sagemaker-core 1.0.47__py3-none-any.whl → 2.1.1__py3-none-any.whl
This diff represents the content of publicly available package versions that have been released to one of the supported registries. The information contained in this diff is provided for informational purposes only and reflects changes between package versions as they appear in their respective public registries.
- sagemaker/core/__init__.py +16 -0
- sagemaker/core/_studio.py +116 -0
- sagemaker/core/_version.py +11 -0
- sagemaker/core/accept_types.py +131 -0
- sagemaker/core/analytics.py +744 -0
- sagemaker/core/apiutils/__init__.py +13 -0
- sagemaker/core/apiutils/_base_types.py +228 -0
- sagemaker/core/apiutils/_boto_functions.py +130 -0
- sagemaker/core/apiutils/_utils.py +34 -0
- sagemaker/core/base_deserializers.py +35 -0
- sagemaker/core/base_serializers.py +35 -0
- sagemaker/core/clarify/__init__.py +2898 -0
- sagemaker/core/collection.py +467 -0
- sagemaker/core/common_utils.py +2281 -0
- sagemaker/core/compute_resource_requirements/__init__.py +18 -0
- sagemaker/core/compute_resource_requirements/resource_requirements.py +94 -0
- sagemaker/core/config/__init__.py +181 -0
- sagemaker/core/config/config.py +238 -0
- sagemaker/core/config/config_manager.py +595 -0
- sagemaker/core/config/config_schema.py +1220 -0
- sagemaker/core/config/config_utils.py +297 -0
- {sagemaker_core/main → sagemaker/core}/config_schema.py +410 -4
- sagemaker/core/constants.py +73 -0
- sagemaker/core/content_types.py +137 -0
- sagemaker/core/debugger/__init__.py +39 -0
- sagemaker/core/debugger/debugger.py +945 -0
- sagemaker/core/debugger/framework_profile.py +292 -0
- sagemaker/core/debugger/metrics_config.py +468 -0
- sagemaker/core/debugger/profiler.py +42 -0
- sagemaker/core/debugger/profiler_config.py +190 -0
- sagemaker/core/debugger/profiler_constants.py +40 -0
- sagemaker/core/debugger/utils.py +148 -0
- sagemaker/core/deprecations.py +254 -0
- sagemaker/core/deserializers/__init__.py +10 -0
- sagemaker/core/deserializers/base.py +424 -0
- sagemaker/core/deserializers/implementations.py +157 -0
- sagemaker/core/drift_check_baselines.py +106 -0
- sagemaker/core/enums.py +51 -0
- sagemaker/core/environment_variables.py +101 -0
- sagemaker/core/exceptions.py +108 -0
- sagemaker/core/experiments/__init__.py +53 -0
- sagemaker/core/experiments/_api_types.py +251 -0
- sagemaker/core/experiments/_environment.py +124 -0
- sagemaker/core/experiments/_helper.py +294 -0
- sagemaker/core/experiments/_metrics.py +333 -0
- sagemaker/core/experiments/_run_context.py +58 -0
- sagemaker/core/experiments/_utils.py +216 -0
- sagemaker/core/experiments/experiment.py +244 -0
- sagemaker/core/experiments/run.py +970 -0
- sagemaker/core/experiments/trial.py +296 -0
- sagemaker/core/experiments/trial_component.py +387 -0
- sagemaker/core/explainer/__init__.py +24 -0
- sagemaker/core/explainer/clarify_explainer_config.py +298 -0
- sagemaker/core/explainer/explainer_config.py +44 -0
- sagemaker/core/fw_utils.py +1176 -0
- sagemaker/core/git_utils.py +349 -0
- sagemaker/core/helper/pipeline_variable.py +82 -0
- sagemaker/core/helper/session_helper.py +2965 -0
- sagemaker/core/huggingface/__init__.py +29 -0
- sagemaker/core/huggingface/llm_utils.py +150 -0
- sagemaker/core/huggingface/processing.py +139 -0
- sagemaker/core/huggingface/training_compiler/config.py +167 -0
- sagemaker/core/hyperparameters.py +172 -0
- sagemaker/core/image_retriever/__init__.py +3 -0
- sagemaker/core/image_retriever/image_retriever.py +640 -0
- sagemaker/core/image_retriever/image_retriever_utils.py +511 -0
- sagemaker/core/image_retriever/test.py +7 -0
- sagemaker/core/image_uri_config/__init__.py +13 -0
- sagemaker/core/image_uri_config/autogluon.json +1335 -0
- sagemaker/core/image_uri_config/blazingtext.json +50 -0
- sagemaker/core/image_uri_config/chainer.json +104 -0
- sagemaker/core/image_uri_config/clarify.json +39 -0
- sagemaker/core/image_uri_config/coach-mxnet.json +70 -0
- sagemaker/core/image_uri_config/coach-tensorflow.json +186 -0
- sagemaker/core/image_uri_config/data-wrangler.json +91 -0
- sagemaker/core/image_uri_config/debugger.json +34 -0
- sagemaker/core/image_uri_config/detailed-profiler.json +18 -0
- sagemaker/core/image_uri_config/djl-deepspeed.json +385 -0
- sagemaker/core/image_uri_config/djl-fastertransformer.json +167 -0
- sagemaker/core/image_uri_config/djl-lmi.json +136 -0
- sagemaker/core/image_uri_config/djl-neuronx.json +258 -0
- sagemaker/core/image_uri_config/djl-tensorrtllm.json +262 -0
- sagemaker/core/image_uri_config/factorization-machines.json +50 -0
- sagemaker/core/image_uri_config/forecasting-deepar.json +50 -0
- sagemaker/core/image_uri_config/huggingface-llm-neuronx.json +660 -0
- sagemaker/core/image_uri_config/huggingface-llm.json +1158 -0
- sagemaker/core/image_uri_config/huggingface-neuron.json +52 -0
- sagemaker/core/image_uri_config/huggingface-neuronx.json +510 -0
- sagemaker/core/image_uri_config/huggingface-tei-cpu.json +298 -0
- sagemaker/core/image_uri_config/huggingface-tei.json +298 -0
- sagemaker/core/image_uri_config/huggingface-training-compiler.json +195 -0
- sagemaker/core/image_uri_config/huggingface.json +2138 -0
- sagemaker/core/image_uri_config/hyperpod-recipes-neuron.json +52 -0
- sagemaker/core/image_uri_config/image-classification-neo.json +43 -0
- sagemaker/core/image_uri_config/image-classification.json +50 -0
- sagemaker/core/image_uri_config/inferentia-mxnet.json +88 -0
- sagemaker/core/image_uri_config/inferentia-pytorch.json +127 -0
- sagemaker/core/image_uri_config/inferentia-tensorflow.json +88 -0
- sagemaker/core/image_uri_config/instance_gpu_info.json +782 -0
- sagemaker/core/image_uri_config/ipinsights.json +50 -0
- sagemaker/core/image_uri_config/kmeans.json +50 -0
- sagemaker/core/image_uri_config/knn.json +50 -0
- sagemaker/core/image_uri_config/lda.json +26 -0
- sagemaker/core/image_uri_config/linear-learner.json +50 -0
- sagemaker/core/image_uri_config/model-monitor.json +42 -0
- sagemaker/core/image_uri_config/mxnet.json +1154 -0
- sagemaker/core/image_uri_config/neo-mxnet.json +64 -0
- sagemaker/core/image_uri_config/neo-pytorch.json +341 -0
- sagemaker/core/image_uri_config/neo-tensorflow.json +109 -0
- sagemaker/core/image_uri_config/ntm.json +50 -0
- sagemaker/core/image_uri_config/object-detection.json +50 -0
- sagemaker/core/image_uri_config/object2vec.json +50 -0
- sagemaker/core/image_uri_config/pca.json +50 -0
- sagemaker/core/image_uri_config/pytorch-neuron.json +43 -0
- sagemaker/core/image_uri_config/pytorch-smp.json +218 -0
- sagemaker/core/image_uri_config/pytorch-training-compiler.json +80 -0
- sagemaker/core/image_uri_config/pytorch.json +3101 -0
- sagemaker/core/image_uri_config/randomcutforest.json +50 -0
- sagemaker/core/image_uri_config/ray-pytorch.json +46 -0
- sagemaker/core/image_uri_config/ray-tensorflow.json +194 -0
- sagemaker/core/image_uri_config/sagemaker-base-python.json +46 -0
- sagemaker/core/image_uri_config/sagemaker-distribution.json +37 -0
- sagemaker/core/image_uri_config/sagemaker-geospatial.json +13 -0
- sagemaker/core/image_uri_config/sagemaker-tritonserver.json +212 -0
- sagemaker/core/image_uri_config/semantic-segmentation.json +50 -0
- sagemaker/core/image_uri_config/seq2seq.json +50 -0
- sagemaker/core/image_uri_config/sklearn.json +446 -0
- sagemaker/core/image_uri_config/spark.json +280 -0
- sagemaker/core/image_uri_config/sparkml-serving.json +97 -0
- sagemaker/core/image_uri_config/stabilityai.json +53 -0
- sagemaker/core/image_uri_config/tensorflow.json +5086 -0
- sagemaker/core/image_uri_config/vw.json +25 -0
- sagemaker/core/image_uri_config/xgboost-neo.json +43 -0
- sagemaker/core/image_uri_config/xgboost.json +888 -0
- sagemaker/core/image_uris.py +810 -0
- sagemaker/core/inference_config.py +144 -0
- sagemaker/core/inference_recommender/__init__.py +18 -0
- sagemaker/core/inference_recommender/inference_recommender_mixin.py +622 -0
- sagemaker/core/inputs.py +366 -0
- sagemaker/core/instance_group.py +61 -0
- sagemaker/core/instance_types.py +164 -0
- sagemaker/core/instance_types_gpu_info.py +43 -0
- sagemaker/core/interactive_apps/__init__.py +41 -0
- sagemaker/core/interactive_apps/base_interactive_app.py +204 -0
- sagemaker/core/interactive_apps/detail_profiler_app.py +139 -0
- sagemaker/core/interactive_apps/tensorboard.py +149 -0
- sagemaker/core/iterators.py +186 -0
- sagemaker/core/job.py +380 -0
- sagemaker/core/jumpstart/__init__.py +156 -0
- sagemaker/core/jumpstart/accessors.py +390 -0
- sagemaker/core/jumpstart/artifacts/__init__.py +69 -0
- sagemaker/core/jumpstart/artifacts/environment_variables.py +252 -0
- sagemaker/core/jumpstart/artifacts/hyperparameters.py +120 -0
- sagemaker/core/jumpstart/artifacts/image_uris.py +139 -0
- sagemaker/core/jumpstart/artifacts/incremental_training.py +87 -0
- sagemaker/core/jumpstart/artifacts/instance_types.py +223 -0
- sagemaker/core/jumpstart/artifacts/kwargs.py +289 -0
- sagemaker/core/jumpstart/artifacts/metric_definitions.py +117 -0
- sagemaker/core/jumpstart/artifacts/model_packages.py +202 -0
- sagemaker/core/jumpstart/artifacts/model_uris.py +252 -0
- sagemaker/core/jumpstart/artifacts/payloads.py +96 -0
- sagemaker/core/jumpstart/artifacts/predictors.py +540 -0
- sagemaker/core/jumpstart/artifacts/resource_names.py +86 -0
- sagemaker/core/jumpstart/artifacts/resource_requirements.py +162 -0
- sagemaker/core/jumpstart/artifacts/script_uris.py +172 -0
- sagemaker/core/jumpstart/cache.py +663 -0
- sagemaker/core/jumpstart/configs.py +50 -0
- sagemaker/core/jumpstart/constants.py +198 -0
- sagemaker/core/jumpstart/deserializers.py +81 -0
- sagemaker/core/jumpstart/document.py +76 -0
- sagemaker/core/jumpstart/enums.py +168 -0
- sagemaker/core/jumpstart/exceptions.py +236 -0
- sagemaker/core/jumpstart/factory/utils.py +833 -0
- sagemaker/core/jumpstart/filters.py +597 -0
- sagemaker/core/jumpstart/hub/__init__.py +0 -0
- sagemaker/core/jumpstart/hub/constants.py +16 -0
- sagemaker/core/jumpstart/hub/hub.py +291 -0
- sagemaker/core/jumpstart/hub/interfaces.py +936 -0
- sagemaker/core/jumpstart/hub/parser_utils.py +70 -0
- sagemaker/core/jumpstart/hub/parsers.py +288 -0
- sagemaker/core/jumpstart/hub/types.py +35 -0
- sagemaker/core/jumpstart/hub/utils.py +260 -0
- sagemaker/core/jumpstart/models.py +499 -0
- sagemaker/core/jumpstart/notebook_utils.py +575 -0
- sagemaker/core/jumpstart/parameters.py +20 -0
- sagemaker/core/jumpstart/payload_utils.py +239 -0
- sagemaker/core/jumpstart/region_config.json +163 -0
- sagemaker/core/jumpstart/search.py +171 -0
- sagemaker/core/jumpstart/serializers.py +81 -0
- sagemaker/core/jumpstart/session_utils.py +234 -0
- sagemaker/core/jumpstart/types.py +3044 -0
- sagemaker/core/jumpstart/utils.py +1731 -0
- sagemaker/core/jumpstart/validators.py +257 -0
- sagemaker/core/lambda_helper.py +312 -0
- sagemaker/core/lineage/__init__.py +42 -0
- sagemaker/core/lineage/_api_types.py +239 -0
- sagemaker/core/lineage/_utils.py +49 -0
- sagemaker/core/lineage/action.py +345 -0
- sagemaker/core/lineage/artifact.py +646 -0
- sagemaker/core/lineage/association.py +190 -0
- sagemaker/core/lineage/context.py +505 -0
- sagemaker/core/lineage/lineage_trial_component.py +191 -0
- sagemaker/core/lineage/query.py +732 -0
- sagemaker/core/lineage/visualizer.py +346 -0
- sagemaker/core/local/__init__.py +18 -0
- sagemaker/core/local/data.py +413 -0
- sagemaker/core/local/entities.py +678 -0
- sagemaker/core/local/exceptions.py +17 -0
- sagemaker/core/local/image.py +1243 -0
- sagemaker/core/local/local_session.py +739 -0
- sagemaker/core/local/utils.py +245 -0
- sagemaker/core/logs.py +181 -0
- sagemaker/core/metadata_properties.py +56 -0
- sagemaker/core/metric_definitions.py +91 -0
- sagemaker/core/mlflow/__init__.py +38 -0
