sagemaker-core 1.0.9__py3-none-any.whl → 1.0.11__py3-none-any.whl
This diff represents the content of publicly available package versions that have been released to one of the supported registries. The information contained in this diff is provided for informational purposes only and reflects changes between package versions as they appear in their respective public registries.
Potentially problematic release.
This version of sagemaker-core might be problematic. Click here for more details.
- sagemaker_core/main/code_injection/shape_dag.py +15 -0
- sagemaker_core/main/logs.py +167 -0
- sagemaker_core/main/resources.py +200 -56
- sagemaker_core/main/shapes.py +18 -14
- sagemaker_core/main/utils.py +9 -3
- sagemaker_core/tools/constants.py +2 -0
- sagemaker_core/tools/resources_codegen.py +47 -0
- sagemaker_core/tools/templates.py +42 -6
- {sagemaker_core-1.0.9.dist-info → sagemaker_core-1.0.11.dist-info}/METADATA +1 -1
- {sagemaker_core-1.0.9.dist-info → sagemaker_core-1.0.11.dist-info}/RECORD +13 -12
- {sagemaker_core-1.0.9.dist-info → sagemaker_core-1.0.11.dist-info}/WHEEL +1 -1
- {sagemaker_core-1.0.9.dist-info → sagemaker_core-1.0.11.dist-info}/LICENSE +0 -0
- {sagemaker_core-1.0.9.dist-info → sagemaker_core-1.0.11.dist-info}/top_level.txt +0 -0
sagemaker_core/main/shapes.py
CHANGED
|
@@ -1179,7 +1179,7 @@ class AnnotationConsolidationConfig(Base):
|
|
|
1179
1179
|
|
|
1180
1180
|
Attributes
|
|
1181
1181
|
----------------------
|
|
1182
|
-
annotation_consolidation_lambda_arn: The Amazon Resource Name (ARN) of a Lambda function implements the logic for annotation consolidation and to process output data. This parameter is required for all labeling jobs. For built-in task types, use one of the following Amazon SageMaker Ground Truth Lambda function ARNs for AnnotationConsolidationLambdaArn. For custom labeling workflows, see Post-annotation Lambda. Bounding box - Finds the most similar boxes from different workers based on the Jaccard index of the boxes. arn:aws:lambda:us-east-1:432418664414:function:ACS-BoundingBox arn:aws:lambda:us-east-2:266458841044:function:ACS-BoundingBox arn:aws:lambda:us-west-2:081040173940:function:ACS-BoundingBox arn:aws:lambda:eu-west-1:568282634449:function:ACS-BoundingBox arn:aws:lambda:ap-northeast-1:477331159723:function:ACS-BoundingBox arn:aws:lambda:ap-southeast-2:454466003867:function:ACS-BoundingBox arn:aws:lambda:ap-south-1:565803892007:function:ACS-BoundingBox arn:aws:lambda:eu-central-1:203001061592:function:ACS-BoundingBox arn:aws:lambda:ap-northeast-2:845288260483:function:ACS-BoundingBox arn:aws:lambda:eu-west-2:487402164563:function:ACS-BoundingBox arn:aws:lambda:ap-southeast-1:377565633583:function:ACS-BoundingBox arn:aws:lambda:ca-central-1:918755190332:function:ACS-BoundingBox Image classification - Uses a variant of the Expectation Maximization approach to estimate the true class of an image based on annotations from individual workers. arn:aws:lambda:us-east-1:432418664414:function:ACS-ImageMultiClass arn:aws:lambda:us-east-2:266458841044:function:ACS-ImageMultiClass arn:aws:lambda:us-west-2:081040173940:function:ACS-ImageMultiClass arn:aws:lambda:eu-west-1:568282634449:function:ACS-ImageMultiClass arn:aws:lambda:ap-northeast-1:477331159723:function:ACS-ImageMultiClass arn:aws:lambda:ap-southeast-2:454466003867:function:ACS-ImageMultiClass arn:aws:lambda:ap-south-1:565803892007:function:ACS-ImageMultiClass arn:aws:lambda:eu-central-1:203001061592:function:ACS-ImageMultiClass arn:aws:lambda:ap-northeast-2:845288260483:function:ACS-ImageMultiClass arn:aws:lambda:eu-west-2:487402164563:function:ACS-ImageMultiClass arn:aws:lambda:ap-southeast-1:377565633583:function:ACS-ImageMultiClass arn:aws:lambda:ca-central-1:918755190332:function:ACS-ImageMultiClass Multi-label image classification - Uses a variant of the Expectation Maximization approach to estimate the true classes of an image based on annotations from individual workers. arn:aws:lambda:us-east-1:432418664414:function:ACS-ImageMultiClassMultiLabel arn:aws:lambda:us-east-2:266458841044:function:ACS-ImageMultiClassMultiLabel arn:aws:lambda:us-west-2:081040173940:function:ACS-ImageMultiClassMultiLabel arn:aws:lambda:eu-west-1:568282634449:function:ACS-ImageMultiClassMultiLabel arn:aws:lambda:ap-northeast-1:477331159723:function:ACS-ImageMultiClassMultiLabel arn:aws:lambda:ap-southeast-2:454466003867:function:ACS-ImageMultiClassMultiLabel arn:aws:lambda:ap-south-1:565803892007:function:ACS-ImageMultiClassMultiLabel arn:aws:lambda:eu-central-1:203001061592:function:ACS-ImageMultiClassMultiLabel arn:aws:lambda:ap-northeast-2:845288260483:function:ACS-ImageMultiClassMultiLabel arn:aws:lambda:eu-west-2:487402164563:function:ACS-ImageMultiClassMultiLabel arn:aws:lambda:ap-southeast-1:377565633583:function:ACS-ImageMultiClassMultiLabel arn:aws:lambda:ca-central-1:918755190332:function:ACS-ImageMultiClassMultiLabel Semantic segmentation - Treats each pixel in an image as a multi-class classification and treats pixel annotations from workers as "votes" for the correct label. arn:aws:lambda:us-east-1:432418664414:function:ACS-SemanticSegmentation arn:aws:lambda:us-east-2:266458841044:function:ACS-SemanticSegmentation arn:aws:lambda:us-west-2:081040173940:function:ACS-SemanticSegmentation arn:aws:lambda:eu-west-1:568282634449:function:ACS-SemanticSegmentation arn:aws:lambda:ap-northeast-1:477331159723:function:ACS-SemanticSegmentation arn:aws:lambda:ap-southeast-2:454466003867:function:ACS-SemanticSegmentation arn:aws:lambda:ap-south-1:565803892007:function:ACS-SemanticSegmentation arn:aws:lambda:eu-central-1:203001061592:function:ACS-SemanticSegmentation arn:aws:lambda:ap-northeast-2:845288260483:function:ACS-SemanticSegmentation arn:aws:lambda:eu-west-2:487402164563:function:ACS-SemanticSegmentation arn:aws:lambda:ap-southeast-1:377565633583:function:ACS-SemanticSegmentation arn:aws:lambda:ca-central-1:918755190332:function:ACS-SemanticSegmentation Text classification - Uses a variant of the Expectation Maximization approach to estimate the true class of text based on annotations from individual workers. arn:aws:lambda:us-east-1:432418664414:function:ACS-TextMultiClass arn:aws:lambda:us-east-2:266458841044:function:ACS-TextMultiClass arn:aws:lambda:us-west-2:081040173940:function:ACS-TextMultiClass arn:aws:lambda:eu-west-1:568282634449:function:ACS-TextMultiClass arn:aws:lambda:ap-northeast-1:477331159723:function:ACS-TextMultiClass arn:aws:lambda:ap-southeast-2:454466003867:function:ACS-TextMultiClass arn:aws:lambda:ap-south-1:565803892007:function:ACS-TextMultiClass arn:aws:lambda:eu-central-1:203001061592:function:ACS-TextMultiClass arn:aws:lambda:ap-northeast-2:845288260483:function:ACS-TextMultiClass arn:aws:lambda:eu-west-2:487402164563:function:ACS-TextMultiClass arn:aws:lambda:ap-southeast-1:377565633583:function:ACS-TextMultiClass arn:aws:lambda:ca-central-1:918755190332:function:ACS-TextMultiClass Multi-label text classification - Uses a variant of the Expectation Maximization approach to estimate the true classes of text based on annotations from individual workers. arn:aws:lambda:us-east-1:432418664414:function:ACS-TextMultiClassMultiLabel arn:aws:lambda:us-east-2:266458841044:function:ACS-TextMultiClassMultiLabel arn:aws:lambda:us-west-2:081040173940:function:ACS-TextMultiClassMultiLabel arn:aws:lambda:eu-west-1:568282634449:function:ACS-TextMultiClassMultiLabel arn:aws:lambda:ap-northeast-1:477331159723:function:ACS-TextMultiClassMultiLabel arn:aws:lambda:ap-southeast-2:454466003867:function:ACS-TextMultiClassMultiLabel arn:aws:lambda:ap-south-1:565803892007:function:ACS-TextMultiClassMultiLabel arn:aws:lambda:eu-central-1:203001061592:function:ACS-TextMultiClassMultiLabel arn:aws:lambda:ap-northeast-2:845288260483:function:ACS-TextMultiClassMultiLabel arn:aws:lambda:eu-west-2:487402164563:function:ACS-TextMultiClassMultiLabel arn:aws:lambda:ap-southeast-1:377565633583:function:ACS-TextMultiClassMultiLabel arn:aws:lambda:ca-central-1:918755190332:function:ACS-TextMultiClassMultiLabel Named entity recognition - Groups similar selections and calculates aggregate boundaries, resolving to most-assigned label. arn:aws:lambda:us-east-1:432418664414:function:ACS-NamedEntityRecognition arn:aws:lambda:us-east-2:266458841044:function:ACS-NamedEntityRecognition arn:aws:lambda:us-west-2:081040173940:function:ACS-NamedEntityRecognition arn:aws:lambda:eu-west-1:568282634449:function:ACS-NamedEntityRecognition arn:aws:lambda:ap-northeast-1:477331159723:function:ACS-NamedEntityRecognition arn:aws:lambda:ap-southeast-2:454466003867:function:ACS-NamedEntityRecognition arn:aws:lambda:ap-south-1:565803892007:function:ACS-NamedEntityRecognition arn:aws:lambda:eu-central-1:203001061592:function:ACS-NamedEntityRecognition arn:aws:lambda:ap-northeast-2:845288260483:function:ACS-NamedEntityRecognition arn:aws:lambda:eu-west-2:487402164563:function:ACS-NamedEntityRecognition arn:aws:lambda:ap-southeast-1:377565633583:function:ACS-NamedEntityRecognition arn:aws:lambda:ca-central-1:918755190332:function:ACS-NamedEntityRecognition Video Classification - Use this task type when you need workers to classify videos using predefined labels that you specify. Workers are shown videos and are asked to choose one label for each video. arn:aws:lambda:us-east-1:432418664414:function:ACS-VideoMultiClass arn:aws:lambda:us-east-2:266458841044:function:ACS-VideoMultiClass arn:aws:lambda:us-west-2:081040173940:function:ACS-VideoMultiClass arn:aws:lambda:eu-west-1:568282634449:function:ACS-VideoMultiClass arn:aws:lambda:ap-northeast-1:477331159723:function:ACS-VideoMultiClass arn:aws:lambda:ap-southeast-2:454466003867:function:ACS-VideoMultiClass arn:aws:lambda:ap-south-1:565803892007:function:ACS-VideoMultiClass arn:aws:lambda:eu-central-1:203001061592:function:ACS-VideoMultiClass arn:aws:lambda:ap-northeast-2:845288260483:function:ACS-VideoMultiClass arn:aws:lambda:eu-west-2:487402164563:function:ACS-VideoMultiClass arn:aws:lambda:ap-southeast-1:377565633583:function:ACS-VideoMultiClass arn:aws:lambda:ca-central-1:918755190332:function:ACS-VideoMultiClass Video Frame Object Detection - Use this task type to have workers identify and locate objects in a sequence of video frames (images extracted from a video) using bounding boxes. For example, you can use this task to ask workers to identify and localize various objects in a series of video frames, such as cars, bikes, and pedestrians. arn:aws:lambda:us-east-1:432418664414:function:ACS-VideoObjectDetection arn:aws:lambda:us-east-2:266458841044:function:ACS-VideoObjectDetection arn:aws:lambda:us-west-2:081040173940:function:ACS-VideoObjectDetection arn:aws:lambda:eu-west-1:568282634449:function:ACS-VideoObjectDetection