FilePath, str] | List[FilePath] | FilePath,
145
+ output_sdif: Optional[Path] = None,
153
146
  instructions: str = "",
154
147
  schema_only: bool = False,
155
- representer_options_for_build: Optional[Dict[str, Any]] = None,
148
+ representer_kwargs: Optional[Dict[str, Any]] = None,
156
149
  ) -> str:
157
150
  global INPUT_SDIF_PATH, OUTPUT_TARGET_FILES, SCHEMA_ONLY
158
- # INPUT_SDIF_PATH is used by execute_transformation tool, needs to be accessible from where that tool runs.
159
- # If execute_transformation runs in the same process as the builder, absolute path is fine.
160
- # If it were a separate context, this might need adjustment.
161
- # For now, assume execute_transformation can access absolute paths if needed for its *input SDIF*.
162
- # However, the sdif for MCP URIs must be relative.
151
+
163
152
  INPUT_SDIF_PATH = Path(sdif).resolve()
164
153
  SCHEMA_ONLY = schema_only
165
- # Paths for MCP URIs are now expected to be relative to MCP server CWD (project root)
166
- # So, use them directly as strings.
154
+ # We must encode the path because special characters are not allowed in mcp read_resource()
167
155
  input_sdif_mcp_uri_path = base64.b64encode(str(sdif).encode()).decode()
168
156
  output_sdif_mcp_uri_path = (
169
157
  base64.b64encode(str(output_sdif).encode()).decode()
@@ -205,9 +193,14 @@ class TransformationAsyncCodeBuilder(AsyncCodeBuilder):
205
193
 
206
194
  # OUTPUT_TARGET_FILES keys are absolute paths to original example files for local reading by representers/comparators.
207
195
  # Values are agent-facing filenames.
208
- if isinstance(output_target_files, list):
196
+ if isinstance(output_target_files, FilePath):
197
+ OUTPUT_TARGET_FILES = {
198
+ Path(output_target_files).resolve(): Path(output_target_files).name
199
+ }
200
+ elif isinstance(output_target_files, list):
209
201
  OUTPUT_TARGET_FILES = {
210
- file_path.resolve(): file_path.name for file_path in output_target_files
202
+ Path(file_path).resolve(): Path(file_path).name
203
+ for file_path in output_target_files
211
204
  }
212
205
  elif isinstance(output_target_files, dict):
213
206
  temp_map = {}
@@ -229,7 +222,7 @@ class TransformationAsyncCodeBuilder(AsyncCodeBuilder):
229
222
  # Representer uses the absolute path (file_key_abs_path) to read the example file.
230
223
  representer = get_representer(file_key_abs_path)
231
224
  representation, used_params = representer.represent(
232
- file_key_abs_path, **(representer_options_for_build or {})
225
+ file_key_abs_path, **(representer_kwargs or {})
233
226
  )
234
227
  output_representation[agent_facing_name] = {
235
228
  "representation": representation,
@@ -0,0 +1,5 @@
1
+ from .merge_sdif import merge_sdif_files
2
+ from .openai_mcp import OpenAICompatibleMCP
3
+ from .zip import extract_zip_archive_async
4
+
5
+ __all__ = ["merge_sdif_files", "extract_zip_archive_async", "OpenAICompatibleMCP"]