sapiopycommons 2025.4.9a150__py3-none-any.whl → 2025.4.9a476__py3-none-any.whl
This diff represents the content of publicly available package versions that have been released to one of the supported registries. The information contained in this diff is provided for informational purposes only and reflects changes between package versions as they appear in their respective public registries.
Potentially problematic release.
This version of sapiopycommons might be problematic. Click here for more details.
- sapiopycommons/callbacks/callback_util.py +1262 -392
- sapiopycommons/callbacks/field_builder.py +2 -0
- sapiopycommons/chem/Molecules.py +0 -2
- sapiopycommons/customreport/auto_pagers.py +281 -0
- sapiopycommons/customreport/term_builder.py +1 -1
- sapiopycommons/datatype/attachment_util.py +4 -2
- sapiopycommons/datatype/data_fields.py +23 -1
- sapiopycommons/eln/experiment_cache.py +173 -0
- sapiopycommons/eln/experiment_handler.py +933 -279
- sapiopycommons/eln/experiment_report_util.py +15 -10
- sapiopycommons/eln/experiment_step_factory.py +474 -0
- sapiopycommons/eln/experiment_tags.py +7 -0
- sapiopycommons/eln/plate_designer.py +159 -59
- sapiopycommons/eln/step_creation.py +235 -0
- sapiopycommons/files/file_bridge.py +76 -0
- sapiopycommons/files/file_bridge_handler.py +325 -110
- sapiopycommons/files/file_data_handler.py +2 -2
- sapiopycommons/files/file_util.py +40 -15
- sapiopycommons/files/file_validator.py +6 -5
- sapiopycommons/files/file_writer.py +1 -1
- sapiopycommons/flowcyto/flow_cyto.py +1 -1
- sapiopycommons/general/accession_service.py +3 -3
- sapiopycommons/general/aliases.py +51 -28
- sapiopycommons/general/audit_log.py +2 -2
- sapiopycommons/general/custom_report_util.py +24 -1
- sapiopycommons/general/data_structure_util.py +115 -0
- sapiopycommons/general/directive_util.py +86 -0
- sapiopycommons/general/exceptions.py +41 -2
- sapiopycommons/general/popup_util.py +2 -2
- sapiopycommons/multimodal/multimodal.py +1 -0
- sapiopycommons/processtracking/custom_workflow_handler.py +46 -30
- sapiopycommons/recordmodel/record_handler.py +547 -159
- sapiopycommons/rules/eln_rule_handler.py +41 -30
- sapiopycommons/rules/on_save_rule_handler.py +41 -30
- sapiopycommons/samples/aliquot.py +48 -0
- sapiopycommons/webhook/webhook_handlers.py +448 -55
- sapiopycommons/webhook/webservice_handlers.py +2 -2
- {sapiopycommons-2025.4.9a150.dist-info → sapiopycommons-2025.4.9a476.dist-info}/METADATA +1 -1
- sapiopycommons-2025.4.9a476.dist-info/RECORD +67 -0
- sapiopycommons-2025.4.9a150.dist-info/RECORD +0 -59
- {sapiopycommons-2025.4.9a150.dist-info → sapiopycommons-2025.4.9a476.dist-info}/WHEEL +0 -0
- {sapiopycommons-2025.4.9a150.dist-info → sapiopycommons-2025.4.9a476.dist-info}/licenses/LICENSE +0 -0
|
@@ -21,10 +21,14 @@ class FileUtil:
|
|
|
21
21
|
Utilities for the handling of files, including the requesting of files from the user and the parsing of files into
|
|
22
22
|
tokenized lists. Makes use of Pandas DataFrames for any file parsing purposes.
|
|
23
23
|
"""
|
|
24
|
+
# PR-47433: Add a keep_default_na argument to FileUtil.tokenize_csv and FileUtil.tokenize_xlsx so that N/A values
|
|
25
|
+
# don't get returned as NoneType, and add **kwargs in case any other Pandas input parameters need changed by the
|
|
26
|
+
# caller.
|
|
24
27
|
@staticmethod
|
|
25
28
|
def tokenize_csv(file_bytes: bytes, required_headers: list[str] | None = None, header_row_index: int | None = 0,
|
|
26
29
|
seperator: str = ",", *, encoding: str | None = None, encoding_error: str | None = "strict",
|
|
27
|
-
exception_on_empty: bool = True
|
|
30
|
+
exception_on_empty: bool = True, keep_default_na: bool = False, **kwargs) \
|
|
31
|
+
-> tuple[list[dict[str, str]], list[list[str]]]:
|
|
28
32
|
"""
|
|
29
33
|
Tokenize a CSV file. The provided file must be uniform. That is, if row 1 has 10 cells, all the rows in the file
|
|
30
34
|
must have 10 cells. Otherwise, the Pandas parser throws a tokenizer exception.
|
|
@@ -46,6 +50,9 @@ class FileUtil:
|
|
|
46
50
|
https://docs.python.org/3/library/codecs.html#error-handlers
|
|
47
51
|
:param exception_on_empty: Throw a user error exception if the provided file bytes result in an empty list in
|
|
48
52
|
the first element of the returned tuple.
|
|
53
|
+
:param keep_default_na: If False, values that are recognized as NaN (e.g. N/A, NA, NaN) will remain as strings.
|
|
54
|
+
If True, these values will be converted to a NoneType value.
|
|
55
|
+
:param kwargs: Additional arguments to be passed to the pandas read_csv function.
|
|
49
56
|
:return: The CSV parsed into a list of dicts where each dict is a row, mapping the headers to the cells for
|
|
50
57
|
that row. Also returns a list of each row above the headers (the metadata), parsed into a list of each cell.
|
|
51
58
|
If the header row index is 0 or None, this list will be empty.