- sagemaker/core/mlflow/forward_sagemaker_metrics.py +44 -0
- sagemaker/core/model_card/__init__.py +26 -0
- sagemaker/core/model_life_cycle.py +51 -0
- sagemaker/core/model_metrics.py +160 -0
- sagemaker/core/model_monitor/__init__.py +66 -0
- sagemaker/core/model_monitor/clarify_model_monitoring.py +1495 -0
- sagemaker/core/model_monitor/cron_expression_generator.py +82 -0
- sagemaker/core/model_monitor/data_capture_config.py +115 -0
- sagemaker/core/model_monitor/data_quality_monitoring_config.py +66 -0
- sagemaker/core/model_monitor/dataset_format.py +102 -0
- sagemaker/core/model_monitor/model_monitoring.py +4266 -0
- sagemaker/core/model_monitor/monitoring_alert.py +76 -0
- sagemaker/core/model_monitor/monitoring_files.py +506 -0
- sagemaker/core/model_monitor/utils.py +793 -0
- sagemaker/core/model_registry.py +480 -0
- sagemaker/core/model_uris.py +97 -0
- sagemaker/core/modules/__init__.py +19 -0
- sagemaker/core/modules/configs.py +226 -0
- sagemaker/core/modules/constants.py +37 -0
- sagemaker/core/modules/distributed.py +182 -0
- sagemaker/core/modules/local_core/__init__.py +0 -0
- sagemaker/core/modules/local_core/local_container.py +605 -0
- sagemaker/core/modules/templates.py +83 -0
- sagemaker/core/modules/train/__init__.py +14 -0
- sagemaker/core/modules/train/container_drivers/__init__.py +14 -0
- sagemaker/core/modules/train/container_drivers/common/__init__.py +14 -0
- sagemaker/core/modules/train/container_drivers/common/utils.py +213 -0
- sagemaker/core/modules/train/container_drivers/distributed_drivers/__init__.py +14 -0
- sagemaker/core/modules/train/container_drivers/distributed_drivers/basic_script_driver.py +81 -0
- sagemaker/core/modules/train/container_drivers/distributed_drivers/mpi_driver.py +123 -0
- sagemaker/core/modules/train/container_drivers/distributed_drivers/mpi_utils.py +302 -0
- sagemaker/core/modules/train/container_drivers/distributed_drivers/torchrun_driver.py +129 -0
- sagemaker/core/modules/train/container_drivers/scripts/__init__.py +14 -0
- sagemaker/core/modules/train/container_drivers/scripts/environment.py +305 -0
- sagemaker/core/modules/train/sm_recipes/__init__.py +0 -0
- sagemaker/core/modules/train/sm_recipes/utils.py +330 -0
- sagemaker/core/modules/types.py +19 -0
- sagemaker/core/modules/utils.py +194 -0
- sagemaker/core/network.py +185 -0
- sagemaker/core/parameter.py +173 -0
- sagemaker/core/payloads.py +185 -0
- sagemaker/core/processing.py +1597 -0
- sagemaker/core/remote_function/__init__.py +19 -0
- sagemaker/core/remote_function/checkpoint_location.py +47 -0
- sagemaker/core/remote_function/client.py +1285 -0
- sagemaker/core/remote_function/core/__init__.py +0 -0
- sagemaker/core/remote_function/core/_custom_dispatch_table.py +72 -0
- sagemaker/core/remote_function/core/pipeline_variables.py +353 -0
- sagemaker/core/remote_function/core/serialization.py +422 -0
- sagemaker/core/remote_function/core/stored_function.py +226 -0
- sagemaker/core/remote_function/custom_file_filter.py +128 -0
- sagemaker/core/remote_function/errors.py +104 -0
- sagemaker/core/remote_function/invoke_function.py +172 -0
- sagemaker/core/remote_function/job.py +2140 -0
- sagemaker/core/remote_function/logging_config.py +38 -0
- sagemaker/core/remote_function/runtime_environment/__init__.py +14 -0
- sagemaker/core/remote_function/runtime_environment/bootstrap_runtime_environment.py +605 -0
- sagemaker/core/remote_function/runtime_environment/mpi_utils_remote.py +252 -0
- sagemaker/core/remote_function/runtime_environment/runtime_environment_manager.py +554 -0
- sagemaker/core/remote_function/runtime_environment/spark_app.py +18 -0
- sagemaker/core/remote_function/spark_config.py +149 -0
- sagemaker/core/resource_requirements.py +168 -0
- {sagemaker_core/main → sagemaker/core}/resources.py +20121 -11728
- sagemaker/core/s3/__init__.py +41 -0
- sagemaker/core/s3/client.py +367 -0
- sagemaker/core/s3/utils.py +175 -0
- sagemaker/core/script_uris.py +93 -0
- sagemaker/core/serializers/__init__.py +11 -0
- sagemaker/core/serializers/base.py +510 -0
- sagemaker/core/serializers/implementations.py +159 -0
- sagemaker/core/serializers/utils.py +223 -0
- sagemaker/core/serverless_inference_config.py +63 -0
- sagemaker/core/session_settings.py +55 -0
- sagemaker/core/shapes/__init__.py +3 -0
- sagemaker/core/shapes/model_card_shapes.py +159 -0
- {sagemaker_core/main → sagemaker/core/shapes}/shapes.py +6384 -1865
- sagemaker/core/spark/__init__.py +16 -0
- sagemaker/core/spark/defaults.py +16 -0
- sagemaker/core/spark/processing.py +1380 -0
- sagemaker/core/telemetry/__init__.py +23 -0
- sagemaker/core/telemetry/constants.py +84 -0
- sagemaker/core/telemetry/telemetry_logging.py +284 -0
- sagemaker/core/tools/__init__.py +1 -0
- {sagemaker_core → sagemaker/core}/tools/codegen.py +4 -4
- {sagemaker_core → sagemaker/core}/tools/constants.py +23 -15
- {sagemaker_core → sagemaker/core}/tools/data_extractor.py +1 -1
- {sagemaker_core → sagemaker/core}/tools/method.py +1 -1
- sagemaker/core/tools/model_card/generate_model_card_from_schema.py +562 -0
- {sagemaker_core → sagemaker/core}/tools/resources_codegen.py +165 -98
- {sagemaker_core → sagemaker/core}/tools/resources_extractor.py +5 -13
- {sagemaker_core → sagemaker/core}/tools/shapes_codegen.py +16 -17
- {sagemaker_core → sagemaker/core}/tools/shapes_extractor.py +29 -67
- {sagemaker_core → sagemaker/core}/tools/templates.py +39 -17
- sagemaker/core/training/__init__.py +14 -0
- sagemaker/core/training/configs.py +333 -0
- sagemaker/core/training/constants.py +37 -0
- sagemaker/core/training/utils.py +77 -0
- sagemaker/core/training_compiler/__init__.py +16 -0
- sagemaker/core/training_compiler/config.py +197 -0
- sagemaker/core/training_compiler_config.py +197 -0
- sagemaker/core/transformer.py +793 -0
- sagemaker/core/user_agent.py +76 -0
- sagemaker/core/utilities/__init__.py +24 -0
- sagemaker/core/utilities/cache.py +169 -0
- sagemaker/core/utilities/search_expression.py +133 -0
- sagemaker/core/utils/__init__.py +48 -0
- sagemaker/core/utils/code_injection/__init__.py +0 -0
- {sagemaker_core/main → sagemaker/core/utils}/code_injection/codec.py +2 -2
- {sagemaker_core/main → sagemaker/core/utils}/code_injection/shape_dag.py +6479 -136
- {sagemaker_core/main → sagemaker/core/utils}/exceptions.py +8 -8
- sagemaker_core/main/default_configs_helper.py → sagemaker/core/utils/intelligent_defaults_helper.py +5 -6
- {sagemaker_core/main → sagemaker/core/utils}/logs.py +1 -2
- {sagemaker_core/main → sagemaker/core/utils}/utils.py +25 -20
- sagemaker/core/workflow/__init__.py +152 -0
- sagemaker/core/workflow/conditions.py +313 -0
- sagemaker/core/workflow/entities.py +58 -0
- sagemaker/core/workflow/execution_variables.py +89 -0
- sagemaker/core/workflow/functions.py +193 -0
- sagemaker/core/workflow/parameters.py +222 -0
- sagemaker/core/workflow/pipeline_context.py +394 -0
- sagemaker/core/workflow/pipeline_definition_config.py +31 -0
- sagemaker/core/workflow/properties.py +285 -0
- sagemaker/core/workflow/step_outputs.py +65 -0
- sagemaker/core/workflow/utilities.py +507 -0
- sagemaker/lineage/__init__.py +33 -0
- sagemaker/lineage/action.py +28 -0
- sagemaker/lineage/artifact.py +28 -0
- sagemaker/lineage/context.py +28 -0
- sagemaker/lineage/lineage_trial_component.py +28 -0
- {sagemaker_core-1.0.47.dist-info → sagemaker_core-2.1.1.dist-info}/METADATA +28 -9
- sagemaker_core-2.1.1.dist-info/RECORD +355 -0
- sagemaker_core-2.1.1.dist-info/top_level.txt +1 -0
- sagemaker_core/__init__.py +0 -4
- sagemaker_core/_version.py +0 -3
- sagemaker_core/helper/session_helper.py +0 -769
- sagemaker_core/resources/__init__.py +0 -1
- sagemaker_core/shapes/__init__.py +0 -1
- sagemaker_core/tools/__init__.py +0 -1
- sagemaker_core-1.0.47.dist-info/RECORD +0 -35
- sagemaker_core-1.0.47.dist-info/top_level.txt +0 -1
- {sagemaker_core → sagemaker/core}/helper/__init__.py +0 -0
- {sagemaker_core/main → sagemaker/core/huggingface/training_compiler}/__init__.py +0 -0
- {sagemaker_core/main/code_injection → sagemaker/core/jumpstart/factory}/__init__.py +0 -0
- {sagemaker_core/main → sagemaker/core/utils}/code_injection/base.py +0 -0
- {sagemaker_core/main → sagemaker/core/utils}/code_injection/constants.py +0 -0
- {sagemaker_core/main → sagemaker/core/utils}/user_agent.py +0 -0
- {sagemaker_core-1.0.47.dist-info → sagemaker_core-2.1.1.dist-info}/WHEEL +0 -0
- {sagemaker_core-1.0.47.dist-info → sagemaker_core-2.1.1.dist-info}/licenses/LICENSE +0 -0
|
@@ -0,0 +1,2140 @@
|
|
|
1
|
+
# Copyright Amazon.com, Inc. or its affiliates. All Rights Reserved.
|
|
2
|
+
#
|
|
3
|
+
# Licensed under the Apache License, Version 2.0 (the "License"). You
|
|
4
|
+
# may not use this file except in compliance with the License. A copy of
|
|
5
|
+
# the License is located at
|
|
6
|
+
#
|
|
7
|
+
# http://aws.amazon.com/apache2.0/
|
|
8
|
+
#
|
|
9
|
+
# or in the "license" file accompanying this file. This file is
|
|
10
|
+
# distributed on an "AS IS" BASIS, WITHOUT WARRANTIES OR CONDITIONS OF
|
|
11
|
+
# ANY KIND, either express or implied. See the License for the specific
|
|
12
|
+
# language governing permissions and limitations under the License.
|
|
13
|
+
"""Helper classes that interact with SageMaker Training service."""
|
|
14
|
+
from __future__ import absolute_import
|
|
15
|
+
|
|
16
|
+
import dataclasses
|
|
17
|
+
import json
|
|
18
|
+
import os
|
|
19
|
+
import re
|
|
20
|
+
import secrets
|
|
21
|
+
import shutil
|
|
22
|
+
import sys
|
|
23
|
+
import time
|
|
24
|
+
from io import BytesIO
|
|
25
|
+
from typing import Callable, Dict, List, Optional, Tuple, Union, TYPE_CHECKING
|
|
26
|
+
from urllib.parse import urlparse
|
|
27
|
+
|
|
28
|
+
import botocore
|
|
29
|
+
from botocore.exceptions import ClientError
|
|
30
|
+
|
|
31
|
+
from sagemaker.core.config.config_schema import (
|
|
32
|
+
REMOTE_FUNCTION_ENVIRONMENT_VARIABLES,
|
|
33
|
+
REMOTE_FUNCTION_IMAGE_URI,
|
|
34
|
+
REMOTE_FUNCTION_DEPENDENCIES,
|
|
35
|
+
REMOTE_FUNCTION_PRE_EXECUTION_COMMANDS,
|
|
36
|
+
REMOTE_FUNCTION_PRE_EXECUTION_SCRIPT,
|
|
37
|
+
REMOTE_FUNCTION_INCLUDE_LOCAL_WORKDIR,
|
|
38
|
+
REMOTE_FUNCTION_INSTANCE_TYPE,
|
|
39
|
+
REMOTE_FUNCTION_JOB_CONDA_ENV,
|
|
40
|
+
REMOTE_FUNCTION_ROLE_ARN,
|
|
41
|
+
REMOTE_FUNCTION_S3_ROOT_URI,
|
|
42
|
+
REMOTE_FUNCTION_S3_KMS_KEY_ID,
|
|
43
|
+
REMOTE_FUNCTION_VOLUME_KMS_KEY_ID,
|
|
44
|
+
REMOTE_FUNCTION_TAGS,
|
|
45
|
+
REMOTE_FUNCTION_VPC_CONFIG_SUBNETS,
|
|
46
|
+
REMOTE_FUNCTION_VPC_CONFIG_SECURITY_GROUP_IDS,
|
|
47
|
+
REMOTE_FUNCTION_ENABLE_INTER_CONTAINER_TRAFFIC_ENCRYPTION,
|
|
48
|
+
)
|
|
49
|
+
from sagemaker.core.experiments._run_context import _RunContext
|
|
50
|
+
from sagemaker.core.experiments.run import Run
|
|
51
|
+
from sagemaker.core.image_uris import get_base_python_image_uri
|
|
52
|
+
from sagemaker.core import image_uris
|
|
53
|
+
from sagemaker.core.remote_function.checkpoint_location import CheckpointLocation
|
|
54
|
+
from sagemaker.core.helper.session_helper import get_execution_role, expand_role, Session
|
|
55
|
+
from sagemaker.core.common_utils import (
|
|
56
|
+
name_from_base,
|
|
57
|
+
_tmpdir,
|
|
58
|
+
resolve_value_from_config,
|
|
59
|
+
format_tags,
|
|
60
|
+
Tags,
|
|
61
|
+
)
|
|
62
|
+
from sagemaker.core.s3 import s3_path_join, S3Uploader
|
|
63
|
+
|
|
64
|
+
from sagemaker.core.remote_function.core.stored_function import StoredFunction, _SerializedData
|
|
65
|
+
from sagemaker.core.remote_function.core.pipeline_variables import Context
|
|
66
|
+
|
|
67
|
+
from sagemaker.core.remote_function.runtime_environment.runtime_environment_manager import (
|
|
68
|
+
RuntimeEnvironmentManager,
|
|
69
|
+
_DependencySettings,
|
|
70
|
+
)
|
|
71
|
+
from sagemaker.core.remote_function import logging_config
|
|
72
|
+
