sagemaker-core 1.0.56__py3-none-any.whl → 1.0.58__py3-none-any.whl

This diff represents the content of publicly available package versions that have been released to one of the supported registries. The information contained in this diff is provided for informational purposes only and reflects changes between package versions as they appear in their respective public registries.

Potentially problematic release.


This version of sagemaker-core might be problematic. Click here for more details.

@@ -1445,6 +1445,22 @@ SHAPE_DAG = {
1445
1445
  ],
1446
1446
  "type": "structure",
1447
1447
  },
1448
+ "ClusterAutoScalingConfig": {
1449
+ "members": [
1450
+ {"name": "Mode", "shape": "ClusterAutoScalingMode", "type": "string"},
1451
+ {"name": "AutoScalerType", "shape": "ClusterAutoScalerType", "type": "string"},
1452
+ ],
1453
+ "type": "structure",
1454
+ },
1455
+ "ClusterAutoScalingConfigOutput": {
1456
+ "members": [
1457
+ {"name": "Mode", "shape": "ClusterAutoScalingMode", "type": "string"},
1458
+ {"name": "AutoScalerType", "shape": "ClusterAutoScalerType", "type": "string"},
1459
+ {"name": "Status", "shape": "ClusterAutoScalingStatus", "type": "string"},
1460
+ {"name": "FailureMessage", "shape": "String", "type": "string"},
1461
+ ],
1462
+ "type": "structure",
1463
+ },
1448
1464
  "ClusterEbsVolumeConfig": {
1449
1465
  "members": [
1450
1466
  {"name": "VolumeSizeInGB", "shape": "ClusterEbsVolumeSizeInGB", "type": "integer"},
@@ -1771,6 +1787,17 @@ SHAPE_DAG = {
1771
1787
  ],
1772
1788
  "type": "structure",
1773
1789
  },
1790
+ "ClusterTieredStorageConfig": {
1791
+ "members": [
1792
+ {"name": "Mode", "shape": "ClusterConfigMode", "type": "string"},
1793
+ {
1794
+ "name": "InstanceMemoryAllocationPercentage",
1795
+ "shape": "ClusterInstanceMemoryAllocationPercentage",
1796
+ "type": "integer",
1797
+ },
1798
+ ],
1799
+ "type": "structure",
1800
+ },
1774
1801
  "CodeEditorAppImageConfig": {
1775
1802
  "members": [
1776
1803
  {"name": "FileSystemConfig", "shape": "FileSystemConfig", "type": "structure"},
@@ -2246,11 +2273,18 @@ SHAPE_DAG = {
2246
2273
  {"name": "Tags", "shape": "TagList", "type": "list"},
2247
2274
  {"name": "Orchestrator", "shape": "ClusterOrchestrator", "type": "structure"},
2248
2275
  {"name": "NodeRecovery", "shape": "ClusterNodeRecovery", "type": "string"},
2276
+ {
2277
+ "name": "TieredStorageConfig",
2278
+ "shape": "ClusterTieredStorageConfig",
2279
+ "type": "structure",
2280
+ },
2249
2281
  {
2250
2282
  "name": "NodeProvisioningMode",
2251
2283
  "shape": "ClusterNodeProvisioningMode",
2252
2284
  "type": "string",
2253
2285
  },
2286
+ {"name": "ClusterRole", "shape": "RoleArn", "type": "string"},
2287
+ {"name": "AutoScaling", "shape": "ClusterAutoScalingConfig", "type": "structure"},
2254
2288
  ],
2255
2289
  "type": "structure",
2256
2290
  },
@@ -3067,6 +3101,7 @@ SHAPE_DAG = {
3067
3101
  {"name": "InstanceType", "shape": "InstanceType", "type": "string"},
3068
3102
  {"name": "SubnetId", "shape": "SubnetId", "type": "string"},
3069
3103
  {"name": "SecurityGroupIds", "shape": "SecurityGroupIds", "type": "list"},
3104
+ {"name": "IpAddressType", "shape": "IPAddressType", "type": "string"},
3070
3105
  {"name": "RoleArn", "shape": "RoleArn", "type": "string"},
3071
3106
  {"name": "KmsKeyId", "shape": "KmsKeyId", "type": "string"},
3072
3107
  {"name": "Tags", "shape": "TagList", "type": "list"},
@@ -4641,12 +4676,19 @@ SHAPE_DAG = {
4641
4676
  },
4642
4677
  {"name": "VpcConfig", "shape": "VpcConfig", "type": "structure"},
4643
4678
  {"name": "Orchestrator", "shape": "ClusterOrchestrator", "type": "structure"},
4679
+ {
4680
+ "name": "TieredStorageConfig",
4681
+ "shape": "ClusterTieredStorageConfig",
4682
+ "type": "structure",
4683
+ },
4644
4684
  {"name": "NodeRecovery", "shape": "ClusterNodeRecovery", "type": "string"},
4645
4685
  {
4646
4686
  "name": "NodeProvisioningMode",
4647
4687
  "shape": "ClusterNodeProvisioningMode",
4648
4688
  "type": "string",
4649
4689
  },
4690
+ {"name": "ClusterRole", "shape": "RoleArn", "type": "string"},
4691
+ {"name": "AutoScaling", "shape": "ClusterAutoScalingConfigOutput", "type": "structure"},
4650
4692
  ],
4651
4693
  "type": "structure",
4652
4694
  },
@@ -5855,6 +5897,7 @@ SHAPE_DAG = {
5855
5897
  {"name": "FailureReason", "shape": "FailureReason", "type": "string"},
5856
5898
  {"name": "Url", "shape": "NotebookInstanceUrl", "type": "string"},
5857
5899
  {"name": "InstanceType", "shape": "InstanceType", "type": "string"},
5900
+ {"name": "IpAddressType", "shape": "IPAddressType", "type": "string"},
5858
5901
  {"name": "SubnetId", "shape": "SubnetId", "type": "string"},
5859
5902
  {"name": "SecurityGroups", "shape": "SecurityGroupIds", "type": "list"},
5860
5903
  {"name": "RoleArn", "shape": "RoleArn", "type": "string"},
@@ -15821,12 +15864,19 @@ SHAPE_DAG = {
15821
15864
  "shape": "ClusterRestrictedInstanceGroupSpecifications",
15822
15865
  "type": "list",
15823
15866
  },
15867
+ {
15868
+ "name": "TieredStorageConfig",
15869
+ "shape": "ClusterTieredStorageConfig",
15870
+ "type": "structure",
15871
+ },
15824
15872
  {"name": "NodeRecovery", "shape": "ClusterNodeRecovery", "type": "string"},
15825
15873
  {
15826
15874
  "name": "InstanceGroupsToDelete",
15827
15875
  "shape": "ClusterInstanceGroupsToDelete",
15828
15876
  "type": "list",
15829
15877
  },
15878
+ {"name": "ClusterRole", "shape": "RoleArn", "type": "string"},
15879
+ {"name": "AutoScaling", "shape": "ClusterAutoScalingConfig", "type": "structure"},
15830
15880
  ],
15831
15881
  "type": "structure",
15832
15882
  },
@@ -16300,6 +16350,7 @@ SHAPE_DAG = {
16300
16350
  "members": [
16301
16351
  {"name": "NotebookInstanceName", "shape": "NotebookInstanceName", "type": "string"},
16302
16352
  {"name": "InstanceType", "shape": "InstanceType", "type": "string"},
16353
+ {"name": "IpAddressType", "shape": "IPAddressType", "type": "string"},
16303
16354
  {"name": "RoleArn", "shape": "RoleArn", "type": "string"},
16304
16355
  {
16305
16356
  "name": "LifecycleConfigName",
@@ -106,7 +106,8 @@ SAGEMAKER_PYTHON_SDK_CONFIG_SCHEMA = {
106
106
  "type": "array",
107
107
  "items": {"type": "string"},
108
108
  },
109
- }
109
+ },
110
+ "cluster_role": {"type": "string"},
110
111
  },
111
112
  },
112
113
  "CompilationJob": {
@@ -3224,8 +3224,11 @@ class Cluster(Base):
3224
3224
  restricted_instance_groups: The specialized instance groups for training models like Amazon Nova to be created in the SageMaker HyperPod cluster.
3225
3225
  vpc_config:
3226
3226
  orchestrator: The type of orchestrator used for the SageMaker HyperPod cluster.
3227
+ tiered_storage_config: The current configuration for managed tier checkpointing on the HyperPod cluster. For example, this shows whether the feature is enabled and the percentage of cluster memory allocated for checkpoint storage.
3227
3228
  node_recovery: The node recovery mode configured for the SageMaker HyperPod cluster.
3228
3229
  node_provisioning_mode: The mode used for provisioning nodes in the cluster.
3230
+ cluster_role: The Amazon Resource Name (ARN) of the IAM role that HyperPod uses for cluster autoscaling operations.
3231
+ auto_scaling: The current autoscaling configuration and status for the autoscaler.
3229
3232
 