|
|
@@ -53,7 +60,8 @@ class FileUtil:
|
|
|
53
60
|
# Parse the file bytes into two DataFrames. The first is metadata of the file located above the header row,
|
|
54
61
|
# while the second is the body of the file below the header row.
|
|
55
62
|
file_body, file_metadata = FileUtil.csv_to_data_frames(file_bytes, header_row_index, seperator,
|
|
56
|
-
encoding=encoding, encoding_error=encoding_error
|
|
63
|
+
encoding=encoding, encoding_error=encoding_error,
|
|
64
|
+
keep_default_na=keep_default_na, **kwargs)
|
|
57
65
|
# Parse the metadata from above the header row index into a list of lists.
|
|
58
66
|
metadata: list[list[str]] = FileUtil.data_frame_to_lists(file_metadata)
|
|
59
67
|
# Parse the data from the file body into a list of dicts.
|
|
@@ -64,7 +72,8 @@ class FileUtil:
|
|
|
64
72
|
|
|
65
73
|
@staticmethod
|
|
66
74
|
def tokenize_xlsx(file_bytes: bytes, required_headers: list[str] | None = None, header_row_index: int | None = 0,
|
|
67
|
-
*, exception_on_empty: bool = True
|
|
75
|
+
*, exception_on_empty: bool = True, keep_default_na: bool = False, **kwargs) \
|
|
76
|
+
-> tuple[list[dict[str, str]], list[list[str]]]:
|
|
68
77
|
"""
|
|
69
78
|
Tokenize an XLSX file row by row.
|
|
70
79
|
|
|
@@ -77,13 +86,17 @@ class FileUtil:
|
|
|
77
86
|
is assumed to be the header row.
|
|
78
87
|
:param exception_on_empty: Throw a user error exception if the provided file bytes result in an empty list in
|
|
79
88
|
the first element of the returned tuple.
|
|
89
|
+
:param keep_default_na: If False, values that are recognized as NaN (e.g. N/A, NA, NaN) will remain as strings.
|
|
90
|
+
If True, these values will be converted to a NoneType value.
|
|
91
|
+
:param kwargs: Additional arguments to be passed to the pandas read_excel function.
|
|
80
92
|
:return: The XLSX parsed into a list of dicts where each dict is a row, mapping the headers to the cells for
|
|
81
93
|
that row. Also returns a list of each row above the headers (the metadata), parsed into a list of each cell.
|
|
82
94
|
If the header row index is 0 or None, this list will be empty.
|
|
83
95
|
"""
|
|
84
96
|
# Parse the file bytes into two DataFrames. The first is metadata of the file located above the header row,
|
|
85
97
|
# while the second is the body of the file below the header row.
|
|
86
|
-
file_body, file_metadata = FileUtil.xlsx_to_data_frames(file_bytes, header_row_index
|
|
98
|
+
file_body, file_metadata = FileUtil.xlsx_to_data_frames(file_bytes, header_row_index,
|
|
99
|
+
keep_default_na=keep_default_na, **kwargs)
|
|
87
100
|
# Parse the metadata from above the header row index into a list of lists.
|
|
88
101
|
metadata: list[list[str]] = FileUtil.data_frame_to_lists(file_metadata)
|
|
89
102
|
# Parse the data from the file body into a list of dicts.
|
|
@@ -94,7 +107,8 @@ class FileUtil:
|
|
|
94
107
|
|
|
95
108
|
@staticmethod
|
|
96
109
|
def csv_to_data_frames(file_bytes: bytes, header_row_index: int | None = 0, seperator: str = ",",
|
|
97
|
-
*, encoding: str | None = None, encoding_error: str | None = "strict"
|
|
110
|
+
*, encoding: str | None = None, encoding_error: str | None = "strict",
|
|
111
|
+
keep_default_na: bool = False, **kwargs) \
|
|
98
112
|
-> tuple[DataFrame, DataFrame | None]:
|
|
99
113
|
"""
|
|
100
114
|
Parse the file bytes for a CSV into DataFrames. The provided file must be uniform. That is, if row 1 has 10
|
|
@@ -113,6 +127,9 @@ class FileUtil:
|
|
|
113
127
|
is "strict", meaning that encoding errors raise an exception. Change this to "ignore" to skip over invalid
|
|
114
128
|
characters or "replace" to replace invalid characters with a ? character. For a full list of options, see
|
|
115
129
|
https://docs.python.org/3/library/codecs.html#error-handlers
|
|
130
|
+
:param keep_default_na: If False, values that are recognized as NaN (e.g. N/A, NA, NaN) will remain as strings.
|
|
131
|
+
If True, these values will be converted to a NoneType value.
|
|
132
|
+
:param kwargs: Additional arguments to be passed to the pandas read_csv function.
|
|
116
133
|
:return: A tuple of two DataFrames. The first is the frame for the CSV table body, while the second is for the
|
|
117
134
|
metadata from above the header row, or None if there is no metadata.
|
|
118
135
|
"""
|
|
@@ -125,19 +142,21 @@ class FileUtil:
|
|
|
125
142
|
file_metadata = pandas.read_csv(file_io, header=None, dtype=dtype(str),
|
|
126
143
|
skiprows=lambda x: x >= header_row_index,
|
|
127
144
|
skip_blank_lines=False, sep=seperator, encoding=encoding,
|
|
128
|
-
encoding_errors=encoding_error
|
|
145
|
+
encoding_errors=encoding_error, keep_default_na=keep_default_na,
|
|
146
|
+
**kwargs)
|
|
129
147
|
with io.BytesIO(file_bytes) as file_io:
|
|
130
148
|
# The use of the dtype argument is to ensure that everything from the file gets read as a string. Added
|
|
131
149
|
# because some numerical values would get ".0" appended to them, even when casting the DataFrame cell to a
|
|
132
150
|
# string.
|
|
133
151
|
file_body: DataFrame = pandas.read_csv(file_io, header=header_row_index, dtype=dtype(str),
|
|
134
|
-
skip_blank_lines=False, sep=seperator, encoding=encoding
|
|
152
|
+
skip_blank_lines=False, sep=seperator, encoding=encoding,
|
|
153
|
+
keep_default_na=keep_default_na, **kwargs)
|
|
135
154
|
|
|
136
155
|
return file_body, file_metadata
|
|
137
156
|
|
|
138
157
|
@staticmethod
|
|
139
|
-
def xlsx_to_data_frames(file_bytes: bytes, header_row_index: int | None = 0
|
|
140
|
-
|
|
158
|
+
def xlsx_to_data_frames(file_bytes: bytes, header_row_index: int | None = 0, *, keep_default_na: bool = False,
|
|
159
|
+
**kwargs) -> tuple[DataFrame, DataFrame | None]:
|
|
141
160
|
"""
|
|
142
161
|
Parse the file bytes for an XLSX into DataFrames.