from sagemaker.core.remote_function.spark_config import SparkConfig
|
|
73
|
+
from sagemaker.core.remote_function.custom_file_filter import (
|
|
74
|
+
CustomFileFilter,
|
|
75
|
+
copy_workdir,
|
|
76
|
+
resolve_custom_file_filter_from_config_file,
|
|
77
|
+
)
|
|
78
|
+
|
|
79
|
+
# Lazy import to avoid circular dependency - DelayedReturn is in MLOps which depends on Core
|
|
80
|
+
# from sagemaker.mlops.workflow.function_step import DelayedReturn
|
|
81
|
+
from sagemaker.core.workflow.step_outputs import get_step
|
|
82
|
+
from sagemaker.core import exceptions
|
|
83
|
+
from sagemaker.core import network as vpc_utils
|
|
84
|
+
|
|
85
|
+
from sagemaker.core import logs as sagemaker_logs
|
|
86
|
+
|
|
87
|
+
from sagemaker.core.common_utils import (
|
|
88
|
+
_wait_until,
|
|
89
|
+
secondary_training_status_changed,
|
|
90
|
+
secondary_training_status_message,
|
|
91
|
+
)
|
|
92
|
+
from sagemaker.core.config.config_utils import _append_sagemaker_config_tags
|
|
93
|
+
|
|
94
|
+
if TYPE_CHECKING:
|
|
95
|
+
from sagemaker.core.helper.pipeline_variable import PipelineVariable
|
|
96
|
+
|
|
97
|
+
# runtime script names
|
|
98
|
+
BOOTSTRAP_SCRIPT_NAME = "bootstrap_runtime_environment.py"
|
|
99
|
+
MPI_UTILS_SCRIPT_NAME = "mpi_utils_remote.py"
|
|
100
|
+
ENTRYPOINT_SCRIPT_NAME = "job_driver.sh"
|
|
101
|
+
PRE_EXECUTION_SCRIPT_NAME = "pre_exec.sh"
|
|
102
|
+
RUNTIME_MANAGER_SCRIPT_NAME = "runtime_environment_manager.py"
|
|
103
|
+
SPARK_APP_SCRIPT_NAME = "spark_app.py"
|
|
104
|
+
|
|
105
|
+
# training channel names
|
|
106
|
+
RUNTIME_SCRIPTS_CHANNEL_NAME = "sagemaker_remote_function_bootstrap"
|
|
107
|
+
REMOTE_FUNCTION_WORKSPACE = "sm_rf_user_ws"
|
|
108
|
+
JOB_REMOTE_FUNCTION_WORKSPACE = "sagemaker_remote_function_workspace"
|
|
109
|
+
SCRIPT_AND_DEPENDENCIES_CHANNEL_NAME = "pre_exec_script_and_dependencies"
|
|
110
|
+
|
|
111
|
+
# Spark config channel and file name
|
|
112
|
+
SPARK_CONF_CHANNEL_NAME = "conf"
|
|
113
|
+
SPARK_CONF_FILE_NAME = "configuration.json"
|
|
114
|
+
|
|
115
|
+
# Spark submitted files workspace names on S3
|
|
116
|
+
SPARK_SUBMIT_JARS_WORKSPACE = "sm_rf_spark_jars"
|
|
117
|
+
SPARK_SUBMIT_PY_FILES_WORKSPACE = "sm_rf_spark_py_files"
|
|
118
|
+
SPARK_SUBMIT_FILES_WORKSPACE = "sm_rf_spark_data_files"
|
|
119
|
+
SPARK_CONF_WORKSPACE = "sm_rf_spark_conf"
|
|
120
|
+
|
|
121
|
+
# default spark version
|
|
122
|
+
DEFAULT_SPARK_VERSION = "3.3"
|
|
123
|
+
DEFAULT_SPARK_CONTAINER_VERSION = "v1"
|
|
124
|
+
|
|
125
|
+
SPARK_NAME = "spark"
|
|
126
|
+
|
|
127
|
+
# run context dictionary keys
|
|
128
|
+
KEY_EXPERIMENT_NAME = "experiment_name"
|
|
129
|
+
KEY_RUN_NAME = "run_name"
|
|
130
|
+
|
|
131
|
+
JOBS_CONTAINER_ENTRYPOINT = [
|
|
132
|
+
"/bin/bash",
|
|
133
|
+
f"/opt/ml/input/data/{RUNTIME_SCRIPTS_CHANNEL_NAME}/{ENTRYPOINT_SCRIPT_NAME}",
|
|
134
|
+
]
|
|
135
|
+
|
|
136
|
+
SPARK_APP_SCRIPT_PATH = f"/opt/ml/input/data/{RUNTIME_SCRIPTS_CHANNEL_NAME}/{SPARK_APP_SCRIPT_NAME}"
|
|
137
|
+
|
|
138
|
+
ENTRYPOINT_SCRIPT = f"""
|
|
139
|
+
#!/bin/bash
|
|
140
|
+
|
|
141
|
+
# Entry point for bootstrapping runtime environment and invoking remote function
|
|
142
|
+
|
|
143
|
+
set -eu
|
|
144
|
+
|
|
145
|
+
PERSISTENT_CACHE_DIR=${{SAGEMAKER_MANAGED_WARMPOOL_CACHE_DIRECTORY:-/opt/ml/cache}}
|
|
146
|
+
export CONDA_PKGS_DIRS=${{PERSISTENT_CACHE_DIR}}/sm_remotefunction_user_dependencies_cache/conda/pkgs
|
|
147
|
+
printf "INFO: CONDA_PKGS_DIRS is set to '$CONDA_PKGS_DIRS'\\n"
|
|
148
|
+
export PIP_CACHE_DIR=${{PERSISTENT_CACHE_DIR}}/sm_remotefunction_user_dependencies_cache/pip
|
|
149
|
+
printf "INFO: PIP_CACHE_DIR is set to '$PIP_CACHE_DIR'\\n"
|
|
150
|
+
|
|
151
|
+
printf "INFO: /opt/ml/input/config/resourceconfig.json:\\n"
|
|
152
|
+
cat /opt/ml/input/config/resourceconfig.json
|
|
153
|
+
|
|
154
|
+
printf "INFO: Bootstraping runtime environment.\\n"
|
|
155
|
+
python /opt/ml/input/data/{RUNTIME_SCRIPTS_CHANNEL_NAME}/{BOOTSTRAP_SCRIPT_NAME} "$@"
|
|
156
|
+
source /opt/ml/input/sm_training.env
|
|
157
|
+
|
|
158
|
+
if [ -d {JOB_REMOTE_FUNCTION_WORKSPACE} ]
|
|
159
|
+
then
|
|
160
|
+
if [ -f "remote_function_conda_env.txt" ]
|
|
161
|
+
then
|
|
162
|
+
cp remote_function_conda_env.txt {JOB_REMOTE_FUNCTION_WORKSPACE}/remote_function_conda_env.txt
|
|
163
|
+
fi
|
|
164
|
+
printf "INFO: Changing workspace to {JOB_REMOTE_FUNCTION_WORKSPACE}.\\n"
|
|
165
|
+
cd {JOB_REMOTE_FUNCTION_WORKSPACE}
|
|
166
|
+
fi
|
|
167
|
+
|
|
168
|
+
if [ -f "remote_function_conda_env.txt" ]
|
|
169
|
+
then
|
|
170
|
+
conda_env=$(cat remote_function_conda_env.txt)
|
|
171
|
+
|
|
172
|
+
if which mamba >/dev/null; then
|
|
173
|
+
conda_exe="mamba"
|
|
174
|
+
else
|
|
175
|
+
conda_exe="conda"
|
|
176
|
+
fi
|
|
177
|
+
|
|
178
|
+
printf "INFO: Invoking remote function inside conda environment: $conda_env.\\n"
|
|
179
|
+
printf "INFO: $conda_exe run -n $conda_env python -m sagemaker.train.remote_function.invoke_function \\n"
|
|
180
|
+
$conda_exe run -n $conda_env python -m sagemaker.train.remote_function.invoke_function "$@"
|
|
181
|
+
else
|
|
182
|
+
printf "INFO: No conda env provided. Invoking remote function\\n"
|
|
183
|
+
printf "INFO: python -m sagemaker.train.remote_function.invoke_function \\n"
|
|
184
|
+
python -m sagemaker.train.remote_function.invoke_function "$@"
|
|
185
|
+
fi
|
|
186
|
+
"""
|
|
187
|
+
|
|
188
|
+
ENTRYPOINT_MPIRUN_SCRIPT = f"""
|
|
189
|
+
#!/bin/bash
|
|
190
|
+
|
|
191
|
+
# Entry point for bootstrapping runtime environment and invoking remote function with mpirun
|
|
192
|
+
|
|
193
|
+
set -eu
|
|
194
|
+
|
|
195
|
+
PERSISTENT_CACHE_DIR=${{SAGEMAKER_MANAGED_WARMPOOL_CACHE_DIRECTORY:-/opt/ml/cache}}
|
|
196
|
+
export CONDA_PKGS_DIRS=${{PERSISTENT_CACHE_DIR}}/sm_remotefunction_user_dependencies_cache/conda/pkgs
|
|
197
|
+
printf "INFO: CONDA_PKGS_DIRS is set to '$CONDA_PKGS_DIRS'\\n"
|
|
198
|
+
export PIP_CACHE_DIR=${{PERSISTENT_CACHE_DIR}}/sm_remotefunction_user_dependencies_cache/pip
|
|
199
|
+
printf "INFO: PIP_CACHE_DIR is set to '$PIP_CACHE_DIR'\\n"
|
|
200
|
+
|
|
201
|
+
printf "INFO: /opt/ml/input/config/resourceconfig.json:\\n"
|
|
202
|
+
cat /opt/ml/input/config/resourceconfig.json
|
|
203
|
+
|
|
204
|
+
printf "INFO: Bootstraping runtime environment.\\n"
|
|
205
|
+
python /opt/ml/input/data/{RUNTIME_SCRIPTS_CHANNEL_NAME}/{BOOTSTRAP_SCRIPT_NAME} "$@"
|
|
206
|
+
source /opt/ml/input/sm_training.env
|
|
207
|
+
|
|
208
|
+
if [ -d {JOB_REMOTE_FUNCTION_WORKSPACE} ]
|
|
209
|
+
then
|
|
210
|
+
if [ -f "remote_function_conda_env.txt" ]
|
|
211
|
+
then
|
|
212
|
+
cp remote_function_conda_env.txt {JOB_REMOTE_FUNCTION_WORKSPACE}/remote_function_conda_env.txt
|
|
213
|
+
fi
|
|
214
|
+
printf "INFO: Changing workspace to {JOB_REMOTE_FUNCTION_WORKSPACE}.\\n"
|
|
215
|
+
cd {JOB_REMOTE_FUNCTION_WORKSPACE}
|
|
216
|
+
fi
|
|
217
|
+
|
|
218
|
+
if [ -f "remote_function_conda_env.txt" ]
|
|
219
|
+
then
|
|
220
|
+
conda_env=$(cat remote_function_conda_env.txt)
|
|
221
|
+
|
|
222
|
+
if which mamba >/dev/null; then
|
|
223
|
+
conda_exe="mamba"
|
|
224
|
+
else
|
|
225
|
+
conda_exe="conda"
|
|
226
|
+
fi
|
|
227
|
+
|
|
228
|
+
if [ "$SM_CURRENT_HOST" = "$SM_MASTER_ADDR" ]; then
|
|
229
|
+
python /opt/ml/input/data/{RUNTIME_SCRIPTS_CHANNEL_NAME}/{MPI_UTILS_SCRIPT_NAME}
|
|
230
|
+
|
|
231
|
+
printf "INFO: Invoking remote function with mpirun inside conda environment: $conda_env.\\n"
|
|
232
|
+
printf "INFO: $conda_exe run -n $conda_env mpirun --host $SM_HOSTS_LIST -np $SM_NPROC_PER_NODE \
|
|
233
|
+
--allow-run-as-root --display-map --tag-output -mca btl_tcp_if_include $SM_NETWORK_INTERFACE_NAME \
|
|
234
|
+
-mca plm_rsh_no_tree_spawn 1 -mca pml ob1 -mca btl ^openib -mca orte_abort_on_non_zero_status 1 \
|
|
235
|
+
-mca btl_vader_single_copy_mechanism none -mca plm_rsh_num_concurrent $SM_HOST_COUNT \
|
|
236
|
+
-x NCCL_SOCKET_IFNAME=$SM_NETWORK_INTERFACE_NAME -x LD_LIBRARY_PATH -x PATH \
|
|
237
|
+
|
|
238
|
+
python -m mpi4py -m sagemaker.train.remote_function.invoke_function \\n"
|
|
239
|
+
$conda_exe run -n $conda_env mpirun --host $SM_HOSTS_LIST -np $SM_NPROC_PER_NODE \
|
|
240
|
+
--allow-run-as-root --display-map --tag-output -mca btl_tcp_if_include $SM_NETWORK_INTERFACE_NAME \
|
|
241
|
+
-mca plm_rsh_no_tree_spawn 1 -mca pml ob1 -mca btl ^openib -mca orte_abort_on_non_zero_status 1 \
|
|
242
|
+
-mca btl_vader_single_copy_mechanism none -mca plm_rsh_num_concurrent $SM_HOST_COUNT \
|
|
243
|
+
-x NCCL_SOCKET_IFNAME=$SM_NETWORK_INTERFACE_NAME -x LD_LIBRARY_PATH -x PATH \
|
|
244
|
+
$SM_FI_PROVIDER $SM_NCCL_PROTO $SM_FI_EFA_USE_DEVICE_RDMA \
|
|
245
|
+
python -m mpi4py -m sagemaker.train.remote_function.invoke_function "$@"
|
|
246
|
+
|
|
247
|
+
python /opt/ml/input/data/{RUNTIME_SCRIPTS_CHANNEL_NAME}/{MPI_UTILS_SCRIPT_NAME} --job_ended 1
|
|
248
|
+
else
|
|
249
|
+
printf "INFO: This is the instance $SM_CURRENT_HOST. mpirun command terminated\\n"
|
|
250
|
+
python /opt/ml/input/data/{RUNTIME_SCRIPTS_CHANNEL_NAME}/{MPI_UTILS_SCRIPT_NAME}
|
|
251
|
+
fi
|
|
252
|
+
else
|
|
253
|
+
if [ "$SM_CURRENT_HOST" = "$SM_MASTER_ADDR" ]; then
|
|
254
|
+
python /opt/ml/input/data/{RUNTIME_SCRIPTS_CHANNEL_NAME}/{MPI_UTILS_SCRIPT_NAME}
|
|
255
|
+
|
|
256
|
+
printf "INFO: No conda env provided. Invoking remote function with mpirun\\n"
|
|
257
|
+
printf "INFO: mpirun --host $SM_HOSTS_LIST -np $SM_NPROC_PER_NODE \
|
|
258
|
+
--allow-run-as-root --display-map --tag-output -mca btl_tcp_if_include $SM_NETWORK_INTERFACE_NAME \
|
|
259
|
+
-mca plm_rsh_no_tree_spawn 1 -mca pml ob1 -mca btl ^openib -mca orte_abort_on_non_zero_status 1 \
|
|
260
|
+
-mca btl_vader_single_copy_mechanism none -mca plm_rsh_num_concurrent $SM_HOST_COUNT \
|
|
261
|
+
-x NCCL_SOCKET_IFNAME=$SM_NETWORK_INTERFACE_NAME -x LD_LIBRARY_PATH -x PATH \
|
|
262
|
+
$SM_FI_PROVIDER $SM_NCCL_PROTO $SM_FI_EFA_USE_DEVICE_RDMA \
|
|
263
|
+
python -m mpi4py -m sagemaker.train.remote_function.invoke_function \\n"
|
|
264
|
+
|
|
265
|
+
mpirun --host $SM_HOSTS_LIST -np $SM_NPROC_PER_NODE \
|
|
266
|
+
--allow-run-as-root --display-map --tag-output -mca btl_tcp_if_include $SM_NETWORK_INTERFACE_NAME \
|
|
267
|
+
-mca plm_rsh_no_tree_spawn 1 -mca pml ob1 -mca btl ^openib -mca orte_abort_on_non_zero_status 1 \
|
|
268
|
+
-mca btl_vader_single_copy_mechanism none -mca plm_rsh_num_concurrent $SM_HOST_COUNT \
|
|
269
|
+
-x NCCL_SOCKET_IFNAME=$SM_NETWORK_INTERFACE_NAME -x LD_LIBRARY_PATH -x PATH \
|
|
270
|
+
$SM_FI_PROVIDER $SM_NCCL_PROTO $SM_FI_EFA_USE_DEVICE_RDMA \
|
|
271
|
+
python -m mpi4py -m sagemaker.train.remote_function.invoke_function "$@"
|
|
272
|
+
|
|
273
|
+
python /opt/ml/input/data/{RUNTIME_SCRIPTS_CHANNEL_NAME}/{MPI_UTILS_SCRIPT_NAME} --job_ended 1
|
|
274
|
+
else
|
|
275
|
+
printf "INFO: This is the instance $SM_CURRENT_HOST.\\n"
|
|
276
|
+
python /opt/ml/input/data/{RUNTIME_SCRIPTS_CHANNEL_NAME}/{MPI_UTILS_SCRIPT_NAME}
|
|
277
|
+
fi
|
|
278
|
+
fi
|
|
279
|
+
"""
|
|
280
|
+
|
|
281
|
+
ENTRYPOINT_TORCHRUN_SCRIPT = f"""
|
|
282
|
+
#!/bin/bash
|
|
283
|
+
|
|
284
|
+
# Entry point for bootstrapping runtime environment and invoking remote function with torchrun
|
|
285
|
+
|
|
286
|
+
set -eu
|
|
287
|
+
|
|
288
|
+
PERSISTENT_CACHE_DIR=${{SAGEMAKER_MANAGED_WARMPOOL_CACHE_DIRECTORY:-/opt/ml/cache}}
|
|
289
|
+
export CONDA_PKGS_DIRS=${{PERSISTENT_CACHE_DIR}}/sm_remotefunction_user_dependencies_cache/conda/pkgs
|
|
290
|
+
printf "INFO: CONDA_PKGS_DIRS is set to '$CONDA_PKGS_DIRS'\\n"
|
|
291
|
+
export PIP_CACHE_DIR=${{PERSISTENT_CACHE_DIR}}/sm_remotefunction_user_dependencies_cache/pip
|
|
292
|
+
printf "INFO: PIP_CACHE_DIR is set to '$PIP_CACHE_DIR'\\n"
|
|
293
|
+
|
|
294
|
+
printf "INFO: /opt/ml/input/config/resourceconfig.json:\\n"
|
|
295
|
+
