sagemaker-core 1.0.55__py3-none-any.whl → 1.0.56__py3-none-any.whl
This diff represents the content of publicly available package versions that have been released to one of the supported registries. The information contained in this diff is provided for informational purposes only and reflects changes between package versions as they appear in their respective public registries.
Potentially problematic release.
This version of sagemaker-core might be problematic. Click here for more details.
- sagemaker_core/main/resources.py +10 -10
- sagemaker_core/main/shapes.py +6 -6
- {sagemaker_core-1.0.55.dist-info → sagemaker_core-1.0.56.dist-info}/METADATA +1 -1
- {sagemaker_core-1.0.55.dist-info → sagemaker_core-1.0.56.dist-info}/RECORD +7 -7
- {sagemaker_core-1.0.55.dist-info → sagemaker_core-1.0.56.dist-info}/WHEEL +0 -0
- {sagemaker_core-1.0.55.dist-info → sagemaker_core-1.0.56.dist-info}/licenses/LICENSE +0 -0
- {sagemaker_core-1.0.55.dist-info → sagemaker_core-1.0.56.dist-info}/top_level.txt +0 -0
sagemaker_core/main/resources.py
CHANGED
|
@@ -9426,20 +9426,20 @@ class Endpoint(Base):
|
|
|
9426
9426
|
region: Optional[str] = None,
|
|
9427
9427
|
) -> Optional[shapes.InvokeEndpointOutput]:
|
|
9428
9428
|
"""
|
|
9429
|
-
After you deploy a model into production using Amazon SageMaker hosting services, your client applications use this API to get inferences from the model hosted at the specified endpoint.
|
|
9429
|
+
After you deploy a model into production using Amazon SageMaker AI hosting services, your client applications use this API to get inferences from the model hosted at the specified endpoint.
|
|
9430
9430
|
|
|
9431
9431
|
Parameters:
|
|
9432
|
-
body: Provides input data, in the format specified in the ContentType request header. Amazon SageMaker passes all of the data in the body to the model. For information about the format of the request body, see Common Data Formats-Inference.
|
|
9432
|
+
body: Provides input data, in the format specified in the ContentType request header. Amazon SageMaker AI passes all of the data in the body to the model. For information about the format of the request body, see Common Data Formats-Inference.
|
|
9433
9433
|
content_type: The MIME type of the input data in the request body.
|
|
9434
9434
|
accept: The desired MIME type of the inference response from the model container.
|
|
9435
|
-
custom_attributes: Provides additional information about a request for an inference submitted to a model hosted at an Amazon SageMaker endpoint. The information is an opaque value that is forwarded verbatim. You could use this value, for example, to provide an ID that you can use to track a request or to provide other metadata that a service endpoint was programmed to process. The value must consist of no more than 1024 visible US-ASCII characters as specified in Section 3.3.6. Field Value Components of the Hypertext Transfer Protocol (HTTP/1.1). The code in your model is responsible for setting or updating any custom attributes in the response. If your code does not set this value in the response, an empty value is returned. For example, if a custom attribute represents the trace ID, your model can prepend the custom attribute with Trace ID: in your post-processing function. This feature is currently supported in the Amazon Web Services SDKs but not in the Amazon SageMaker Python SDK.
|
|
9435
|
+
custom_attributes: Provides additional information about a request for an inference submitted to a model hosted at an Amazon SageMaker AI endpoint. The information is an opaque value that is forwarded verbatim. You could use this value, for example, to provide an ID that you can use to track a request or to provide other metadata that a service endpoint was programmed to process. The value must consist of no more than 1024 visible US-ASCII characters as specified in Section 3.3.6. Field Value Components of the Hypertext Transfer Protocol (HTTP/1.1). The code in your model is responsible for setting or updating any custom attributes in the response. If your code does not set this value in the response, an empty value is returned. For example, if a custom attribute represents the trace ID, your model can prepend the custom attribute with Trace ID: in your post-processing function. This feature is currently supported in the Amazon Web Services SDKs but not in the Amazon SageMaker AI Python SDK.
|
|
9436
9436
|
target_model: The model to request for inference when invoking a multi-model endpoint.