|
|
143
162
|
|
|
@@ -146,6 +165,9 @@ class FileUtil:
|
|
|
146
165
|
row is returned in the metadata list. If input is None, then no row is considered to be the header row,
|
|
147
166
|
meaning that required headers are also ignored if any are provided. By default, the first row (0th index)
|
|
148
167
|
is assumed to be the header row.
|
|
168
|
+
:param keep_default_na: If False, values that are recognized as NaN (e.g. N/A, NA, NaN) will remain as strings.
|
|
169
|
+
If True, these values will be converted to a NoneType value.
|
|
170
|
+
:param kwargs: Additional arguments to be passed to the pandas read_excel function.
|
|
149
171
|
:return: A tuple of two DataFrames. The first is the frame for the XLSX table body, while the second is for the
|
|
150
172
|
metadata from above the header row, or None if there is no metadata.
|
|
151
173
|
"""
|
|
@@ -155,12 +177,14 @@ class FileUtil:
|
|
|
155
177
|
# The metadata DataFrame has no headers and only consists of the rows above the header row index.
|
|
156
178
|
# Therefore, we skip every row including and past the header.
|
|
157
179
|
file_metadata = pandas.read_excel(file_io, header=None, dtype=dtype(str),
|
|
158
|
-
skiprows=lambda x: x >= header_row_index
|
|
180
|
+
skiprows=lambda x: x >= header_row_index,
|
|
181
|
+
keep_default_na=keep_default_na, **kwargs)
|
|
159
182
|
with io.BytesIO(file_bytes) as file_io:
|
|
160
183
|
# The use of the dtype argument is to ensure that everything from the file gets read as a string. Added
|
|
161
184
|
# because some numerical values would get ".0" appended to them, even when casting the DataFrame cell to a
|
|
162
185
|
# string.
|
|
163
|
-
file_body: DataFrame = pandas.read_excel(file_io, header=header_row_index, dtype=dtype(str)
|
|
186
|
+
file_body: DataFrame = pandas.read_excel(file_io, header=header_row_index, dtype=dtype(str),
|
|
187
|
+
keep_default_na=keep_default_na, **kwargs)
|
|
164
188
|
|
|
165
189
|
return file_body, file_metadata
|
|
166
190
|
|
|
@@ -255,6 +279,7 @@ class FileUtil:
|
|
|
255
279
|
data_frame = pandas.read_csv(csv, sep=",", header=None)
|
|
256
280
|
|
|
257
281
|
with io.BytesIO() as output:
|
|
282
|
+
# noinspection PyTypeChecker
|
|
258
283
|
with pandas.ExcelWriter(output, engine='xlsxwriter') as writer:
|
|
259
284
|
# Setting header and index to false makes the CSV convert to an XLSX as-is.
|
|
260
285
|
data_frame.to_excel(writer, sheet_name='Sheet1', header=False, index=False)
|
|
@@ -302,10 +327,10 @@ class FileUtil:
|
|
|
302
327
|
:param files: A dictionary of file name to file data as a string or bytes.
|
|
303
328
|
:return: The bytes for a zip file containing the input files.
|
|
304
329
|
"""
|
|
305
|
-
|
|
306
|
-
|
|
307
|
-
|
|
308
|
-
|
|
330
|
+
with io.BytesIO() as zip_buffer:
|
|
331
|
+
with zipfile.ZipFile(zip_buffer, "w", zipfile.ZIP_DEFLATED) as zip_file:
|
|
332
|
+
for file_name, file_data in files.items():
|
|
333
|
+
zip_file.writestr(file_name, file_data)
|
|
309
334
|
return zip_buffer.getvalue()
|
|
310
335
|
|
|
311
336
|
# Deprecated functions:
|
|
@@ -1,5 +1,6 @@
|
|
|
1
1
|
from __future__ import annotations
|
|
2
2
|
|
|
3
|
+
import re
|
|
3
4
|
from abc import abstractmethod
|
|
4
5
|
from typing import Any
|
|
5
6
|
|
|
@@ -9,9 +10,9 @@ from sapiopylib.rest.pojo.datatype.FieldDefinition import VeloxIntegerFieldDefin
|
|
|
9
10
|
AbstractVeloxFieldDefinition
|
|
10
11
|
|
|
11
12
|
from sapiopycommons.callbacks.callback_util import CallbackUtil
|
|
13
|
+
from sapiopycommons.customreport.auto_pagers import QuickReportDictAutoPager
|
|
12
14
|
from sapiopycommons.files.file_data_handler import FileDataHandler, FilterList
|
|
13
15
|
from sapiopycommons.general.aliases import UserIdentifier, AliasUtil
|
|
14
|
-
from sapiopycommons.general.custom_report_util import CustomReportUtil
|
|
15
16
|
from sapiopycommons.general.exceptions import SapioUserCancelledException
|
|
16
17
|
from sapiopycommons.general.time_util import TimeUtil
|
|
17
18
|
|
|
@@ -311,8 +312,8 @@ class MatchesPatternRule(ColumnRule):
|
|
|
311
312
|
"""
|
|
312
313
|
pattern: str
|
|
313
314
|
|
|
314
|
-
def __init__(self, header: str, pattern: str, *, reason: str | None = None,
|
|
315
|
-
blacklist: FilterList = None):
|
|
315
|
+
def __init__(self, header: str, pattern: str | re.Pattern[str], *, reason: str | None = None,
|
|
316
|
+
whitelist: FilterList = None, blacklist: FilterList = None):
|
|
316
317
|
"""
|
|
317
318
|
:param header: The header that this rule acts upon.