cat /opt/ml/input/config/resourceconfig.json
|
|
296
|
+
|
|
297
|
+
printf "INFO: Bootstraping runtime environment.\\n"
|
|
298
|
+
python /opt/ml/input/data/{RUNTIME_SCRIPTS_CHANNEL_NAME}/{BOOTSTRAP_SCRIPT_NAME} "$@"
|
|
299
|
+
source /opt/ml/input/sm_training.env
|
|
300
|
+
|
|
301
|
+
if [ -d {JOB_REMOTE_FUNCTION_WORKSPACE} ]
|
|
302
|
+
then
|
|
303
|
+
if [ -f "remote_function_conda_env.txt" ]
|
|
304
|
+
then
|
|
305
|
+
cp remote_function_conda_env.txt {JOB_REMOTE_FUNCTION_WORKSPACE}/remote_function_conda_env.txt
|
|
306
|
+
fi
|
|
307
|
+
printf "INFO: Changing workspace to {JOB_REMOTE_FUNCTION_WORKSPACE}.\\n"
|
|
308
|
+
cd {JOB_REMOTE_FUNCTION_WORKSPACE}
|
|
309
|
+
fi
|
|
310
|
+
|
|
311
|
+
if [ -f "remote_function_conda_env.txt" ]
|
|
312
|
+
then
|
|
313
|
+
conda_env=$(cat remote_function_conda_env.txt)
|
|
314
|
+
|
|
315
|
+
if which mamba >/dev/null; then
|
|
316
|
+
conda_exe="mamba"
|
|
317
|
+
else
|
|
318
|
+
conda_exe="conda"
|
|
319
|
+
fi
|
|
320
|
+
|
|
321
|
+
printf "INFO: Invoking remote function with torchrun inside conda environment: $conda_env.\\n"
|
|
322
|
+
printf "INFO: $conda_exe run -n $conda_env torchrun --nnodes $SM_HOST_COUNT --nproc_per_node $SM_NPROC_PER_NODE \
|
|
323
|
+
--master_addr $SM_MASTER_ADDR --master_port $SM_MASTER_PORT --node_rank $SM_CURRENT_HOST_RANK \
|
|
324
|
+
-m sagemaker.train.remote_function.invoke_function \\n"
|
|
325
|
+
|
|
326
|
+
$conda_exe run -n $conda_env torchrun --nnodes $SM_HOST_COUNT --nproc_per_node $SM_NPROC_PER_NODE \
|
|
327
|
+
--master_addr $SM_MASTER_ADDR --master_port $SM_MASTER_PORT --node_rank $SM_CURRENT_HOST_RANK \
|
|
328
|
+
-m sagemaker.train.remote_function.invoke_function "$@"
|
|
329
|
+
else
|
|
330
|
+
printf "INFO: No conda env provided. Invoking remote function with torchrun\\n"
|
|
331
|
+
printf "INFO: torchrun --nnodes $SM_HOST_COUNT --nproc_per_node $SM_NPROC_PER_NODE --master_addr $SM_MASTER_ADDR \
|
|
332
|
+
--master_port $SM_MASTER_PORT --node_rank $SM_CURRENT_HOST_RANK -m sagemaker.train.remote_function.invoke_function \\n"
|
|
333
|
+
|
|
334
|
+
torchrun --nnodes $SM_HOST_COUNT --nproc_per_node $SM_NPROC_PER_NODE --master_addr $SM_MASTER_ADDR \
|
|
335
|
+
--master_port $SM_MASTER_PORT --node_rank $SM_CURRENT_HOST_RANK -m sagemaker.train.remote_function.invoke_function "$@"
|
|
336
|
+
fi
|
|
337
|
+
"""
|
|
338
|
+
|
|
339
|
+
SPARK_ENTRYPOINT_SCRIPT = f"""
|
|
340
|
+
#!/bin/bash
|
|
341
|
+
|
|
342
|
+
# Entry point for bootstrapping runtime environment and invoking remote function for Spark
|
|
343
|
+
|
|
344
|
+
set -eu
|
|
345
|
+
|
|
346
|
+
printf "INFO: Bootstraping Spark runtime environment.\\n"
|
|
347
|
+
|
|
348
|
+
python3 /opt/ml/input/data/{RUNTIME_SCRIPTS_CHANNEL_NAME}/{BOOTSTRAP_SCRIPT_NAME} "$@"
|
|
349
|
+
|
|
350
|
+
# Spark Container entry point script to initiate the spark application
|
|
351
|
+
smspark-submit "$@"
|
|
352
|
+
"""
|
|
353
|
+
|
|
354
|
+
_STATUS_CODE_TABLE = {
|
|
355
|
+
"COMPLETED": "Completed",
|
|
356
|
+
"INPROGRESS": "InProgress",
|
|
357
|
+
"IN_PROGRESS": "InProgress",
|
|
358
|
+
"FAILED": "Failed",
|
|
359
|
+
"STOPPED": "Stopped",
|
|
360
|
+
"STOPPING": "Stopping",
|
|
361
|
+
"STARTING": "Starting",
|
|
362
|
+
"PENDING": "Pending",
|
|
363
|
+
}
|
|
364
|
+
|
|
365
|
+
logger = logging_config.get_logger()
|
|
366
|
+
|
|
367
|
+
|
|
368
|
+
class LogState(object):
|
|
369
|
+
"""Placeholder docstring"""
|
|
370
|
+
|
|
371
|
+
STARTING = 1
|
|
372
|
+
WAIT_IN_PROGRESS = 2
|
|
373
|
+
TAILING = 3
|
|
374
|
+
JOB_COMPLETE = 4
|
|
375
|
+
COMPLETE = 5
|
|
376
|
+
|
|
377
|
+
|
|
378
|
+
class _JobSettings:
|
|
379
|
+
"""Helper class that processes the job settings.
|
|
380
|
+
|
|
381
|
+
It validates the job settings and provides default values if necessary.
|
|
382
|
+
"""
|
|
383
|
+
|
|
384
|
+
def __init__(
|
|
385
|
+
self,
|
|
386
|
+
*,
|
|
387
|
+
dependencies: str = None,
|
|
388
|
+
pre_execution_commands: List[str] = None,
|
|
389
|
+
pre_execution_script: str = None,
|
|
390
|
+
environment_variables: Dict[str, Union[str, "PipelineVariable"]] = None,
|
|
391
|
+
image_uri: Union[str, "PipelineVariable"] = None,
|
|
392
|
+
include_local_workdir: bool = None,
|
|
393
|
+
custom_file_filter: Optional[Union[Callable[[str, List], List], CustomFileFilter]] = None,
|
|
394
|
+
instance_count: Union[int, "PipelineVariable"] = 1,
|
|
395
|
+
instance_type: Union[str, "PipelineVariable"] = None,
|
|
396
|
+
job_conda_env: Union[str, "PipelineVariable"] = None,
|
|
397
|
+
job_name_prefix: str = None,
|
|
398
|
+
keep_alive_period_in_seconds: Union[int, "PipelineVariable"] = 0,
|
|
399
|
+
max_retry_attempts: Union[int, "PipelineVariable"] = 1,
|
|
400
|
+
max_runtime_in_seconds: Union[int, "PipelineVariable"] = 24 * 60 * 60,
|
|
401
|
+
role: str = None,
|
|
402
|
+
s3_kms_key: Union[str, "PipelineVariable"] = None,
|
|
403
|
+
s3_root_uri: str = None,
|
|
404
|
+
sagemaker_session: Session = None,
|
|
405
|
+
security_group_ids: List[Union[str, "PipelineVariable"]] = None,
|
|
406
|
+
subnets: List[Union[str, "PipelineVariable"]] = None,
|
|
407
|
+
tags: Optional[Tags] = None,
|
|
408
|
+
volume_kms_key: Union[str, "PipelineVariable"] = None,
|
|
409
|
+
volume_size: Union[int, "PipelineVariable"] = 30,
|
|
410
|
+
encrypt_inter_container_traffic: Union[bool, "PipelineVariable"] = None,
|
|
411
|
+
spark_config: SparkConfig = None,
|
|
412
|
+
use_spot_instances=False,
|
|
413
|
+
max_wait_time_in_seconds=None,
|
|
414
|
+
disable_output_compression: bool = False,
|
|
415
|
+
use_torchrun: bool = False,
|
|
416
|
+
use_mpirun: bool = False,
|
|
417
|
+
nproc_per_node: Optional[int] = None,
|
|
418
|
+
):
|
|
419
|
+
"""Initialize a _JobSettings instance which configures the remote job.
|
|
420
|
+
|
|
421
|
+
Args:
|
|
422
|
+
dependencies (str): Either the path to a dependencies file or the reserved keyword
|
|
423
|
+
``auto_capture``. Defaults to ``None``.
|
|
424
|
+
If ``dependencies`` is provided, the value must be one of the following:
|
|
425
|
+
|
|
426
|
+
* A path to a conda environment.yml file. The following conditions apply.
|
|
427
|
+
|
|
428
|
+
* If job_conda_env is set, then the conda environment is updated by installing
|
|
429
|
+
dependencies from the yaml file and the function is invoked within that
|
|
430
|
+
conda environment. For this to succeed, the specified conda environment must
|
|
431
|
+
already exist in the image.
|
|
432
|
+
* If the environment variable ``SAGEMAKER_JOB_CONDA_ENV`` is set in the image,
|
|
433
|
+
then the conda environment is updated by installing dependencies from the
|
|
434
|
+
yaml file and the function is invoked within that conda environment. For
|
|
435
|
+
this to succeed, the conda environment name must already be set in
|
|
436
|
+
``SAGEMAKER_JOB_CONDA_ENV``, and ``SAGEMAKER_JOB_CONDA_ENV`` must already
|
|
437
|
+
exist in the image.
|
|
438
|
+
* If none of the previous conditions are met, a new conda environment named
|
|
439
|
+
``sagemaker-runtime-env`` is created and the function annotated with the remote
|
|
440
|
+
decorator is invoked in that conda environment.
|
|
441
|
+
|
|
442
|
+
* A path to a requirements.txt file. The following conditions apply.
|
|
443
|
+
|
|
444
|
+
* If ``job_conda_env`` is set in the remote decorator, dependencies are installed
|
|
445
|
+
within that conda environment and the function annotated with the remote decorator
|
|
446
|
+
is invoked in the same conda environment. For this to succeed, the specified
|
|
447
|
+
conda environment must already exist in the image.
|
|
448
|
+
* If an environment variable ``SAGEMAKER_JOB_CONDA_ENV`` is set in the image,
|
|
449
|
+
dependencies are installed within that conda environment and the function
|
|
450
|
+
annotated with the remote decorator is invoked in the same. For this to succeed,
|
|
451
|
+
the conda environment name must already be set in ``SAGEMAKER_JOB_CONDA_ENV``, and
|
|
452
|
+
``SAGEMAKER_JOB_CONDA_ENV`` must already exist in the image.
|
|
453
|
+
* If none of the above conditions are met, conda is not used. Dependencies are
|
|
454
|
+
installed at the system level, without any virtual environment, and the function
|
|
455
|
+
annotated with the remote decorator is invoked using the Python runtime available
|
|
456
|
+
in the system path.
|
|
457
|
+
|
|
458
|
+
* The parameter dependencies is set to ``auto_capture``. SageMaker will automatically
|
|
459
|
+
generate an env_snapshot.yml corresponding to the current active conda environment’s
|
|
460
|
+
snapshot. You do not need to provide a dependencies file. The following conditions
|
|
461
|
+
apply:
|
|
462
|
+
|
|
463
|
+
* You must run the remote function within an active conda environment.
|
|
464
|
+
* When installing the dependencies on the training job, the same conditions
|
|
465
|
+
as when dependencies is set to a path to a conda environment file apply.
|
|
466
|
+
These conditions are as follows:
|
|
467
|
+
|
|
468
|
+
* If job_conda_env is set, then the conda environment is updated by installing
|
|
469
|
+
dependencies from the yaml file and the function is invoked within that
|
|
470
|
+
conda environment. For this to succeed, the specified conda environment must
|
|
471
|
+
already exist in the image.
|
|
472
|
+
* If the environment variable ``SAGEMAKER_JOB_CONDA_ENV`` is set in the image,
|
|
473
|
+
then the conda environment is updated by installing dependencies from the yaml
|
|
474
|
+
file and the function is invoked within that conda environment. For this to
|
|
475
|
+
succeed, the conda environment name must already be set in
|
|
476
|
+
``SAGEMAKER_JOB_CONDA_ENV``, and ``SAGEMAKER_JOB_CONDA_ENV`` must already exist
|
|
477
|
+
in the image.
|
|
478
|
+
* If none of the previous conditions are met, a new conda environment with name
|
|
479
|
+
``sagemaker-runtime-env`` is created and the function annotated with the
|
|
480
|
+
remote decorator is invoked in that conda environment.
|
|
481
|
+
|
|
482
|
+
* ``None``. SageMaker will assume that there are no dependencies to install while
|
|
483
|
+
executing the remote annotated function in the training job.
|
|
484
|
+
|
|
485
|
+
pre_execution_commands (List[str]): List of commands to be executed prior to executing
|
|
486
|
+
remote function. Only one of ``pre_execution_commands`` or ``pre_execution_script``
|
|
487
|
+
can be specified at the same time. Defaults to None.
|
|
488
|
+
|
|
489
|
+
pre_execution_script (str): Path to script file to be executed prior to executing
|
|
490
|
+
remote function. Only one of ``pre_execution_commands`` or ``pre_execution_script``
|
|
491
|
+
can be specified at the same time. Defaults to None.
|
|
492
|
+
|
|
493
|
+
environment_variables (dict[str, str] or dict[str, PipelineVariable]): The environment
|
|
494
|
+
variables used inside the decorator function. Defaults to ``None``.
|
|
495
|
+
|
|
496
|
+
image_uri (str, PipelineVariable): The universal resource identifier (URI) location of
|
|
497
|
+
a Docker image on Amazon Elastic Container Registry (ECR). Defaults to the following
|
|
498
|
+
based on where the SDK is running:
|
|
499
|
+
|
|
500
|
+
* For users who specify ``spark_config`` and want to run the function in a Spark
|
|
501
|
+
application, the ``image_uri`` should be ``None``. A SageMaker Spark image will
|
|
502
|
+
be used for training, otherwise a ``ValueError`` is thrown.
|
|
503
|
+
* For users on SageMaker Studio notebooks, the image used as the kernel image for
|
|
504
|
+
the notebook is used.
|
|
505
|
+
* For other users, it is resolved to base python image with the same python version
|
|
506
|
+
as the environment running the local code.
|
|
507
|
+
|
|
508
|
+
If no compatible image is found, a ValueError is thrown.
