sagemaker-core 1.0.59__py3-none-any.whl → 1.0.61__py3-none-any.whl
This diff represents the content of publicly available package versions that have been released to one of the supported registries. The information contained in this diff is provided for informational purposes only and reflects changes between package versions as they appear in their respective public registries.
Potentially problematic release.
This version of sagemaker-core might be problematic. Click here for more details.
- sagemaker_core/main/code_injection/shape_dag.py +26 -0
- sagemaker_core/main/resources.py +132 -1
- sagemaker_core/main/shapes.py +31 -1
- {sagemaker_core-1.0.59.dist-info → sagemaker_core-1.0.61.dist-info}/METADATA +1 -1
- {sagemaker_core-1.0.59.dist-info → sagemaker_core-1.0.61.dist-info}/RECORD +8 -8
- {sagemaker_core-1.0.59.dist-info → sagemaker_core-1.0.61.dist-info}/WHEEL +0 -0
- {sagemaker_core-1.0.59.dist-info → sagemaker_core-1.0.61.dist-info}/licenses/LICENSE +0 -0
- {sagemaker_core-1.0.59.dist-info → sagemaker_core-1.0.61.dist-info}/top_level.txt +0 -0
|
@@ -4213,6 +4213,10 @@ SHAPE_DAG = {
|
|
|
4213
4213
|
"members": [{"name": "PipelineArn", "shape": "PipelineArn", "type": "string"}],
|
|
4214
4214
|
"type": "structure",
|
|
4215
4215
|
},
|
|
4216
|
+
"DeleteProcessingJobRequest": {
|
|
4217
|
+
"members": [{"name": "ProcessingJobName", "shape": "ProcessingJobName", "type": "string"}],
|
|
4218
|
+
"type": "structure",
|
|
4219
|
+
},
|
|
4216
4220
|
"DeleteProjectInput": {
|
|
4217
4221
|
"members": [{"name": "ProjectName", "shape": "ProjectEntityName", "type": "string"}],
|
|
4218
4222
|
"type": "structure",
|
|
@@ -4252,6 +4256,10 @@ SHAPE_DAG = {
|
|
|
4252
4256
|
"type": "structure",
|
|
4253
4257
|
},
|
|
4254
4258
|
"DeleteTagsOutput": {"members": [], "type": "structure"},
|
|
4259
|
+
"DeleteTrainingJobRequest": {
|
|
4260
|
+
"members": [{"name": "TrainingJobName", "shape": "TrainingJobName", "type": "string"}],
|
|
4261
|
+
"type": "structure",
|
|
4262
|
+
},
|
|
4255
4263
|
"DeleteTrialComponentRequest": {
|
|
4256
4264
|
"members": [
|
|
4257
4265
|
{"name": "TrialComponentName", "shape": "ExperimentEntityName", "type": "string"}
|
|
@@ -8365,6 +8373,14 @@ SHAPE_DAG = {
|
|
|
8365
8373
|
],
|
|
8366
8374
|
"type": "structure",
|
|
8367
8375
|
},
|
|
8376
|
+
"InferenceComponentDataCacheConfig": {
|
|
8377
|
+
"members": [{"name": "EnableCaching", "shape": "EnableCaching", "type": "boolean"}],
|
|
8378
|
+
"type": "structure",
|
|
8379
|
+
},
|
|
8380
|
+
"InferenceComponentDataCacheConfigSummary": {
|
|
8381
|
+
"members": [{"name": "EnableCaching", "shape": "EnableCaching", "type": "boolean"}],
|
|
8382
|
+
"type": "structure",
|
|
8383
|
+
},
|
|
8368
8384
|
"InferenceComponentDeploymentConfig": {
|
|
8369
8385
|
"members": [
|
|
8370
8386
|
{
|
|
@@ -8437,6 +8453,11 @@ SHAPE_DAG = {
|
|
|
8437
8453
|
"shape": "InferenceComponentName",
|
|
8438
8454
|
"type": "string",
|
|
8439
8455
|
},
|
|
8456
|
+
{
|
|
8457
|
+
"name": "DataCacheConfig",
|
|
8458
|
+
"shape": "InferenceComponentDataCacheConfig",
|
|
8459
|
+
"type": "structure",
|
|
8460
|
+
},
|
|
8440
8461
|
],
|
|
8441
8462
|
"type": "structure",
|
|
8442
8463
|
},
|
|
@@ -8463,6 +8484,11 @@ SHAPE_DAG = {
|
|
|
8463
8484