3230
3233
  """
3231
3234
 
@@ -3240,8 +3243,11 @@ class Cluster(Base):
3240
3243
  )
3241
3244
  vpc_config: Optional[shapes.VpcConfig] = Unassigned()
3242
3245
  orchestrator: Optional[shapes.ClusterOrchestrator] = Unassigned()
3246
+ tiered_storage_config: Optional[shapes.ClusterTieredStorageConfig] = Unassigned()
3243
3247
  node_recovery: Optional[str] = Unassigned()
3244
3248
  node_provisioning_mode: Optional[str] = Unassigned()
3249
+ cluster_role: Optional[str] = Unassigned()
3250
+ auto_scaling: Optional[shapes.ClusterAutoScalingConfigOutput] = Unassigned()
3245
3251
 
3246
3252
  def get_name(self) -> str:
3247
3253
  attributes = vars(self)
@@ -3266,7 +3272,8 @@ class Cluster(Base):
3266
3272
  "vpc_config": {
3267
3273
  "security_group_ids": {"type": "array", "items": {"type": "string"}},
3268
3274
  "subnets": {"type": "array", "items": {"type": "string"}},
3269
- }
3275
+ },
3276
+ "cluster_role": {"type": "string"},
3270
3277
  }
3271
3278
  return create_func(
3272
3279
  *args,
@@ -3291,7 +3298,10 @@ class Cluster(Base):
3291
3298
  tags: Optional[List[shapes.Tag]] = Unassigned(),
3292
3299
  orchestrator: Optional[shapes.ClusterOrchestrator] = Unassigned(),
3293
3300
  node_recovery: Optional[str] = Unassigned(),
3301
+ tiered_storage_config: Optional[shapes.ClusterTieredStorageConfig] = Unassigned(),
3294
3302
  node_provisioning_mode: Optional[str] = Unassigned(),
3303
+ cluster_role: Optional[str] = Unassigned(),
3304
+ auto_scaling: Optional[shapes.ClusterAutoScalingConfig] = Unassigned(),
3295
3305
  session: Optional[Session] = None,
3296
3306
  region: Optional[str] = None,
3297
3307
  ) -> Optional["Cluster"]:
@@ -3306,7 +3316,10 @@ class Cluster(Base):
3306
3316
  tags: Custom tags for managing the SageMaker HyperPod cluster as an Amazon Web Services resource. You can add tags to your cluster in the same way you add them in other Amazon Web Services services that support tagging. To learn more about tagging Amazon Web Services resources in general, see Tagging Amazon Web Services Resources User Guide.
3307
3317
  orchestrator: The type of orchestrator to use for the SageMaker HyperPod cluster. Currently, the only supported value is "eks", which is to use an Amazon Elastic Kubernetes Service cluster as the orchestrator.
3308
3318
  node_recovery: The node recovery mode for the SageMaker HyperPod cluster. When set to Automatic, SageMaker HyperPod will automatically reboot or replace faulty nodes when issues are detected. When set to None, cluster administrators will need to manually manage any faulty cluster instances.
3319
+ tiered_storage_config: The configuration for managed tier checkpointing on the HyperPod cluster. When enabled, this feature uses a multi-tier storage approach for storing model checkpoints, providing faster checkpoint operations and improved fault tolerance across cluster nodes.
3309
3320
  node_provisioning_mode: The mode for provisioning nodes in the cluster. You can specify the following modes: Continuous: Scaling behavior that enables 1) concurrent operation execution within instance groups, 2) continuous retry mechanisms for failed operations, 3) enhanced customer visibility into cluster events through detailed event streams, 4) partial provisioning capabilities. Your clusters and instance groups remain InService while scaling. This mode is only supported for EKS orchestrated clusters.
3321
+ cluster_role: The Amazon Resource Name (ARN) of the IAM role that HyperPod assumes to perform cluster autoscaling operations. This role must have permissions for sagemaker:BatchAddClusterNodes and sagemaker:BatchDeleteClusterNodes. This is only required when autoscaling is enabled and when HyperPod is performing autoscaling operations.
3322
+ auto_scaling: The autoscaling configuration for the cluster. Enables automatic scaling of cluster nodes based on workload demand using a Karpenter-based system.
3310
3323
  session: Boto3 session.
3311
3324
  region: Region name.
3312
3325
 
@@ -3343,7 +3356,10 @@ class Cluster(Base):
3343
3356
  "Tags": tags,
3344
3357
  "Orchestrator": orchestrator,
3345
3358
  "NodeRecovery": node_recovery,
3359
+ "TieredStorageConfig": tiered_storage_config,
3346
3360
  "NodeProvisioningMode": node_provisioning_mode,
3361
+ "ClusterRole": cluster_role,
3362
+ "AutoScaling": auto_scaling,
3347
3363
  }
3348
3364
 