|
|
509
|
+
|
|
510
|
+
include_local_workdir (bool): A flag to indicate that the remote function should include
|
|
511
|
+
local directories. Set to ``True`` if the remote function code imports local modules
|
|
512
|
+
and methods that are not available via PyPI or conda. Default value is ``False``.
|
|
513
|
+
|
|
514
|
+
custom_file_filter (Callable[[str, List], List], CustomFileFilter): Either a function
|
|
515
|
+
that filters job dependencies to be uploaded to S3 or a ``CustomFileFilter`` object
|
|
516
|
+
that specifies the local directories and files to be included in the remote function.
|
|
517
|
+
If a callable is passed in, that function is passed to the ``ignore`` argument of
|
|
518
|
+
``shutil.copytree``. Defaults to ``None``, which means only python
|
|
519
|
+
files are accepted and uploaded to S3.
|
|
520
|
+
|
|
521
|
+
instance_count (int, PipelineVariable): The number of instances to use. Defaults to 1.
|
|
522
|
+
|
|
523
|
+
instance_type (str, PipelineVariable): The Amazon Elastic Compute Cloud (EC2) instance
|
|
524
|
+
type to use to run the SageMaker job. e.g. ml.c4.xlarge. If not provided,
|
|
525
|
+
a ValueError is thrown.
|
|
526
|
+
|
|
527
|
+
job_conda_env (str, PipelineVariable): The name of the conda environment to activate
|
|
528
|
+
during job's runtime. Defaults to ``None``.
|
|
529
|
+
|
|
530
|
+
job_name_prefix (str, PipelineVariable): The prefix used to create the underlying
|
|
531
|
+
SageMaker job.
|
|
532
|
+
|
|
533
|
+
keep_alive_period_in_seconds (int, PipelineVariable): The duration in seconds to retain
|
|
534
|
+
and reuse provisioned infrastructure after the completion of a training job, also
|
|
535
|
+
known as SageMaker managed warm pools. The use of warm pools reduces the latency time
|
|
536
|
+
spent to provision new resources. The default value for
|
|
537
|
+
``keep_alive_period_in_seconds`` is 0.
|
|
538
|
+
NOTE: Additional charges associated with warm pools may apply. Using this parameter
|
|
539
|
+
also activates a new persistent cache feature, which will further reduce job start up
|
|
540
|
+
latency than over using SageMaker managed warm pools alone by caching the package
|
|
541
|
+
source downloaded in the previous runs.
|
|
542
|
+
|
|
543
|
+
max_retry_attempts (int, PipelineVariable): The max number of times the job is retried
|
|
544
|
+
on ``InternalServerFailure`` Error from SageMaker service. Defaults to 1.
|
|
545
|
+
|
|
546
|
+
max_runtime_in_seconds (int, PipelineVariable): The upper limit in seconds to be used
|
|
547
|
+
for training. After this specified amount of time, SageMaker terminates the job
|
|
548
|
+
regardless of its current status. Defaults to 1 day or (86400 seconds).
|
|
549
|
+
|
|
550
|
+
role (str): The IAM role (either name or full ARN) used to run your SageMaker training
|
|
551
|
+
job. Defaults to:
|
|
552
|
+
|
|
553
|
+
* the SageMaker default IAM role if the SDK is running in SageMaker Notebooks or
|
|
554
|
+
SageMaker Studio Notebooks.
|
|
555
|
+
* if not above, a ValueError is thrown.
|
|
556
|
+
|
|
557
|
+
s3_kms_key (str): The key used to encrypt the input and output data.
|
|
558
|
+
Default to ``None``.
|
|
559
|
+
|
|
560
|
+
s3_root_uri (str): The root S3 folder to which the code archives and data are
|
|
561
|
+
uploaded to. Defaults to ``s3://<sagemaker-default-bucket>``.
|
|
562
|
+
|
|
563
|
+
sagemaker_session (sagemaker.core.helper.session.Session): The underlying SageMaker session to
|
|
564
|
+
which SageMaker service calls are delegated to (default: None). If not provided,
|
|
565
|
+
one is created using a default configuration chain.
|
|
566
|
+
|
|
567
|
+
security_group_ids (List[str, PipelineVariable]): A list of security group IDs.
|
|
568
|
+
Defaults to ``None`` and the training job is created without VPC config.
|
|
569
|
+
|
|
570
|
+
subnets (List[str, PipelineVariable]): A list of subnet IDs. Defaults to ``None``
|
|
571
|
+
and the job is created without VPC config.
|
|
572
|
+
|
|
573
|
+
tags (Optional[Tags]): Tags attached to the job. Defaults to ``None``
|
|
574
|
+
and the training job is created without tags.
|
|
575
|
+
|
|
576
|
+
volume_kms_key (str, PipelineVariable): An Amazon Key Management Service (KMS) key
|
|
577
|
+
used to encrypt an Amazon Elastic Block Storage (EBS) volume attached to the
|
|
578
|
+
training instance. Defaults to ``None``.
|
|
579
|
+
|
|
580
|
+
volume_size (int, PipelineVariable): The size in GB of the storage volume for storing
|
|
581
|
+
input and output data during training. Defaults to ``30``.
|
|
582
|
+
|
|
583
|
+
encrypt_inter_container_traffic (bool, PipelineVariable): A flag that specifies
|
|
584
|
+
whether traffic between training containers is encrypted for the training job.
|
|
585
|
+
Defaults to ``False``.
|
|
586
|
+
|
|
587
|
+
spark_config (SparkConfig): Configurations to the Spark application that runs on
|
|
588
|
+
Spark image. If ``spark_config`` is specified, a SageMaker Spark image uri
|
|
589
|
+
will be used for training. Note that ``image_uri`` can not be specified at the
|
|
590
|
+
same time otherwise a ``ValueError`` is thrown. Defaults to ``None``.
|
|
591
|
+
|
|
592
|
+
use_spot_instances (bool, PipelineVariable): Specifies whether to use SageMaker
|
|
593
|
+
Managed Spot instances for training. If enabled then the ``max_wait`` arg should
|
|
594
|
+
also be set. Defaults to ``False``.
|
|
595
|
+
|
|
596
|
+
max_wait_time_in_seconds (int): Timeout in seconds waiting for spot training job.
|
|
597
|
+
After this amount of time Amazon SageMaker will stop waiting for managed spot
|
|
598
|
+
training job to complete. Defaults to ``None``.
|
|
599
|
+
|
|
600
|
+
disable_output_compression (bool): Optional. When set to true, Model is uploaded to
|
|
601
|
+
Amazon S3 without compression after training finishes.
|
|
602
|
+
|
|
603
|
+
use_torchrun (bool): Specifies whether to use torchrun for distributed training.
|
|
604
|
+
Defaults to ``False``.
|
|
605
|
+
|
|
606
|
+
use_mpirun (bool): Specifies whether to use mpirun for distributed training.
|
|
607
|
+
Defaults to ``False``.
|
|
608
|
+
|
|
609
|
+
nproc_per_node (int): Optional. Specifies the number of processes per node for
|
|
610
|
+
distributed training. Defaults to ``None``.
|
|
611
|
+
This is defined automatically configured on the instance type.
|
|
612
|
+
"""
|
|
613
|
+
self.sagemaker_session = sagemaker_session or Session()
|
|
614
|
+
self.environment_variables = resolve_value_from_config(
|
|
615
|
+
direct_input=environment_variables,
|
|
616
|
+
config_path=REMOTE_FUNCTION_ENVIRONMENT_VARIABLES,
|
|
617
|
+
default_value={},
|
|
618
|
+
sagemaker_session=self.sagemaker_session,
|
|
619
|
+
)
|
|
620
|
+
self.environment_variables.update(
|
|
621
|
+
{"AWS_DEFAULT_REGION": self.sagemaker_session.boto_region_name}
|
|
622
|
+
)
|
|
623
|
+
|
|
624
|
+
# The following will be overridden by the _Job.compile method.
|
|
625
|
+
# However, it needs to be kept here for feature store SDK.
|
|
626
|
+
# TODO: update the feature store SDK to set the HMAC key there.
|
|
627
|
+
self.environment_variables.update({"REMOTE_FUNCTION_SECRET_KEY": secrets.token_hex(32)})
|
|
628
|
+
|
|
629
|
+
if spark_config and image_uri:
|
|
630
|
+
raise ValueError("spark_config and image_uri cannot be specified at the same time!")
|
|
631
|
+
|
|
632
|
+
if spark_config and job_conda_env:
|
|
633
|
+
raise ValueError("Remote Spark jobs do not support job_conda_env.")
|
|
634
|
+
|
|
635
|
+
if spark_config and dependencies == "auto_capture":
|
|
636
|
+
raise ValueError(
|
|
637
|
+
"Remote Spark jobs do not support automatically capturing dependencies."
|
|
638
|
+
)
|
|
639
|
+
|
|
640
|
+
_image_uri = resolve_value_from_config(
|
|
641
|
+
direct_input=image_uri,
|
|
642
|
+
config_path=REMOTE_FUNCTION_IMAGE_URI,
|
|
643
|
+
sagemaker_session=self.sagemaker_session,
|
|
644
|
+
)
|
|
645
|
+
|
|
646
|
+
if spark_config:
|
|
647
|
+
self.image_uri = self._get_default_spark_image(self.sagemaker_session)
|
|
648
|
+
logger.info(
|
|
649
|
+
"Set the image uri as %s because value of spark_config is "
|
|
650
|
+
"indicating this is a remote spark job.",
|
|
651
|
+
self.image_uri,
|
|
652
|
+
)
|
|
653
|
+
elif _image_uri:
|
|
654
|
+
self.image_uri = _image_uri
|
|
655
|
+
else:
|
|
656
|
+
self.image_uri = self._get_default_image(self.sagemaker_session)
|
|
657
|
+
|
|
658
|
+
self.dependencies = resolve_value_from_config(
|
|
659
|
+
direct_input=dependencies,
|
|
660
|
+
config_path=REMOTE_FUNCTION_DEPENDENCIES,
|
|
661
|
+
sagemaker_session=self.sagemaker_session,
|
|
662
|
+
)
|
|
663
|
+
|
|
664
|
+
self.pre_execution_commands = resolve_value_from_config(
|
|
665
|
+
direct_input=pre_execution_commands,
|
|
666
|
+
config_path=REMOTE_FUNCTION_PRE_EXECUTION_COMMANDS,
|
|
667
|
+
sagemaker_session=self.sagemaker_session,
|
|
668
|
+
)
|
|
669
|
+
|
|
670
|
+
self.pre_execution_script = resolve_value_from_config(
|
|
671
|
+
direct_input=pre_execution_script,
|
|
672
|
+
config_path=REMOTE_FUNCTION_PRE_EXECUTION_SCRIPT,
|
|
673
|
+
sagemaker_session=self.sagemaker_session,
|
|
674
|
+
)
|
|
675
|
+
|
|
676
|
+
if self.pre_execution_commands is not None and self.pre_execution_script is not None:
|
|
677
|
+
raise ValueError(
|
|
678
|
+
"Only one of pre_execution_commands or pre_execution_script can be specified!"
|
|
679
|
+
)
|
|
680
|
+
|
|
681
|
+
self.include_local_workdir = resolve_value_from_config(
|
|
682
|
+
direct_input=include_local_workdir,
|
|
683
|
+
config_path=REMOTE_FUNCTION_INCLUDE_LOCAL_WORKDIR,
|
|
684
|
+
default_value=False,
|
|
685
|
+
sagemaker_session=self.sagemaker_session,
|
|
686
|
+
)
|
|
687
|
+
|
|
688
|
+
self.custom_file_filter = resolve_custom_file_filter_from_config_file(
|
|
689
|
+
custom_file_filter, self.sagemaker_session
|
|
690
|
+
)
|
|
691
|
+
|
|
692
|
+
self.instance_type = resolve_value_from_config(
|
|
693
|
+
direct_input=instance_type,
|
|
694
|
+
config_path=REMOTE_FUNCTION_INSTANCE_TYPE,
|
|
695
|
+
sagemaker_session=self.sagemaker_session,
|
|
696
|
+
)
|
|
697
|
+
if not self.instance_type:
|
|
698
|
+
raise ValueError("instance_type is a required parameter!")
|
|
699
|
+
|
|
700
|
+
self.instance_count = instance_count
|
|
701
|
+
self.volume_size = volume_size
|
|
702
|
+
self.max_runtime_in_seconds = max_runtime_in_seconds
|
|
703
|
+
self.max_retry_attempts = max_retry_attempts
|
|
704
|
+
self.keep_alive_period_in_seconds = keep_alive_period_in_seconds
|
|
705
|
+
self.spark_config = spark_config
|
|
706
|
+
self.use_spot_instances = use_spot_instances
|
|
707
|
+
self.max_wait_time_in_seconds = max_wait_time_in_seconds
|
|
708
|
+
self.job_conda_env = resolve_value_from_config(
|
|
709
|
+
direct_input=job_conda_env,
|
|
710
|
+
config_path=REMOTE_FUNCTION_JOB_CONDA_ENV,
|
|
711
|
+
sagemaker_session=self.sagemaker_session,
|
|
712
|
+
)
|
|
713
|
+
self.job_name_prefix = job_name_prefix
|
|
714
|
+
self.encrypt_inter_container_traffic = resolve_value_from_config(
|
|
715
|
+
direct_input=encrypt_inter_container_traffic,
|
|
716
|
+
config_path=REMOTE_FUNCTION_ENABLE_INTER_CONTAINER_TRAFFIC_ENCRYPTION,
|
|
717
|
+
default_value=False,
|
|
718
|
+
sagemaker_session=self.sagemaker_session,
|
|
719
|
+
)
|
|
720
|
+
self.enable_network_isolation = False
|
|
721
|
+
|
|
722
|
+
_role = resolve_value_from_config(
|
|
723
|
+
direct_input=role,
|
|
724
|
+
config_path=REMOTE_FUNCTION_ROLE_ARN,
|
|
725
|
+
sagemaker_session=self.sagemaker_session,
|
|
726
|
+
)
|
|
727
|
+
if _role:
|
|
728
|
+
self.role = expand_role(self.sagemaker_session.boto_session, _role)
|
|
729
|
+
else:
|
|
730
|
+
self.role = get_execution_role(self.sagemaker_session)
|
|
731
|
+
|
|
732
|
+
self.s3_root_uri = resolve_value_from_config(
|
|
733
|
+
direct_input=s3_root_uri,
|
|
734
|
+
config_path=REMOTE_FUNCTION_S3_ROOT_URI,
|
|
735
|
+
default_value=s3_path_join(
|
|
736
|
+
"s3://",
|
|
737
|
+
self.sagemaker_session.default_bucket(),
|
|
738
|
+
self.sagemaker_session.default_bucket_prefix,
|
|
739
|
+
),
|
|
740
|
+
sagemaker_session=self.sagemaker_session,
|
|
741
|
+
)
|
|
742
|
+
|
|
743
|
+
self.s3_kms_key = resolve_value_from_config(
|
|
744
|
+
direct_input=s3_kms_key,
|
|
745
|
+
config_path=REMOTE_FUNCTION_S3_KMS_KEY_ID,
|
|
746
|
+
sagemaker_session=self.sagemaker_session,
|
|
747
|
+
)
|
|
748
|
+
self.volume_kms_key = resolve_value_from_config(
|
|
749
|
+
direct_input=volume_kms_key,
|
|
750
|
+
config_path=REMOTE_FUNCTION_VOLUME_KMS_KEY_ID,
|
|
751
|
+
sagemaker_session=self.sagemaker_session,
|
|
752
|
+
)
|
|
753
|
+
|
|
754
|
+
_subnets = resolve_value_from_config(
|
|
755
|
+
direct_input=subnets,
|
|
756
|
+
config_path=REMOTE_FUNCTION_VPC_CONFIG_SUBNETS,
|
|
757
|
+
sagemaker_session=self.sagemaker_session,
|
|
758
|
+
)
|
|
759
|
+
_security_group_ids = resolve_value_from_config(
|
|
760
|
+
direct_input=security_group_ids,
|
|
761
|
+
config_path=REMOTE_FUNCTION_VPC_CONFIG_SECURITY_GROUP_IDS,
|
|
762
|
+
sagemaker_session=self.sagemaker_session,
|
|
763
|
+
)
|
|
764
|
+
vpc_config = vpc_utils.to_dict(subnets=_subnets, security_group_ids=_security_group_ids)
|
|
765
|
+
self.vpc_config = vpc_utils.sanitize(vpc_config)
|
|
766
|
+
|
|
767
|
+
tags = format_tags(tags)
|
|
768
|
+
self.tags = _append_sagemaker_config_tags(
|
|
769
|
+
self.sagemaker_session, tags, REMOTE_FUNCTION_TAGS
|
|
770
|
+
)
|
|
771
|
+
|
|
772
|
+
self.disable_output_compression = disable_output_compression
|
|
773
|
+
self.use_torchrun = use_torchrun
|
|
774
|
+
self.use_mpirun = use_mpirun
|
|
775
|
+
self.nproc_per_node = nproc_per_node
|
|
776
|
+
|
|
777
|
+
@staticmethod
|
|
778
|
+
def _get_default_image(session):
|
|
779
|
+
"""Return Studio notebook image, if in Studio env. Else, base python.