arn:aws:lambda:ap-northeast-1:477331159723:function:ACS-VideoObjectDetection arn:aws:lambda:ap-southeast-2:454466003867:function:ACS-VideoObjectDetection arn:aws:lambda:ap-south-1:565803892007:function:ACS-VideoObjectDetection arn:aws:lambda:eu-central-1:203001061592:function:ACS-VideoObjectDetection arn:aws:lambda:ap-northeast-2:845288260483:function:ACS-VideoObjectDetection arn:aws:lambda:eu-west-2:487402164563:function:ACS-VideoObjectDetection arn:aws:lambda:ap-southeast-1:377565633583:function:ACS-VideoObjectDetection arn:aws:lambda:ca-central-1:918755190332:function:ACS-VideoObjectDetection Video Frame Object Tracking - Use this task type to have workers track the movement of objects in a sequence of video frames (images extracted from a video) using bounding boxes. For example, you can use this task to ask workers to track the movement of objects, such as cars, bikes, and pedestrians. arn:aws:lambda:us-east-1:432418664414:function:ACS-VideoObjectTracking arn:aws:lambda:us-east-2:266458841044:function:ACS-VideoObjectTracking arn:aws:lambda:us-west-2:081040173940:function:ACS-VideoObjectTracking arn:aws:lambda:eu-west-1:568282634449:function:ACS-VideoObjectTracking arn:aws:lambda:ap-northeast-1:477331159723:function:ACS-VideoObjectTracking arn:aws:lambda:ap-southeast-2:454466003867:function:ACS-VideoObjectTracking arn:aws:lambda:ap-south-1:565803892007:function:ACS-VideoObjectTracking arn:aws:lambda:eu-central-1:203001061592:function:ACS-VideoObjectTracking arn:aws:lambda:ap-northeast-2:845288260483:function:ACS-VideoObjectTracking arn:aws:lambda:eu-west-2:487402164563:function:ACS-VideoObjectTracking arn:aws:lambda:ap-southeast-1:377565633583:function:ACS-VideoObjectTracking arn:aws:lambda:ca-central-1:918755190332:function:ACS-VideoObjectTracking 3D Point Cloud Object Detection - Use this task type when you want workers to classify objects in a 3D point cloud by drawing 3D cuboids around objects. For example, you can use this task type to ask workers to identify different types of objects in a point cloud, such as cars, bikes, and pedestrians. arn:aws:lambda:us-east-1:432418664414:function:ACS-3DPointCloudObjectDetection arn:aws:lambda:us-east-2:266458841044:function:ACS-3DPointCloudObjectDetection arn:aws:lambda:us-west-2:081040173940:function:ACS-3DPointCloudObjectDetection arn:aws:lambda:eu-west-1:568282634449:function:ACS-3DPointCloudObjectDetection arn:aws:lambda:ap-northeast-1:477331159723:function:ACS-3DPointCloudObjectDetection arn:aws:lambda:ap-southeast-2:454466003867:function:ACS-3DPointCloudObjectDetection arn:aws:lambda:ap-south-1:565803892007:function:ACS-3DPointCloudObjectDetection arn:aws:lambda:eu-central-1:203001061592:function:ACS-3DPointCloudObjectDetection arn:aws:lambda:ap-northeast-2:845288260483:function:ACS-3DPointCloudObjectDetection arn:aws:lambda:eu-west-2:487402164563:function:ACS-3DPointCloudObjectDetection arn:aws:lambda:ap-southeast-1:377565633583:function:ACS-3DPointCloudObjectDetection arn:aws:lambda:ca-central-1:918755190332:function:ACS-3DPointCloudObjectDetection 3D Point Cloud Object Tracking - Use this task type when you want workers to draw 3D cuboids around objects that appear in a sequence of 3D point cloud frames. For example, you can use this task type to ask workers to track the movement of vehicles across multiple point cloud frames. arn:aws:lambda:us-east-1:432418664414:function:ACS-3DPointCloudObjectTracking arn:aws:lambda:us-east-2:266458841044:function:ACS-3DPointCloudObjectTracking arn:aws:lambda:us-west-2:081040173940:function:ACS-3DPointCloudObjectTracking arn:aws:lambda:eu-west-1:568282634449:function:ACS-3DPointCloudObjectTracking arn:aws:lambda:ap-northeast-1:477331159723:function:ACS-3DPointCloudObjectTracking arn:aws:lambda:ap-southeast-2:454466003867:function:ACS-3DPointCloudObjectTracking arn:aws:lambda:ap-south-1:565803892007:function:ACS-3DPointCloudObjectTracking arn:aws:lambda:eu-central-1:203001061592:function:ACS-3DPointCloudObjectTracking arn:aws:lambda:ap-northeast-2:845288260483:function:ACS-3DPointCloudObjectTracking arn:aws:lambda:eu-west-2:487402164563:function:ACS-3DPointCloudObjectTracking arn:aws:lambda:ap-southeast-1:377565633583:function:ACS-3DPointCloudObjectTracking arn:aws:lambda:ca-central-1:918755190332:function:ACS-3DPointCloudObjectTracking 3D Point Cloud Semantic Segmentation - Use this task type when you want workers to create a point-level semantic segmentation masks by painting objects in a 3D point cloud using different colors where each color is assigned to one of the classes you specify. arn:aws:lambda:us-east-1:432418664414:function:ACS-3DPointCloudSemanticSegmentation arn:aws:lambda:us-east-2:266458841044:function:ACS-3DPointCloudSemanticSegmentation arn:aws:lambda:us-west-2:081040173940:function:ACS-3DPointCloudSemanticSegmentation arn:aws:lambda:eu-west-1:568282634449:function:ACS-3DPointCloudSemanticSegmentation arn:aws:lambda:ap-northeast-1:477331159723:function:ACS-3DPointCloudSemanticSegmentation arn:aws:lambda:ap-southeast-2:454466003867:function:ACS-3DPointCloudSemanticSegmentation arn:aws:lambda:ap-south-1:565803892007:function:ACS-3DPointCloudSemanticSegmentation arn:aws:lambda:eu-central-1:203001061592:function:ACS-3DPointCloudSemanticSegmentation arn:aws:lambda:ap-northeast-2:845288260483:function:ACS-3DPointCloudSemanticSegmentation arn:aws:lambda:eu-west-2:487402164563:function:ACS-3DPointCloudSemanticSegmentation arn:aws:lambda:ap-southeast-1:377565633583:function:ACS-3DPointCloudSemanticSegmentation arn:aws:lambda:ca-central-1:918755190332:function:ACS-3DPointCloudSemanticSegmentation Use the following ARNs for Label Verification and Adjustment Jobs Use label verification and adjustment jobs to review and adjust labels. To learn more, see Verify and Adjust Labels . Semantic Segmentation Adjustment - Treats each pixel in an image as a multi-class classification and treats pixel adjusted annotations from workers as "votes" for the correct label. arn:aws:lambda:us-east-1:432418664414:function:ACS-AdjustmentSemanticSegmentation arn:aws:lambda:us-east-2:266458841044:function:ACS-AdjustmentSemanticSegmentation arn:aws:lambda:us-west-2:081040173940:function:ACS-AdjustmentSemanticSegmentation arn:aws:lambda:eu-west-1:568282634449:function:ACS-AdjustmentSemanticSegmentation arn:aws:lambda:ap-northeast-1:477331159723:function:ACS-AdjustmentSemanticSegmentation arn:aws:lambda:ap-southeast-2:454466003867:function:ACS-AdjustmentSemanticSegmentation arn:aws:lambda:ap-south-1:565803892007:function:ACS-AdjustmentSemanticSegmentation arn:aws:lambda:eu-central-1:203001061592:function:ACS-AdjustmentSemanticSegmentation arn:aws:lambda:ap-northeast-2:845288260483:function:ACS-AdjustmentSemanticSegmentation arn:aws:lambda:eu-west-2:487402164563:function:ACS-AdjustmentSemanticSegmentation arn:aws:lambda:ap-southeast-1:377565633583:function:ACS-AdjustmentSemanticSegmentation arn:aws:lambda:ca-central-1:918755190332:function:ACS-AdjustmentSemanticSegmentation Semantic Segmentation Verification - Uses a variant of the Expectation Maximization approach to estimate the true class of verification judgment for semantic segmentation labels based on annotations from individual workers. arn:aws:lambda:us-east-1:432418664414:function:ACS-VerificationSemanticSegmentation arn:aws:lambda:us-east-2:266458841044:function:ACS-VerificationSemanticSegmentation arn:aws:lambda:us-west-2:081040173940:function:ACS-VerificationSemanticSegmentation arn:aws:lambda:eu-west-1:568282634449:function:ACS-VerificationSemanticSegmentation arn:aws:lambda:ap-northeast-1:477331159723:function:ACS-VerificationSemanticSegmentation arn:aws:lambda:ap-southeast-2:454466003867:function:ACS-VerificationSemanticSegmentation arn:aws:lambda:ap-south-1:565803892007:function:ACS-VerificationSemanticSegmentation arn:aws:lambda:eu-central-1:203001061592:function:ACS-VerificationSemanticSegmentation arn:aws:lambda:ap-northeast-2:845288260483:function:ACS-VerificationSemanticSegmentation arn:aws:lambda:eu-west-2:487402164563:function:ACS-VerificationSemanticSegmentation arn:aws:lambda:ap-southeast-1:377565633583:function:ACS-VerificationSemanticSegmentation arn:aws:lambda:ca-central-1:918755190332:function:ACS-VerificationSemanticSegmentation Bounding Box Adjustment - Finds the most similar boxes from different workers based on the Jaccard index of the adjusted annotations. arn:aws:lambda:us-east-1:432418664414:function:ACS-AdjustmentBoundingBox arn:aws:lambda:us-east-2:266458841044:function:ACS-AdjustmentBoundingBox arn:aws:lambda:us-west-2:081040173940:function:ACS-AdjustmentBoundingBox arn:aws:lambda:eu-west-1:568282634449:function:ACS-AdjustmentBoundingBox arn:aws:lambda:ap-northeast-1:477331159723:function:ACS-AdjustmentBoundingBox arn:aws:lambda:ap-southeast-2:454466003867:function:ACS-AdjustmentBoundingBox arn:aws:lambda:ap-south-1:565803892007:function:ACS-AdjustmentBoundingBox arn:aws:lambda:eu-central-1:203001061592:function:ACS-AdjustmentBoundingBox arn:aws:lambda:ap-northeast-2:845288260483:function:ACS-AdjustmentBoundingBox arn:aws:lambda:eu-west-2:487402164563:function:ACS-AdjustmentBoundingBox arn:aws:lambda:ap-southeast-1:377565633583:function:ACS-AdjustmentBoundingBox arn:aws:lambda:ca-central-1:918755190332:function:ACS-AdjustmentBoundingBox Bounding Box Verification - Uses a variant of the Expectation Maximization approach to estimate the true class of verification judgement for bounding box labels based on annotations from individual workers. arn:aws:lambda:us-east-1:432418664414:function:ACS-VerificationBoundingBox arn:aws:lambda:us-east-2:266458841044:function:ACS-VerificationBoundingBox arn:aws:lambda:us-west-2:081040173940:function:ACS-VerificationBoundingBox arn:aws:lambda:eu-west-1:568282634449:function:ACS-VerificationBoundingBox arn:aws:lambda:ap-northeast-1:477331159723:function:ACS-VerificationBoundingBox arn:aws:lambda:ap-southeast-2:454466003867:function:ACS-VerificationBoundingBox arn:aws:lambda:ap-south-1:565803892007:function:ACS-VerificationBoundingBox arn:aws:lambda:eu-central-1:203001061592:function:ACS-VerificationBoundingBox arn:aws:lambda:ap-northeast-2:845288260483:function:ACS-VerificationBoundingBox arn:aws:lambda:eu-west-2:487402164563:function:ACS-VerificationBoundingBox arn:aws:lambda:ap-southeast-1:377565633583:function:ACS-VerificationBoundingBox arn:aws:lambda:ca-central-1:918755190332:function:ACS-VerificationBoundingBox Video Frame Object Detection Adjustment - Use this task type when you want workers to adjust bounding boxes that workers have added to video frames to classify and localize objects in a sequence of video frames. arn:aws:lambda:us-east-1:432418664414:function:ACS-AdjustmentVideoObjectDetection arn:aws:lambda:us-east-2:266458841044:function:ACS-AdjustmentVideoObjectDetection