sandboxy 0.0.3__py3-none-any.whl → 0.0.5__py3-none-any.whl

This diff represents the content of publicly available package versions that have been released to one of the supported registries. The information contained in this diff is provided for informational purposes only and reflects changes between package versions as they appear in their respective public registries.
@@ -0,0 +1,126 @@
1
+ """MLflow tracing support for Sandboxy.
2
+
3
+ Enables automatic tracing of LLM calls using MLflow's autolog feature.
4
+ When enabled, all OpenAI SDK calls are automatically captured as spans
5
+ within the MLflow run, providing detailed visibility into:
6
+ - Each LLM call (prompt, response, latency, tokens)
7
+ - Tool/function calls made by the LLM
8
+ - The full execution flow
9
+ """
10
+
11
+ from __future__ import annotations
12
+
13
+ import logging
14
+ from collections.abc import Generator
15
+ from contextlib import contextmanager
16
+ from typing import TYPE_CHECKING
17
+
18
+ if TYPE_CHECKING:
19
+ pass
20
+
21
+ logger = logging.getLogger(__name__)
22
+
23
+ _tracing_enabled = False
24
+
25
+
26
+ def enable_tracing(
27
+ tracking_uri: str | None = None,
28
+ experiment_name: str | None = None,
29
+ ) -> bool:
30
+ """Enable MLflow tracing for OpenAI calls.
31
+
32
+ This should be called once before any LLM calls are made.
33
+ It enables MLflow's autolog feature which automatically
34
+ captures all OpenAI SDK calls as traces.
35
+
36
+ Args:
37
+ tracking_uri: MLflow tracking server URI (uses env var if not set)
38
+ experiment_name: Experiment to log traces to
39
+
40
+ Returns:
41
+ True if tracing was enabled successfully, False otherwise
42
+ """
43
+ global _tracing_enabled
44
+
45
+ if _tracing_enabled:
46
+ return True
47
+
48
+ try:
49
+ import os
50
+
51
+ import mlflow
52
+
53
+ # Set tracking URI before enabling autolog
54
+ uri = tracking_uri or os.environ.get("MLFLOW_TRACKING_URI")
55
+ if uri:
56
+ mlflow.set_tracking_uri(uri)
57
+
58
+ # Set experiment before enabling autolog
59
+ if experiment_name:
60
+ mlflow.set_experiment(experiment_name)
61
+
62
+ # Enable OpenAI autologging - this captures all OpenAI calls as traces
63
+ mlflow.openai.autolog()
64
+
65
+ _tracing_enabled = True
66
+ logger.debug("MLflow tracing enabled for OpenAI")
67
+ return True
68
+
69
+ except ImportError as e:
70
+ logger.warning(f"MLflow or OpenAI not installed, tracing disabled: {e}")
71
+ return False
72
+ except Exception as e:
73
+ logger.warning(f"Failed to enable MLflow tracing: {e}")
74
+ return False
75
+
76
+
77
+ def disable_tracing() -> None:
78
+ """Disable MLflow tracing."""
79
+ global _tracing_enabled
80
+
81
+ if not _tracing_enabled:
82
+ return
83
+
84
+ try:
85
+ import mlflow
86
+
87
+ mlflow.openai.autolog(disable=True)
88
+ _tracing_enabled = False
89
+ logger.debug("MLflow tracing disabled")
90
+
91
+ except Exception as e:
92
+ logger.warning(f"Failed to disable MLflow tracing: {e}")
93
+
94
+
95
+ @contextmanager
96
+ def trace_span(name: str, span_type: str = "CHAIN") -> Generator[None, None, None]:
97
+ """Create a manual trace span for non-LLM operations.
98
+
99
+ Use this to wrap tool calls, scenario steps, or other operations
100
+ you want to appear in the trace.
101
+
102
+ Args:
103
+ name: Name of the span (e.g., "tool_call:get_account_activity")
104
+ span_type: Type of span (CHAIN, TOOL, RETRIEVER, etc.)