|
|
9437
9437
|
target_variant: Specify the production variant to send the inference request to when invoking an endpoint that is running two or more variants. Note that this parameter overrides the default behavior for the endpoint, which is to distribute the invocation traffic based on the variant weights. For information about how to use variant targeting to perform a/b testing, see Test models in production
|
|
9438
9438
|
target_container_hostname: If the endpoint hosts multiple containers and is configured to use direct invocation, this parameter specifies the host name of the container to invoke.
|
|
9439
9439
|
inference_id: If you provide a value, it is added to the captured data when you enable data capture on the endpoint. For information about data capture, see Capture Data.
|
|
9440
9440
|
enable_explanations: An optional JMESPath expression used to override the EnableExplanations parameter of the ClarifyExplainerConfig API. See the EnableExplanations section in the developer guide for more information.
|
|
9441
9441
|
inference_component_name: If the endpoint hosts one or more inference components, this parameter specifies the name of inference component to invoke.
|
|
9442
|
-
session_id: Creates a stateful session or identifies an existing one. You can do one of the following: Create a stateful session by specifying the value NEW_SESSION. Send your request to an existing stateful session by specifying the ID of that session. With a stateful session, you can send multiple requests to a stateful model. When you create a session with a stateful model, the model must create the session ID and set the expiration time. The model must also provide that information in the response to your request. You can get the ID and timestamp from the NewSessionId response parameter. For any subsequent request where you specify that session ID, SageMaker routes the request to the same instance that supports the session.
|
|
9442
|
+
session_id: Creates a stateful session or identifies an existing one. You can do one of the following: Create a stateful session by specifying the value NEW_SESSION. Send your request to an existing stateful session by specifying the ID of that session. With a stateful session, you can send multiple requests to a stateful model. When you create a session with a stateful model, the model must create the session ID and set the expiration time. The model must also provide that information in the response to your request. You can get the ID and timestamp from the NewSessionId response parameter. For any subsequent request where you specify that session ID, SageMaker AI routes the request to the same instance that supports the session.
|
|
9443
9443
|
session: Boto3 session.
|
|
9444
9444
|
region: Region name.
|
|
9445
9445
|
|
|
@@ -9507,14 +9507,14 @@ class Endpoint(Base):
|
|
|
9507
9507
|
region: Optional[str] = None,
|
|
9508
9508
|
) -> Optional[shapes.InvokeEndpointAsyncOutput]:
|
|
9509
9509
|
"""
|
|
9510
|
-
After you deploy a model into production using Amazon SageMaker hosting services, your client applications use this API to get inferences from the model hosted at the specified endpoint in an asynchronous manner.
|
|
9510
|
+
After you deploy a model into production using Amazon SageMaker AI hosting services, your client applications use this API to get inferences from the model hosted at the specified endpoint in an asynchronous manner.
|
|
9511
9511
|
|
|
9512
9512
|
Parameters:
|
|
9513
9513
|
input_location: The Amazon S3 URI where the inference request payload is stored.
|
|
9514
9514
|
content_type: The MIME type of the input data in the request body.
|
|
9515
9515
|
accept: The desired MIME type of the inference response from the model container.
|
|
9516
|
-
custom_attributes: Provides additional information about a request for an inference submitted to a model hosted at an Amazon SageMaker endpoint. The information is an opaque value that is forwarded verbatim. You could use this value, for example, to provide an ID that you can use to track a request or to provide other metadata that a service endpoint was programmed to process. The value must consist of no more than 1024 visible US-ASCII characters as specified in Section 3.3.6. Field Value Components of the Hypertext Transfer Protocol (HTTP/1.1). The code in your model is responsible for setting or updating any custom attributes in the response. If your code does not set this value in the response, an empty value is returned. For example, if a custom attribute represents the trace ID, your model can prepend the custom attribute with Trace ID: in your post-processing function. This feature is currently supported in the Amazon Web Services SDKs but not in the Amazon SageMaker Python SDK.
|
|
9517
|
-
inference_id: The identifier for the inference request. Amazon SageMaker will generate an identifier for you if none is specified.
|
|
9516
|
+
custom_attributes: Provides additional information about a request for an inference submitted to a model hosted at an Amazon SageMaker AI endpoint. The information is an opaque value that is forwarded verbatim. You could use this value, for example, to provide an ID that you can use to track a request or to provide other metadata that a service endpoint was programmed to process. The value must consist of no more than 1024 visible US-ASCII characters as specified in Section 3.3.6. Field Value Components of the Hypertext Transfer Protocol (HTTP/1.1). The code in your model is responsible for setting or updating any custom attributes in the response. If your code does not set this value in the response, an empty value is returned. For example, if a custom attribute represents the trace ID, your model can prepend the custom attribute with Trace ID: in your post-processing function. This feature is currently supported in the Amazon Web Services SDKs but not in the Amazon SageMaker AI Python SDK.