|
|
780
|
+
|
|
781
|
+
Args:
|
|
782
|
+
session (Session): Boto session.
|
|
783
|
+
|
|
784
|
+
Returns:
|
|
785
|
+
Default SageMaker base python image.
|
|
786
|
+
"""
|
|
787
|
+
|
|
788
|
+
if (
|
|
789
|
+
"SAGEMAKER_INTERNAL_IMAGE_URI" in os.environ
|
|
790
|
+
and os.environ["SAGEMAKER_INTERNAL_IMAGE_URI"]
|
|
791
|
+
):
|
|
792
|
+
return os.environ["SAGEMAKER_INTERNAL_IMAGE_URI"]
|
|
793
|
+
|
|
794
|
+
py_version = str(sys.version_info[0]) + str(sys.version_info[1])
|
|
795
|
+
|
|
796
|
+
if py_version not in ["310", "38"]:
|
|
797
|
+
raise ValueError(
|
|
798
|
+
"Default image is supported only for Python versions 3.8 and 3.10. If you "
|
|
799
|
+
"are using any other python version, you must provide a compatible image_uri."
|
|
800
|
+
)
|
|
801
|
+
|
|
802
|
+
region = session.boto_region_name
|
|
803
|
+
image_uri = get_base_python_image_uri(region=region, py_version=py_version)
|
|
804
|
+
|
|
805
|
+
return image_uri
|
|
806
|
+
|
|
807
|
+
@staticmethod
|
|
808
|
+
def _get_default_spark_image(session):
|
|
809
|
+
"""Return the Spark image.
|
|
810
|
+
|
|
811
|
+
Args:
|
|
812
|
+
session (Session): Boto session.
|
|
813
|
+
|
|
814
|
+
Returns:
|
|
815
|
+
SageMaker Spark container image uri.
|
|
816
|
+
"""
|
|
817
|
+
|
|
818
|
+
region = session.boto_region_name
|
|
819
|
+
|
|
820
|
+
py_version = str(sys.version_info[0]) + str(sys.version_info[1])
|
|
821
|
+
|
|
822
|
+
if py_version not in ["39"]:
|
|
823
|
+
raise ValueError(
|
|
824
|
+
"The SageMaker Spark image for remote job only supports Python version 3.9. "
|
|
825
|
+
)
|
|
826
|
+
|
|
827
|
+
image_uri = image_uris.retrieve(
|
|
828
|
+
framework=SPARK_NAME,
|
|
829
|
+
region=region,
|
|
830
|
+
version=DEFAULT_SPARK_VERSION,
|
|
831
|
+
instance_type=None,
|
|
832
|
+
py_version=f"py{py_version}",
|
|
833
|
+
container_version=DEFAULT_SPARK_CONTAINER_VERSION,
|
|
834
|
+
)
|
|
835
|
+
|
|
836
|
+
return image_uri
|
|
837
|
+
|
|
838
|
+
|
|
839
|
+
class _Job:
|
|
840
|
+
"""Helper class that interacts with the SageMaker training service."""
|
|
841
|
+
|
|
842
|
+
def __init__(self, job_name: str, s3_uri: str, sagemaker_session: Session, hmac_key: str):
|
|
843
|
+
"""Initialize a _Job object.
|
|
844
|
+
|
|
845
|
+
Args:
|
|
846
|
+
job_name (str): The training job name.
|
|
847
|
+
s3_uri (str): The training job output S3 uri.
|
|
848
|
+
sagemaker_session (Session): SageMaker boto session.
|
|
849
|
+
hmac_key (str): Remote function secret key.
|
|
850
|
+
"""
|
|
851
|
+
self.job_name = job_name
|
|
852
|
+
self.s3_uri = s3_uri
|
|
853
|
+
self.sagemaker_session = sagemaker_session
|
|
854
|
+
self.hmac_key = hmac_key
|
|
855
|
+
self._last_describe_response = None
|
|
856
|
+
|
|
857
|
+
@staticmethod
|
|
858
|
+
def from_describe_response(describe_training_job_response, sagemaker_session):
|
|
859
|
+
"""Construct a _Job from a describe_training_job_response object.
|
|
860
|
+
|
|
861
|
+
Args:
|
|
862
|
+
describe_training_job_response (Dict): Describe training job response.
|
|
863
|
+
sagemaker_session (Session): SageMaker boto session.
|
|
864
|
+
|
|
865
|
+
Returns:
|
|
866
|
+
the _Job object.
|
|
867
|
+
"""
|
|
868
|
+
job_name = describe_training_job_response["TrainingJobName"]
|
|
869
|
+
s3_uri = describe_training_job_response["OutputDataConfig"]["S3OutputPath"]
|
|
870
|
+
hmac_key = describe_training_job_response["Environment"]["REMOTE_FUNCTION_SECRET_KEY"]
|
|
871
|
+
|
|
872
|
+
job = _Job(job_name, s3_uri, sagemaker_session, hmac_key)
|
|
873
|
+
job._last_describe_response = describe_training_job_response
|
|
874
|
+
return job
|
|
875
|
+
|
|
876
|
+
@staticmethod
|
|
877
|
+
def start(job_settings: _JobSettings, func, func_args, func_kwargs, run_info=None):
|
|
878
|
+
"""Start a training job.
|
|
879
|
+
|
|
880
|
+
Args:
|
|
881
|
+
job_settings (_JobSettings): the job settings.
|
|
882
|
+
func: the function to be executed.
|
|
883
|
+
func_args: the positional arguments to the function.
|
|
884
|
+
func_kwargs: the keyword arguments to the function
|
|
885
|
+
|
|
886
|
+
Returns:
|
|
887
|
+
the _Job object.
|
|
888
|
+
"""
|
|
889
|
+
job_name = _Job._get_job_name(job_settings, func)
|
|
890
|
+
s3_base_uri = s3_path_join(job_settings.s3_root_uri, job_name)
|
|
891
|
+
|
|
892
|
+
training_job_request = _Job.compile(
|
|
893
|
+
job_settings=job_settings,
|
|
894
|
+
job_name=job_name,
|
|
895
|
+
s3_base_uri=s3_base_uri,
|
|
896
|
+
func=func,
|
|
897
|
+
func_args=func_args,
|
|
898
|
+
func_kwargs=func_kwargs,
|
|
899
|
+
run_info=run_info,
|
|
900
|
+
)
|
|
901
|
+
|
|
902
|
+
logger.info("Creating job: %s", job_name)
|
|
903
|
+
|
|
904
|
+
job_settings.sagemaker_session.sagemaker_client.create_training_job(**training_job_request)
|
|
905
|
+
|
|
906
|
+
return _Job(
|
|
907
|
+
job_name,
|
|
908
|
+
s3_base_uri,
|
|
909
|
+
job_settings.sagemaker_session,
|
|
910
|
+
training_job_request["Environment"]["REMOTE_FUNCTION_SECRET_KEY"],
|
|
911
|
+
)
|
|
912
|
+
|
|
913
|
+
@staticmethod
|
|
914
|
+
def compile(
|
|
915
|
+
job_settings: _JobSettings,
|
|
916
|
+
job_name: str,
|
|
917
|
+
s3_base_uri: str,
|
|
918
|
+
func: Callable,
|
|
919
|
+
func_args: tuple,
|
|
920
|
+
func_kwargs: dict,
|
|
921
|
+
run_info=None,
|
|
922
|
+
serialized_data: _SerializedData = None,
|
|
923
|
+
) -> dict:
|
|
924
|
+
"""Build the artifacts and generate the training job request."""
|
|
925
|
+
from sagemaker.core.workflow.properties import Properties
|
|
926
|
+
from sagemaker.core.workflow.parameters import Parameter
|
|
927
|
+
from sagemaker.core.workflow.functions import Join
|
|
928
|
+
from sagemaker.core.workflow.execution_variables import (
|
|
929
|
+
ExecutionVariables,
|
|
930
|
+
ExecutionVariable,
|
|
931
|
+
)
|
|
932
|
+
from sagemaker.core.workflow.utilities import load_step_compilation_context
|
|
933
|
+
|
|
934
|
+
step_compilation_context = load_step_compilation_context()
|
|
935
|
+
|
|
936
|
+
jobs_container_entrypoint = JOBS_CONTAINER_ENTRYPOINT[:]
|
|
937
|
+
|
|
938
|
+
# generate hmac key for integrity check
|
|
939
|
+
if step_compilation_context is None:
|
|
940
|
+
hmac_key = secrets.token_hex(32)
|
|
941
|
+
else:
|
|
942
|
+
hmac_key = step_compilation_context.function_step_secret_token
|
|
943
|
+
|
|
944
|
+
# serialize function and arguments
|
|
945
|
+
if step_compilation_context is None:
|
|
946
|
+
stored_function = StoredFunction(
|
|
947
|
+
sagemaker_session=job_settings.sagemaker_session,
|
|
948
|
+
s3_base_uri=s3_base_uri,
|
|
949
|
+
hmac_key=hmac_key,
|
|
950
|
+
s3_kms_key=job_settings.s3_kms_key,
|
|
951
|
+
)
|
|
952
|
+
stored_function.save(func, *func_args, **func_kwargs)
|
|
953
|
+
else:
|
|
954
|
+
stored_function = StoredFunction(
|
|
955
|
+
sagemaker_session=job_settings.sagemaker_session,
|
|
956
|
+
s3_base_uri=s3_base_uri,
|
|
957
|
+
hmac_key=hmac_key,
|
|
958
|
+
s3_kms_key=job_settings.s3_kms_key,
|
|
959
|
+
context=Context(
|
|
960
|
+
step_name=step_compilation_context.step_name,
|
|
961
|
+
func_step_s3_dir=step_compilation_context.pipeline_build_time,
|
|
962
|
+
),
|
|
963
|
+
)
|
|
964
|
+
|
|
965
|
+
stored_function.save_pipeline_step_function(serialized_data)
|
|
966
|
+
|
|
967
|
+
stopping_condition = {
|
|
968
|
+
"MaxRuntimeInSeconds": job_settings.max_runtime_in_seconds,
|
|
969
|
+
}
|
|
970
|
+
if job_settings.max_wait_time_in_seconds is not None:
|
|
971
|
+
stopping_condition["MaxWaitTimeInSeconds"] = job_settings.max_wait_time_in_seconds
|
|
972
|
+
|
|
973
|
+
request_dict = dict(
|
|
974
|
+
TrainingJobName=job_name,
|
|
975
|
+
RoleArn=job_settings.role,
|
|
976
|
+
StoppingCondition=stopping_condition,
|
|
977
|
+
RetryStrategy={"MaximumRetryAttempts": job_settings.max_retry_attempts},
|
|
978
|
+
)
|
|
979
|
+
|
|
980
|
+
_update_job_request_with_checkpoint_config(func_args, func_kwargs, request_dict)
|
|
981
|
+
|
|
982
|
+
if job_settings.tags:
|
|
983
|
+
request_dict["Tags"] = job_settings.tags
|
|
984
|
+
|
|
985
|
+
# generate other build artifacts including workspace, requirements.txt
|
|
986
|
+
request_dict["InputDataConfig"] = _generate_input_data_config(
|
|
987
|
+
job_settings=job_settings, s3_base_uri=s3_base_uri
|
|
988
|
+
)
|
|
989
|
+
|
|
990
|
+
if step_compilation_context:
|
|
991
|
+
# Path format: base/step_name/build_timestamp/execution_id/results
|
|
992
|
+
# This matches the path construction in stored_function.py
|
|
993
|
+
s3_output_path = Join(
|
|
994
|
+
on="/",
|
|
995
|
+
values=[
|
|
996
|
+
s3_base_uri,
|
|
997
|
+
step_compilation_context.step_name,
|
|
998
|
+
step_compilation_context.pipeline_build_time,
|
|
999
|
+
ExecutionVariables.PIPELINE_EXECUTION_ID,
|
|
1000
|
+
"results",
|
|
1001
|
+
],
|
|
1002
|
+
)
|
|
1003
|
+
output_config = {"S3OutputPath": s3_output_path}
|
|
1004
|
+
else:
|
|
1005
|
+
output_config = {"S3OutputPath": s3_base_uri}
|
|
1006
|
+
if job_settings.s3_kms_key is not None:
|
|
1007
|
+
output_config["KmsKeyId"] = job_settings.s3_kms_key
|
|
1008
|
+
if job_settings.disable_output_compression:
|
|
1009
|
+
output_config["CompressionType"] = "NONE"
|
|
1010
|
+
request_dict["OutputDataConfig"] = output_config
|
|
1011
|
+
|
|
1012
|
+
container_args = ["--s3_base_uri", s3_base_uri]
|
|
1013
|
+
container_args.extend(["--region", job_settings.sagemaker_session.boto_region_name])
|
|
1014
|
+
container_args.extend(
|
|
1015
|
+
["--client_python_version", RuntimeEnvironmentManager()._current_python_version()]
|
|
1016
|
+
)
|
|
1017
|
+
container_args.extend(
|
|
1018
|
+
[
|
|
1019
|
+
"--client_sagemaker_pysdk_version",
|
|
1020
|
+
RuntimeEnvironmentManager()._current_sagemaker_pysdk_version(),
|
|
1021
|
+
]
|
|
1022
|
+
)
|
|
1023
|
+
container_args.extend(
|
|
1024
|
+
[
|
|
1025
|
+
"--dependency_settings",
|
|
1026
|
+
_DependencySettings.from_dependency_file_path(
|
|
1027
|
+
job_settings.dependencies
|
|
1028
|
+
).to_string(),
|
|
1029
|
+
]
|
|
1030
|
+
)
|
|
1031
|
+
if job_settings.use_torchrun:
|
|
1032
|
+
container_args.extend(["--distribution", "torchrun"])
|
|
1033
|
+
elif job_settings.use_mpirun:
|
|
1034
|
+
container_args.extend(["--distribution", "mpirun"])
|
|
1035
|
+
if job_settings.nproc_per_node is not None and int(job_settings.nproc_per_node) > 0:
|
|
1036
|
+
container_args.extend(["--user_nproc_per_node", str(job_settings.nproc_per_node)])
|
|
1037
|
+
if job_settings.s3_kms_key:
|
|
1038
|
+
container_args.extend(["--s3_kms_key", job_settings.s3_kms_key])
|
|
1039
|
+
|
|
1040
|
+
if job_settings.job_conda_env:
|
|
1041
|
+
container_args.extend(["--job_conda_env", job_settings.job_conda_env])
|
|
1042
|
+
|
|
1043
|
+
if step_compilation_context:
|
|
1044
|
+
# TODO: remove the duplicates in the list
|
|
1045
|
+
container_args.extend(["--pipeline_step_name", step_compilation_context.step_name])
|
|
1046
|
+
container_args.extend(
|
|
1047
|
+
["--pipeline_execution_id", ExecutionVariables.PIPELINE_EXECUTION_ID]
|
|
1048
|
+
)
|
|
1049
|
+
container_args.extend(
|
|
1050
|
+
["--func_step_s3_dir", step_compilation_context.pipeline_build_time]
|
|
1051
|
+
)
|
|
1052
|
+
container_args.extend(["--property_references"])
|
|
1053
|
+
container_args.extend(
|
|
1054
|
+
[
|
|
1055
|
+
ExecutionVariables.PIPELINE_EXECUTION_ID.expr["Get"],
|
|
1056
|
+
ExecutionVariables.PIPELINE_EXECUTION_ID.to_string(),
|
|
1057
|
+
]
|
|
1058
|
+
)
|
|
1059
|
+
for arg in func_args + tuple(func_kwargs.values()):
|
|
1060
|
+
if isinstance(arg, (Parameter, ExecutionVariable, Properties)):
|
|
1061
|
+
container_args.extend([arg.expr["Get"], arg.to_string()])
|
|
1062
|
+
|
|
1063
|
+
# Lazy import to avoid circular dependency
|
|
1064
|
+
try:
|
|
1065
|
+
from sagemaker.mlops.workflow.function_step import DelayedReturn
|
|
1066
|
+
|
|
1067
|
+
if isinstance(arg, DelayedReturn):
|
|
1068
|
+
# The uri is a Properties object
|
|
1069
|
+
uri = get_step(arg)._properties.OutputDataConfig.S3OutputPath
|
|
1070
|
+
container_args.extend([uri.expr["Get"], uri.to_string()])
|
|
1071
|
+
except ImportError:
|
|
1072
|
+
# MLOps not installed, skip DelayedReturn handling
|
|
1073
|
+
pass
|
|
1074
|
+
|
|
1075
|
+
if run_info is not None:
|
|
1076
|
+
container_args.extend(["--run_in_context", json.dumps(dataclasses.asdict(run_info))])
|
|
1077
|
+
elif _RunContext.get_current_run() is not None:
|
|
1078
|
+
container_args.extend(
|
|
1079
|
+
["--run_in_context", _convert_run_to_json(_RunContext.get_current_run())]
|
|
1080
|
+
)
|
|
1081
|
+
|
|