105
+
106
+ Example:
107
+ with trace_span("tool_call:search", span_type="TOOL"):
108
+ result = execute_tool(...)
109
+ """
110
+ try:
111
+ import mlflow
112
+
113
+ with mlflow.start_span(name=name, span_type=span_type):
114
+ yield
115
+
116
+ except ImportError:
117
+ # MLflow not installed, just run without tracing
118
+ yield
119
+ except Exception as e:
120
+ logger.debug(f"Tracing span failed: {e}")
121
+ yield
122
+
123
+
124
+ def is_tracing_enabled() -> bool:
125
+ """Check if tracing is currently enabled."""
126
+ return _tracing_enabled
@@ -4,6 +4,7 @@ Supports multiple LLM providers through a unified interface:
4
4
  - OpenRouter (400+ models via single API)
5
5
  - OpenAI (direct)
6
6
  - Anthropic (direct)
7
+ - Local providers (Ollama, LM Studio, vLLM, OpenAI-compatible)
7
8
 
8
9
  Usage:
9
10
  from sandboxy.providers import get_provider, ProviderRegistry
@@ -12,23 +13,56 @@ Usage:
12
13
  provider = get_provider("openai/gpt-4o")
13
14
  response = await provider.complete("openai/gpt-4o", messages)
14
15
 
15
- # Or use the registry
16
+ # Or use the registry for local models
16
17
  registry = ProviderRegistry()
17
- provider = registry.get_provider_for_model("anthropic/claude-3-opus")
18
+ provider = registry.get_provider_for_model("ollama/llama3")
18
19
  """
19
20
 
20
21
  from sandboxy.providers.base import (
21
22
  BaseProvider,
23
+ ModelInfo,
22
24
  ModelResponse,
23
25
  ProviderError,
24
26
  )
25
- from sandboxy.providers.registry import ProviderRegistry, get_provider, get_registry
27
+ from sandboxy.providers.config import (
28
+ LocalModelInfo,
29
+ LocalProviderConfig,
30
+ ProvidersConfigFile,
31
+ ProviderStatus,
32
+ ProviderStatusEnum,
33
+ get_enabled_providers,
34
+ load_providers_config,
35
+ save_providers_config,
36
+ )
37
+ from sandboxy.providers.local import LocalProvider, LocalProviderConnectionError
38
+ from sandboxy.providers.registry import (
39
+ ProviderRegistry,
40
+ get_provider,
41
+ get_registry,
42
+ reload_local_providers,
43
+ )
26
44
 
27
45
  __all__ = [
46
+ # Base types
28
47
  "BaseProvider",
48
+ "ModelInfo",
29
49
  "ModelResponse",
30
50
  "ProviderError",
51
+ # Registry
31
52
  "ProviderRegistry",
32
53
  "get_provider",
33
54
  "get_registry",
55
+ "reload_local_providers",
56
+ # Local provider
57
+ "LocalProvider",
58
+ "LocalProviderConnectionError",
59
+ "LocalProviderConfig",
60
+ "LocalModelInfo",
61
+ "ProvidersConfigFile",
62
+ "ProviderStatus",
63
+ "ProviderStatusEnum",
64
+ # Config functions
65
+ "load_providers_config",
66
+ "save_providers_config",
67
+ "get_enabled_providers",
34
68
  ]
@@ -0,0 +1,243 @@
1
+ """Configuration models for local model providers."""
2
+
3
+ from __future__ import annotations
4
+
5
+ import json
6
+ import logging
7
+ import re
8
+ from dataclasses import dataclass
9
+ from datetime import datetime
10
+ from enum import Enum
11
+ from pathlib import Path
12
+ from typing import Any, Literal
13
+
14
+ from pydantic import BaseModel, Field, field_validator
15
+
16
+ from sandboxy.providers.base import ModelInfo
17
+
18
+ logger = logging.getLogger(__name__)
19
+
20
+ # Default config file location
21
+ DEFAULT_CONFIG_PATH = Path.home() / ".sandboxy" / "providers.json"
22
+
23
+
24
+ class ProviderStatusEnum(str, Enum):
25
+ """Status of a local provider connection."""