|
|
9517
|
+
inference_id: The identifier for the inference request. Amazon SageMaker AI will generate an identifier for you if none is specified.
|
|
9518
9518
|
request_ttl_seconds: Maximum age in seconds a request can be in the queue before it is marked as expired. The default is 6 hours, or 21,600 seconds.
|
|
9519
9519
|
invocation_timeout_seconds: Maximum amount of time in seconds a request can be processed before it is marked as expired. The default is 15 minutes, or 900 seconds.
|
|
9520
9520
|
session: Boto3 session.
|
|
@@ -9582,10 +9582,10 @@ class Endpoint(Base):
|
|
|
9582
9582
|
Invokes a model at the specified endpoint to return the inference response as a stream.
|
|
9583
9583
|
|
|
9584
9584
|
Parameters:
|
|
9585
|
-
body: Provides input data, in the format specified in the ContentType request header. Amazon SageMaker passes all of the data in the body to the model. For information about the format of the request body, see Common Data Formats-Inference.
|
|
9585
|
+
body: Provides input data, in the format specified in the ContentType request header. Amazon SageMaker AI passes all of the data in the body to the model. For information about the format of the request body, see Common Data Formats-Inference.
|
|
9586
9586
|
content_type: The MIME type of the input data in the request body.
|
|
9587
9587
|
accept: The desired MIME type of the inference response from the model container.
|
|
9588
|
-
custom_attributes: Provides additional information about a request for an inference submitted to a model hosted at an Amazon SageMaker endpoint. The information is an opaque value that is forwarded verbatim. You could use this value, for example, to provide an ID that you can use to track a request or to provide other metadata that a service endpoint was programmed to process. The value must consist of no more than 1024 visible US-ASCII characters as specified in Section 3.3.6. Field Value Components of the Hypertext Transfer Protocol (HTTP/1.1). The code in your model is responsible for setting or updating any custom attributes in the response. If your code does not set this value in the response, an empty value is returned. For example, if a custom attribute represents the trace ID, your model can prepend the custom attribute with Trace ID: in your post-processing function. This feature is currently supported in the Amazon Web Services SDKs but not in the Amazon SageMaker Python SDK.
|
|
9588
|
+
custom_attributes: Provides additional information about a request for an inference submitted to a model hosted at an Amazon SageMaker AI endpoint. The information is an opaque value that is forwarded verbatim. You could use this value, for example, to provide an ID that you can use to track a request or to provide other metadata that a service endpoint was programmed to process. The value must consist of no more than 1024 visible US-ASCII characters as specified in Section 3.3.6. Field Value Components of the Hypertext Transfer Protocol (HTTP/1.1). The code in your model is responsible for setting or updating any custom attributes in the response. If your code does not set this value in the response, an empty value is returned. For example, if a custom attribute represents the trace ID, your model can prepend the custom attribute with Trace ID: in your post-processing function. This feature is currently supported in the Amazon Web Services SDKs but not in the Amazon SageMaker AI Python SDK.
|
|
9589
9589
|
target_variant: Specify the production variant to send the inference request to when invoking an endpoint that is running two or more variants. Note that this parameter overrides the default behavior for the endpoint, which is to distribute the invocation traffic based on the variant weights. For information about how to use variant targeting to perform a/b testing, see Test models in production
|
|
9590
9590
|
target_container_hostname: If the endpoint hosts multiple containers and is configured to use direct invocation, this parameter specifies the host name of the container to invoke.
|
|
9591
9591
|
inference_id: An identifier that you assign to your request.
|
|
@@ -9610,7 +9610,7 @@ class Endpoint(Base):
|
|
|
9610
9610
|
InternalFailure: An internal failure occurred. Try your request again. If the problem persists, contact Amazon Web Services customer support.
|
|
9611
9611
|
InternalStreamFailure: The stream processing failed because of an unknown error, exception or failure. Try your request again.
|
|
9612
9612
|
ModelError: Model (owned by the customer in the container) returned 4xx or 5xx error code.