arn:aws:lambda:us-west-2:081040173940:function:ACS-AdjustmentVideoObjectDetection arn:aws:lambda:eu-west-1:568282634449:function:ACS-AdjustmentVideoObjectDetection arn:aws:lambda:ap-northeast-1:477331159723:function:ACS-AdjustmentVideoObjectDetection arn:aws:lambda:ap-southeast-2:454466003867:function:ACS-AdjustmentVideoObjectDetection arn:aws:lambda:ap-south-1:565803892007:function:ACS-AdjustmentVideoObjectDetection arn:aws:lambda:eu-central-1:203001061592:function:ACS-AdjustmentVideoObjectDetection arn:aws:lambda:ap-northeast-2:845288260483:function:ACS-AdjustmentVideoObjectDetection arn:aws:lambda:eu-west-2:487402164563:function:ACS-AdjustmentVideoObjectDetection arn:aws:lambda:ap-southeast-1:377565633583:function:ACS-AdjustmentVideoObjectDetection arn:aws:lambda:ca-central-1:918755190332:function:ACS-AdjustmentVideoObjectDetection Video Frame Object Tracking Adjustment - Use this task type when you want workers to adjust bounding boxes that workers have added to video frames to track object movement across a sequence of video frames. arn:aws:lambda:us-east-1:432418664414:function:ACS-AdjustmentVideoObjectTracking arn:aws:lambda:us-east-2:266458841044:function:ACS-AdjustmentVideoObjectTracking arn:aws:lambda:us-west-2:081040173940:function:ACS-AdjustmentVideoObjectTracking arn:aws:lambda:eu-west-1:568282634449:function:ACS-AdjustmentVideoObjectTracking arn:aws:lambda:ap-northeast-1:477331159723:function:ACS-AdjustmentVideoObjectTracking arn:aws:lambda:ap-southeast-2:454466003867:function:ACS-AdjustmentVideoObjectTracking arn:aws:lambda:ap-south-1:565803892007:function:ACS-AdjustmentVideoObjectTracking arn:aws:lambda:eu-central-1:203001061592:function:ACS-AdjustmentVideoObjectTracking arn:aws:lambda:ap-northeast-2:845288260483:function:ACS-AdjustmentVideoObjectTracking arn:aws:lambda:eu-west-2:487402164563:function:ACS-AdjustmentVideoObjectTracking arn:aws:lambda:ap-southeast-1:377565633583:function:ACS-AdjustmentVideoObjectTracking arn:aws:lambda:ca-central-1:918755190332:function:ACS-AdjustmentVideoObjectTracking 3D Point Cloud Object Detection Adjustment - Use this task type when you want workers to adjust 3D cuboids around objects in a 3D point cloud. arn:aws:lambda:us-east-1:432418664414:function:ACS-Adjustment3DPointCloudObjectDetection arn:aws:lambda:us-east-2:266458841044:function:ACS-Adjustment3DPointCloudObjectDetection arn:aws:lambda:us-west-2:081040173940:function:ACS-Adjustment3DPointCloudObjectDetection arn:aws:lambda:eu-west-1:568282634449:function:ACS-Adjustment3DPointCloudObjectDetection arn:aws:lambda:ap-northeast-1:477331159723:function:ACS-Adjustment3DPointCloudObjectDetection arn:aws:lambda:ap-southeast-2:454466003867:function:ACS-Adjustment3DPointCloudObjectDetection arn:aws:lambda:ap-south-1:565803892007:function:ACS-Adjustment3DPointCloudObjectDetection arn:aws:lambda:eu-central-1:203001061592:function:ACS-Adjustment3DPointCloudObjectDetection arn:aws:lambda:ap-northeast-2:845288260483:function:ACS-Adjustment3DPointCloudObjectDetection arn:aws:lambda:eu-west-2:487402164563:function:ACS-Adjustment3DPointCloudObjectDetection arn:aws:lambda:ap-southeast-1:377565633583:function:ACS-Adjustment3DPointCloudObjectDetection arn:aws:lambda:ca-central-1:918755190332:function:ACS-Adjustment3DPointCloudObjectDetection 3D Point Cloud Object Tracking Adjustment - Use this task type when you want workers to adjust 3D cuboids around objects that appear in a sequence of 3D point cloud frames. arn:aws:lambda:us-east-1:432418664414:function:ACS-Adjustment3DPointCloudObjectTracking arn:aws:lambda:us-east-2:266458841044:function:ACS-Adjustment3DPointCloudObjectTracking arn:aws:lambda:us-west-2:081040173940:function:ACS-Adjustment3DPointCloudObjectTracking arn:aws:lambda:eu-west-1:568282634449:function:ACS-Adjustment3DPointCloudObjectTracking arn:aws:lambda:ap-northeast-1:477331159723:function:ACS-Adjustment3DPointCloudObjectTracking arn:aws:lambda:ap-southeast-2:454466003867:function:ACS-Adjustment3DPointCloudObjectTracking arn:aws:lambda:ap-south-1:565803892007:function:ACS-Adjustment3DPointCloudObjectTracking arn:aws:lambda:eu-central-1:203001061592:function:ACS-Adjustment3DPointCloudObjectTracking arn:aws:lambda:ap-northeast-2:845288260483:function:ACS-Adjustment3DPointCloudObjectTracking arn:aws:lambda:eu-west-2:487402164563:function:ACS-Adjustment3DPointCloudObjectTracking arn:aws:lambda:ap-southeast-1:377565633583:function:ACS-Adjustment3DPointCloudObjectTracking arn:aws:lambda:ca-central-1:918755190332:function:ACS-Adjustment3DPointCloudObjectTracking 3D Point Cloud Semantic Segmentation Adjustment - Use this task type when you want workers to adjust a point-level semantic segmentation masks using a paint tool. arn:aws:lambda:us-east-1:432418664414:function:ACS-3DPointCloudSemanticSegmentation arn:aws:lambda:us-east-1:432418664414:function:ACS-Adjustment3DPointCloudSemanticSegmentation arn:aws:lambda:us-east-2:266458841044:function:ACS-Adjustment3DPointCloudSemanticSegmentation arn:aws:lambda:us-west-2:081040173940:function:ACS-Adjustment3DPointCloudSemanticSegmentation arn:aws:lambda:eu-west-1:568282634449:function:ACS-Adjustment3DPointCloudSemanticSegmentation arn:aws:lambda:ap-northeast-1:477331159723:function:ACS-Adjustment3DPointCloudSemanticSegmentation arn:aws:lambda:ap-southeast-2:454466003867:function:ACS-Adjustment3DPointCloudSemanticSegmentation arn:aws:lambda:ap-south-1:565803892007:function:ACS-Adjustment3DPointCloudSemanticSegmentation arn:aws:lambda:eu-central-1:203001061592:function:ACS-Adjustment3DPointCloudSemanticSegmentation arn:aws:lambda:ap-northeast-2:845288260483:function:ACS-Adjustment3DPointCloudSemanticSegmentation arn:aws:lambda:eu-west-2:487402164563:function:ACS-Adjustment3DPointCloudSemanticSegmentation arn:aws:lambda:ap-southeast-1:377565633583:function:ACS-Adjustment3DPointCloudSemanticSegmentation arn:aws:lambda:ca-central-1:918755190332:function:ACS-Adjustment3DPointCloudSemanticSegmentation
|
|
1182
|
+
annotation_consolidation_lambda_arn: The Amazon Resource Name (ARN) of a Lambda function implements the logic for annotation consolidation and to process output data. For built-in task types, use one of the following Amazon SageMaker Ground Truth Lambda function ARNs for AnnotationConsolidationLambdaArn. For custom labeling workflows, see Post-annotation Lambda. Bounding box - Finds the most similar boxes from different workers based on the Jaccard index of the boxes. arn:aws:lambda:us-east-1:432418664414:function:ACS-BoundingBox arn:aws:lambda:us-east-2:266458841044:function:ACS-BoundingBox arn:aws:lambda:us-west-2:081040173940:function:ACS-BoundingBox arn:aws:lambda:eu-west-1:568282634449:function:ACS-BoundingBox arn:aws:lambda:ap-northeast-1:477331159723:function:ACS-BoundingBox arn:aws:lambda:ap-southeast-2:454466003867:function:ACS-BoundingBox arn:aws:lambda:ap-south-1:565803892007:function:ACS-BoundingBox arn:aws:lambda:eu-central-1:203001061592:function:ACS-BoundingBox arn:aws:lambda:ap-northeast-2:845288260483:function:ACS-BoundingBox arn:aws:lambda:eu-west-2:487402164563:function:ACS-BoundingBox arn:aws:lambda:ap-southeast-1:377565633583:function:ACS-BoundingBox arn:aws:lambda:ca-central-1:918755190332:function:ACS-BoundingBox Image classification - Uses a variant of the Expectation Maximization approach to estimate the true class of an image based on annotations from individual workers. arn:aws:lambda:us-east-1:432418664414:function:ACS-ImageMultiClass arn:aws:lambda:us-east-2:266458841044:function:ACS-ImageMultiClass arn:aws:lambda:us-west-2:081040173940:function:ACS-ImageMultiClass arn:aws:lambda:eu-west-1:568282634449:function:ACS-ImageMultiClass arn:aws:lambda:ap-northeast-1:477331159723:function:ACS-ImageMultiClass arn:aws:lambda:ap-southeast-2:454466003867:function:ACS-ImageMultiClass arn:aws:lambda:ap-south-1:565803892007:function:ACS-ImageMultiClass arn:aws:lambda:eu-central-1:203001061592:function:ACS-ImageMultiClass arn:aws:lambda:ap-northeast-2:845288260483:function:ACS-ImageMultiClass arn:aws:lambda:eu-west-2:487402164563:function:ACS-ImageMultiClass arn:aws:lambda:ap-southeast-1:377565633583:function:ACS-ImageMultiClass arn:aws:lambda:ca-central-1:918755190332:function:ACS-ImageMultiClass Multi-label image classification - Uses a variant of the Expectation Maximization approach to estimate the true classes of an image based on annotations from individual workers. arn:aws:lambda:us-east-1:432418664414:function:ACS-ImageMultiClassMultiLabel arn:aws:lambda:us-east-2:266458841044:function:ACS-ImageMultiClassMultiLabel arn:aws:lambda:us-west-2:081040173940:function:ACS-ImageMultiClassMultiLabel arn:aws:lambda:eu-west-1:568282634449:function:ACS-ImageMultiClassMultiLabel arn:aws:lambda:ap-northeast-1:477331159723:function:ACS-ImageMultiClassMultiLabel arn:aws:lambda:ap-southeast-2:454466003867:function:ACS-ImageMultiClassMultiLabel arn:aws:lambda:ap-south-1:565803892007:function:ACS-ImageMultiClassMultiLabel arn:aws:lambda:eu-central-1:203001061592:function:ACS-ImageMultiClassMultiLabel arn:aws:lambda:ap-northeast-2:845288260483:function:ACS-ImageMultiClassMultiLabel arn:aws:lambda:eu-west-2:487402164563:function:ACS-ImageMultiClassMultiLabel arn:aws:lambda:ap-southeast-1:377565633583:function:ACS-ImageMultiClassMultiLabel arn:aws:lambda:ca-central-1:918755190332:function:ACS-ImageMultiClassMultiLabel Semantic segmentation - Treats each pixel in an image as a multi-class classification and treats pixel annotations from workers as "votes" for the correct label. arn:aws:lambda:us-east-1:432418664414:function:ACS-SemanticSegmentation arn:aws:lambda:us-east-2:266458841044:function:ACS-SemanticSegmentation arn:aws:lambda:us-west-2:081040173940:function:ACS-SemanticSegmentation arn:aws:lambda:eu-west-1:568282634449:function:ACS-SemanticSegmentation arn:aws:lambda:ap-northeast-1:477331159723:function:ACS-SemanticSegmentation arn:aws:lambda:ap-southeast-2:454466003867:function:ACS-SemanticSegmentation arn:aws:lambda:ap-south-1:565803892007:function:ACS-SemanticSegmentation arn:aws:lambda:eu-central-1:203001061592:function:ACS-SemanticSegmentation arn:aws:lambda:ap-northeast-2:845288260483:function:ACS-SemanticSegmentation arn:aws:lambda:eu-west-2:487402164563:function:ACS-SemanticSegmentation arn:aws:lambda:ap-southeast-1:377565633583:function:ACS-SemanticSegmentation arn:aws:lambda:ca-central-1:918755190332:function:ACS-SemanticSegmentation Text classification - Uses a variant of the Expectation Maximization approach to estimate the true class of text based on annotations from individual workers. arn:aws:lambda:us-east-1:432418664414:function:ACS-TextMultiClass arn:aws:lambda:us-east-2:266458841044:function:ACS-TextMultiClass