26
+
27
+ CONNECTED = "connected"
28
+ DISCONNECTED = "disconnected"
29
+ ERROR = "error"
30
+ UNKNOWN = "unknown"
31
+
32
+
33
+ class LocalProviderConfig(BaseModel):
34
+ """Configuration for a local model provider."""
35
+
36
+ name: str = Field(
37
+ ...,
38
+ description="User-friendly name for this provider",
39
+ examples=["ollama-local", "my-vllm-server"],
40
+ )
41
+
42
+ type: Literal["ollama", "lmstudio", "vllm", "openai-compatible"] = Field(
43
+ default="openai-compatible",
44
+ description="Provider type for specialized handling",
45
+ )
46
+
47
+ base_url: str = Field(
48
+ ...,
49
+ description="Base URL for the provider API",
50
+ examples=["http://localhost:11434/v1", "http://localhost:1234/v1"],
51
+ )
52
+
53
+ api_key: str | None = Field(
54
+ default=None,
55
+ description="Optional API key for authenticated providers",
56
+ )
57
+
58
+ enabled: bool = Field(
59
+ default=True,
60
+ description="Whether this provider is active",
61
+ )
62
+
63
+ models: list[str] = Field(
64
+ default_factory=list,
65
+ description="Manually configured model IDs (overrides auto-discovery)",
66
+ )
67
+
68
+ default_params: dict[str, Any] = Field(
69
+ default_factory=dict,
70
+ description="Default parameters for completions (temperature, max_tokens, etc.)",
71
+ )
72
+
73
+ @field_validator("name")
74
+ @classmethod
75
+ def validate_name(cls, v: str) -> str:
76
+ """Validate provider name is alphanumeric with hyphens/underscores."""
77
+ if not re.match(r"^[a-zA-Z0-9_-]+$", v):
78
+ msg = "Provider name must be alphanumeric with hyphens/underscores only"
79
+ raise ValueError(msg)
80
+ return v
81
+
82
+ @field_validator("base_url")
83
+ @classmethod
84
+ def validate_base_url(cls, v: str) -> str:
85
+ """Validate base URL format."""
86
+ if not v.startswith(("http://", "https://")):
87
+ msg = "Base URL must start with http:// or https://"
88
+ raise ValueError(msg)
89
+ # Remove trailing slash for consistency
90
+ return v.rstrip("/")
91
+
92
+
93
+ class ProvidersConfigFile(BaseModel):
94
+ """Root structure for ~/.sandboxy/providers.json."""
95
+
96
+ version: int = Field(
97
+ default=1,
98
+ description="Config file schema version for migrations",
99
+ )
100
+
101
+ providers: list[LocalProviderConfig] = Field(
102
+ default_factory=list,
103
+ description="List of configured local providers",
104
+ )
105
+
106
+ def get_provider(self, name: str) -> LocalProviderConfig | None:
107
+ """Get a provider by name."""
108
+ for provider in self.providers:
109
+ if provider.name == name:
110
+ return provider
111
+ return None
112
+
113
+ def add_provider(self, config: LocalProviderConfig) -> None:
114
+ """Add a new provider configuration.
115
+
116
+ Raises:
117
+ ValueError: If provider with same name already exists
118
+
119
+ """
120
+ if self.get_provider(config.name):
121
+ msg = f"Provider '{config.name}' already exists"
122
+ raise ValueError(msg)
123
+ self.providers.append(config)
124
+
125
+ def remove_provider(self, name: str) -> bool:
126
+ """Remove a provider by name.