|
|
318
319
|
:param pattern: A regex pattern.
|
|
@@ -529,7 +530,7 @@ class UniqueSystemValueRule(ColumnRule):
|
|
|
529
530
|
# Run a quick report for all records of this type that match these field values.
|
|
530
531
|
term = RawReportTerm(self.data_type_name, self.data_field_name, RawTermOperation.EQUAL_TO_OPERATOR,
|
|
531
532
|
"{" + ",".join(values) + "}")
|
|
532
|
-
results: list[dict[str, Any]] =
|
|
533
|
+
results: list[dict[str, Any]] = QuickReportDictAutoPager(self.user, term).get_all_at_once()
|
|
533
534
|
existing_values: list[Any] = [x.get(self.data_field_name) for x in results]
|
|
534
535
|
return file_handler.get_in_list(self.header, existing_values)
|
|
535
536
|
|
|
@@ -563,6 +564,6 @@ class ExistingSystemValueRule(ColumnRule):
|
|
|
563
564
|
# Run a quick report for all records of this type that match these field values.
|
|
564
565
|
term = RawReportTerm(self.data_type_name, self.data_field_name, RawTermOperation.EQUAL_TO_OPERATOR,
|
|
565
566
|
"{" + ",".join(values) + "}")
|
|
566
|
-
results: list[dict[str, Any]] =
|
|
567
|
+
results: list[dict[str, Any]] = QuickReportDictAutoPager(self.user, term).get_all_at_once()
|
|
567
568
|
existing_values: list[Any] = [x.get(self.data_field_name) for x in results]
|
|
568
569
|
return file_handler.get_not_in_list(self.header, existing_values)
|
|
@@ -307,7 +307,7 @@ class FieldColumn(ColumnDef):
|
|
|
307
307
|
elif self.search_order == FieldSearchOrder.BUNDLE_ONLY:
|
|
308
308
|
return row.fields.get(self.field_name)
|
|
309
309
|
elif self.search_order == FieldSearchOrder.RECORD_FIRST:
|
|
310
|
-
fields: dict[str, Any] = AliasUtil.
|
|
310
|
+
fields: dict[str, Any] = AliasUtil.to_field_map(record) if record else {}
|
|
311
311
|
if self.field_name not in fields or (self.skip_none_values and fields.get(self.field_name) is None):
|
|
312
312
|
return row.fields.get(self.field_name)
|
|
313
313
|
return fields.get(self.field_name)
|
|
@@ -2,8 +2,8 @@ from __future__ import annotations
|
|
|
2
2
|
|
|
3
3
|
from weakref import WeakValueDictionary
|
|
4
4
|
|
|
5
|
-
from sapiopylib.rest.User import SapioUser
|
|
6
5
|
from databind.json import dumps
|
|
6
|
+
from sapiopylib.rest.User import SapioUser
|
|
7
7
|
|
|
8
8
|
from sapiopycommons.flowcyto.flowcyto_data import FlowJoWorkspaceInputJson, UploadFCSInputJson, \
|
|
9
9
|
ComputeFlowStatisticsInputJson
|
|
@@ -95,7 +95,7 @@ class AccessionWithPrefixSuffix(AbstractAccessionServiceOperator):
|
|
|
95
95
|
|
|
96
96
|
@property
|
|
97
97
|
def default_accessor_name(self):
|
|
98
|
-
return "PREFIX_AND_SUFFIX" + "(" + self.prefix + "," + self.suffix + ")"
|
|
98
|
+
return "PREFIX_AND_SUFFIX" + "(" + self.prefix + "," + self.suffix + ")"
|
|
99
99
|
|
|
100
100
|
|
|
101
101
|
class AccessionGlobalPrefixSuffix(AbstractAccessionServiceOperator):
|
|
@@ -199,7 +199,7 @@ class AccessionRequestId(AbstractAccessionServiceOperator):
|
|
|
199
199
|
|
|
200
200
|
Properties:
|
|
201
201
|
numberOfCharacters: Number of characters maximum in the request ID.
|
|
202
|
-
accessorName: This is a legacy variable from drum.getNextIdListByMapName(), which allows setting different "accessorName" from old system. We need this for
|
|
202
|
+
accessorName: This is a legacy variable from drum.getNextIdListByMapName(), which allows setting different "accessorName" from old system. We need this for compatibility patch for converting these to the new preference format.
|
|
203
203
|
"""
|
|
204
204
|
_num_of_characters: int
|
|
205
205
|
_accessor_name: str
|
|
@@ -341,7 +341,7 @@ class AccessionService:
|
|
|
341
341
|
def get_affixed_id_in_batch(self, data_type_name: str, data_field_name: str, num_ids: int, prefix: str | None,
|
|
342
342
|
suffix: str | None, num_digits: int | None, start_num: int = 1) -> list[str]:
|
|
343
343
|
"""
|
|
344
|
-
Get the batch affixed IDs that are maximal in cache and
|
|
344
|
+
Get the batch affixed IDs that are maximal in cache and contiguous for a particular datatype.datafield under a given format.
|
|
345
345
|
:param data_type_name: The datatype name to look for max ID
|
|
346
346
|
:param data_field_name: The datafield name to look for max ID
|
|
347
347
|
:param num_ids: The number of IDs to accession.