|
|
9613
|
-
ModelStreamError: An error occurred while streaming the response body. This error can have the following error codes: ModelInvocationTimeExceeded The model failed to finish sending the response within the timeout period allowed by Amazon SageMaker. StreamBroken The Transmission Control Protocol (TCP) connection between the client and the model was reset or closed.
|
|
9613
|
+
ModelStreamError: An error occurred while streaming the response body. This error can have the following error codes: ModelInvocationTimeExceeded The model failed to finish sending the response within the timeout period allowed by Amazon SageMaker AI. StreamBroken The Transmission Control Protocol (TCP) connection between the client and the model was reset or closed.
|
|
9614
9614
|
ServiceUnavailable: The service is currently unavailable.
|
|
9615
9615
|
ValidationError: There was an error validating your request.
|
|
9616
9616
|
"""
|
sagemaker_core/main/shapes.py
CHANGED
|
@@ -66,7 +66,7 @@ class InvokeEndpointAsyncOutput(Base):
|
|
|
66
66
|
|
|
67
67
|
Attributes
|
|
68
68
|
----------------------
|
|
69
|
-
inference_id: Identifier for an inference request. This will be the same as the InferenceId specified in the input. Amazon SageMaker will generate an identifier for you if you do not specify one.
|
|
69
|
+
inference_id: Identifier for an inference request. This will be the same as the InferenceId specified in the input. Amazon SageMaker AI will generate an identifier for you if you do not specify one.
|
|
70
70
|
output_location: The Amazon S3 URI where the inference response payload is stored.
|
|
71
71
|
failure_location: The Amazon S3 URI where the inference failure response payload is stored.
|
|
72
72
|
"""
|
|
@@ -85,7 +85,7 @@ class InvokeEndpointOutput(Base):
|
|
|
85
85
|
body: Includes the inference provided by the model. For information about the format of the response body, see Common Data Formats-Inference. If the explainer is activated, the body includes the explanations provided by the model. For more information, see the Response section under Invoke the Endpoint in the Developer Guide.
|
|
86
86
|
content_type: The MIME type of the inference returned from the model container.
|
|
87
87
|
invoked_production_variant: Identifies the production variant that was invoked.
|
|
88
|
-
custom_attributes: Provides additional information in the response about the inference returned by a model hosted at an Amazon SageMaker endpoint. The information is an opaque value that is forwarded verbatim. You could use this value, for example, to return an ID received in the CustomAttributes header of a request or other metadata that a service endpoint was programmed to produce. The value must consist of no more than 1024 visible US-ASCII characters as specified in Section 3.3.6. Field Value Components of the Hypertext Transfer Protocol (HTTP/1.1). If the customer wants the custom attribute returned, the model must set the custom attribute to be included on the way back. The code in your model is responsible for setting or updating any custom attributes in the response. If your code does not set this value in the response, an empty value is returned. For example, if a custom attribute represents the trace ID, your model can prepend the custom attribute with Trace ID: in your post-processing function. This feature is currently supported in the Amazon Web Services SDKs but not in the Amazon SageMaker Python SDK.
|
|
88
|
+
custom_attributes: Provides additional information in the response about the inference returned by a model hosted at an Amazon SageMaker AI endpoint. The information is an opaque value that is forwarded verbatim. You could use this value, for example, to return an ID received in the CustomAttributes header of a request or other metadata that a service endpoint was programmed to produce. The value must consist of no more than 1024 visible US-ASCII characters as specified in Section 3.3.6. Field Value Components of the Hypertext Transfer Protocol (HTTP/1.1). If the customer wants the custom attribute returned, the model must set the custom attribute to be included on the way back. The code in your model is responsible for setting or updating any custom attributes in the response. If your code does not set this value in the response, an empty value is returned. For example, if a custom attribute represents the trace ID, your model can prepend the custom attribute with Trace ID: in your post-processing function. This feature is currently supported in the Amazon Web Services SDKs but not in the Amazon SageMaker AI Python SDK.
|
|
89
89
|
new_session_id: If you created a stateful session with your request, the ID and expiration time that the model assigns to that session.
|
|
90
90
|
closed_session_id: If you closed a stateful session with your request, the ID of that session.