|
"shape": "InferenceComponentName",
|
|
8464
8485
|
"type": "string",
|
|
8465
8486
|
},
|
|
8487
|
+
{
|
|
8488
|
+
"name": "DataCacheConfig",
|
|
8489
|
+
"shape": "InferenceComponentDataCacheConfigSummary",
|
|
8490
|
+
"type": "structure",
|
|
8491
|
+
},
|
|
8466
8492
|
],
|
|
8467
8493
|
"type": "structure",
|
|
8468
8494
|
},
|
sagemaker_core/main/resources.py
CHANGED
|
@@ -22677,7 +22677,7 @@ class NotebookInstance(Base):
|
|
|
22677
22677
|
default_code_repository: A Git repository to associate with the notebook instance as its default code repository. This can be either the name of a Git repository stored as a resource in your account, or the URL of a Git repository in Amazon Web Services CodeCommit or in any other Git repository. When you open a notebook instance, it opens in the directory that contains this repository. For more information, see Associating Git Repositories with SageMaker AI Notebook Instances.
|
|
22678
22678
|
additional_code_repositories: An array of up to three Git repositories to associate with the notebook instance. These can be either the names of Git repositories stored as resources in your account, or the URL of Git repositories in Amazon Web Services CodeCommit or in any other Git repository. These repositories are cloned at the same level as the default repository of your notebook instance. For more information, see Associating Git Repositories with SageMaker AI Notebook Instances.
|
|
22679
22679
|
root_access: Whether root access is enabled or disabled for users of the notebook instance. The default value is Enabled. Lifecycle configurations need root access to be able to set up a notebook instance. Because of this, lifecycle configurations associated with a notebook instance always run with root access even if you disable root access for users.
|
|
22680
|
-
platform_identifier: The platform identifier of the notebook instance runtime environment.
|
|
22680
|
+
platform_identifier: The platform identifier of the notebook instance runtime environment. The default value is notebook-al2-v2.
|
|
22681
22681
|
instance_metadata_service_configuration: Information on the IMDS configuration of the notebook instance
|
|
22682
22682
|
session: Boto3 session.
|
|
22683
22683
|
region: Region name.
|
|
@@ -26308,6 +26308,40 @@ class ProcessingJob(Base):
|
|
|
26308
26308
|
transform(response, "DescribeProcessingJobResponse", self)
|
|
26309
26309
|
return self
|
|
26310
26310
|
|
|
26311
|
+
@Base.add_validate_call
|
|
26312
|
+
def delete(
|
|
26313
|
+
self,
|
|
26314
|
+
) -> None:
|
|
26315
|
+
"""
|
|
26316
|
+
Delete a ProcessingJob resource
|
|
26317
|
+
|
|
26318
|
+
Raises:
|
|
26319
|
+
botocore.exceptions.ClientError: This exception is raised for AWS service related errors.
|
|
26320
|
+
The error message and error code can be parsed from the exception as follows:
|
|
26321
|
+
```
|
|
26322
|
+
try:
|
|
26323
|
+
# AWS service call here
|
|
26324
|
+
except botocore.exceptions.ClientError as e:
|
|
26325
|
+
error_message = e.response['Error']['Message']
|
|
26326
|
+
error_code = e.response['Error']['Code']
|
|
26327
|
+
```
|
|
26328
|
+
ResourceInUse: Resource being accessed is in use.
|
|
26329
|
+
ResourceNotFound: Resource being access is not found.