arn:aws:lambda:us-west-2:081040173940:function:ACS-TextMultiClass arn:aws:lambda:eu-west-1:568282634449:function:ACS-TextMultiClass arn:aws:lambda:ap-northeast-1:477331159723:function:ACS-TextMultiClass arn:aws:lambda:ap-southeast-2:454466003867:function:ACS-TextMultiClass arn:aws:lambda:ap-south-1:565803892007:function:ACS-TextMultiClass arn:aws:lambda:eu-central-1:203001061592:function:ACS-TextMultiClass arn:aws:lambda:ap-northeast-2:845288260483:function:ACS-TextMultiClass arn:aws:lambda:eu-west-2:487402164563:function:ACS-TextMultiClass arn:aws:lambda:ap-southeast-1:377565633583:function:ACS-TextMultiClass arn:aws:lambda:ca-central-1:918755190332:function:ACS-TextMultiClass Multi-label text classification - Uses a variant of the Expectation Maximization approach to estimate the true classes of text based on annotations from individual workers. arn:aws:lambda:us-east-1:432418664414:function:ACS-TextMultiClassMultiLabel arn:aws:lambda:us-east-2:266458841044:function:ACS-TextMultiClassMultiLabel arn:aws:lambda:us-west-2:081040173940:function:ACS-TextMultiClassMultiLabel arn:aws:lambda:eu-west-1:568282634449:function:ACS-TextMultiClassMultiLabel arn:aws:lambda:ap-northeast-1:477331159723:function:ACS-TextMultiClassMultiLabel arn:aws:lambda:ap-southeast-2:454466003867:function:ACS-TextMultiClassMultiLabel arn:aws:lambda:ap-south-1:565803892007:function:ACS-TextMultiClassMultiLabel arn:aws:lambda:eu-central-1:203001061592:function:ACS-TextMultiClassMultiLabel arn:aws:lambda:ap-northeast-2:845288260483:function:ACS-TextMultiClassMultiLabel arn:aws:lambda:eu-west-2:487402164563:function:ACS-TextMultiClassMultiLabel arn:aws:lambda:ap-southeast-1:377565633583:function:ACS-TextMultiClassMultiLabel arn:aws:lambda:ca-central-1:918755190332:function:ACS-TextMultiClassMultiLabel Named entity recognition - Groups similar selections and calculates aggregate boundaries, resolving to most-assigned label. arn:aws:lambda:us-east-1:432418664414:function:ACS-NamedEntityRecognition arn:aws:lambda:us-east-2:266458841044:function:ACS-NamedEntityRecognition arn:aws:lambda:us-west-2:081040173940:function:ACS-NamedEntityRecognition arn:aws:lambda:eu-west-1:568282634449:function:ACS-NamedEntityRecognition arn:aws:lambda:ap-northeast-1:477331159723:function:ACS-NamedEntityRecognition arn:aws:lambda:ap-southeast-2:454466003867:function:ACS-NamedEntityRecognition arn:aws:lambda:ap-south-1:565803892007:function:ACS-NamedEntityRecognition arn:aws:lambda:eu-central-1:203001061592:function:ACS-NamedEntityRecognition arn:aws:lambda:ap-northeast-2:845288260483:function:ACS-NamedEntityRecognition arn:aws:lambda:eu-west-2:487402164563:function:ACS-NamedEntityRecognition arn:aws:lambda:ap-southeast-1:377565633583:function:ACS-NamedEntityRecognition arn:aws:lambda:ca-central-1:918755190332:function:ACS-NamedEntityRecognition Video Classification - Use this task type when you need workers to classify videos using predefined labels that you specify. Workers are shown videos and are asked to choose one label for each video. arn:aws:lambda:us-east-1:432418664414:function:ACS-VideoMultiClass arn:aws:lambda:us-east-2:266458841044:function:ACS-VideoMultiClass arn:aws:lambda:us-west-2:081040173940:function:ACS-VideoMultiClass arn:aws:lambda:eu-west-1:568282634449:function:ACS-VideoMultiClass arn:aws:lambda:ap-northeast-1:477331159723:function:ACS-VideoMultiClass arn:aws:lambda:ap-southeast-2:454466003867:function:ACS-VideoMultiClass arn:aws:lambda:ap-south-1:565803892007:function:ACS-VideoMultiClass arn:aws:lambda:eu-central-1:203001061592:function:ACS-VideoMultiClass arn:aws:lambda:ap-northeast-2:845288260483:function:ACS-VideoMultiClass arn:aws:lambda:eu-west-2:487402164563:function:ACS-VideoMultiClass arn:aws:lambda:ap-southeast-1:377565633583:function:ACS-VideoMultiClass arn:aws:lambda:ca-central-1:918755190332:function:ACS-VideoMultiClass Video Frame Object Detection - Use this task type to have workers identify and locate objects in a sequence of video frames (images extracted from a video) using bounding boxes. For example, you can use this task to ask workers to identify and localize various objects in a series of video frames, such as cars, bikes, and pedestrians. arn:aws:lambda:us-east-1:432418664414:function:ACS-VideoObjectDetection arn:aws:lambda:us-east-2:266458841044:function:ACS-VideoObjectDetection arn:aws:lambda:us-west-2:081040173940:function:ACS-VideoObjectDetection arn:aws:lambda:eu-west-1:568282634449:function:ACS-VideoObjectDetection arn:aws:lambda:ap-northeast-1:477331159723:function:ACS-VideoObjectDetection arn:aws:lambda:ap-southeast-2:454466003867:function:ACS-VideoObjectDetection arn:aws:lambda:ap-south-1:565803892007:function:ACS-VideoObjectDetection arn:aws:lambda:eu-central-1:203001061592:function:ACS-VideoObjectDetection arn:aws:lambda:ap-northeast-2:845288260483:function:ACS-VideoObjectDetection arn:aws:lambda:eu-west-2:487402164563:function:ACS-VideoObjectDetection arn:aws:lambda:ap-southeast-1:377565633583:function:ACS-VideoObjectDetection arn:aws:lambda:ca-central-1:918755190332:function:ACS-VideoObjectDetection Video Frame Object Tracking - Use this task type to have workers track the movement of objects in a sequence of video frames (images extracted from a video) using bounding boxes. For example, you can use this task to ask workers to track the movement of objects, such as cars, bikes, and pedestrians. arn:aws:lambda:us-east-1:432418664414:function:ACS-VideoObjectTracking arn:aws:lambda:us-east-2:266458841044:function:ACS-VideoObjectTracking arn:aws:lambda:us-west-2:081040173940:function:ACS-VideoObjectTracking arn:aws:lambda:eu-west-1:568282634449:function:ACS-VideoObjectTracking arn:aws:lambda:ap-northeast-1:477331159723:function:ACS-VideoObjectTracking arn:aws:lambda:ap-southeast-2:454466003867:function:ACS-VideoObjectTracking arn:aws:lambda:ap-south-1:565803892007:function:ACS-VideoObjectTracking arn:aws:lambda:eu-central-1:203001061592:function:ACS-VideoObjectTracking arn:aws:lambda:ap-northeast-2:845288260483:function:ACS-VideoObjectTracking arn:aws:lambda:eu-west-2:487402164563:function:ACS-VideoObjectTracking arn:aws:lambda:ap-southeast-1:377565633583:function:ACS-VideoObjectTracking arn:aws:lambda:ca-central-1:918755190332:function:ACS-VideoObjectTracking 3D Point Cloud Object Detection - Use this task type when you want workers to classify objects in a 3D point cloud by drawing 3D cuboids around objects. For example, you can use this task type to ask workers to identify different types of objects in a point cloud, such as cars, bikes, and pedestrians. arn:aws:lambda:us-east-1:432418664414:function:ACS-3DPointCloudObjectDetection arn:aws:lambda:us-east-2:266458841044:function:ACS-3DPointCloudObjectDetection arn:aws:lambda:us-west-2:081040173940:function:ACS-3DPointCloudObjectDetection arn:aws:lambda:eu-west-1:568282634449:function:ACS-3DPointCloudObjectDetection arn:aws:lambda:ap-northeast-1:477331159723:function:ACS-3DPointCloudObjectDetection arn:aws:lambda:ap-southeast-2:454466003867:function:ACS-3DPointCloudObjectDetection arn:aws:lambda:ap-south-1:565803892007:function:ACS-3DPointCloudObjectDetection arn:aws:lambda:eu-central-1:203001061592:function:ACS-3DPointCloudObjectDetection arn:aws:lambda:ap-northeast-2:845288260483:function:ACS-3DPointCloudObjectDetection arn:aws:lambda:eu-west-2:487402164563:function:ACS-3DPointCloudObjectDetection arn:aws:lambda:ap-southeast-1:377565633583:function:ACS-3DPointCloudObjectDetection arn:aws:lambda:ca-central-1:918755190332:function:ACS-3DPointCloudObjectDetection 3D Point Cloud Object Tracking - Use this task type when you want workers to draw 3D cuboids around objects that appear in a sequence of 3D point cloud frames. For example, you can use this task type to ask workers to track the movement of vehicles across multiple point cloud frames. arn:aws:lambda:us-east-1:432418664414:function:ACS-3DPointCloudObjectTracking arn:aws:lambda:us-east-2:266458841044:function:ACS-3DPointCloudObjectTracking arn:aws:lambda:us-west-2:081040173940:function:ACS-3DPointCloudObjectTracking arn:aws:lambda:eu-west-1:568282634449:function:ACS-3DPointCloudObjectTracking arn:aws:lambda:ap-northeast-1:477331159723:function:ACS-3DPointCloudObjectTracking arn:aws:lambda:ap-southeast-2:454466003867:function:ACS-3DPointCloudObjectTracking arn:aws:lambda:ap-south-1:565803892007:function:ACS-3DPointCloudObjectTracking arn:aws:lambda:eu-central-1:203001061592:function:ACS-3DPointCloudObjectTracking arn:aws:lambda:ap-northeast-2:845288260483:function:ACS-3DPointCloudObjectTracking arn:aws:lambda:eu-west-2:487402164563:function:ACS-3DPointCloudObjectTracking arn:aws:lambda:ap-southeast-1:377565633583:function:ACS-3DPointCloudObjectTracking arn:aws:lambda:ca-central-1:918755190332:function:ACS-3DPointCloudObjectTracking 3D Point Cloud Semantic Segmentation - Use this task type when you want workers to create a point-level semantic segmentation masks by painting objects in a 3D point cloud using different colors where each color is assigned to one of the classes you specify. arn:aws:lambda:us-east-1:432418664414:function:ACS-3DPointCloudSemanticSegmentation arn:aws:lambda:us-east-2:266458841044:function:ACS-3DPointCloudSemanticSegmentation arn:aws:lambda:us-west-2:081040173940:function:ACS-3DPointCloudSemanticSegmentation arn:aws:lambda:eu-west-1:568282634449:function:ACS-3DPointCloudSemanticSegmentation arn:aws:lambda:ap-northeast-1:477331159723:function:ACS-3DPointCloudSemanticSegmentation arn:aws:lambda:ap-southeast-2:454466003867:function:ACS-3DPointCloudSemanticSegmentation arn:aws:lambda:ap-south-1:565803892007:function:ACS-3DPointCloudSemanticSegmentation arn:aws:lambda:eu-central-1:203001061592:function:ACS-3DPointCloudSemanticSegmentation arn:aws:lambda:ap-northeast-2:845288260483:function:ACS-3DPointCloudSemanticSegmentation arn:aws:lambda:eu-west-2:487402164563:function:ACS-3DPointCloudSemanticSegmentation arn:aws:lambda:ap-southeast-1:377565633583:function:ACS-3DPointCloudSemanticSegmentation arn:aws:lambda:ca-central-1:918755190332:function:ACS-3DPointCloudSemanticSegmentation Use the following ARNs for Label Verification and Adjustment Jobs Use label verification and adjustment jobs to review and adjust labels. To learn more, see Verify and Adjust Labels . Semantic Segmentation Adjustment - Treats each pixel in an image as a multi-class classification and treats pixel adjusted annotations from workers as "votes" for the correct label. arn:aws:lambda:us-east-1:432418664414:function:ACS-AdjustmentSemanticSegmentation arn:aws:lambda:us-east-2:266458841044:function:ACS-AdjustmentSemanticSegmentation arn:aws:lambda:us-west-2:081040173940:function:ACS-AdjustmentSemanticSegmentation arn:aws:lambda:eu-west-1:568282634449:function:ACS-AdjustmentSemanticSegmentation