|
|
91
91
|
"""
|
|
@@ -114,12 +114,12 @@ class PayloadPart(Base):
|
|
|
114
114
|
class ModelStreamError(Base):
|
|
115
115
|
"""
|
|
116
116
|
ModelStreamError
|
|
117
|
-
An error occurred while streaming the response body. This error can have the following error codes: ModelInvocationTimeExceeded The model failed to finish sending the response within the timeout period allowed by Amazon SageMaker. StreamBroken The Transmission Control Protocol (TCP) connection between the client and the model was reset or closed.
|
|
117
|
+
An error occurred while streaming the response body. This error can have the following error codes: ModelInvocationTimeExceeded The model failed to finish sending the response within the timeout period allowed by Amazon SageMaker AI. StreamBroken The Transmission Control Protocol (TCP) connection between the client and the model was reset or closed.
|
|
118
118
|
|
|
119
119
|
Attributes
|
|
120
120
|
----------------------
|
|
121
121
|
message
|
|
122
|
-
error_code: This error can have the following error codes: ModelInvocationTimeExceeded The model failed to finish sending the response within the timeout period allowed by Amazon SageMaker. StreamBroken The Transmission Control Protocol (TCP) connection between the client and the model was reset or closed.
|
|
122
|
+
error_code: This error can have the following error codes: ModelInvocationTimeExceeded The model failed to finish sending the response within the timeout period allowed by Amazon SageMaker AI. StreamBroken The Transmission Control Protocol (TCP) connection between the client and the model was reset or closed.
|
|
123
123
|
"""
|
|
124
124
|
|
|
125
125
|
message: Optional[str] = Unassigned()
|
|
@@ -134,7 +134,7 @@ class ResponseStream(Base):
|
|
|
134
134
|
Attributes
|
|
135
135
|
----------------------
|
|
136
136
|
payload_part: A wrapper for pieces of the payload that's returned in response to a streaming inference request. A streaming inference response consists of one or more payload parts.
|
|
137
|
-
model_stream_error: An error occurred while streaming the response body. This error can have the following error codes: ModelInvocationTimeExceeded The model failed to finish sending the response within the timeout period allowed by Amazon SageMaker. StreamBroken The Transmission Control Protocol (TCP) connection between the client and the model was reset or closed.
|
|
137
|
+
model_stream_error: An error occurred while streaming the response body. This error can have the following error codes: ModelInvocationTimeExceeded The model failed to finish sending the response within the timeout period allowed by Amazon SageMaker AI. StreamBroken The Transmission Control Protocol (TCP) connection between the client and the model was reset or closed.
|
|
138
138
|
internal_stream_failure: The stream processing failed because of an unknown error, exception or failure. Try your request again.
|
|
139
139
|
"""
|
|
140
140
|
|
|
@@ -152,7 +152,7 @@ class InvokeEndpointWithResponseStreamOutput(Base):
|
|
|
152
152
|
body
|
|
153
153
|
content_type: The MIME type of the inference returned from the model container.
|
|
154
154
|
invoked_production_variant: Identifies the production variant that was invoked.
|
|
155
|
-
custom_attributes: Provides additional information in the response about the inference returned by a model hosted at an Amazon SageMaker endpoint. The information is an opaque value that is forwarded verbatim. You could use this value, for example, to return an ID received in the CustomAttributes header of a request or other metadata that a service endpoint was programmed to produce. The value must consist of no more than 1024 visible US-ASCII characters as specified in Section 3.3.6. Field Value Components of the Hypertext Transfer Protocol (HTTP/1.1). If the customer wants the custom attribute returned, the model must set the custom attribute to be included on the way back. The code in your model is responsible for setting or updating any custom attributes in the response. If your code does not set this value in the response, an empty value is returned. For example, if a custom attribute represents the trace ID, your model can prepend the custom attribute with Trace ID: in your post-processing function. This feature is currently supported in the Amazon Web Services SDKs but not in the Amazon SageMaker Python SDK.
|
|
155
|
+
custom_attributes: Provides additional information in the response about the inference returned by a model hosted at an Amazon SageMaker AI endpoint. The information is an opaque value that is forwarded verbatim. You could use this value, for example, to return an ID received in the CustomAttributes header of a request or other metadata that a service endpoint was programmed to produce. The value must consist of no more than 1024 visible US-ASCII characters as specified in Section 3.3.6. Field Value Components of the Hypertext Transfer Protocol (HTTP/1.1). If the customer wants the custom attribute returned, the model must set the custom attribute to be included on the way back. The code in your model is responsible for setting or updating any custom attributes in the response. If your code does not set this value in the response, an empty value is returned. For example, if a custom attribute represents the trace ID, your model can prepend the custom attribute with Trace ID: in your post-processing function. This feature is currently supported in the Amazon Web Services SDKs but not in the Amazon SageMaker AI Python SDK.