3349
3365
  operation_input_args = Base.populate_chained_attributes(
@@ -3457,8 +3473,11 @@ class Cluster(Base):
3457
3473
  restricted_instance_groups: Optional[
3458
3474
  List[shapes.ClusterRestrictedInstanceGroupSpecification]
3459
3475
  ] = Unassigned(),
3476
+ tiered_storage_config: Optional[shapes.ClusterTieredStorageConfig] = Unassigned(),
3460
3477
  node_recovery: Optional[str] = Unassigned(),
3461
3478
  instance_groups_to_delete: Optional[List[str]] = Unassigned(),
3479
+ cluster_role: Optional[str] = Unassigned(),
3480
+ auto_scaling: Optional[shapes.ClusterAutoScalingConfig] = Unassigned(),
3462
3481
  ) -> Optional["Cluster"]:
3463
3482
  """
3464
3483
  Update a Cluster resource
@@ -3491,8 +3510,11 @@ class Cluster(Base):
3491
3510
  "ClusterName": self.cluster_name,
3492
3511
  "InstanceGroups": instance_groups,
3493
3512
  "RestrictedInstanceGroups": restricted_instance_groups,
3513
+ "TieredStorageConfig": tiered_storage_config,
3494
3514
  "NodeRecovery": node_recovery,
3495
3515
  "InstanceGroupsToDelete": instance_groups_to_delete,
3516
+ "ClusterRole": cluster_role,
3517
+ "AutoScaling": auto_scaling,
3496
3518
  }
3497
3519
  logger.debug(f"Input request: {operation_input_args}")
3498
3520
  # serialize the input request
@@ -16935,7 +16957,7 @@ class LabelingJob(Base):
16935
16957
 