1082
|
+
algorithm_spec = dict(
|
|
1083
|
+
TrainingImage=job_settings.image_uri,
|
|
1084
|
+
TrainingInputMode="File",
|
|
1085
|
+
ContainerEntrypoint=jobs_container_entrypoint,
|
|
1086
|
+
ContainerArguments=container_args,
|
|
1087
|
+
)
|
|
1088
|
+
|
|
1089
|
+
request_dict["AlgorithmSpecification"] = algorithm_spec
|
|
1090
|
+
|
|
1091
|
+
resource_config = dict(
|
|
1092
|
+
VolumeSizeInGB=job_settings.volume_size,
|
|
1093
|
+
InstanceCount=job_settings.instance_count,
|
|
1094
|
+
InstanceType=job_settings.instance_type,
|
|
1095
|
+
)
|
|
1096
|
+
if job_settings.volume_kms_key is not None:
|
|
1097
|
+
resource_config["VolumeKmsKeyId"] = job_settings.volume_kms_key
|
|
1098
|
+
if job_settings.keep_alive_period_in_seconds is not None:
|
|
1099
|
+
resource_config["KeepAlivePeriodInSeconds"] = job_settings.keep_alive_period_in_seconds
|
|
1100
|
+
|
|
1101
|
+
request_dict["ResourceConfig"] = resource_config
|
|
1102
|
+
|
|
1103
|
+
if job_settings.enable_network_isolation is not None:
|
|
1104
|
+
request_dict["EnableNetworkIsolation"] = job_settings.enable_network_isolation
|
|
1105
|
+
|
|
1106
|
+
if job_settings.encrypt_inter_container_traffic is not None:
|
|
1107
|
+
request_dict["EnableInterContainerTrafficEncryption"] = (
|
|
1108
|
+
job_settings.encrypt_inter_container_traffic
|
|
1109
|
+
)
|
|
1110
|
+
|
|
1111
|
+
if job_settings.vpc_config:
|
|
1112
|
+
request_dict["VpcConfig"] = job_settings.vpc_config
|
|
1113
|
+
|
|
1114
|
+
request_dict["EnableManagedSpotTraining"] = job_settings.use_spot_instances
|
|
1115
|
+
|
|
1116
|
+
request_dict["Environment"] = job_settings.environment_variables
|
|
1117
|
+
request_dict["Environment"].update({"REMOTE_FUNCTION_SECRET_KEY": hmac_key})
|
|
1118
|
+
|
|
1119
|
+
extended_request = _extend_spark_config_to_request(request_dict, job_settings, s3_base_uri)
|
|
1120
|
+
extended_request = _extend_mpirun_to_request(extended_request, job_settings)
|
|
1121
|
+
extended_request = _extend_torchrun_to_request(extended_request, job_settings)
|
|
1122
|
+
|
|
1123
|
+
return extended_request
|
|
1124
|
+
|
|
1125
|
+
def describe(self):
|
|
1126
|
+
"""Describe the underlying sagemaker training job.
|
|
1127
|
+
|
|
1128
|
+
Returns:
|
|
1129
|
+
Dict: Describe training job response.
|
|
1130
|
+
"""
|
|
1131
|
+
if self._last_describe_response is not None and self._last_describe_response[
|
|
1132
|
+
"TrainingJobStatus"
|
|
1133
|
+
] in ["Completed", "Failed", "Stopped"]:
|
|
1134
|
+
return self._last_describe_response
|
|
1135
|
+
|
|
1136
|
+
self._last_describe_response = (
|
|
1137
|
+
self.sagemaker_session.sagemaker_client.describe_training_job(
|
|
1138
|
+
TrainingJobName=self.job_name
|
|
1139
|
+
)
|
|
1140
|
+
)
|
|
1141
|
+
|
|
1142
|
+
return self._last_describe_response
|
|
1143
|
+
|
|
1144
|
+
def stop(self):
|
|
1145
|
+
"""Stop the underlying sagemaker training job."""
|
|
1146
|
+
self.sagemaker_session.sagemaker_client.stop_training_job(TrainingJobName=self.job_name)
|
|
1147
|
+
|
|
1148
|
+
def wait(self, timeout: int = None):
|
|
1149
|
+
"""Wait for the underlying sagemaker job to finish and displays its logs .
|
|
1150
|
+
|
|
1151
|
+
This method blocks on the sagemaker job completing for up to the timeout value (if
|
|
1152
|
+
specified). If timeout is ``None``, this method will block until the job is completed.
|
|
1153
|
+
|
|
1154
|
+
Args:
|
|
1155
|
+
timeout (int): Timeout in seconds to wait until the job is completed. ``None`` by
|
|
1156
|
+
default.
|
|
1157
|
+
|
|
1158
|
+
Returns: None
|
|
1159
|
+
"""
|
|
1160
|
+
|
|
1161
|
+
self._last_describe_response = _logs_for_job(
|
|
1162
|
+
sagemaker_session=self.sagemaker_session,
|
|
1163
|
+
job_name=self.job_name,
|
|
1164
|
+
wait=True,
|
|
1165
|
+
timeout=timeout,
|
|
1166
|
+
)
|
|
1167
|
+
|
|
1168
|
+
@staticmethod
|
|
1169
|
+
def _get_job_name(job_settings, func):
|
|
1170
|
+
"""Get the underlying SageMaker job name from job_name_prefix or func.
|
|
1171
|
+
|
|
1172
|
+
Args:
|
|
1173
|
+
job_settings (_JobSettings): the job settings.
|
|
1174
|
+
func: the function to be executed.
|
|
1175
|
+
|
|
1176
|
+
Returns:
|
|
1177
|
+
str : the training job name.
|
|
1178
|
+
"""
|
|
1179
|
+
from sagemaker.core.workflow.utilities import load_step_compilation_context
|
|
1180
|
+
|
|
1181
|
+
step_complication_context = load_step_compilation_context()
|
|
1182
|
+
|
|
1183
|
+
job_name_prefix = job_settings.job_name_prefix
|
|
1184
|
+
if not job_name_prefix:
|
|
1185
|
+
job_name_prefix = func.__name__
|
|
1186
|
+
# remove all special characters in the beginning of function name
|
|
1187
|
+
job_name_prefix = re.sub(r"^[^a-zA-Z0-9]+", "", job_name_prefix)
|
|
1188
|
+
# convert all remaining special characters to '-'
|
|
1189
|
+
job_name_prefix = re.sub(r"[^a-zA-Z0-9-]", "-", job_name_prefix)
|
|
1190
|
+
|
|
1191
|
+
if step_complication_context:
|
|
1192
|
+
return job_name_prefix
|
|
1193
|
+
return name_from_base(job_name_prefix)
|
|
1194
|
+
|
|
1195
|
+
|
|
1196
|
+
def _prepare_and_upload_runtime_scripts(
|
|
1197
|
+
spark_config: SparkConfig,
|
|
1198
|
+
s3_base_uri: str,
|
|
1199
|
+
s3_kms_key: str,
|
|
1200
|
+
sagemaker_session: Session,
|
|
1201
|
+
use_torchrun: bool = False,
|
|
1202
|
+
use_mpirun: bool = False,
|
|
1203
|
+
):
|
|
1204
|
+
"""Copy runtime scripts to a folder and upload to S3.
|
|
1205
|
+
|
|
1206
|
+
In case of remote function, s3_base_uri is s3_root_uri + function_name.
|
|
1207
|
+
In case of pipeline, s3_base_uri is s3_root_uri + pipeline_name. The runtime scripts are
|
|
1208
|
+
uploaded only once per pipeline.
|
|
1209
|
+
|
|
1210
|
+
Args:
|
|
1211
|
+
spark_config (SparkConfig): remote Spark job configurations.
|
|
1212
|
+
|
|
1213
|
+
s3_base_uri (str): S3 location that the runtime scripts will be uploaded to.
|
|
1214
|
+
|
|
1215
|
+
s3_kms_key (str): kms key used to encrypt the files uploaded to S3.
|
|
1216
|
+
|
|
1217
|
+
sagemaker_session (str): SageMaker boto client session.
|
|
1218
|
+
|
|
1219
|
+
use_torchrun (bool): Whether to use torchrun or not.
|
|
1220
|
+
|
|
1221
|
+
use_mpirun (bool): Whether to use mpirun or not.
|
|
1222
|
+
|
|
1223
|
+
nproc_per_node (Optional[int]): Number of processes per node
|
|
1224
|
+
"""
|
|
1225
|
+
|
|
1226
|
+
from sagemaker.core.workflow.utilities import load_step_compilation_context
|
|
1227
|
+
|
|
1228
|
+
step_compilation_context = load_step_compilation_context()
|
|
1229
|
+
|
|
1230
|
+
if step_compilation_context and not step_compilation_context.upload_runtime_scripts:
|
|
1231
|
+
return s3_path_join(s3_base_uri, RUNTIME_SCRIPTS_CHANNEL_NAME)
|
|
1232
|
+
|
|
1233
|
+
with _tmpdir() as bootstrap_scripts:
|
|
1234
|
+
|
|
1235
|
+
# write entrypoint script to tmpdir
|
|
1236
|
+
entrypoint_script_path = os.path.join(bootstrap_scripts, ENTRYPOINT_SCRIPT_NAME)
|
|
1237
|
+
entry_point_script = ENTRYPOINT_SCRIPT
|
|
1238
|
+
if spark_config:
|
|
1239
|
+
entry_point_script = SPARK_ENTRYPOINT_SCRIPT
|
|
1240
|
+
spark_script_path = os.path.join(
|
|
1241
|
+
os.path.dirname(__file__), "runtime_environment", SPARK_APP_SCRIPT_NAME
|
|
1242
|
+
)
|
|
1243
|
+
shutil.copy2(spark_script_path, bootstrap_scripts)
|
|
1244
|
+
|
|
1245
|
+
if use_torchrun:
|
|
1246
|
+
entry_point_script = ENTRYPOINT_TORCHRUN_SCRIPT
|
|
1247
|
+
|
|
1248
|
+
if use_mpirun:
|
|
1249
|
+
entry_point_script = ENTRYPOINT_MPIRUN_SCRIPT
|
|
1250
|
+
|
|
1251
|
+
with open(entrypoint_script_path, "w", newline="\n") as file:
|
|
1252
|
+
file.writelines(entry_point_script)
|
|
1253
|
+
|
|
1254
|
+
bootstrap_script_path = os.path.join(
|
|
1255
|
+
os.path.dirname(__file__), "runtime_environment", BOOTSTRAP_SCRIPT_NAME
|
|
1256
|
+
)
|
|
1257
|
+
mpi_utils_path = os.path.join(
|
|
1258
|
+
os.path.dirname(__file__), "runtime_environment", MPI_UTILS_SCRIPT_NAME
|
|
1259
|
+
)
|
|
1260
|
+
runtime_manager_script_path = os.path.join(
|
|
1261
|
+
os.path.dirname(__file__), "runtime_environment", RUNTIME_MANAGER_SCRIPT_NAME
|
|
1262
|
+
)
|
|
1263
|
+
|
|
1264
|
+
# copy runtime scripts to tmpdir
|
|
1265
|
+
shutil.copy2(bootstrap_script_path, bootstrap_scripts)
|
|
1266
|
+
shutil.copy2(mpi_utils_path, bootstrap_scripts)
|
|
1267
|
+
shutil.copy2(runtime_manager_script_path, bootstrap_scripts)
|
|
1268
|
+
|
|
1269
|
+
upload_path = S3Uploader.upload(
|
|
1270
|
+
bootstrap_scripts,
|
|
1271
|
+
s3_path_join(s3_base_uri, RUNTIME_SCRIPTS_CHANNEL_NAME),
|
|
1272
|
+
s3_kms_key,
|
|
1273
|
+
sagemaker_session,
|
|
1274
|
+
)
|
|
1275
|
+
|
|
1276
|
+
if step_compilation_context:
|
|
1277
|
+
step_compilation_context.upload_runtime_scripts = False
|
|
1278
|
+
return upload_path
|
|
1279
|
+
|
|
1280
|
+
|
|
1281
|
+
def _generate_input_data_config(job_settings: _JobSettings, s3_base_uri: str):
|
|
1282
|
+
"""Generates input data config"""
|
|
1283
|
+
from sagemaker.core.workflow.utilities import load_step_compilation_context
|
|
1284
|
+
|
|
1285
|
+
step_compilation_context = load_step_compilation_context()
|
|
1286
|
+
|
|
1287
|
+
bootstrap_scripts_s3uri = _prepare_and_upload_runtime_scripts(
|
|
1288
|
+
spark_config=job_settings.spark_config,
|
|
1289
|
+
s3_base_uri=s3_base_uri,
|
|
1290
|
+
s3_kms_key=job_settings.s3_kms_key,
|
|
1291
|
+
sagemaker_session=job_settings.sagemaker_session,
|
|
1292
|
+
use_torchrun=job_settings.use_torchrun,
|
|
1293
|
+
use_mpirun=job_settings.use_mpirun,
|
|
1294
|
+
)
|
|
1295
|
+
|
|
1296
|
+
input_data_config = [
|
|
1297
|
+
dict(
|
|
1298
|
+
ChannelName=RUNTIME_SCRIPTS_CHANNEL_NAME,
|
|
1299
|
+
DataSource={
|
|
1300
|
+
"S3DataSource": {
|
|
1301
|
+
"S3Uri": bootstrap_scripts_s3uri,
|
|
1302
|
+
"S3DataType": "S3Prefix",
|
|
1303
|
+
}
|
|
1304
|
+
},
|
|
1305
|
+
)
|
|
1306
|
+
]
|
|
1307
|
+
|
|
1308
|
+
local_dependencies_path = RuntimeEnvironmentManager().snapshot(job_settings.dependencies)
|
|
1309
|
+
|
|
1310
|
+
if step_compilation_context:
|
|
1311
|
+
with _tmpdir() as tmp_dir:
|
|
1312
|
+
script_and_dependencies_s3uri = _prepare_dependencies_and_pre_execution_scripts(
|
|
1313
|
+
local_dependencies_path=local_dependencies_path,
|
|
1314
|
+
pre_execution_commands=job_settings.pre_execution_commands,
|
|
1315
|
+
pre_execution_script_local_path=job_settings.pre_execution_script,
|
|
1316
|
+
s3_base_uri=s3_base_uri,
|
|
1317
|
+
s3_kms_key=job_settings.s3_kms_key,
|
|
1318
|
+
sagemaker_session=job_settings.sagemaker_session,
|
|
1319
|
+
tmp_dir=tmp_dir,
|
|
1320
|
+
)
|
|
1321
|
+
|
|
1322
|
+
if script_and_dependencies_s3uri:
|
|
1323
|
+
input_data_config.append(
|
|
1324
|
+
dict(
|
|
1325
|
+
ChannelName=SCRIPT_AND_DEPENDENCIES_CHANNEL_NAME,
|
|
1326
|
+
DataSource={
|
|
1327
|
+
"S3DataSource": {
|
|
1328
|
+
"S3Uri": script_and_dependencies_s3uri,
|
|
1329
|
+
"S3DataType": "S3Prefix",
|
|
1330
|
+
}
|
|
1331
|
+
},
|
|
1332
|
+
)
|
|
1333
|
+
)
|
|
1334
|
+
|
|
1335
|
+
user_workspace_s3uri = _prepare_and_upload_workspace(
|
|
1336
|
+
local_dependencies_path=local_dependencies_path,
|
|
1337
|
+
include_local_workdir=job_settings.include_local_workdir,
|
|
1338
|
+
pre_execution_commands=job_settings.pre_execution_commands,
|
|
1339
|
+
pre_execution_script_local_path=job_settings.pre_execution_script,
|
|
1340
|
+
s3_base_uri=s3_base_uri,
|
|
1341
|
+
s3_kms_key=job_settings.s3_kms_key,
|
|
1342
|
+
sagemaker_session=job_settings.sagemaker_session,
|
|
1343
|
+
custom_file_filter=job_settings.custom_file_filter,
|
|
1344
|
+
)
|
|
1345
|
+
|
|
1346
|
+
if user_workspace_s3uri:
|
|
1347
|
+
input_data_config.append(
|
|
1348
|
+
dict(
|
|
1349
|
+
ChannelName=(
|
|
1350
|
+
REMOTE_FUNCTION_WORKSPACE
|
|
1351
|
+
if not step_compilation_context
|
|
1352
|
+
else step_compilation_context.pipeline_build_time
|
|
1353
|
+
),
|
|
1354
|
+
DataSource={
|
|
1355
|
+
"S3DataSource": {
|
|
1356
|
+
"S3Uri": user_workspace_s3uri,
|
|
1357
|
+
"S3DataType": "S3Prefix",
|
|
1358
|
+
}
|
|
1359
|
+
},
|
|
1360
|
+
)
|
|
1361
|
+
)
|
|
1362
|
+
|
|
1363
|
+
return input_data_config
|
|
1364
|
+
|
|
1365
|
+
|
|
1366
|
+
def _prepare_dependencies_and_pre_execution_scripts(
|
|
1367
|
+
local_dependencies_path: str,
|
|
1368
|
+
pre_execution_commands: List[str],
|
|
1369
|
+
pre_execution_script_local_path: str,
|
|
1370
|
+
s3_base_uri: str,
|
|
1371
|
+
s3_kms_key: str,
|
|
1372
|
+
sagemaker_session: Session,
|
|
1373
|
+
tmp_dir: str,
|
|
1374
|
+
):
|
|
1375
|
+
"""Prepare pre-execution scripts and dependencies and upload them to s3.