|
|
156
156
|
"""
|
|
157
157
|
|
|
158
158
|
body: ResponseStream
|
|
@@ -7,8 +7,8 @@ sagemaker_core/main/config_schema.py,sha256=Wxe2gJash1rrxBomGhSYmII1LmJ3E70LIuSW
|
|
|
7
7
|
sagemaker_core/main/default_configs_helper.py,sha256=bg_tgczX_bYzNiSlalJ6TWPTgrQYsI0uZguP5TIbPiw,8324
|
|
8
8
|
sagemaker_core/main/exceptions.py,sha256=CsiM3V_Gb16grBotnu59LB6tznryPcSvAQDAOOYGc10,5563
|
|
9
9
|
sagemaker_core/main/logs.py,sha256=yfEH7uP91nbE1lefymOlBr81ziBzsDSIOF2Qyd54FJE,6241
|
|
10
|
-
sagemaker_core/main/resources.py,sha256=
|
|
11
|
-
sagemaker_core/main/shapes.py,sha256=
|
|
10
|
+
sagemaker_core/main/resources.py,sha256=0IFGqHdVjFCtHANZda2cx7ZwYLy1A_JSSNzOjSDHFU4,1441719
|
|
11
|
+
sagemaker_core/main/shapes.py,sha256=a2vctCKI8rGpfonG_ENh4k_shZybCvcbG7ScZgvOHTA,786198
|
|
12
12
|
sagemaker_core/main/user_agent.py,sha256=BPYDAfDd70ObP-VAjl7aDHALHyGknkpRP21ktVr_LDw,2744
|
|
13
13
|
sagemaker_core/main/utils.py,sha256=y1aZzztCApczZSqT0U7_H8zLlpqp1vgoUKcp40mTM2o,19157
|
|
14
14
|
sagemaker_core/main/code_injection/__init__.py,sha256=47DEQpj8HBSa-_TImW-5JCeuQeRkm5NMpJWZG3hSuFU,0
|
|
@@ -28,8 +28,8 @@ sagemaker_core/tools/resources_extractor.py,sha256=hN61ehZbPnhFW-2FIVDi7NsEz4rLv
|
|
|
28
28
|
sagemaker_core/tools/shapes_codegen.py,sha256=4lsePZpjk7M6RpJs5yar_m4z5MzwGHFrvCkdS_-R12c,12172
|
|
29
29
|
sagemaker_core/tools/shapes_extractor.py,sha256=vxVKjXD3lmjrkoKiexjUnOt8ITbFxQSeiDtx7P6Qtkw,14226
|
|
30
30
|
sagemaker_core/tools/templates.py,sha256=0lOIH3Rq2CXWkQhK6VenN_TE_v5p852s2kQyb_BeQxA,23460
|
|
31
|
-
sagemaker_core-1.0.
|
|
32
|
-
sagemaker_core-1.0.
|
|
33
|
-
sagemaker_core-1.0.
|
|
34
|
-
sagemaker_core-1.0.
|
|
35
|
-
sagemaker_core-1.0.
|
|
31
|
+
sagemaker_core-1.0.56.dist-info/licenses/LICENSE,sha256=xx0jnfkXJvxRnG63LTGOxlggYnIysveWIZ6H3PNdCrQ,11357
|
|
32
|
+
sagemaker_core-1.0.56.dist-info/METADATA,sha256=2hwMbATSpPXljHp6Z8offaO106L6wKVbNVaiHY6wS6U,4871
|
|
33
|
+
sagemaker_core-1.0.56.dist-info/WHEEL,sha256=_zCd3N1l69ArxyTb8rzEoP9TpbYXkqRFSNOD5OuxnTs,91
|
|
34
|
+
sagemaker_core-1.0.56.dist-info/top_level.txt,sha256=R3GAZZ1zC5JxqdE_0x2Lu_WYi2Xfke7VsiP3L5zngfA,15
|
|
35
|
+
sagemaker_core-1.0.56.dist-info/RECORD,,
|
|
File without changes
|
|
File without changes
|
|
File without changes
|