|
|
@@ -1,50 +1,53 @@
|
|
|
1
1
|
from collections.abc import Iterable
|
|
2
|
-
from typing import Any
|
|
2
|
+
from typing import Any, TypeAlias
|
|
3
3
|
|
|
4
4
|
from sapiopylib.rest.User import SapioUser
|
|
5
5
|
from sapiopylib.rest.pojo.DataRecord import DataRecord
|
|
6
|
-
from sapiopylib.rest.pojo.datatype.FieldDefinition import FieldType
|
|
6
|
+
from sapiopylib.rest.pojo.datatype.FieldDefinition import FieldType, AbstractVeloxFieldDefinition
|
|
7
7
|
from sapiopylib.rest.pojo.eln.ElnExperiment import ElnExperiment
|
|
8
8
|
from sapiopylib.rest.pojo.eln.ExperimentEntry import ExperimentEntry
|
|
9
9
|
from sapiopylib.rest.pojo.eln.SapioELNEnums import ElnBaseDataType
|
|
10
|
+
from sapiopylib.rest.pojo.eln.eln_headings import ElnExperimentTab
|
|
10
11
|
from sapiopylib.rest.pojo.webhook.WebhookContext import SapioWebhookContext
|
|
11
12
|
from sapiopylib.rest.utils.Protocols import ElnExperimentProtocol, ElnEntryStep
|
|
12
|
-
from sapiopylib.rest.utils.recordmodel.PyRecordModel import PyRecordModel
|
|
13
|
+
from sapiopylib.rest.utils.recordmodel.PyRecordModel import PyRecordModel, AbstractRecordModel
|
|
13
14
|
from sapiopylib.rest.utils.recordmodel.RecordModelWrapper import WrappedRecordModel, WrappedType, WrapperField
|
|
14
15
|
|
|
15
16
|
from sapiopycommons.general.exceptions import SapioException
|
|
16
17
|
|
|
17
|
-
FieldValue = int | float | str | bool | None
|
|
18
|
+
FieldValue: TypeAlias = int | float | str | bool | None
|
|
18
19
|
"""Allowable values for fields in the system."""
|
|
19
|
-
RecordModel = PyRecordModel | WrappedRecordModel
|
|
20
|
+
RecordModel: TypeAlias = PyRecordModel | AbstractRecordModel | WrappedRecordModel
|
|
20
21
|
"""Different forms that a record model could take."""
|
|
21
|
-
SapioRecord = DataRecord | RecordModel
|
|
22
|
+
SapioRecord: TypeAlias = DataRecord | RecordModel
|
|
22
23
|
"""A record could be provided as either a DataRecord, PyRecordModel, or WrappedRecordModel (WrappedType)."""
|
|
23
|
-
RecordIdentifier = SapioRecord | int
|
|
24
|
+
RecordIdentifier: TypeAlias = SapioRecord | int
|
|
24
25
|
"""A RecordIdentifier is either a record type or an integer for the record's record ID."""
|
|
25
|
-
DataTypeIdentifier = SapioRecord | type[WrappedType] | str
|
|
26
|
+
DataTypeIdentifier: TypeAlias = SapioRecord | type[WrappedType] | str
|
|
26
27
|
"""A DataTypeIdentifier is either a SapioRecord, a record model wrapper type, or a string."""
|
|
27
|
-
FieldIdentifier = WrapperField | str | tuple[str, FieldType]
|
|
28
|
+
FieldIdentifier: TypeAlias = AbstractVeloxFieldDefinition | WrapperField | str | tuple[str, FieldType]
|
|
28
29
|
"""A FieldIdentifier is either wrapper field from a record model wrapper, a string, or a tuple of string
|
|
29
30
|
and field type."""
|
|
30
|
-
FieldIdentifierKey = WrapperField | str
|
|
31
|
+
FieldIdentifierKey: TypeAlias = WrapperField | str
|
|
31
32
|
"""A FieldIdentifierKey is a FieldIdentifier, except it can't be a tuple, s tuples can't be used as keys in
|
|
32
33
|
dictionaries.."""
|
|
33
|
-
HasFieldWrappers = type[WrappedType] | WrappedRecordModel
|
|
34
|
+
HasFieldWrappers: TypeAlias = type[WrappedType] | WrappedRecordModel
|
|
34
35
|
"""An identifier for classes that have wrapper fields."""
|
|
35
|
-
ExperimentIdentifier = ElnExperimentProtocol | ElnExperiment | int
|
|
36
|
+
ExperimentIdentifier: TypeAlias = ElnExperimentProtocol | ElnExperiment | int
|
|
36
37
|
"""An ExperimentIdentifier is either an experiment protocol, experiment, or an integer for the experiment's notebook
|
|
37
38
|
ID."""
|
|
38
|
-
ExperimentEntryIdentifier = ElnEntryStep | ExperimentEntry | int
|
|
39
|
+
ExperimentEntryIdentifier: TypeAlias = ElnEntryStep | ExperimentEntry | int
|
|
39
40
|
"""An ExperimentEntryIdentifier is either an ELN entry step, experiment entry, or an integer for the entry's ID."""
|
|
40
|
-
|
|
41
|
+
TabIdentifier: TypeAlias = int | ElnExperimentTab
|
|
42
|
+
"""A TabIdentifier is either an integer for the tab's ID or an ElnExperimentTab object."""
|
|
43
|
+
FieldMap: TypeAlias = dict[str, FieldValue]
|
|
41
44
|
"""A field map is simply a dict of data field names to values. The purpose of aliasing this is to help distinguish
|
|
42
45
|
any random dict in a webhook from one which is explicitly used for record fields."""
|
|
43
|
-
FieldIdentifierMap = dict[FieldIdentifierKey, FieldValue]
|
|
46
|
+
FieldIdentifierMap: TypeAlias = dict[FieldIdentifierKey, FieldValue]
|
|
44
47
|
"""A field identifier map is the same thing as a field map, except the keys can be field identifiers instead
|
|
45
48
|
of just strings. Note that although one of the allowed field identifiers is a tuple, you can't use tuples as
|
|
46
49
|
keys in a dictionary."""
|
|
47
|
-
UserIdentifier = SapioWebhookContext | SapioUser
|
|
50
|
+
UserIdentifier: TypeAlias = SapioWebhookContext | SapioUser
|
|
48
51
|
"""An identifier for classes from which a user object can be used for sending requests."""