arn:aws:lambda:ap-northeast-1:477331159723:function:ACS-AdjustmentSemanticSegmentation arn:aws:lambda:ap-southeast-2:454466003867:function:ACS-AdjustmentSemanticSegmentation arn:aws:lambda:ap-south-1:565803892007:function:ACS-AdjustmentSemanticSegmentation arn:aws:lambda:eu-central-1:203001061592:function:ACS-AdjustmentSemanticSegmentation arn:aws:lambda:ap-northeast-2:845288260483:function:ACS-AdjustmentSemanticSegmentation arn:aws:lambda:eu-west-2:487402164563:function:ACS-AdjustmentSemanticSegmentation arn:aws:lambda:ap-southeast-1:377565633583:function:ACS-AdjustmentSemanticSegmentation arn:aws:lambda:ca-central-1:918755190332:function:ACS-AdjustmentSemanticSegmentation Semantic Segmentation Verification - Uses a variant of the Expectation Maximization approach to estimate the true class of verification judgment for semantic segmentation labels based on annotations from individual workers. arn:aws:lambda:us-east-1:432418664414:function:ACS-VerificationSemanticSegmentation arn:aws:lambda:us-east-2:266458841044:function:ACS-VerificationSemanticSegmentation arn:aws:lambda:us-west-2:081040173940:function:ACS-VerificationSemanticSegmentation arn:aws:lambda:eu-west-1:568282634449:function:ACS-VerificationSemanticSegmentation arn:aws:lambda:ap-northeast-1:477331159723:function:ACS-VerificationSemanticSegmentation arn:aws:lambda:ap-southeast-2:454466003867:function:ACS-VerificationSemanticSegmentation arn:aws:lambda:ap-south-1:565803892007:function:ACS-VerificationSemanticSegmentation arn:aws:lambda:eu-central-1:203001061592:function:ACS-VerificationSemanticSegmentation arn:aws:lambda:ap-northeast-2:845288260483:function:ACS-VerificationSemanticSegmentation arn:aws:lambda:eu-west-2:487402164563:function:ACS-VerificationSemanticSegmentation arn:aws:lambda:ap-southeast-1:377565633583:function:ACS-VerificationSemanticSegmentation arn:aws:lambda:ca-central-1:918755190332:function:ACS-VerificationSemanticSegmentation Bounding Box Adjustment - Finds the most similar boxes from different workers based on the Jaccard index of the adjusted annotations. arn:aws:lambda:us-east-1:432418664414:function:ACS-AdjustmentBoundingBox arn:aws:lambda:us-east-2:266458841044:function:ACS-AdjustmentBoundingBox arn:aws:lambda:us-west-2:081040173940:function:ACS-AdjustmentBoundingBox arn:aws:lambda:eu-west-1:568282634449:function:ACS-AdjustmentBoundingBox arn:aws:lambda:ap-northeast-1:477331159723:function:ACS-AdjustmentBoundingBox arn:aws:lambda:ap-southeast-2:454466003867:function:ACS-AdjustmentBoundingBox arn:aws:lambda:ap-south-1:565803892007:function:ACS-AdjustmentBoundingBox arn:aws:lambda:eu-central-1:203001061592:function:ACS-AdjustmentBoundingBox arn:aws:lambda:ap-northeast-2:845288260483:function:ACS-AdjustmentBoundingBox arn:aws:lambda:eu-west-2:487402164563:function:ACS-AdjustmentBoundingBox arn:aws:lambda:ap-southeast-1:377565633583:function:ACS-AdjustmentBoundingBox arn:aws:lambda:ca-central-1:918755190332:function:ACS-AdjustmentBoundingBox Bounding Box Verification - Uses a variant of the Expectation Maximization approach to estimate the true class of verification judgement for bounding box labels based on annotations from individual workers. arn:aws:lambda:us-east-1:432418664414:function:ACS-VerificationBoundingBox arn:aws:lambda:us-east-2:266458841044:function:ACS-VerificationBoundingBox arn:aws:lambda:us-west-2:081040173940:function:ACS-VerificationBoundingBox arn:aws:lambda:eu-west-1:568282634449:function:ACS-VerificationBoundingBox arn:aws:lambda:ap-northeast-1:477331159723:function:ACS-VerificationBoundingBox arn:aws:lambda:ap-southeast-2:454466003867:function:ACS-VerificationBoundingBox arn:aws:lambda:ap-south-1:565803892007:function:ACS-VerificationBoundingBox arn:aws:lambda:eu-central-1:203001061592:function:ACS-VerificationBoundingBox arn:aws:lambda:ap-northeast-2:845288260483:function:ACS-VerificationBoundingBox arn:aws:lambda:eu-west-2:487402164563:function:ACS-VerificationBoundingBox arn:aws:lambda:ap-southeast-1:377565633583:function:ACS-VerificationBoundingBox arn:aws:lambda:ca-central-1:918755190332:function:ACS-VerificationBoundingBox Video Frame Object Detection Adjustment - Use this task type when you want workers to adjust bounding boxes that workers have added to video frames to classify and localize objects in a sequence of video frames. arn:aws:lambda:us-east-1:432418664414:function:ACS-AdjustmentVideoObjectDetection arn:aws:lambda:us-east-2:266458841044:function:ACS-AdjustmentVideoObjectDetection arn:aws:lambda:us-west-2:081040173940:function:ACS-AdjustmentVideoObjectDetection arn:aws:lambda:eu-west-1:568282634449:function:ACS-AdjustmentVideoObjectDetection arn:aws:lambda:ap-northeast-1:477331159723:function:ACS-AdjustmentVideoObjectDetection arn:aws:lambda:ap-southeast-2:454466003867:function:ACS-AdjustmentVideoObjectDetection arn:aws:lambda:ap-south-1:565803892007:function:ACS-AdjustmentVideoObjectDetection arn:aws:lambda:eu-central-1:203001061592:function:ACS-AdjustmentVideoObjectDetection arn:aws:lambda:ap-northeast-2:845288260483:function:ACS-AdjustmentVideoObjectDetection arn:aws:lambda:eu-west-2:487402164563:function:ACS-AdjustmentVideoObjectDetection arn:aws:lambda:ap-southeast-1:377565633583:function:ACS-AdjustmentVideoObjectDetection arn:aws:lambda:ca-central-1:918755190332:function:ACS-AdjustmentVideoObjectDetection Video Frame Object Tracking Adjustment - Use this task type when you want workers to adjust bounding boxes that workers have added to video frames to track object movement across a sequence of video frames. arn:aws:lambda:us-east-1:432418664414:function:ACS-AdjustmentVideoObjectTracking arn:aws:lambda:us-east-2:266458841044:function:ACS-AdjustmentVideoObjectTracking arn:aws:lambda:us-west-2:081040173940:function:ACS-AdjustmentVideoObjectTracking arn:aws:lambda:eu-west-1:568282634449:function:ACS-AdjustmentVideoObjectTracking arn:aws:lambda:ap-northeast-1:477331159723:function:ACS-AdjustmentVideoObjectTracking arn:aws:lambda:ap-southeast-2:454466003867:function:ACS-AdjustmentVideoObjectTracking arn:aws:lambda:ap-south-1:565803892007:function:ACS-AdjustmentVideoObjectTracking arn:aws:lambda:eu-central-1:203001061592:function:ACS-AdjustmentVideoObjectTracking arn:aws:lambda:ap-northeast-2:845288260483:function:ACS-AdjustmentVideoObjectTracking arn:aws:lambda:eu-west-2:487402164563:function:ACS-AdjustmentVideoObjectTracking arn:aws:lambda:ap-southeast-1:377565633583:function:ACS-AdjustmentVideoObjectTracking arn:aws:lambda:ca-central-1:918755190332:function:ACS-AdjustmentVideoObjectTracking 3D Point Cloud Object Detection Adjustment - Use this task type when you want workers to adjust 3D cuboids around objects in a 3D point cloud. arn:aws:lambda:us-east-1:432418664414:function:ACS-Adjustment3DPointCloudObjectDetection arn:aws:lambda:us-east-2:266458841044:function:ACS-Adjustment3DPointCloudObjectDetection arn:aws:lambda:us-west-2:081040173940:function:ACS-Adjustment3DPointCloudObjectDetection arn:aws:lambda:eu-west-1:568282634449:function:ACS-Adjustment3DPointCloudObjectDetection arn:aws:lambda:ap-northeast-1:477331159723:function:ACS-Adjustment3DPointCloudObjectDetection arn:aws:lambda:ap-southeast-2:454466003867:function:ACS-Adjustment3DPointCloudObjectDetection arn:aws:lambda:ap-south-1:565803892007:function:ACS-Adjustment3DPointCloudObjectDetection arn:aws:lambda:eu-central-1:203001061592:function:ACS-Adjustment3DPointCloudObjectDetection arn:aws:lambda:ap-northeast-2:845288260483:function:ACS-Adjustment3DPointCloudObjectDetection arn:aws:lambda:eu-west-2:487402164563:function:ACS-Adjustment3DPointCloudObjectDetection arn:aws:lambda:ap-southeast-1:377565633583:function:ACS-Adjustment3DPointCloudObjectDetection arn:aws:lambda:ca-central-1:918755190332:function:ACS-Adjustment3DPointCloudObjectDetection 3D Point Cloud Object Tracking Adjustment - Use this task type when you want workers to adjust 3D cuboids around objects that appear in a sequence of 3D point cloud frames. arn:aws:lambda:us-east-1:432418664414:function:ACS-Adjustment3DPointCloudObjectTracking arn:aws:lambda:us-east-2:266458841044:function:ACS-Adjustment3DPointCloudObjectTracking arn:aws:lambda:us-west-2:081040173940:function:ACS-Adjustment3DPointCloudObjectTracking arn:aws:lambda:eu-west-1:568282634449:function:ACS-Adjustment3DPointCloudObjectTracking arn:aws:lambda:ap-northeast-1:477331159723:function:ACS-Adjustment3DPointCloudObjectTracking arn:aws:lambda:ap-southeast-2:454466003867:function:ACS-Adjustment3DPointCloudObjectTracking arn:aws:lambda:ap-south-1:565803892007:function:ACS-Adjustment3DPointCloudObjectTracking arn:aws:lambda:eu-central-1:203001061592:function:ACS-Adjustment3DPointCloudObjectTracking arn:aws:lambda:ap-northeast-2:845288260483:function:ACS-Adjustment3DPointCloudObjectTracking arn:aws:lambda:eu-west-2:487402164563:function:ACS-Adjustment3DPointCloudObjectTracking arn:aws:lambda:ap-southeast-1:377565633583:function:ACS-Adjustment3DPointCloudObjectTracking arn:aws:lambda:ca-central-1:918755190332:function:ACS-Adjustment3DPointCloudObjectTracking 3D Point Cloud Semantic Segmentation Adjustment - Use this task type when you want workers to adjust a point-level semantic segmentation masks using a paint tool. arn:aws:lambda:us-east-1:432418664414:function:ACS-3DPointCloudSemanticSegmentation arn:aws:lambda:us-east-1:432418664414:function:ACS-Adjustment3DPointCloudSemanticSegmentation arn:aws:lambda:us-east-2:266458841044:function:ACS-Adjustment3DPointCloudSemanticSegmentation arn:aws:lambda:us-west-2:081040173940:function:ACS-Adjustment3DPointCloudSemanticSegmentation arn:aws:lambda:eu-west-1:568282634449:function:ACS-Adjustment3DPointCloudSemanticSegmentation arn:aws:lambda:ap-northeast-1:477331159723:function:ACS-Adjustment3DPointCloudSemanticSegmentation arn:aws:lambda:ap-southeast-2:454466003867:function:ACS-Adjustment3DPointCloudSemanticSegmentation arn:aws:lambda:ap-south-1:565803892007:function:ACS-Adjustment3DPointCloudSemanticSegmentation arn:aws:lambda:eu-central-1:203001061592:function:ACS-Adjustment3DPointCloudSemanticSegmentation arn:aws:lambda:ap-northeast-2:845288260483:function:ACS-Adjustment3DPointCloudSemanticSegmentation arn:aws:lambda:eu-west-2:487402164563:function:ACS-Adjustment3DPointCloudSemanticSegmentation arn:aws:lambda:ap-southeast-1:377565633583:function:ACS-Adjustment3DPointCloudSemanticSegmentation arn:aws:lambda:ca-central-1:918755190332:function:ACS-Adjustment3DPointCloudSemanticSegmentation
|
|
1183
1183
|
"""
|
|
1184
1184
|
|
|
1185
1185
|
annotation_consolidation_lambda_arn: str
|
|
@@ -3306,12 +3306,14 @@ class CodeEditorAppSettings(Base):
|
|
|
3306
3306
|
custom_images: A list of custom SageMaker images that are configured to run as a Code Editor app.