16936
16958
  Parameters:
16937
16959
  labeling_job_name: The name of the labeling job. This name is used to identify the job in a list of labeling jobs. Labeling job names must be unique within an Amazon Web Services account and region. LabelingJobName is not case sensitive. For example, Example-job and example-job are considered the same labeling job name by Ground Truth.
16938
- label_attribute_name: The attribute name to use for the label in the output manifest file. This is the key for the key/value pair formed with the label that a worker assigns to the object. The LabelAttributeName must meet the following requirements. The name can't end with "-metadata". If you are using one of the following built-in task types, the attribute name must end with "-ref". If the task type you are using is not listed below, the attribute name must not end with "-ref". Verification (VerificationSemanticSegmentation) labeling jobs for this task type. Video frame object detection (VideoObjectDetection), and adjustment and verification (AdjustmentVideoObjectDetection) labeling jobs for this task type. Video frame object tracking (VideoObjectTracking), and adjustment and verification (AdjustmentVideoObjectTracking) labeling jobs for this task type. 3D point cloud semantic segmentation (3DPointCloudSemanticSegmentation), and adjustment and verification (Adjustment3DPointCloudSemanticSegmentation) labeling jobs for this task type. 3D point cloud object tracking (3DPointCloudObjectTracking), and adjustment and verification (Adjustment3DPointCloudObjectTracking) labeling jobs for this task type. If you are creating an adjustment or verification labeling job, you must use a different LabelAttributeName than the one used in the original labeling job. The original labeling job is the Ground Truth labeling job that produced the labels that you want verified or adjusted. To learn more about adjustment and verification labeling jobs, see Verify and Adjust Labels.
16960
+ label_attribute_name: The attribute name to use for the label in the output manifest file. This is the key for the key/value pair formed with the label that a worker assigns to the object. The LabelAttributeName must meet the following requirements. The name can't end with "-metadata". If you are using one of the built-in task types or one of the following, the attribute name must end with "-ref". Image semantic segmentation (SemanticSegmentation) and adjustment (AdjustmentSemanticSegmentation) labeling jobs for this task type. One exception is that verification (VerificationSemanticSegmentation) must not end with -"ref". Video frame object detection (VideoObjectDetection), and adjustment and verification (AdjustmentVideoObjectDetection) labeling jobs for this task type. Video frame object tracking (VideoObjectTracking), and adjustment and verification (AdjustmentVideoObjectTracking) labeling jobs for this task type. 3D point cloud semantic segmentation (3DPointCloudSemanticSegmentation), and adjustment and verification (Adjustment3DPointCloudSemanticSegmentation) labeling jobs for this task type. 3D point cloud object tracking (3DPointCloudObjectTracking), and adjustment and verification (Adjustment3DPointCloudObjectTracking) labeling jobs for this task type. If you are creating an adjustment or verification labeling job, you must use a different LabelAttributeName than the one used in the original labeling job. The original labeling job is the Ground Truth labeling job that produced the labels that you want verified or adjusted. To learn more about adjustment and verification labeling jobs, see Verify and Adjust Labels.
16939
16961
  input_config: Input data for the labeling job, such as the Amazon S3 location of the data objects and the location of the manifest file that describes the data objects. You must specify at least one of the following: S3DataSource or SnsDataSource. Use SnsDataSource to specify an SNS input topic for a streaming labeling job. If you do not specify and SNS input topic ARN, Ground Truth will create a one-time labeling job that stops after all data objects in the input manifest file have been labeled. Use S3DataSource to specify an input manifest file for both streaming and one-time labeling jobs. Adding an S3DataSource is optional if you use SnsDataSource to create a streaming labeling job. If you use the Amazon Mechanical Turk workforce, your input data should not include confidential information, personal information or protected health information. Use ContentClassifiers to specify that your data is free of personally identifiable information and adult content.
16940
16962
  output_config: The location of the output data and the Amazon Web Services Key Management Service key ID for the key used to encrypt the output data, if any.
16941
16963
  role_arn: The Amazon Resource Number (ARN) that Amazon SageMaker assumes to perform tasks on your behalf during data labeling. You must grant this role the necessary permissions so that Amazon SageMaker can successfully complete data labeling.
@@ -22529,6 +22551,7 @@ class NotebookInstance(Base):
22529
22551
  failure_reason: If status is Failed, the reason it failed.
22530
22552
  url: The URL that you use to connect to the Jupyter notebook that is running in your notebook instance.
22531
22553
  instance_type: The type of ML compute instance running on the notebook instance.
22554
+ ip_address_type: The IP address type configured for the notebook instance. Returns ipv4 for IPv4-only connectivity or dualstack for both IPv4 and IPv6 connectivity.
22532
22555
  subnet_id: The ID of the VPC subnet.
22533
22556
  security_groups: The IDs of the VPC security groups.
22534
22557