|
|
26330
|
+
"""
|
|
26331
|
+
|
|
26332
|
+
client = Base.get_sagemaker_client()
|
|
26333
|
+
|
|
26334
|
+
operation_input_args = {
|
|
26335
|
+
"ProcessingJobName": self.processing_job_name,
|
|
26336
|
+
}
|
|
26337
|
+
# serialize the input request
|
|
26338
|
+
operation_input_args = serialize(operation_input_args)
|
|
26339
|
+
logger.debug(f"Serialized input request: {operation_input_args}")
|
|
26340
|
+
|
|
26341
|
+
client.delete_processing_job(**operation_input_args)
|
|
26342
|
+
|
|
26343
|
+
logger.info(f"Deleting {self.__class__.__name__} - {self.get_name()}")
|
|
26344
|
+
|
|
26311
26345
|
@Base.add_validate_call
|
|
26312
26346
|
def stop(self) -> None:
|
|
26313
26347
|
"""
|
|
@@ -28708,6 +28742,40 @@ class TrainingJob(Base):
|
|
|
28708
28742
|
|
|
28709
28743
|
return self
|
|
28710
28744
|
|
|
28745
|
+
@Base.add_validate_call
|
|
28746
|
+
def delete(
|
|
28747
|
+
self,
|
|
28748
|
+
) -> None:
|
|
28749
|
+
"""
|
|
28750
|
+
Delete a TrainingJob resource
|
|
28751
|
+
|
|
28752
|
+
Raises:
|
|
28753
|
+
botocore.exceptions.ClientError: This exception is raised for AWS service related errors.
|
|
28754
|
+
The error message and error code can be parsed from the exception as follows:
|
|
28755
|
+
```
|
|
28756
|
+
try:
|
|
28757
|
+
# AWS service call here
|
|
28758
|
+
except botocore.exceptions.ClientError as e:
|
|
28759
|
+
error_message = e.response['Error']['Message']
|
|
28760
|
+
error_code = e.response['Error']['Code']
|
|
28761
|
+
```
|
|
28762
|
+
ResourceInUse: Resource being accessed is in use.
|
|
28763
|
+
ResourceNotFound: Resource being access is not found.
|
|
28764
|
+
"""
|
|
28765
|
+
|
|
28766
|
+
client = Base.get_sagemaker_client()
|
|
28767
|
+
|
|
28768
|
+
operation_input_args = {
|
|
28769
|
+
"TrainingJobName": self.training_job_name,
|
|
28770
|
+
}
|
|
28771
|
+
# serialize the input request
|
|
28772
|
+
operation_input_args = serialize(operation_input_args)
|
|
28773
|
+
logger.debug(f"Serialized input request: {operation_input_args}")
|
|
28774
|
+
|
|
28775
|
+
client.delete_training_job(**operation_input_args)
|
|
28776
|
+
|
|
28777
|
+
logger.info(f"Deleting {self.__class__.__name__} - {self.get_name()}")
|
|
28778
|
+
|
|
28711
28779
|
@Base.add_validate_call
|
|
28712
28780
|
def stop(self) -> None:
|
|
28713
28781
|
"""
|
|
@@ -28822,6 +28890,69 @@ class TrainingJob(Base):
|
|
|
28822
28890
|
raise TimeoutExceededError(resouce_type="TrainingJob", status=current_status)
|
|
28823
28891
|
time.sleep(poll)
|
|
28824
28892
|
|
|
28893
|
+
@Base.add_validate_call
|
|
28894
|
+
def wait_for_delete(
|
|
28895
|
+
self,
|
|
28896
|
+
poll: int = 5,
|
|
28897
|
+
timeout: Optional[int] = None,
|
|
28898
|
+
) -> None:
|
|
28899
|
+
"""
|
|
28900
|
+
Wait for a TrainingJob resource to be deleted.
|
|
28901
|
+
|
|
28902
|
+
Parameters:
|
|
28903
|
+
poll: The number of seconds to wait between each poll.
|
|
28904
|
+
timeout: The maximum number of seconds to wait before timing out.