|
|
3307
3307
|
lifecycle_config_arns: The Amazon Resource Name (ARN) of the Code Editor application lifecycle configuration.
|
|
3308
3308
|
app_lifecycle_management: Settings that are used to configure and manage the lifecycle of CodeEditor applications.
|
|
3309
|
+
built_in_lifecycle_config_arn: The lifecycle configuration that runs before the default lifecycle configuration. It can override changes made in the default lifecycle configuration.
|
|
3309
3310
|
"""
|
|
3310
3311
|
|
|
3311
3312
|
default_resource_spec: Optional[ResourceSpec] = Unassigned()
|
|
3312
3313
|
custom_images: Optional[List[CustomImage]] = Unassigned()
|
|
3313
3314
|
lifecycle_config_arns: Optional[List[str]] = Unassigned()
|
|
3314
3315
|
app_lifecycle_management: Optional[AppLifecycleManagement] = Unassigned()
|
|
3316
|
+
built_in_lifecycle_config_arn: Optional[str] = Unassigned()
|
|
3315
3317
|
|
|
3316
3318
|
|
|
3317
3319
|
class CodeRepository(Base):
|
|
@@ -3847,7 +3849,7 @@ class OutputConfig(Base):
|
|
|
3847
3849
|
s3_output_location: Identifies the S3 bucket where you want Amazon SageMaker to store the model artifacts. For example, s3://bucket-name/key-name-prefix.
|
|
3848
3850
|
target_device: Identifies the target device or the machine learning instance that you want to run your model on after the compilation has completed. Alternatively, you can specify OS, architecture, and accelerator using TargetPlatform fields. It can be used instead of TargetPlatform. Currently ml_trn1 is available only in US East (N. Virginia) Region, and ml_inf2 is available only in US East (Ohio) Region.
|
|
3849
3851
|
target_platform: Contains information about a target platform that you want your model to run on, such as OS, architecture, and accelerators. It is an alternative of TargetDevice. The following examples show how to configure the TargetPlatform and CompilerOptions JSON strings for popular target platforms: Raspberry Pi 3 Model B+ "TargetPlatform": {"Os": "LINUX", "Arch": "ARM_EABIHF"}, "CompilerOptions": {'mattr': ['+neon']} Jetson TX2 "TargetPlatform": {"Os": "LINUX", "Arch": "ARM64", "Accelerator": "NVIDIA"}, "CompilerOptions": {'gpu-code': 'sm_62', 'trt-ver': '6.0.1', 'cuda-ver': '10.0'} EC2 m5.2xlarge instance OS "TargetPlatform": {"Os": "LINUX", "Arch": "X86_64", "Accelerator": "NVIDIA"}, "CompilerOptions": {'mcpu': 'skylake-avx512'} RK3399 "TargetPlatform": {"Os": "LINUX", "Arch": "ARM64", "Accelerator": "MALI"} ARMv7 phone (CPU) "TargetPlatform": {"Os": "ANDROID", "Arch": "ARM_EABI"}, "CompilerOptions": {'ANDROID_PLATFORM': 25, 'mattr': ['+neon']} ARMv8 phone (CPU) "TargetPlatform": {"Os": "ANDROID", "Arch": "ARM64"}, "CompilerOptions": {'ANDROID_PLATFORM': 29}
|
|
3850
|
-
compiler_options: Specifies additional parameters for compiler options in JSON format. The compiler options are TargetPlatform specific. It is required for NVIDIA accelerators and highly recommended for CPU compilations. For any other cases, it is optional to specify CompilerOptions. DTYPE: Specifies the data type for the input. When compiling for ml_* (except for ml_inf) instances using PyTorch framework, provide the data type (dtype) of the model's input. "float32" is used if "DTYPE" is not specified. Options for data type are: float32: Use either "float" or "float32". int64: Use either "int64" or "long". For example, {"dtype" : "float32"}. CPU: Compilation for CPU supports the following compiler options. mcpu: CPU micro-architecture. For example, {'mcpu': 'skylake-avx512'} mattr: CPU flags. For example, {'mattr': ['+neon', '+vfpv4']} ARM: Details of ARM CPU compilations. NEON: NEON is an implementation of the Advanced SIMD extension used in ARMv7 processors. For example, add {'mattr': ['+neon']} to the compiler options if compiling for ARM 32-bit platform with the NEON support. NVIDIA: Compilation for NVIDIA GPU supports the following compiler options. gpu_code: Specifies the targeted architecture. trt-ver: Specifies the TensorRT versions in x.y.z. format. cuda-ver: Specifies the CUDA version in x.y format. For example, {'gpu-code': 'sm_72', 'trt-ver': '6.0.1', 'cuda-ver': '10.1'} ANDROID: Compilation for the Android OS supports the following compiler options: ANDROID_PLATFORM: Specifies the Android API levels. Available levels range from 21 to 29. For example, {'ANDROID_PLATFORM': 28}. mattr: Add {'mattr': ['+neon']} to compiler options if compiling for ARM 32-bit platform with NEON support. INFERENTIA: Compilation for target ml_inf1 uses compiler options passed in as a JSON string. For example, "CompilerOptions": "\"--verbose 1 --num-neuroncores 2 -O2\"". For information about supported compiler options, see Neuron Compiler CLI Reference Guide. CoreML: Compilation for the CoreML OutputConfig TargetDevice supports the following compiler options: class_labels: Specifies the classification labels file name inside input tar.gz file. For example, {"class_labels": "imagenet_labels_1000.txt"}. Labels inside the txt file should be separated by newlines.
|
|
3852
|
+
compiler_options: Specifies additional parameters for compiler options in JSON format. The compiler options are TargetPlatform specific. It is required for NVIDIA accelerators and highly recommended for CPU compilations. For any other cases, it is optional to specify CompilerOptions. DTYPE: Specifies the data type for the input. When compiling for ml_* (except for ml_inf) instances using PyTorch framework, provide the data type (dtype) of the model's input. "float32" is used if "DTYPE" is not specified. Options for data type are: float32: Use either "float" or "float32". int64: Use either "int64" or "long". For example, {"dtype" : "float32"}. CPU: Compilation for CPU supports the following compiler options. mcpu: CPU micro-architecture. For example, {'mcpu': 'skylake-avx512'} mattr: CPU flags. For example, {'mattr': ['+neon', '+vfpv4']} ARM: Details of ARM CPU compilations. NEON: NEON is an implementation of the Advanced SIMD extension used in ARMv7 processors. For example, add {'mattr': ['+neon']} to the compiler options if compiling for ARM 32-bit platform with the NEON support. NVIDIA: Compilation for NVIDIA GPU supports the following compiler options. gpu_code: Specifies the targeted architecture. trt-ver: Specifies the TensorRT versions in x.y.z. format. cuda-ver: Specifies the CUDA version in x.y format. For example, {'gpu-code': 'sm_72', 'trt-ver': '6.0.1', 'cuda-ver': '10.1'} ANDROID: Compilation for the Android OS supports the following compiler options: ANDROID_PLATFORM: Specifies the Android API levels. Available levels range from 21 to 29. For example, {'ANDROID_PLATFORM': 28}. mattr: Add {'mattr': ['+neon']} to compiler options if compiling for ARM 32-bit platform with NEON support. INFERENTIA: Compilation for target ml_inf1 uses compiler options passed in as a JSON string. For example, "CompilerOptions": "\"--verbose 1 --num-neuroncores 2 -O2\"". For information about supported compiler options, see Neuron Compiler CLI Reference Guide. CoreML: Compilation for the CoreML OutputConfig TargetDevice supports the following compiler options: class_labels: Specifies the classification labels file name inside input tar.gz file. For example, {"class_labels": "imagenet_labels_1000.txt"}. Labels inside the txt file should be separated by newlines.
|
|
3851
3853
|
kms_key_id: The Amazon Web Services Key Management Service key (Amazon Web Services KMS) that Amazon SageMaker uses to encrypt your output models with Amazon S3 server-side encryption after compilation job. If you don't provide a KMS key ID, Amazon SageMaker uses the default KMS key for Amazon S3 for your role's account. For more information, see KMS-Managed Encryption Keys in the Amazon Simple Storage Service Developer Guide. The KmsKeyId can be any of the following formats: Key ID: 1234abcd-12ab-34cd-56ef-1234567890ab Key ARN: arn:aws:kms:us-west-2:111122223333:key/1234abcd-12ab-34cd-56ef-1234567890ab Alias name: alias/ExampleAlias Alias name ARN: arn:aws:kms:us-west-2:111122223333:alias/ExampleAlias
|
|
3852
3854
|
"""
|
|
3853
3855
|
|
|
@@ -4235,6 +4237,7 @@ class JupyterLabAppSettings(Base):
|
|
|
4235
4237
|
code_repositories: A list of Git repositories that SageMaker automatically displays to users for cloning in the JupyterLab application.
|
|
4236
4238
|
app_lifecycle_management: Indicates whether idle shutdown is activated for JupyterLab applications.
|
|
4237
4239
|
emr_settings: The configuration parameters that specify the IAM roles assumed by the execution role of SageMaker (assumable roles) and the cluster instances or job execution environments (execution roles or runtime roles) to manage and access resources required for running Amazon EMR clusters or Amazon EMR Serverless applications.
|
|
4240
|
+
built_in_lifecycle_config_arn: The lifecycle configuration that runs before the default lifecycle configuration. It can override changes made in the default lifecycle configuration.
|
|
4238
4241
|
"""
|
|
4239
4242
|
|
|
4240
4243
|
default_resource_spec: Optional[ResourceSpec] = Unassigned()
|
|
@@ -4243,6 +4246,7 @@ class JupyterLabAppSettings(Base):
|
|
|
4243
4246
|
code_repositories: Optional[List[CodeRepository]] = Unassigned()
|
|
4244
4247
|
app_lifecycle_management: Optional[AppLifecycleManagement] = Unassigned()
|
|
4245
4248
|
emr_settings: Optional[EmrSettings] = Unassigned()
|
|
4249
|
+
built_in_lifecycle_config_arn: Optional[str] = Unassigned()
|
|
4246
4250
|
|
|
4247
4251
|
|
|
4248
4252
|
class DefaultEbsStorageSettings(Base):
|
|
@@ -4357,24 +4361,24 @@ class UserSettings(Base):
|
|
|
4357
4361
|
|
|
4358
4362
|
Attributes
|
|
4359
4363
|
----------------------
|
|
4360
|
-
execution_role: The execution role for the user.
|
|
4361
|
-
security_groups: The security groups for the Amazon Virtual Private Cloud (VPC) that the domain uses for communication. Optional when the CreateDomain.AppNetworkAccessType parameter is set to PublicInternetOnly. Required when the CreateDomain.AppNetworkAccessType parameter is set to VpcOnly, unless specified as part of the DefaultUserSettings for the domain. Amazon SageMaker adds a security group to allow NFS traffic from Amazon SageMaker Studio. Therefore, the number of security groups that you can specify is one less than the maximum number shown.
|
|
4364
|
+
execution_role: The execution role for the user. SageMaker applies this setting only to private spaces that the user creates in the domain. SageMaker doesn't apply this setting to shared spaces.
|
|
4365
|
+
security_groups: The security groups for the Amazon Virtual Private Cloud (VPC) that the domain uses for communication. Optional when the CreateDomain.AppNetworkAccessType parameter is set to PublicInternetOnly. Required when the CreateDomain.AppNetworkAccessType parameter is set to VpcOnly, unless specified as part of the DefaultUserSettings for the domain. Amazon SageMaker adds a security group to allow NFS traffic from Amazon SageMaker Studio. Therefore, the number of security groups that you can specify is one less than the maximum number shown. SageMaker applies these settings only to private spaces that the user creates in the domain. SageMaker doesn't apply these settings to shared spaces.
|
|
4362
4366
|
sharing_settings: Specifies options for sharing Amazon SageMaker Studio notebooks.
|
|
4363
4367
|
jupyter_server_app_settings: The Jupyter server's app settings.
|
|
4364
4368
|
kernel_gateway_app_settings: The kernel gateway app settings.
|
|
4365
4369
|
tensor_board_app_settings: The TensorBoard app settings.
|
|
4366
4370
|
r_studio_server_pro_app_settings: A collection of settings that configure user interaction with the RStudioServerPro app.
|
|
4367
4371
|
r_session_app_settings: A collection of settings that configure the RSessionGateway app.
|
|
4368
|
-
canvas_app_settings: The Canvas app settings.
|
|
4369
|
-
code_editor_app_settings: The Code Editor application settings.