  role_arn: The Amazon Resource Name (ARN) of the IAM role associated with the instance.
@@ -22554,6 +22577,7 @@ class NotebookInstance(Base):
22554
22577
  failure_reason: Optional[str] = Unassigned()
22555
22578
  url: Optional[str] = Unassigned()
22556
22579
  instance_type: Optional[str] = Unassigned()
22580
+ ip_address_type: Optional[str] = Unassigned()
22557
22581
  subnet_id: Optional[str] = Unassigned()
22558
22582
  security_groups: Optional[List[str]] = Unassigned()
22559
22583
  role_arn: Optional[str] = Unassigned()
@@ -22617,6 +22641,7 @@ class NotebookInstance(Base):
22617
22641
  role_arn: str,
22618
22642
  subnet_id: Optional[str] = Unassigned(),
22619
22643
  security_group_ids: Optional[List[str]] = Unassigned(),
22644
+ ip_address_type: Optional[str] = Unassigned(),
22620
22645
  kms_key_id: Optional[str] = Unassigned(),
22621
22646
  tags: Optional[List[shapes.Tag]] = Unassigned(),
22622
22647
  lifecycle_config_name: Optional[str] = Unassigned(),
@@ -22642,6 +22667,7 @@ class NotebookInstance(Base):
22642
22667
  role_arn: When you send any requests to Amazon Web Services resources from the notebook instance, SageMaker AI assumes this role to perform tasks on your behalf. You must grant this role necessary permissions so SageMaker AI can perform these tasks. The policy must allow the SageMaker AI service principal (sagemaker.amazonaws.com) permissions to assume this role. For more information, see SageMaker AI Roles. To be able to pass this role to SageMaker AI, the caller of this API must have the iam:PassRole permission.
22643
22668
  subnet_id: The ID of the subnet in a VPC to which you would like to have a connectivity from your ML compute instance.
22644
22669
  security_group_ids: The VPC security group IDs, in the form sg-xxxxxxxx. The security groups must be for the same VPC as specified in the subnet.
22670
+ ip_address_type: The IP address type for the notebook instance. Specify ipv4 for IPv4-only connectivity or dualstack for both IPv4 and IPv6 connectivity. When you specify dualstack, the subnet must support IPv6 CIDR blocks. If not specified, defaults to ipv4.
22645
22671
  kms_key_id: The Amazon Resource Name (ARN) of a Amazon Web Services Key Management Service key that SageMaker AI uses to encrypt data on the storage volume attached to your notebook instance. The KMS key you provide must be enabled. For information, see Enabling and Disabling Keys in the Amazon Web Services Key Management Service Developer Guide.
22646
22672
  tags: An array of key-value pairs. You can use tags to categorize your Amazon Web Services resources in different ways, for example, by purpose, owner, or environment. For more information, see Tagging Amazon Web Services Resources.
22647
22673
  lifecycle_config_name: The name of a lifecycle configuration to associate with the notebook instance. For information about lifestyle configurations, see Step 2.1: (Optional) Customize a Notebook Instance.
@@ -22685,6 +22711,7 @@ class NotebookInstance(Base):
22685
22711
  "InstanceType": instance_type,
22686
22712
  "SubnetId": subnet_id,
22687
22713
  "SecurityGroupIds": security_group_ids,
22714
+ "IpAddressType": ip_address_type,
22688
22715
  "RoleArn": role_arn,
22689
22716
  "KmsKeyId": kms_key_id,
22690
22717
  "Tags": tags,
@@ -22807,6 +22834,7 @@ class NotebookInstance(Base):
22807
22834
  def update(
22808
22835
  self,
22809
22836
  instance_type: Optional[str] = Unassigned(),
22837
+ ip_address_type: Optional[str] = Unassigned(),
22810
22838
  role_arn: Optional[str] = Unassigned(),
22811
22839
  lifecycle_config_name: Optional[str] = Unassigned(),
22812
22840
  disassociate_lifecycle_config: Optional[bool] = Unassigned(),
@@ -22854,6 +22882,7 @@ class NotebookInstance(Base):
22854
22882
  operation_input_args = {
22855
22883
  "NotebookInstanceName": self.notebook_instance_name,
22856
22884
  "InstanceType": instance_type,
22885
+ "IpAddressType": ip_address_type,
22857
22886
  "RoleArn": role_arn,
22858
22887
  "LifecycleConfigName": lifecycle_config_name,
22859
22888
  "DisassociateLifecycleConfig": disassociate_lifecycle_config,
@@ -23968,7 +23997,7 @@ class PartnerApp(Base):
23968
23997
  arn: The ARN of the SageMaker Partner AI App that was described.
23969
23998
  name: The name of the SageMaker Partner AI App.
23970
23999
  type: The type of SageMaker Partner AI App. Must be one of the following: lakera-guard, comet, deepchecks-llm-evaluation, or fiddler.
23971
- status: The status of the SageMaker Partner AI App.
24000
+ status: The status of the SageMaker Partner AI App. Creating: SageMaker AI is creating the partner AI app. The partner AI app is not available during creation. Updating: SageMaker AI is updating the partner AI app. The partner AI app is not available when updating. Deleting: SageMaker AI is deleting the partner AI app. The partner AI app is not available during deletion. Available: The partner AI app is provisioned and accessible. Failed: The partner AI app is in a failed state and isn't available. SageMaker AI is investigating the issue. For further guidance, contact Amazon Web Services Support. UpdateFailed: The partner AI app couldn't be updated but is available. Deleted: The partner AI app is permanently deleted and not available.
23972
24001
  creation_time: The time that the SageMaker Partner AI App was created.
23973
24002
  last_modified_time: The time that the SageMaker Partner AI App was last modified.
23974
24003
  execution_role_arn: The ARN of the IAM role associated with the SageMaker Partner AI App.
@@ -3406,6 +3406,40 @@ class ClarifyExplainerConfig(Base):
3406
3406
  inference_config: Optional[ClarifyInferenceConfig] = Unassigned()
3407
3407
 