|
|
28905
|
+
|
|
28906
|
+
Raises:
|
|
28907
|
+
botocore.exceptions.ClientError: This exception is raised for AWS service related errors.
|
|
28908
|
+
The error message and error code can be parsed from the exception as follows:
|
|
28909
|
+
```
|
|
28910
|
+
try:
|
|
28911
|
+
# AWS service call here
|
|
28912
|
+
except botocore.exceptions.ClientError as e:
|
|
28913
|
+
error_message = e.response['Error']['Message']
|
|
28914
|
+
error_code = e.response['Error']['Code']
|
|
28915
|
+
```
|
|
28916
|
+
TimeoutExceededError: If the resource does not reach a terminal state before the timeout.
|
|
28917
|
+
DeleteFailedStatusError: If the resource reaches a failed state.
|
|
28918
|
+
WaiterError: Raised when an error occurs while waiting.
|
|
28919
|
+
"""
|
|
28920
|
+
start_time = time.time()
|
|
28921
|
+
|
|
28922
|
+
progress = Progress(
|
|
28923
|
+
SpinnerColumn("bouncingBar"),
|
|
28924
|
+
TextColumn("{task.description}"),
|
|
28925
|
+
TimeElapsedColumn(),
|
|
28926
|
+
)
|
|
28927
|
+
progress.add_task("Waiting for TrainingJob to be deleted...")
|
|
28928
|
+
status = Status("Current status:")
|
|
28929
|
+
|
|
28930
|
+
with Live(
|
|
28931
|
+
Panel(
|
|
28932
|
+
Group(progress, status),
|
|
28933
|
+
title="Wait Log Panel",
|
|
28934
|
+
border_style=Style(color=Color.BLUE.value),
|
|
28935
|
+
)
|
|
28936
|
+
):
|
|
28937
|
+
while True:
|
|
28938
|
+
try:
|
|
28939
|
+
self.refresh()
|
|
28940
|
+
current_status = self.training_job_status
|
|
28941
|
+
status.update(f"Current status: [bold]{current_status}")
|
|
28942
|
+
|
|
28943
|
+
if timeout is not None and time.time() - start_time >= timeout:
|
|
28944
|
+
raise TimeoutExceededError(
|
|
28945
|
+
resouce_type="TrainingJob", status=current_status
|
|
28946
|
+
)
|
|
28947
|
+
except botocore.exceptions.ClientError as e:
|
|
28948
|
+
error_code = e.response["Error"]["Code"]
|
|
28949
|
+
|
|
28950
|
+
if "ResourceNotFound" in error_code or "ValidationException" in error_code:
|
|
28951
|
+
logger.info("Resource was not found. It may have been deleted.")
|
|
28952
|
+
return
|
|
28953
|
+
raise e
|
|
28954
|
+
time.sleep(poll)
|
|
28955
|
+
|
|
28825
28956
|
@classmethod
|
|
28826
28957
|
@Base.add_validate_call
|
|
28827
28958
|
def get_all(
|
sagemaker_core/main/shapes.py
CHANGED
|
@@ -6377,6 +6377,19 @@ class InferenceComponentComputeResourceRequirements(Base):
|
|
|
6377
6377
|
max_memory_required_in_mb: Optional[int] = Unassigned()
|
|
6378
6378
|
|
|
6379
6379
|
|
|
6380
|
+
class InferenceComponentDataCacheConfig(Base):
|
|
6381
|
+
"""
|
|
6382
|
+
InferenceComponentDataCacheConfig
|
|
6383
|
+
Settings that affect how the inference component caches data.
|
|
6384
|
+
|
|
6385
|
+
Attributes
|
|
6386
|
+
----------------------
|
|
6387
|
+
enable_caching: Sets whether the endpoint that hosts the inference component caches the model artifacts and container image. With caching enabled, the endpoint caches this data in each instance that it provisions for the inference component. That way, the inference component deploys faster during the auto scaling process. If caching isn't enabled, the inference component takes longer to deploy because of the time it spends downloading the data.