|
|
4370
|
-
jupyter_lab_app_settings: The settings for the JupyterLab application.
|
|
4371
|
-
space_storage_settings: The storage settings for a space.
|
|
4372
|
+
canvas_app_settings: The Canvas app settings. SageMaker applies these settings only to private spaces that SageMaker creates for the Canvas app.
|
|
4373
|
+
code_editor_app_settings: The Code Editor application settings. SageMaker applies these settings only to private spaces that the user creates in the domain. SageMaker doesn't apply these settings to shared spaces.
|
|
4374
|
+
jupyter_lab_app_settings: The settings for the JupyterLab application. SageMaker applies these settings only to private spaces that the user creates in the domain. SageMaker doesn't apply these settings to shared spaces.
|
|
4375
|
+
space_storage_settings: The storage settings for a space. SageMaker applies these settings only to private spaces that the user creates in the domain. SageMaker doesn't apply these settings to shared spaces.
|
|
4372
4376
|
default_landing_uri: The default experience that the user is directed to when accessing the domain. The supported values are: studio::: Indicates that Studio is the default experience. This value can only be passed if StudioWebPortal is set to ENABLED. app:JupyterServer:: Indicates that Studio Classic is the default experience.
|
|
4373
4377
|
studio_web_portal: Whether the user can access Studio. If this value is set to DISABLED, the user cannot access Studio, even if that is the default experience for the domain.
|
|
4374
|
-
custom_posix_user_config: Details about the POSIX identity that is used for file system operations.
|
|
4375
|
-
custom_file_system_configs: The settings for assigning a custom file system to a user profile. Permitted users can access this file system in Amazon SageMaker Studio.
|
|
4378
|
+
custom_posix_user_config: Details about the POSIX identity that is used for file system operations. SageMaker applies these settings only to private spaces that the user creates in the domain. SageMaker doesn't apply these settings to shared spaces.
|
|
4379
|
+
custom_file_system_configs: The settings for assigning a custom file system to a user profile. Permitted users can access this file system in Amazon SageMaker Studio. SageMaker applies these settings only to private spaces that the user creates in the domain. SageMaker doesn't apply these settings to shared spaces.
|
|
4376
4380
|
studio_web_portal_settings: Studio settings. If these settings are applied on a user level, they take priority over the settings applied on a domain level.
|
|
4377
|
-
auto_mount_home_efs: Indicates whether auto-mounting of an EFS volume is supported for the user profile. The DefaultAsDomain value is only supported for user profiles. Do not use the DefaultAsDomain value when setting this parameter for a domain.
|
|
4381
|
+
auto_mount_home_efs: Indicates whether auto-mounting of an EFS volume is supported for the user profile. The DefaultAsDomain value is only supported for user profiles. Do not use the DefaultAsDomain value when setting this parameter for a domain. SageMaker applies this setting only to private spaces that the user creates in the domain. SageMaker doesn't apply this setting to shared spaces.
|
|
4378
4382
|
"""
|
|
4379
4383
|
|
|
4380
4384
|
execution_role: Optional[str] = Unassigned()
|
|
@@ -4455,7 +4459,7 @@ class DomainSettings(Base):
|
|
|
4455
4459
|
class DefaultSpaceSettings(Base):
|
|
4456
4460
|
"""
|
|
4457
4461
|
DefaultSpaceSettings
|
|
4458
|
-
|
|
4462
|
+
The default settings for shared spaces that users create in the domain. SageMaker applies these settings only to shared spaces. It doesn't apply them to private spaces.
|
|
4459
4463
|
|
|
4460
4464
|
Attributes
|
|
4461
4465
|
----------------------
|
|
@@ -4617,7 +4621,7 @@ class ProductionVariant(Base):
|
|
|
4617
4621
|
initial_instance_count: Number of instances to launch initially.
|
|
4618
4622
|
instance_type: The ML compute instance type.
|
|
4619
4623
|
initial_variant_weight: Determines initial traffic distribution among all of the models that you specify in the endpoint configuration. The traffic to a production variant is determined by the ratio of the VariantWeight to the sum of all VariantWeight values across all ProductionVariants. If unspecified, it defaults to 1.0.
|
|
4620
|
-
accelerator_type:
|
|
4624
|
+
accelerator_type: This parameter is no longer supported. Elastic Inference (EI) is no longer available. This parameter was used to specify the size of the EI instance to use for the production variant.
|
|
4621
4625
|
core_dump_config: Specifies configuration for a core dump from the model container when the process crashes.
|
|
4622
4626
|
serverless_config: The serverless configuration for an endpoint. Specifies a serverless endpoint configuration instead of an instance-based endpoint configuration.
|
|
4623
4627
|
volume_size_in_gb: The size, in GB, of the ML storage volume attached to individual inference instance associated with the production variant. Currently only Amazon EBS gp2 storage volumes are supported.
|
|
@@ -7765,7 +7769,7 @@ class PendingProductionVariantSummary(Base):
|
|
|
7765
7769
|
current_instance_count: The number of instances associated with the variant.
|
|
7766
7770
|
desired_instance_count: The number of instances requested in this deployment, as specified in the endpoint configuration for the endpoint. The value is taken from the request to the CreateEndpointConfig operation.
|
|
7767
7771
|
instance_type: The type of instances associated with the variant.
|
|
7768
|
-
accelerator_type:
|
|
7772
|
+
accelerator_type: This parameter is no longer supported. Elastic Inference (EI) is no longer available. This parameter was used to specify the size of the EI instance to use for the production variant.
|
|
7769
7773
|
variant_status: The endpoint variant status which describes the current deployment stage status or operational status.
|
|
7770
7774
|
current_serverless_config: The serverless configuration for the endpoint.
|
|
7771
7775
|
desired_serverless_config: The serverless configuration requested for this deployment, as specified in the endpoint configuration for the endpoint.
|
sagemaker_core/main/utils.py
CHANGED
|
@@ -160,6 +160,12 @@ def enable_textual_rich_console_and_traceback():
|
|
|
160
160
|
textual_rich_console_and_traceback_enabled = True
|
|
161
161
|
|
|
162
162
|
|
|
163
|
+
def get_rich_handler():
|
|
164
|
+
handler = RichHandler(markup=True)
|
|
165
|
+
handler.setFormatter(logging.Formatter("%(message)s"))
|
|
166
|
+
return handler
|
|
167
|
+
|
|
168
|
+
|
|
163
169
|
def get_textual_rich_logger(name: str, log_level: str = "INFO") -> logging.Logger:
|
|
164
170
|
"""
|
|
165
171
|
Get a logger with textual rich handler.
|
|
@@ -175,7 +181,7 @@ def get_textual_rich_logger(name: str, log_level: str = "INFO") -> logging.Logge
|
|
|
175
181
|
|
|
176
182
|
"""
|
|
177
183
|
enable_textual_rich_console_and_traceback()
|
|
178
|
-
handler =
|
|
184
|
+
handler = get_rich_handler()
|
|
179
185
|
logging.basicConfig(level=getattr(logging, log_level), handlers=[handler])
|
|
180
186
|
logger = logging.getLogger(name)
|
|
181
187
|
|
|
@@ -217,8 +223,8 @@ def configure_logging(log_level=None):
|
|
|
217
223
|
# reset any currently associated handlers with log level
|
|
218
224
|
for handler in _logger.handlers:
|
|
219
225
|
_logger.removeHandler(handler)
|
|
220
|
-
|
|
221
|
-
_logger.addHandler(
|
|
226
|
+
rich_handler = get_rich_handler()
|
|
227
|
+
_logger.addHandler(rich_handler)
|
|
222
228
|
|
|
223
229
|
|
|
224
230
|
def is_snake_case(s: str):
|
|
@@ -20,6 +20,8 @@ OBJECT_METHODS = set(
|
|
|
20
20
|
|
|
21
21
|
TERMINAL_STATES = set(["Completed", "Stopped", "Deleted", "Failed", "Succeeded", "Cancelled"])
|
|
22
22
|
|
|
23
|
+
RESOURCE_WITH_LOGS = set(["TrainingJob", "ProcessingJob", "TransformJob"])
|
|
24
|
+
|
|
23
25
|
CONFIGURABLE_ATTRIBUTE_SUBSTRINGS = [
|
|
24
26
|
"kms",
|
|
25
27
|
"s3",
|
|
@@ -29,6 +29,7 @@ from sagemaker_core.tools.constants import (
|
|
|
29
29
|
CONFIG_SCHEMA_FILE_NAME,
|
|
30
30
|
PYTHON_TYPES_TO_BASIC_JSON_TYPES,
|
|
31
31
|
CONFIGURABLE_ATTRIBUTE_SUBSTRINGS,
|
|
32
|
+
RESOURCE_WITH_LOGS,
|
|
32
33
|
)
|
|
33
34
|
from sagemaker_core.tools.method import Method, MethodType
|
|
34
35
|
from sagemaker_core.main.utils import (
|
|
@@ -71,6 +72,8 @@ from sagemaker_core.tools.templates import (
|
|
|
71
72
|
GET_ALL_METHOD_WITH_ARGS_TEMPLATE,
|
|
72
73
|
UPDATE_METHOD_TEMPLATE_WITHOUT_DECORATOR,
|
|
73
74
|
RESOURCE_METHOD_EXCEPTION_DOCSTRING,
|
|
75
|
+
INIT_WAIT_LOGS_TEMPLATE,
|
|
76
|
+
PRINT_WAIT_LOGS,
|
|
74
77
|
)
|
|
75
78
|
from sagemaker_core.tools.data_extractor import (
|
|
76
79
|
load_combined_shapes_data,
|
|
@@ -188,6 +191,7 @@ class ResourcesCodeGen:
|
|
|
188
191
|
"from sagemaker_core.main.utils import SageMakerClient, ResourceIterator, Unassigned, get_textual_rich_logger, "
|
|
189
192
|
"snake_to_pascal, pascal_to_snake, is_not_primitive, is_not_str_dict, is_primitive_list, serialize",
|
|
190
193
|
"from sagemaker_core.main.intelligent_defaults_helper import load_default_configs_for_resource_name, get_config_value",
|
|
194
|
+
"from sagemaker_core.main.logs import MultiLogStreamHandler",
|
|
191
195
|
"from sagemaker_core.main.shapes import *",
|
|
192
196
|
"from sagemaker_core.main.exceptions import *",
|
|
193
197
|
]
|
|
@@ -1541,6 +1545,28 @@ class ResourcesCodeGen:
|
|
|
1541
1545
|
|
|
1542
1546
|
return "'(Unknown)'"
|
|
1543
1547
|
|
|
1548
|
+
def _get_instance_count_ref(self, resource_name: str) -> str:
|
|
1549
|
+
"""Get the instance count reference for a resource object.
|
|
1550
|
+
Args:
|
|
1551
|
+
resource_name (str): The resource name.
|
|
1552
|
+
Returns:
|
|
1553
|
+
str: The instance count reference for resource object
|
|
1554
|
+
"""
|
|
1555
|
+
|
|
1556
|
+
if resource_name == "TrainingJob":
|
|
1557
|
+
return """(
|
|
1558
|
+
sum(instance_group.instance_count for instance_group in self.resource_config.instance_groups)
|
|
1559
|
+
if self.resource_config.instance_groups and not isinstance(self.resource_config.instance_groups, Unassigned)
|
|
1560
|
+
else self.resource_config.instance_count
|
|
1561
|
+
)
|
|
1562
|
+
"""
|
|
1563
|
+
elif resource_name == "TransformJob":
|
|
1564
|
+
return "self.transform_resources.instance_count"
|
|
1565
|
+
elif resource_name == "ProcessingJob":
|
|
1566
|
+
return "self.processing_resources.cluster_config.instance_count"
|
|
1567
|
+
|
|
1568
|
+
raise ValueError(f"Instance count reference not found for resource {resource_name}")
|
|
1569
|
+
|
|
1544
1570
|
def generate_wait_method(self, resource_name: str) -> str:
|
|
1545
1571
|
"""Auto-Generate WAIT Method for a waitable resource.