3408
3408
 
3409
+ class ClusterAutoScalingConfig(Base):
3410
+ """
3411
+ ClusterAutoScalingConfig
3412
+ Specifies the autoscaling configuration for a HyperPod cluster.
3413
+
3414
+ Attributes
3415
+ ----------------------
3416
+ mode: Describes whether autoscaling is enabled or disabled for the cluster. Valid values are Enable and Disable.
3417
+ auto_scaler_type: The type of autoscaler to use. Currently supported value is Karpenter.
3418
+ """
3419
+
3420
+ mode: str
3421
+ auto_scaler_type: Optional[str] = Unassigned()
3422
+
3423
+
3424
+ class ClusterAutoScalingConfigOutput(Base):
3425
+ """
3426
+ ClusterAutoScalingConfigOutput
3427
+ The autoscaling configuration and status information for a HyperPod cluster.
3428
+
3429
+ Attributes
3430
+ ----------------------
3431
+ mode: Describes whether autoscaling is enabled or disabled for the cluster.
3432
+ auto_scaler_type: The type of autoscaler configured for the cluster.
3433
+ status: The current status of the autoscaling configuration. Valid values are InService, Failed, Creating, and Deleting.
3434
+ failure_message: If the autoscaling status is Failed, this field contains a message describing the failure.
3435
+ """
3436
+
3437
+ mode: str
3438
+ status: str
3439
+ auto_scaler_type: Optional[str] = Unassigned()
3440
+ failure_message: Optional[str] = Unassigned()
3441
+
3442
+
3409
3443
  class ClusterEbsVolumeConfig(Base):
3410
3444
  """
3411
3445
  ClusterEbsVolumeConfig
@@ -4050,6 +4084,21 @@ class ClusterSummary(Base):
4050
4084
  training_plan_arns: Optional[List[str]] = Unassigned()
4051
4085
 