|
|
49
52
|
|
|
50
53
|
|
|
@@ -142,23 +145,25 @@ class AliasUtil:
|
|
|
142
145
|
@staticmethod
|
|
143
146
|
def to_data_field_name(value: FieldIdentifier) -> str:
|
|
144
147
|
"""
|
|
145
|
-
Convert
|
|
148
|
+
Convert an object that can be used to identify a data field to a data field name string.
|
|
146
149
|
|
|
147
|
-
:param value:
|
|
150
|
+
:param value: An object that can be used to identify a data field.
|
|
148
151
|
:return: A string of the data field name of the input value.
|
|
149
152
|
"""
|
|
150
153
|
if isinstance(value, tuple):
|
|
151
154
|
return value[0]
|
|
152
155
|
if isinstance(value, WrapperField):
|
|
153
156
|
return value.field_name
|
|
157
|
+
if isinstance(value, AbstractVeloxFieldDefinition):
|
|
158
|
+
return value.data_field_name
|
|
154
159
|
return value
|
|
155
160
|
|
|
156
161
|
@staticmethod
|
|
157
162
|
def to_data_field_names(values: Iterable[FieldIdentifier]) -> list[str]:
|
|
158
163
|
"""
|
|
159
|
-
Convert an iterable of
|
|
164
|
+
Convert an iterable of objects that can be used to identify data fields to a list of data field name strings.
|
|
160
165
|
|
|
161
|
-
:param values: An iterable of
|
|
166
|
+
:param values: An iterable of objects that can be used to identify a data field.
|
|
162
167
|
:return: A list of strings of the data field names of the input values.
|
|
163
168
|
"""
|
|
164
169
|
return [AliasUtil.to_data_field_name(x) for x in values]
|
|
@@ -205,20 +210,38 @@ class AliasUtil:
|
|
|
205
210
|
f"field with the name \"{field}\",")
|
|
206
211
|
|
|
207
212
|
@staticmethod
|
|
208
|
-
def
|
|
213
|
+
def to_field_map(record: SapioRecord, include_record_id: bool = False) -> FieldMap:
|
|
209
214
|
"""
|
|
210
|
-
Convert a
|
|
211
|
-
|
|
215
|
+
Convert a given record value to a field map.
|
|
216
|
+
|
|
217
|
+
:param record: A record which is a DataRecord, PyRecordModel, or WrappedRecordModel.
|
|
218
|
+
:param include_record_id: If true, include the record ID of the record in the field map using the RecordId key.
|
|
219
|
+
:return: The field map for the input record.
|
|
220
|
+
"""
|
|
221
|
+
if isinstance(record, DataRecord):
|
|
222
|
+
# noinspection PyTypeChecker
|
|
223
|
+
fields: FieldMap = record.get_fields()
|
|
224
|
+
else:
|
|
225
|
+
fields: FieldMap = record.fields.copy_to_dict()
|
|
226
|
+
# PR-47457: Only include the record ID if the caller requests it, since including the record ID can break
|
|
227
|
+
# callbacks in certain circumstances if the record ID is negative.
|
|
228
|
+
if include_record_id:
|
|
229
|
+
fields["RecordId"] = AliasUtil.to_record_id(record)
|
|
230
|
+
return fields
|
|
231
|
+
|
|
232
|
+
@staticmethod
|
|
233
|
+
def to_field_map_list(records: Iterable[SapioRecord], include_record_id: bool = False) -> list[FieldMap]:
|
|
234
|
+
"""
|
|
235
|
+
Convert a list of variables that could either be DataRecords, PyRecordModels, or WrappedRecordModels
|
|
236
|
+
to a list of their field maps. This includes the given RecordId of the given records.
|
|
212
237
|
|
|
238
|
+
:param records: An iterable of records which are DataRecords, PyRecordModels, or WrappedRecordModels.
|
|
239
|
+
:param include_record_id: If true, include the record ID of the records in the field map using the RecordId key.
|
|
213
240
|
:return: A list of field maps for the input records.
|
|
214
241
|
"""
|
|
215
242
|
field_map_list: list[FieldMap] = []
|
|
216
243
|
for record in records:
|
|
217
|
-
|
|
218
|
-
# noinspection PyTypeChecker
|
|
219
|
-
field_map_list.append(record.get_fields())
|
|
220
|
-
else:
|
|
221
|
-
field_map_list.append(record.fields.copy_to_dict())
|
|
244
|
+
field_map_list.append(AliasUtil.to_field_map(record, include_record_id))
|
|
222
245
|
return field_map_list
|
|
223
246
|
|
|
224
247
|
@staticmethod
|
|
@@ -3,11 +3,11 @@ from enum import Enum
|
|
|
3
3
|
from sapiopylib.rest.User import SapioUser
|
|
4
4
|
from sapiopylib.rest.pojo.CustomReport import ReportColumn, CustomReportCriteria
|
|
5
5
|
|
|
6
|
+
from sapiopycommons.customreport.auto_pagers import CustomReportDictAutoPager
|
|
6
7
|
from sapiopycommons.customreport.column_builder import ColumnBuilder
|
|
7
8
|
from sapiopycommons.customreport.term_builder import TermBuilder
|
|
8
9
|
from sapiopycommons.datatype.pseudo_data_types import AuditLogPseudoDef
|
|
9
10
|
from sapiopycommons.general.aliases import RecordIdentifier, AliasUtil, UserIdentifier, FieldIdentifier, FieldValue
|
|
10
|
-
from sapiopycommons.general.custom_report_util import CustomReportUtil
|
|
11
11
|
|
|
12
12
|
|
|
13
13
|
class EventType(Enum):
|
|
@@ -164,7 +164,7 @@ class AuditLogUtil:
|
|
|
164
164
|
criteria = AuditLogUtil.create_data_record_audit_log_report(records, fields)