|
|
6388
|
+
"""
|
|
6389
|
+
|
|
6390
|
+
enable_caching: bool
|
|
6391
|
+
|
|
6392
|
+
|
|
6380
6393
|
class InferenceComponentSpecification(Base):
|
|
6381
6394
|
"""
|
|
6382
6395
|
InferenceComponentSpecification
|
|
@@ -6389,6 +6402,7 @@ class InferenceComponentSpecification(Base):
|
|
|
6389
6402
|
startup_parameters: Settings that take effect while the model container starts up.
|
|
6390
6403
|
compute_resource_requirements: The compute resources allocated to run the model, plus any adapter models, that you assign to the inference component. Omit this parameter if your request is meant to create an adapter inference component. An adapter inference component is loaded by a base inference component, and it uses the compute resources of the base inference component.
|
|
6391
6404
|
base_inference_component_name: The name of an existing inference component that is to contain the inference component that you're creating with your request. Specify this parameter only if your request is meant to create an adapter inference component. An adapter inference component contains the path to an adapter model. The purpose of the adapter model is to tailor the inference output of a base foundation model, which is hosted by the base inference component. The adapter inference component uses the compute resources that you assigned to the base inference component. When you create an adapter inference component, use the Container parameter to specify the location of the adapter artifacts. In the parameter value, use the ArtifactUrl parameter of the InferenceComponentContainerSpecification data type. Before you can create an adapter inference component, you must have an existing inference component that contains the foundation model that you want to adapt.
|
|
6405
|
+
data_cache_config: Settings that affect how the inference component caches data.
|
|
6392
6406
|
"""
|
|
6393
6407
|
|
|
6394
6408
|
model_name: Optional[Union[str, object]] = Unassigned()
|
|
@@ -6398,6 +6412,7 @@ class InferenceComponentSpecification(Base):
|
|
|
6398
6412
|
Unassigned()
|
|
6399
6413
|
)
|
|
6400
6414
|
base_inference_component_name: Optional[str] = Unassigned()
|
|
6415
|
+
data_cache_config: Optional[InferenceComponentDataCacheConfig] = Unassigned()
|
|
6401
6416
|
|
|
6402
6417
|
|
|
6403
6418
|
class InferenceComponentRuntimeConfig(Base):
|
|
@@ -7803,7 +7818,7 @@ class ProcessingS3Input(Base):
|
|
|
7803
7818
|
local_path: The local path in your container where you want Amazon SageMaker to write input data to. LocalPath is an absolute path to the input data and must begin with /opt/ml/processing/. LocalPath is a required parameter when AppManaged is False (default).
|
|
7804
7819
|
s3_data_type: Whether you use an S3Prefix or a ManifestFile for the data type. If you choose S3Prefix, S3Uri identifies a key name prefix. Amazon SageMaker uses all objects with the specified key name prefix for the processing job. If you choose ManifestFile, S3Uri identifies an object that is a manifest file containing a list of object keys that you want Amazon SageMaker to use for the processing job.
|
|
7805
7820
|
s3_input_mode: Whether to use File or Pipe input mode. In File mode, Amazon SageMaker copies the data from the input source onto the local ML storage volume before starting your processing container. This is the most commonly used input mode. In Pipe mode, Amazon SageMaker streams input data from the source directly to your processing container into named pipes without using the ML storage volume.
|
|
7806
|
-
s3_data_distribution_type: Whether to distribute the data from Amazon S3 to all processing instances with FullyReplicated, or whether the data from Amazon S3 is
|
|
7821
|
+
s3_data_distribution_type: Whether to distribute the data from Amazon S3 to all processing instances with FullyReplicated, or whether the data from Amazon S3 is sharded by Amazon S3 key, downloading one shard of data to each processing instance.
|
|
7807
7822
|
s3_compression_type: Whether to GZIP-decompress the data in Amazon S3 as it is streamed into the processing container. Gzip can only be used when Pipe mode is specified as the S3InputMode. In Pipe mode, Amazon SageMaker streams input data from the source directly to your container without using the EBS volume.