4052
4086
 
4087
+ class ClusterTieredStorageConfig(Base):
4088
+ """
4089
+ ClusterTieredStorageConfig
4090
+ Defines the configuration for managed tier checkpointing in a HyperPod cluster. Managed tier checkpointing uses multiple storage tiers, including cluster CPU memory, to provide faster checkpoint operations and improved fault tolerance for large-scale model training. The system automatically saves checkpoints at high frequency to memory and periodically persists them to durable storage, like Amazon S3.
4091
+
4092
+ Attributes
4093
+ ----------------------
4094
+ mode: Specifies whether managed tier checkpointing is enabled or disabled for the HyperPod cluster. When set to Enable, the system installs a memory management daemon that provides disaggregated memory as a service for checkpoint storage. When set to Disable, the feature is turned off and the memory management daemon is removed from the cluster.
4095
+ instance_memory_allocation_percentage: The percentage (int) of cluster memory to allocate for checkpointing.
4096
+ """
4097
+
4098
+ mode: str
4099
+ instance_memory_allocation_percentage: Optional[int] = Unassigned()
4100
+
4101
+
4053
4102
  class CustomImage(Base):
4054
4103
  """
4055
4104
  CustomImage
@@ -5379,7 +5428,7 @@ class DockerSettings(Base):
5379
5428
  ----------------------
5380
5429
  enable_docker_access: Indicates whether the domain can access Docker.
5381
5430
  vpc_only_trusted_accounts: The list of Amazon Web Services accounts that are trusted when the domain is created in VPC-only mode.
5382
- rootless_docker: Indicates whether to use rootless Docker. Default value is DISABLED.
5431
+ rootless_docker: Indicates whether to use rootless Docker.
5383
5432
  """
5384
5433
 