|
|
165
165
|
|
|
166
166
|
# Then we must run the custom report using that criteria.
|
|
167
|
-
raw_report_data: list[dict[str, FieldValue]] =
|
|
167
|
+
raw_report_data: list[dict[str, FieldValue]] = CustomReportDictAutoPager(self.user, criteria).get_all_at_once()
|
|
168
168
|
|
|
169
169
|
# This section will prepare a map matching the original RecordIdentifier by record id.
|
|
170
170
|
# This is because the audit log entries will have record ids, but we want the keys in our result map
|
|
@@ -1,3 +1,4 @@
|
|
|
1
|
+
import warnings
|
|
1
2
|
from collections.abc import Iterable
|
|
2
3
|
|
|
3
4
|
from sapiopylib.rest.DataMgmtService import DataMgmtServer
|
|
@@ -40,6 +41,7 @@ class CustomReportUtil:
|
|
|
40
41
|
had a Sample column with a data field name of Identifier and a Request column with the same data field name,
|
|
41
42
|
then the dictionary keys for these columns would be Sample.Identifier and Request.Identifier respectively.
|
|
42
43
|
"""
|
|
44
|
+
warnings.warn("Deprecated in favor of the SystemReportDictAutoPager class.", DeprecationWarning)
|
|
43
45
|
results: tuple = CustomReportUtil._exhaust_system_report(context, report_name, page_limit,
|
|
44
46
|
page_size, page_number)
|
|
45
47
|
columns: list[ReportColumn] = results[0]
|
|
@@ -82,6 +84,7 @@ class CustomReportUtil:
|
|
|
82
84
|
had a Sample column with a data field name of Identifier and a Request column with the same data field name,
|
|
83
85
|
then the dictionary keys for these columns would be Sample.Identifier and Request.Identifier respectively.
|
|
84
86
|
"""
|
|
87
|
+
warnings.warn("Deprecated in favor of the CustomReportDictAutoPager class.", DeprecationWarning)
|
|
85
88
|
results: tuple = CustomReportUtil._exhaust_custom_report(context, report_criteria, page_limit,
|
|
86
89
|
page_size, page_number)
|
|
87
90
|
columns: list[ReportColumn] = results[0]
|
|
@@ -117,6 +120,7 @@ class CustomReportUtil:
|
|
|
117
120
|
:return: The results of the report listed row by row, mapping each cell to the header it is under. The header
|
|
118
121
|
values in the dicts are the data field names of the columns.
|
|
119
122
|
"""
|
|
123
|
+
warnings.warn("Deprecated in favor of the QuickReportDictAutoPager class.", DeprecationWarning)
|
|
120
124
|
results: tuple = CustomReportUtil._exhaust_quick_report(context, report_term, page_limit,
|
|
121
125
|
page_size, page_number)
|
|
122
126
|
columns: list[ReportColumn] = results[0]
|
|
@@ -127,7 +131,8 @@ class CustomReportUtil:
|
|
|
127
131
|
def get_system_report_criteria(context: UserIdentifier, report_name: str) -> CustomReport:
|
|
128
132
|
"""
|
|
129
133
|
Retrieve a custom report from the system given the name of the report. This works by querying the system report
|
|
130
|
-
with a page number and size of 1 to minimize the amount of data transfer needed to retrieve the
|
|
134
|
+
with a page number of 0 and page size of 1 to minimize the amount of data transfer needed to retrieve the
|
|
135
|
+
report's config.
|
|
131
136
|
|
|
132
137
|
System reports are also known as predefined searches in the system and must be defined in the data designer for
|
|
133
138
|
a specific data type. That is, saved searches created by users cannot be run using this function.
|
|
@@ -143,6 +148,24 @@ class CustomReportUtil:
|
|
|
143
148
|
report_man = DataMgmtServer.get_custom_report_manager(user)
|
|
144
149
|
return report_man.run_system_report_by_name(report_name, 1, 0)
|
|
145
150
|
|
|
151
|
+
@staticmethod
|
|
152
|
+
def get_quick_report_criteria(context: UserIdentifier, report_term: RawReportTerm) -> CustomReport:
|
|
153
|
+
"""
|
|
154
|
+
Retrieve a quick report from the system given a report term. This works by making a quick report query
|
|
155
|
+
with a page number of 0 and page size of 1 to minimize the amount of data transfer needed to retrieve the
|
|
156
|
+
report's config.
|
|
157
|
+
|
|
158
|
+
Using this, you can add to the root term of the search to then run a new search, or provide it to client
|
|
159
|
+
callbacks or directives that take CustomReports.
|
|
160
|
+
|
|
161
|
+
:param context: The current webhook context or a user object to send requests from.
|
|
162
|
+
:param report_term: The raw report term to use for the quick report.
|
|
163
|
+
:return: The CustomReport object for the given report term.
|
|
164
|
+
"""
|
|
165
|
+
user: SapioUser = AliasUtil.to_sapio_user(context)
|
|
166
|
+
report_man = DataMgmtServer.get_custom_report_manager(user)
|
|
167
|
+
return report_man.run_quick_report(report_term, 1, 0)
|
|
168
|
+
|
|
146
169
|
@staticmethod
|
|
147
170
|
def _exhaust_system_report(context: UserIdentifier,
|
|
148
171
|
report_name: str,
|
|
@@ -0,0 +1,115 @@
|
|
|
1
|
+
from enum import Enum
|
|
2
|
+
from typing import Iterable, Any, Collection
|
|
3
|
+
|
|
4
|
+
from sapiopycommons.general.exceptions import SapioException
|
|
5
|
+
|
|
6
|
+
|
|
7
|
+
class ArrayTransformation(Enum):
|
|
8
|
+
"""
|
|
9
|
+
An enumeration of the different transformations that can be applied to a 2D array.