127
+
128
+ Returns:
129
+ True if removed, False if not found
130
+
131
+ """
132
+ for i, provider in enumerate(self.providers):
133
+ if provider.name == name:
134
+ self.providers.pop(i)
135
+ return True
136
+ return False
137
+
138
+ def update_provider(self, name: str, **updates: Any) -> LocalProviderConfig | None:
139
+ """Update a provider's configuration.
140
+
141
+ Args:
142
+ name: Provider name to update
143
+ **updates: Fields to update
144
+
145
+ Returns:
146
+ Updated config or None if not found
147
+
148
+ """
149
+ provider = self.get_provider(name)
150
+ if not provider:
151
+ return None
152
+
153
+ # Create updated config
154
+ data = provider.model_dump()
155
+ data.update(updates)
156
+ updated = LocalProviderConfig(**data)
157
+
158
+ # Replace in list
159
+ for i, p in enumerate(self.providers):
160
+ if p.name == name:
161
+ self.providers[i] = updated
162
+ return updated
163
+ return None
164
+
165
+
166
+ @dataclass
167
+ class LocalModelInfo(ModelInfo):
168
+ """Model information with local-specific metadata.
169
+
170
+ Extends the base ModelInfo with local-specific fields.
171
+ """
172
+
173
+ # Local-specific fields (added to inherited fields from ModelInfo)
174
+ provider_name: str = ""
175
+ is_local: bool = True
176
+ capabilities_verified: bool = False
177
+
178
+
179
+ class ProviderStatus(BaseModel):
180
+ """Runtime status of a provider connection."""
181
+
182
+ name: str
183
+ status: ProviderStatusEnum
184
+ last_checked: datetime | None = None
185
+ error_message: str | None = None
186
+ available_models: list[str] = Field(default_factory=list)
187
+ latency_ms: int | None = None
188
+
189
+
190
+ # --- Config file load/save functions ---
191
+
192
+
193
+ def load_providers_config(path: Path | None = None) -> ProvidersConfigFile:
194
+ """Load providers configuration from file.
195
+
196
+ Args:
197
+ path: Config file path. Defaults to ~/.sandboxy/providers.json
198
+
199
+ Returns:
200
+ ProvidersConfigFile with loaded or default configuration
201
+
202
+ """
203
+ config_path = path or DEFAULT_CONFIG_PATH
204
+
205
+ if not config_path.exists():
206
+ logger.debug(f"Config file not found at {config_path}, using defaults")
207
+ return ProvidersConfigFile()
208
+
209
+ try:
210
+ with open(config_path) as f:
211
+ data = json.load(f)
212
+ return ProvidersConfigFile.model_validate(data)
213
+ except json.JSONDecodeError as e:
214
+ logger.warning(f"Invalid JSON in config file: {e}")
215
+ return ProvidersConfigFile()
216
+ except Exception as e:
217
+ logger.warning(f"Failed to load config: {e}")
218
+ return ProvidersConfigFile()
219
+
220
+
221
+ def save_providers_config(config: ProvidersConfigFile, path: Path | None = None) -> None:
222
+ """Save providers configuration to file.
223
+
224
+ Args:
225
+ config: Configuration to save
226
+ path: Config file path. Defaults to ~/.sandboxy/providers.json
227
+
228
+ """
229
+ config_path = path or DEFAULT_CONFIG_PATH
230
+
231
+ # Ensure directory exists
232
+ config_path.parent.mkdir(parents=True, exist_ok=True)
233
+
234
+ with open(config_path, "w") as f:
235
+ json.dump(config.model_dump(), f, indent=2, default=str)
236
+
237
+ logger.debug(f"Saved providers config to {config_path}")
238
+
239
+
240
+ def get_enabled_providers() -> list[LocalProviderConfig]:
241
+ """Get list of enabled local providers from config."""
242
+ config = load_providers_config()
243
+ return [p for p in config.providers if p.enabled]