|
|
1546
1572
|
|
|
@@ -1573,11 +1599,32 @@ class ResourcesCodeGen:
|
|
|
1573
1599
|
)
|
|
1574
1600
|
formatted_failed_block = add_indent(formatted_failed_block, 16)
|
|
1575
1601
|
|
|
1602
|
+
logs_arg = ""
|
|
1603
|
+
logs_arg_doc = ""
|
|
1604
|
+
init_wait_logs = ""
|
|
1605
|
+
print_wait_logs = ""
|
|
1606
|
+
if resource_name in RESOURCE_WITH_LOGS:
|
|
1607
|
+
logs_arg = "logs: Optional[bool] = False,"
|
|
1608
|
+
logs_arg_doc = "logs: Whether to print logs while waiting.\n"
|
|
1609
|
+
|
|
1610
|
+
instance_count = self._get_instance_count_ref(resource_name)
|
|
1611
|
+
init_wait_logs = add_indent(
|
|
1612
|
+
INIT_WAIT_LOGS_TEMPLATE.format(
|
|
1613
|
+
get_instance_count=instance_count,
|
|
1614
|
+
job_type=resource_name,
|
|
1615
|
+
)
|
|
1616
|
+
)
|
|
1617
|
+
print_wait_logs = add_indent(PRINT_WAIT_LOGS, 12)
|
|
1618
|
+
|
|
1576
1619
|
formatted_method = WAIT_METHOD_TEMPLATE.format(
|
|
1577
1620
|
terminal_resource_states=terminal_resource_states,
|
|
1578
1621
|
status_key_path=status_key_path,
|
|
1579
1622
|
failed_error_block=formatted_failed_block,
|
|
1580
1623
|
resource_name=resource_name,
|
|
1624
|
+
logs_arg=logs_arg,
|
|
1625
|
+
logs_arg_doc=logs_arg_doc,
|
|
1626
|
+
init_wait_logs=init_wait_logs,
|
|
1627
|
+
print_wait_logs=print_wait_logs,
|
|
1581
1628
|
)
|
|
1582
1629
|
return formatted_method
|
|
1583
1630
|
|
|
@@ -262,12 +262,31 @@ if "failed" in current_status.lower():
|
|
|
262
262
|
raise FailedStatusError(resource_type="{resource_name}", status=current_status, reason={reason})
|
|
263
263
|
"""
|
|
264
264
|
|
|
265
|
+
INIT_WAIT_LOGS_TEMPLATE = """
|
|
266
|
+
instance_count = {get_instance_count}
|
|
267
|
+
if logs:
|
|
268
|
+
multi_stream_logger = MultiLogStreamHandler(
|
|
269
|
+
log_group_name=f"/aws/sagemaker/{job_type}s",
|
|
270
|
+
log_stream_name_prefix=self.get_name(),
|
|
271
|
+
expected_stream_count=instance_count
|
|
272
|
+
)
|
|
273
|
+
"""
|
|
274
|
+
|
|
275
|
+
PRINT_WAIT_LOGS = """
|
|
276
|
+
if logs and multi_stream_logger.ready():
|
|
277
|
+
stream_log_events = multi_stream_logger.get_latest_log_events()
|
|
278
|
+
for stream_id, event in stream_log_events:
|
|
279
|
+
logger.info(f"{stream_id}:\\n{event['message']}")
|
|
280
|
+
"""
|
|
281
|
+
|
|
282
|
+
|
|
265
283
|
WAIT_METHOD_TEMPLATE = '''
|
|
266
284
|
@Base.add_validate_call
|
|
267
285
|
def wait(
|
|
268
286
|
self,
|
|
269
287
|
poll: int = 5,
|
|
270
|
-
timeout: Optional[int] = None
|
|
288
|
+
timeout: Optional[int] = None,
|
|
289
|
+
{logs_arg}
|
|
271
290
|
) -> None:
|
|
272
291
|
"""
|
|
273
292
|
Wait for a {resource_name} resource.
|
|
@@ -275,7 +294,7 @@ def wait(
|
|
|
275
294
|
Parameters:
|
|
276
295
|
poll: The number of seconds to wait between each poll.
|
|
277
296
|
timeout: The maximum number of seconds to wait before timing out.
|
|
278
|
-
|
|
297
|
+
{logs_arg_doc}
|
|
279
298
|
Raises:
|
|
280
299
|
TimeoutExceededError: If the resource does not reach a terminal state before the timeout.
|
|
281
300
|
FailedStatusError: If the resource reaches a failed state.
|
|
@@ -291,13 +310,22 @@ def wait(
|
|
|
291
310
|
)
|
|
292
311
|
progress.add_task("Waiting for {resource_name}...")
|
|
293
312
|
status = Status("Current status:")
|
|
294
|
-
|
|
295
|
-
|
|
313
|
+
{init_wait_logs}
|
|
314
|
+
|
|
315
|
+
with Live(
|
|
316
|
+
Panel(
|
|
317
|
+
Group(progress, status),
|
|
318
|
+
title="Wait Log Panel",
|
|
319
|
+
border_style=Style(color=Color.BLUE.value
|
|
320
|
+
)
|
|
321
|
+
),
|
|
322
|
+
transient=True
|
|
323
|
+
):
|
|
296
324
|
while True:
|
|
297
325
|
self.refresh()
|
|
298
326
|
current_status = self{status_key_path}
|
|
299
327
|
status.update(f"Current status: [bold]{{current_status}}")
|
|
300
|
-
|
|
328
|
+
{print_wait_logs}
|
|
301
329
|
if current_status in terminal_states:
|
|
302
330
|
logger.info(f"Final Resource Status: [bold]{{current_status}}")
|
|
303
331
|
{failed_error_block}
|
|
@@ -338,7 +366,15 @@ def wait_for_status(
|
|
|
338
366
|
progress.add_task(f"Waiting for {resource_name} to reach [bold]{{target_status}} status...")
|
|
339
367
|
status = Status("Current status:")
|
|
340
368
|
|
|
341
|
-
with Live(
|
|
369
|
+
with Live(
|
|
370
|
+
Panel(
|
|
371
|
+
Group(progress, status),
|
|
372
|
+
title="Wait Log Panel",
|
|
373
|
+
border_style=Style(color=Color.BLUE.value
|
|
374
|
+
)
|
|
375
|
+
),
|
|
376
|
+
transient=True
|
|
377
|
+
):
|
|
342
378
|
while True:
|
|
343
379
|
self.refresh()
|
|
344
380
|
current_status = self{status_key_path}
|
|
@@ -6,29 +6,30 @@ sagemaker_core/main/__init__.py,sha256=47DEQpj8HBSa-_TImW-5JCeuQeRkm5NMpJWZG3hSu
|
|
|
6
6
|
sagemaker_core/main/config_schema.py,sha256=TeGoTobT4yotEVyfguLF0IdKYlOymsDZ45ySxXiCDuw,56998
|
|
7
7
|
sagemaker_core/main/exceptions.py,sha256=87DUlrmHxaWoiYNlpNY9ixxFMPRk_dIGPsA2e_xdVwQ,5602
|
|
8
8
|
sagemaker_core/main/intelligent_defaults_helper.py,sha256=5SDM6UavZtp-k5LhqRL7GRIDgzFB5UsC_p7YuiSPK9A,8334
|
|
9
|
-
sagemaker_core/main/
|
|
10
|
-
sagemaker_core/main/
|
|
9
|
+
sagemaker_core/main/logs.py,sha256=yfEH7uP91nbE1lefymOlBr81ziBzsDSIOF2Qyd54FJE,6241
|
|
10
|
+
sagemaker_core/main/resources.py,sha256=db-1JPFeV7jlM0xnl_dGEEp_RvNpzrrbnZyk5LtYQC8,1321185
|
|
11
|
+
sagemaker_core/main/shapes.py,sha256=Nfp0a9wTjJBP403505ck9rS6pMF8P9Kpq6PjShQOK1w,697388
|
|
11
12
|
sagemaker_core/main/user_agent.py,sha256=4sZybDXkzRoZnOnVDQ8p8zFTfiRJdsH7amDWInVQ4xU,2708
|
|
12
|
-
sagemaker_core/main/utils.py,sha256=
|
|
13
|
+
sagemaker_core/main/utils.py,sha256=LCFDM6oxf6_e1i-_Dgtkm3ehl7YfoEpJ2kTTFTL6iOU,18471
|
|
13
14
|
sagemaker_core/main/code_injection/__init__.py,sha256=47DEQpj8HBSa-_TImW-5JCeuQeRkm5NMpJWZG3hSuFU,0
|
|
14
15
|
sagemaker_core/main/code_injection/base.py,sha256=11_Jif0nOzfbLGlXaacKf-wcizzfS64U0OSZGoVffFU,1733
|
|
15
16
|
sagemaker_core/main/code_injection/codec.py,sha256=2DjmeD2uND307UqDefvVEpE0rZ8yfFU3Bi3TvQCQveI,7658
|
|
16
17
|
sagemaker_core/main/code_injection/constants.py,sha256=2ICExGge8vAWx7lSTW0JGh-bH1korkvpOpDu5M63eI4,980
|
|
17
|
-
sagemaker_core/main/code_injection/shape_dag.py,sha256=
|
|
18
|
+
sagemaker_core/main/code_injection/shape_dag.py,sha256=FyU_a0Jh3AVxTNVN2kjt0oHqqyHNjAgIy3G7kzqksm4,658657
|
|
18
19
|
sagemaker_core/resources/__init__.py,sha256=EAYTFMN-nPjnPjjBbhIUeaL67FLKNPd7qbcbl9VIrws,31
|
|
19
20
|
sagemaker_core/shapes/__init__.py,sha256=RnbIu9eTxKt-DNsOFJabrWIgrrtS9_SdAozP9JBl_ic,28
|
|
20
21
|
sagemaker_core/tools/__init__.py,sha256=xX79JImxCVzrWMnjgntLCve2G5I-R4pRar5s20kT9Rs,56
|
|
21
22
|
sagemaker_core/tools/codegen.py,sha256=mKWVi2pWnPxyIoWUEPYjEc9Gw7D9bCOrHqa00yzIZ1o,2005
|
|
22
|
-
sagemaker_core/tools/constants.py,sha256=
|
|
23
|
+
sagemaker_core/tools/constants.py,sha256=a2WjUDK7gzxgilZs99vp30qh4kQ-y6JKhrwwqVAA12o,3385
|
|
23
24
|
sagemaker_core/tools/data_extractor.py,sha256=pNfmTA0NUA96IgfLrla7a36Qjc1NljbwgZYaOhouKqQ,2113
|
|
24
25
|
sagemaker_core/tools/method.py,sha256=4Hmu4UWpiBgUTZljYdW1KIKDduDxf_nfhCyuWgLVMWI,717
|
|
25
|
-
sagemaker_core/tools/resources_codegen.py,sha256=
|
|
26
|
+
sagemaker_core/tools/resources_codegen.py,sha256=ASirF9UMkGAOYZrrZxmFqK3gYQ4YbVYdAiUcWt6qdII,84360
|
|
26
27
|
sagemaker_core/tools/resources_extractor.py,sha256=hN61ehZbPnhFW-2FIVDi7NsEz4rLvGr-WoglHQGfrug,14523
|
|
27
28
|
sagemaker_core/tools/shapes_codegen.py,sha256=_ve959bwH8usZ6dPlpXxi2on9t0hLpcmhRWnaWHCWMQ,11745
|
|
28
29
|
sagemaker_core/tools/shapes_extractor.py,sha256=4KjgDmhlPM4G1f1NeYbORKlXs1s7Q_sm_NK31S_ROQ0,11950
|
|
29
|
-
sagemaker_core/tools/templates.py,sha256=
|
|
30
|
-
sagemaker_core-1.0.
|
|
31
|
-
sagemaker_core-1.0.
|
|
32
|
-
sagemaker_core-1.0.
|
|
33
|
-
sagemaker_core-1.0.
|
|
34
|
-
sagemaker_core-1.0.
|
|
30
|
+
sagemaker_core/tools/templates.py,sha256=yX2RQKeClgYwKS5Qu_mDpnWJIBCuj0yELrdm95aiTpk,23262
|
|
31
|
+
sagemaker_core-1.0.11.dist-info/LICENSE,sha256=xx0jnfkXJvxRnG63LTGOxlggYnIysveWIZ6H3PNdCrQ,11357
|
|
32
|
+
sagemaker_core-1.0.11.dist-info/METADATA,sha256=81rMU_96k8Ki06GRNPUpAE4pn-MyvHAj8ej--nix5jU,4878
|
|
33
|
+
sagemaker_core-1.0.11.dist-info/WHEEL,sha256=P9jw-gEje8ByB7_hXoICnHtVCrEwMQh-630tKvQWehc,91
|
|
34
|
+
sagemaker_core-1.0.11.dist-info/top_level.txt,sha256=R3GAZZ1zC5JxqdE_0x2Lu_WYi2Xfke7VsiP3L5zngfA,15
|
|
35
|
+
sagemaker_core-1.0.11.dist-info/RECORD,,
|
|
File without changes
|
|
File without changes
|