5385
5434
  enable_docker_access: Optional[str] = Unassigned()
@@ -1,6 +1,6 @@
1
1
  Metadata-Version: 2.4
2
2
  Name: sagemaker-core
3
- Version: 1.0.56
3
+ Version: 1.0.58
4
4
  Summary: An python package for sagemaker core functionalities
5
5
  Author-email: AWS <sagemaker-interests@amazon.com>
6
6
  Project-URL: Repository, https://github.com/aws/sagemaker-core.git
@@ -3,19 +3,19 @@ sagemaker_core/_version.py,sha256=4UH5LevZBa3Kl1OiDbkaeIzXUQNSYVFrc-2su2TCco4,86
3
3
  sagemaker_core/helper/__init__.py,sha256=47DEQpj8HBSa-_TImW-5JCeuQeRkm5NMpJWZG3hSuFU,0
4
4
  sagemaker_core/helper/session_helper.py,sha256=GO1UJgpN1L9a25nYlVb-KWk4KvmFzVkLqFMqw-VaI4c,33126
5
5
  sagemaker_core/main/__init__.py,sha256=47DEQpj8HBSa-_TImW-5JCeuQeRkm5NMpJWZG3hSuFU,0
6
- sagemaker_core/main/config_schema.py,sha256=Wxe2gJash1rrxBomGhSYmII1LmJ3E70LIuSWklX4_7g,57588
6
+ sagemaker_core/main/config_schema.py,sha256=1xYzDM0FEBQFmiE3R--Nj0_RMQQF3vxlFQXEHzOpOBM,57665
7
7
  sagemaker_core/main/default_configs_helper.py,sha256=bg_tgczX_bYzNiSlalJ6TWPTgrQYsI0uZguP5TIbPiw,8324
8
8
  sagemaker_core/main/exceptions.py,sha256=CsiM3V_Gb16grBotnu59LB6tznryPcSvAQDAOOYGc10,5563
9
9
  sagemaker_core/main/logs.py,sha256=yfEH7uP91nbE1lefymOlBr81ziBzsDSIOF2Qyd54FJE,6241
10
- sagemaker_core/main/resources.py,sha256=0IFGqHdVjFCtHANZda2cx7ZwYLy1A_JSSNzOjSDHFU4,1441719
11
- sagemaker_core/main/shapes.py,sha256=a2vctCKI8rGpfonG_ENh4k_shZybCvcbG7ScZgvOHTA,786198
10
+ sagemaker_core/main/resources.py,sha256=9WrqWlZv-FTfTM679NhX5cSyupF69lpqMO1J5SBzpsY,1445449
11
+ sagemaker_core/main/shapes.py,sha256=UvTIZ2JlJjP4re11NlDWAyU5lmMdrKSw6pDHSWSnBuU,788485
12
12
  sagemaker_core/main/user_agent.py,sha256=BPYDAfDd70ObP-VAjl7aDHALHyGknkpRP21ktVr_LDw,2744
13
13
  sagemaker_core/main/utils.py,sha256=y1aZzztCApczZSqT0U7_H8zLlpqp1vgoUKcp40mTM2o,19157
14
14
  sagemaker_core/main/code_injection/__init__.py,sha256=47DEQpj8HBSa-_TImW-5JCeuQeRkm5NMpJWZG3hSuFU,0
15
15
  sagemaker_core/main/code_injection/base.py,sha256=11_Jif0nOzfbLGlXaacKf-wcizzfS64U0OSZGoVffFU,1733
16
16
  sagemaker_core/main/code_injection/codec.py,sha256=2YzJ-iYEzmguVaJVcZeyCR0OpTSR7UOixATrOm4MiBk,8885
17
17
  sagemaker_core/main/code_injection/constants.py,sha256=2ICExGge8vAWx7lSTW0JGh-bH1korkvpOpDu5M63eI4,980
18
- sagemaker_core/main/code_injection/shape_dag.py,sha256=GET1PJhDdCGwyO7EEiWVkfcTi2JefU9JR4QJGLrtNwQ,745965
18
+ sagemaker_core/main/code_injection/shape_dag.py,sha256=hXcRME17q2BXv8BQY0xJBFzMVeCUgHoufF_zFPgcw3k,748336
19
19
  sagemaker_core/resources/__init__.py,sha256=EAYTFMN-nPjnPjjBbhIUeaL67FLKNPd7qbcbl9VIrws,31
20
20
  sagemaker_core/shapes/__init__.py,sha256=RnbIu9eTxKt-DNsOFJabrWIgrrtS9_SdAozP9JBl_ic,28
21
21
  sagemaker_core/tools/__init__.py,sha256=xX79JImxCVzrWMnjgntLCve2G5I-R4pRar5s20kT9Rs,56
@@ -28,8 +28,8 @@ sagemaker_core/tools/resources_extractor.py,sha256=hN61ehZbPnhFW-2FIVDi7NsEz4rLv
28
28
  sagemaker_core/tools/shapes_codegen.py,sha256=4lsePZpjk7M6RpJs5yar_m4z5MzwGHFrvCkdS_-R12c,12172
29
29
  sagemaker_core/tools/shapes_extractor.py,sha256=vxVKjXD3lmjrkoKiexjUnOt8ITbFxQSeiDtx7P6Qtkw,14226
30
30
  sagemaker_core/tools/templates.py,sha256=0lOIH3Rq2CXWkQhK6VenN_TE_v5p852s2kQyb_BeQxA,23460
31
- sagemaker_core-1.0.56.dist-info/licenses/LICENSE,sha256=xx0jnfkXJvxRnG63LTGOxlggYnIysveWIZ6H3PNdCrQ,11357
32
- sagemaker_core-1.0.56.dist-info/METADATA,sha256=2hwMbATSpPXljHp6Z8offaO106L6wKVbNVaiHY6wS6U,4871
33
- sagemaker_core-1.0.56.dist-info/WHEEL,sha256=_zCd3N1l69ArxyTb8rzEoP9TpbYXkqRFSNOD5OuxnTs,91
34
- sagemaker_core-1.0.56.dist-info/top_level.txt,sha256=R3GAZZ1zC5JxqdE_0x2Lu_WYi2Xfke7VsiP3L5zngfA,15
35
- sagemaker_core-1.0.56.dist-info/RECORD,,
31
+ sagemaker_core-1.0.58.dist-info/licenses/LICENSE,sha256=xx0jnfkXJvxRnG63LTGOxlggYnIysveWIZ6H3PNdCrQ,11357
32
+ sagemaker_core-1.0.58.dist-info/METADATA,sha256=6lFa7ia9TvEqenUJwpxV4L4GAQLnNbX65FPl9l4w9pY,4871
33
+ sagemaker_core-1.0.58.dist-info/WHEEL,sha256=_zCd3N1l69ArxyTb8rzEoP9TpbYXkqRFSNOD5OuxnTs,91
34
+ sagemaker_core-1.0.58.dist-info/top_level.txt,sha256=R3GAZZ1zC5JxqdE_0x2Lu_WYi2Xfke7VsiP3L5zngfA,15
35
+ sagemaker_core-1.0.58.dist-info/RECORD,,