|
|
7808
7823
|
"""
|
|
7809
7824
|
|
|
@@ -9284,6 +9299,19 @@ class InferenceComponentContainerSpecificationSummary(Base):
|
|
|
9284
9299
|
environment: Optional[Dict[str, str]] = Unassigned()
|
|
9285
9300
|
|
|
9286
9301
|
|
|
9302
|
+
class InferenceComponentDataCacheConfigSummary(Base):
|
|
9303
|
+
"""
|
|
9304
|
+
InferenceComponentDataCacheConfigSummary
|
|
9305
|
+
Settings that affect how the inference component caches data.
|
|
9306
|
+
|
|
9307
|
+
Attributes
|
|
9308
|
+
----------------------
|
|
9309
|
+
enable_caching: Indicates whether the inference component caches model artifacts as part of the auto scaling process.
|
|
9310
|
+
"""
|
|
9311
|
+
|
|
9312
|
+
enable_caching: bool
|
|
9313
|
+
|
|
9314
|
+
|
|
9287
9315
|
class InferenceComponentSpecificationSummary(Base):
|
|
9288
9316
|
"""
|
|
9289
9317
|
InferenceComponentSpecificationSummary
|
|
@@ -9296,6 +9324,7 @@ class InferenceComponentSpecificationSummary(Base):
|
|
|
9296
9324
|
startup_parameters: Settings that take effect while the model container starts up.
|
|
9297
9325
|
compute_resource_requirements: The compute resources allocated to run the model, plus any adapter models, that you assign to the inference component.
|
|
9298
9326
|
base_inference_component_name: The name of the base inference component that contains this inference component.
|
|
9327
|
+
data_cache_config: Settings that affect how the inference component caches data.
|
|
9299
9328
|
"""
|
|
9300
9329
|
|
|
9301
9330
|
model_name: Optional[Union[str, object]] = Unassigned()
|
|
@@ -9305,6 +9334,7 @@ class InferenceComponentSpecificationSummary(Base):
|
|
|
9305
9334
|
Unassigned()
|
|
9306
9335
|
)
|
|
9307
9336
|
base_inference_component_name: Optional[str] = Unassigned()
|
|
9337
|
+
data_cache_config: Optional[InferenceComponentDataCacheConfigSummary] = Unassigned()
|
|
9308
9338
|
|
|
9309
9339
|
|
|
9310
9340
|
class InferenceComponentRuntimeConfigSummary(Base):
|
|
@@ -7,15 +7,15 @@ sagemaker_core/main/config_schema.py,sha256=1xYzDM0FEBQFmiE3R--Nj0_RMQQF3vxlFQXE
|
|
|
7
7
|
sagemaker_core/main/default_configs_helper.py,sha256=bg_tgczX_bYzNiSlalJ6TWPTgrQYsI0uZguP5TIbPiw,8324
|
|
8
8
|
sagemaker_core/main/exceptions.py,sha256=CsiM3V_Gb16grBotnu59LB6tznryPcSvAQDAOOYGc10,5563
|
|
9
9
|
sagemaker_core/main/logs.py,sha256=yfEH7uP91nbE1lefymOlBr81ziBzsDSIOF2Qyd54FJE,6241
|
|
10
|
-
sagemaker_core/main/resources.py,sha256=
|
|
11
|
-
sagemaker_core/main/shapes.py,sha256=
|
|
10
|
+