|
|
10
|
+
"""
|
|
11
|
+
ROTATE_CLOCKWISE = 0
|
|
12
|
+
ROTATE_COUNTER_CLOCKWISE = 1
|
|
13
|
+
ROTATE_180_DEGREES = 2
|
|
14
|
+
MIRROR_HORIZONTAL = 3
|
|
15
|
+
MIRROR_VERTICAL = 4
|
|
16
|
+
|
|
17
|
+
|
|
18
|
+
# FR-47524: Create a DataStructureUtils class that implements various collection utility functions from our Java
|
|
19
|
+
# libraries.
|
|
20
|
+
class DataStructureUtil:
|
|
21
|
+
"""
|
|
22
|
+
Utility class for working with data structures. Copies from ListUtil, SetUtil, and various other classes in
|
|
23
|
+
our Java library.
|
|
24
|
+
"""
|
|
25
|
+
@staticmethod
|
|
26
|
+
def find_first_or_none(values: Iterable[Any]) -> Any | None:
|
|
27
|
+
"""
|
|
28
|
+
Get the first value from an iterable, or None if the iterable is empty.
|
|
29
|
+
|
|
30
|
+
:param values: An iterable of values.
|
|
31
|
+
:return: The first value from the input, or None if the input is empty.
|
|
32
|
+
"""
|
|
33
|
+
return next(iter(values), None)
|
|
34
|
+
|
|
35
|
+
@staticmethod
|
|
36
|
+
def remove_null_values(values: Iterable[Any]) -> list[Any]:
|
|
37
|
+
"""
|
|
38
|
+
Remove null values from a list.
|
|
39
|
+
|
|
40
|
+
:param values: An iterable of values.
|
|
41
|
+
:return: A list containing all the non-null values from the input.
|
|
42
|
+
"""
|
|
43
|
+
return [value for value in values if value is not None]
|
|
44
|
+
|
|
45
|
+
@staticmethod
|
|
46
|
+
def transform_2d_array(values: Collection[Collection[Any]], transformation: ArrayTransformation) \
|
|
47
|
+
-> Collection[Collection[Any]]:
|
|
48
|
+
"""
|
|
49
|
+
Perform a transformation on a 2D list.
|
|
50
|
+
|
|
51
|
+
:param values: An iterable of iterables. The iterables should all be of the same size.
|
|
52
|
+
:param transformation: The transformation to apply to the input.
|
|
53
|
+
:return: A new 2D list containing the input transformed according to the specified transformation.
|
|
54
|
+
"""
|
|
55
|
+
x: int = len(values)
|
|
56
|
+
for row in values:
|
|
57
|
+
y = len(row)
|
|
58
|
+
if y != x:
|
|
59
|
+
raise SapioException(f"Input must be a square 2D array. The provided array has a length of {x} but "
|
|
60
|
+
f"at least one row has a length of {y}.")
|
|
61
|
+
|
|
62
|
+
match transformation:
|
|
63
|
+
case ArrayTransformation.ROTATE_CLOCKWISE:
|
|
64
|
+
return [list(row) for row in zip(*values[::-1])]
|
|
65
|
+
case ArrayTransformation.ROTATE_COUNTER_CLOCKWISE:
|
|
66
|
+
return [list(row) for row in zip(*values)][::-1]
|
|
67
|
+
case ArrayTransformation.ROTATE_180_DEGREES:
|
|
68
|
+
return [row[::-1] for row in values[::-1]]
|
|
69
|
+
case ArrayTransformation.MIRROR_HORIZONTAL:
|
|
70
|
+
return [list(row[::-1]) for row in values]
|
|
71
|
+
case ArrayTransformation.MIRROR_VERTICAL:
|
|
72
|
+
return values[::-1]
|
|
73
|
+
|
|
74
|
+
raise SapioException(f"Invalid transformation: {transformation}")
|
|
75
|
+
|
|
76
|
+
@staticmethod
|
|
77
|
+
def flatten_to_list(values: Iterable[Iterable[Any]]) -> list[Any]:
|
|
78
|
+
"""
|
|
79
|
+
Flatten a list of lists into a single list.
|
|
80
|
+
|
|
81
|
+
:param values: An iterable of iterables.
|
|
82
|
+
:return: A single list containing all the values from the input. Elements are in the order they appear in the
|
|
83
|
+
input.
|
|
84
|
+
"""
|
|
85
|
+
return [item for sublist in values for item in sublist]
|
|
86
|
+
|
|
87
|
+
@staticmethod
|
|
88
|
+
def flatten_to_set(values: Iterable[Iterable[Any]]) -> set[Any]:
|
|
89
|
+
"""
|
|
90
|
+
Flatten a list of lists into a single set.
|
|
91
|
+
|
|
92
|
+
:param values: An iterable of iterables.
|
|
93
|
+
:return: A single set containing all the values from the input. Elements are in the order they appear in the
|
|
94
|
+
input.
|
|
95
|
+
"""
|
|
96
|
+
return {item for subset in values for item in subset}
|
|
97
|
+
|
|
98
|
+
@staticmethod
|
|
99
|
+
def invert_dictionary(dictionary: dict[Any, Any], list_values: bool = False) \
|
|
100
|
+
-> dict[Any, Any] | dict[Any, list[Any]]:
|
|
101
|
+
"""
|
|
102
|
+
Invert a dictionary, swapping keys and values. Note that the values of the input dictionary must be hashable.
|
|
103
|
+
|
|
104
|
+
:param dictionary: A dictionary to invert.
|
|
105
|
+
:param list_values: If false, keys that share the same value in the input dictionary will be overwritten in
|
|
106
|
+
the output dictionary so that only the last key remains. If true, the values of the output dictionary will
|
|
107
|
+
be lists where input keys that share the same value will be stored together.
|
|
108
|
+
:return: A new dictionary with the keys and values swapped.
|
|
109
|
+
"""
|
|
110
|
+
if list_values:
|
|
111
|
+
inverted = {}
|
|
112
|
+
for key, value in dictionary.items():
|
|
113
|
+
inverted.setdefault(value, []).append(key)
|
|
114
|
+
return inverted
|
|
115
|
+
return {value: key for key, value in dictionary.items()}
|