sagemaker_core/main/resources.py,sha256=rGUGdaFbj0k0jMaYmqv7pFXR7kO73LE8i0k4FRwpu28,1450476
|
|
11
|
+
sagemaker_core/main/shapes.py,sha256=zYSg0Y41FJIYRfWYcuekcAS8qDyr2SA3hWeFmDDQFro,790466
|
|
12
12
|
sagemaker_core/main/user_agent.py,sha256=BPYDAfDd70ObP-VAjl7aDHALHyGknkpRP21ktVr_LDw,2744
|
|
13
13
|
sagemaker_core/main/utils.py,sha256=y1aZzztCApczZSqT0U7_H8zLlpqp1vgoUKcp40mTM2o,19157
|
|
14
14
|
sagemaker_core/main/code_injection/__init__.py,sha256=47DEQpj8HBSa-_TImW-5JCeuQeRkm5NMpJWZG3hSuFU,0
|
|
15
15
|
sagemaker_core/main/code_injection/base.py,sha256=11_Jif0nOzfbLGlXaacKf-wcizzfS64U0OSZGoVffFU,1733
|
|
16
16
|
sagemaker_core/main/code_injection/codec.py,sha256=2YzJ-iYEzmguVaJVcZeyCR0OpTSR7UOixATrOm4MiBk,8885
|
|
17
17
|
sagemaker_core/main/code_injection/constants.py,sha256=2ICExGge8vAWx7lSTW0JGh-bH1korkvpOpDu5M63eI4,980
|
|
18
|
-
sagemaker_core/main/code_injection/shape_dag.py,sha256=
|
|
18
|
+
sagemaker_core/main/code_injection/shape_dag.py,sha256=OpcqoAYrZqj1UQTC9zMswN6yHNBE1wERgMb8lxGdnIA,749540
|
|
19
19
|
sagemaker_core/resources/__init__.py,sha256=EAYTFMN-nPjnPjjBbhIUeaL67FLKNPd7qbcbl9VIrws,31
|
|
20
20
|
sagemaker_core/shapes/__init__.py,sha256=RnbIu9eTxKt-DNsOFJabrWIgrrtS9_SdAozP9JBl_ic,28
|
|
21
21
|
sagemaker_core/tools/__init__.py,sha256=xX79JImxCVzrWMnjgntLCve2G5I-R4pRar5s20kT9Rs,56
|
|
@@ -28,8 +28,8 @@ sagemaker_core/tools/resources_extractor.py,sha256=hN61ehZbPnhFW-2FIVDi7NsEz4rLv
|
|
|
28
28
|
sagemaker_core/tools/shapes_codegen.py,sha256=4lsePZpjk7M6RpJs5yar_m4z5MzwGHFrvCkdS_-R12c,12172
|
|
29
29
|
sagemaker_core/tools/shapes_extractor.py,sha256=vxVKjXD3lmjrkoKiexjUnOt8ITbFxQSeiDtx7P6Qtkw,14226
|
|
30
30
|
sagemaker_core/tools/templates.py,sha256=0lOIH3Rq2CXWkQhK6VenN_TE_v5p852s2kQyb_BeQxA,23460
|
|
31
|
-
sagemaker_core-1.0.
|
|
32
|
-
sagemaker_core-1.0.
|
|
33
|
-
sagemaker_core-1.0.
|
|
34
|
-
sagemaker_core-1.0.
|
|
35
|
-
sagemaker_core-1.0.
|
|
31
|
+
sagemaker_core-1.0.61.dist-info/licenses/LICENSE,sha256=xx0jnfkXJvxRnG63LTGOxlggYnIysveWIZ6H3PNdCrQ,11357
|
|
32
|
+
sagemaker_core-1.0.61.dist-info/METADATA,sha256=IVqhfrvHAoF1JkY_i682zCGoCKRzLPfTxuELnMSlgv4,4871
|
|
33
|
+
sagemaker_core-1.0.61.dist-info/WHEEL,sha256=_zCd3N1l69ArxyTb8rzEoP9TpbYXkqRFSNOD5OuxnTs,91
|
|
34
|
+
sagemaker_core-1.0.61.dist-info/top_level.txt,sha256=R3GAZZ1zC5JxqdE_0x2Lu_WYi2Xfke7VsiP3L5zngfA,15
|
|
35
|
+
sagemaker_core-1.0.61.dist-info/RECORD,,
|
|
File without changes
|
|
File without changes
|
|
File without changes
|