|
|
1376
|
+
|
|
1377
|
+
If pre execution commands are provided, a new bash file will be created
|
|
1378
|
+
with those commands in tmp directory.
|
|
1379
|
+
If pre execution script is provided, it copies that file from local file path
|
|
1380
|
+
to tmp directory.
|
|
1381
|
+
If local dependencies file is provided, it copies that file from local file path
|
|
1382
|
+
to tmp directory.
|
|
1383
|
+
If under pipeline context, tmp directory with copied dependencies and scripts is
|
|
1384
|
+
uploaded to S3.
|
|
1385
|
+
"""
|
|
1386
|
+
from sagemaker.core.workflow.utilities import load_step_compilation_context
|
|
1387
|
+
|
|
1388
|
+
if not (local_dependencies_path or pre_execution_commands or pre_execution_script_local_path):
|
|
1389
|
+
return None
|
|
1390
|
+
|
|
1391
|
+
if local_dependencies_path:
|
|
1392
|
+
dst_path = shutil.copy2(local_dependencies_path, tmp_dir)
|
|
1393
|
+
logger.info("Copied dependencies file at '%s' to '%s'", local_dependencies_path, dst_path)
|
|
1394
|
+
|
|
1395
|
+
if pre_execution_commands or pre_execution_script_local_path:
|
|
1396
|
+
pre_execution_script = os.path.join(tmp_dir, PRE_EXECUTION_SCRIPT_NAME)
|
|
1397
|
+
if pre_execution_commands:
|
|
1398
|
+
with open(pre_execution_script, "w") as target_script:
|
|
1399
|
+
commands = [cmd + "\n" for cmd in pre_execution_commands]
|
|
1400
|
+
target_script.writelines(commands)
|
|
1401
|
+
logger.info(
|
|
1402
|
+
"Generated pre-execution script from commands to '%s'", pre_execution_script
|
|
1403
|
+
)
|
|
1404
|
+
else:
|
|
1405
|
+
shutil.copy2(pre_execution_script_local_path, pre_execution_script)
|
|
1406
|
+
logger.info(
|
|
1407
|
+
"Copied pre-execution commands from script at '%s' to '%s'",
|
|
1408
|
+
pre_execution_script_local_path,
|
|
1409
|
+
pre_execution_script,
|
|
1410
|
+
)
|
|
1411
|
+
|
|
1412
|
+
step_compilation_context = load_step_compilation_context()
|
|
1413
|
+
if step_compilation_context:
|
|
1414
|
+
upload_path = S3Uploader.upload(
|
|
1415
|
+
tmp_dir,
|
|
1416
|
+
s3_path_join(
|
|
1417
|
+
s3_base_uri,
|
|
1418
|
+
step_compilation_context.step_name,
|
|
1419
|
+
step_compilation_context.pipeline_build_time,
|
|
1420
|
+
SCRIPT_AND_DEPENDENCIES_CHANNEL_NAME,
|
|
1421
|
+
),
|
|
1422
|
+
s3_kms_key,
|
|
1423
|
+
sagemaker_session,
|
|
1424
|
+
)
|
|
1425
|
+
logger.info(
|
|
1426
|
+
"Successfully uploaded dependencies and pre execution scripts to '%s'", upload_path
|
|
1427
|
+
)
|
|
1428
|
+
return upload_path
|
|
1429
|
+
return None
|
|
1430
|
+
|
|
1431
|
+
|
|
1432
|
+
def _prepare_and_upload_workspace(
|
|
1433
|
+
local_dependencies_path: str,
|
|
1434
|
+
include_local_workdir: bool,
|
|
1435
|
+
pre_execution_commands: List[str],
|
|
1436
|
+
pre_execution_script_local_path: str,
|
|
1437
|
+
s3_base_uri: str,
|
|
1438
|
+
s3_kms_key: str,
|
|
1439
|
+
sagemaker_session: Session,
|
|
1440
|
+
custom_file_filter: Optional[Union[Callable[[str, List], List], CustomFileFilter]] = None,
|
|
1441
|
+
) -> str:
|
|
1442
|
+
"""Prepare and upload the workspace to S3.
|
|
1443
|
+
|
|
1444
|
+
Under pipeline context, only workdir is packaged in the workspace folder and uploaded to s3.
|
|
1445
|
+
Under remote function context, workdir along with pre execution scripts and dependencies
|
|
1446
|
+
are packaged together into the workspace folder and uploaded to S3.
|
|
1447
|
+
"""
|
|
1448
|
+
from sagemaker.core.workflow.utilities import load_step_compilation_context
|
|
1449
|
+
|
|
1450
|
+
step_compilation_context = load_step_compilation_context()
|
|
1451
|
+
|
|
1452
|
+
if not (
|
|
1453
|
+
local_dependencies_path
|
|
1454
|
+
or include_local_workdir
|
|
1455
|
+
or pre_execution_commands
|
|
1456
|
+
or pre_execution_script_local_path
|
|
1457
|
+
):
|
|
1458
|
+
return None
|
|
1459
|
+
|
|
1460
|
+
func_step_s3_dir = None
|
|
1461
|
+
if step_compilation_context:
|
|
1462
|
+
func_step_s3_dir = step_compilation_context.pipeline_build_time
|
|
1463
|
+
if not include_local_workdir:
|
|
1464
|
+
return None
|
|
1465
|
+
if not step_compilation_context.upload_workspace:
|
|
1466
|
+
return s3_path_join(s3_base_uri, REMOTE_FUNCTION_WORKSPACE, func_step_s3_dir)
|
|
1467
|
+
|
|
1468
|
+
with _tmpdir() as tmp_dir:
|
|
1469
|
+
tmp_workspace_dir = os.path.join(tmp_dir, "temp_workspace/")
|
|
1470
|
+
os.mkdir(tmp_workspace_dir)
|
|
1471
|
+
# TODO Remove the following hack to avoid dir_exists error in the copy_tree call below.
|
|
1472
|
+
tmp_workspace = os.path.join(tmp_workspace_dir, JOB_REMOTE_FUNCTION_WORKSPACE)
|
|
1473
|
+
|
|
1474
|
+
if include_local_workdir:
|
|
1475
|
+
copy_workdir(tmp_workspace, custom_file_filter)
|
|
1476
|
+
logger.info("Copied user workspace to '%s'", tmp_workspace)
|
|
1477
|
+
|
|
1478
|
+
if not os.path.isdir(tmp_workspace):
|
|
1479
|
+
# create the directory if no workdir_path was provided in the input.
|
|
1480
|
+
os.mkdir(tmp_workspace)
|
|
1481
|
+
|
|
1482
|
+
if not step_compilation_context:
|
|
1483
|
+
_prepare_dependencies_and_pre_execution_scripts(
|
|
1484
|
+
local_dependencies_path=local_dependencies_path,
|
|
1485
|
+
pre_execution_commands=pre_execution_commands,
|
|
1486
|
+
pre_execution_script_local_path=pre_execution_script_local_path,
|
|
1487
|
+
s3_base_uri=s3_base_uri,
|
|
1488
|
+
s3_kms_key=s3_kms_key,
|
|
1489
|
+
sagemaker_session=sagemaker_session,
|
|
1490
|
+
tmp_dir=tmp_workspace,
|
|
1491
|
+
)
|
|
1492
|
+
|
|
1493
|
+
workspace_archive_path = os.path.join(tmp_dir, "workspace")
|
|
1494
|
+
workspace_archive_path = shutil.make_archive(
|
|
1495
|
+
workspace_archive_path, "zip", tmp_workspace_dir
|
|
1496
|
+
)
|
|
1497
|
+
logger.info("Successfully created workdir archive at '%s'", workspace_archive_path)
|
|
1498
|
+
|
|
1499
|
+
upload_path = S3Uploader.upload(
|
|
1500
|
+
workspace_archive_path,
|
|
1501
|
+
s3_path_join(s3_base_uri, REMOTE_FUNCTION_WORKSPACE, func_step_s3_dir),
|
|
1502
|
+
s3_kms_key,
|
|
1503
|
+
sagemaker_session,
|
|
1504
|
+
)
|
|
1505
|
+
logger.info("Successfully uploaded workdir to '%s'", upload_path)
|
|
1506
|
+
if step_compilation_context:
|
|
1507
|
+
step_compilation_context.upload_workspace = False
|
|
1508
|
+
return upload_path
|
|
1509
|
+
|
|
1510
|
+
|
|
1511
|
+
def _convert_run_to_json(run: Run) -> str:
|
|
1512
|
+
"""Convert current run into json string"""
|
|
1513
|
+
run_info = _RunInfo(run.experiment_name, run.run_name)
|
|
1514
|
+
return json.dumps(dataclasses.asdict(run_info))
|
|
1515
|
+
|
|
1516
|
+
|
|
1517
|
+
def _prepare_and_upload_spark_dependent_files(
|
|
1518
|
+
spark_config: SparkConfig,
|
|
1519
|
+
s3_base_uri: str,
|
|
1520
|
+
s3_kms_key: str,
|
|
1521
|
+
sagemaker_session: Session,
|
|
1522
|
+
) -> Tuple:
|
|
1523
|
+
"""Upload the Spark dependencies to S3 if present.
|
|
1524
|
+
|
|
1525
|
+
Args:
|
|
1526
|
+
spark_config (SparkConfig): The remote Spark job configurations.
|
|
1527
|
+
s3_base_uri (str): The S3 location that the Spark dependencies will be uploaded to.
|
|
1528
|
+
s3_kms_key (str): The kms key used to encrypt the files uploaded to S3.
|
|
1529
|
+
sagemaker_session (str): SageMaker boto client session.
|
|
1530
|
+
"""
|
|
1531
|
+
if not spark_config:
|
|
1532
|
+
return None, None, None, None
|
|
1533
|
+
|
|
1534
|
+
submit_jars_s3_paths = _upload_spark_submit_deps(
|
|
1535
|
+
spark_config.submit_jars,
|
|
1536
|
+
SPARK_SUBMIT_JARS_WORKSPACE,
|
|
1537
|
+
s3_base_uri,
|
|
1538
|
+
s3_kms_key,
|
|
1539
|
+
sagemaker_session,
|
|
1540
|
+
)
|
|
1541
|
+
submit_py_files_s3_paths = _upload_spark_submit_deps(
|
|
1542
|
+
spark_config.submit_py_files,
|
|
1543
|
+
SPARK_SUBMIT_PY_FILES_WORKSPACE,
|
|
1544
|
+
s3_base_uri,
|
|
1545
|
+
s3_kms_key,
|
|
1546
|
+
sagemaker_session,
|
|
1547
|
+
)
|
|
1548
|
+
submit_files_s3_path = _upload_spark_submit_deps(
|
|
1549
|
+
spark_config.submit_files,
|
|
1550
|
+
SPARK_SUBMIT_FILES_WORKSPACE,
|
|
1551
|
+
s3_base_uri,
|
|
1552
|
+
s3_kms_key,
|
|
1553
|
+
sagemaker_session,
|
|
1554
|
+
)
|
|
1555
|
+
config_file_s3_uri = _upload_serialized_spark_configuration(
|
|
1556
|
+
s3_base_uri, s3_kms_key, spark_config.configuration, sagemaker_session
|
|
1557
|
+
)
|
|
1558
|
+
|
|
1559
|
+
return submit_jars_s3_paths, submit_py_files_s3_paths, submit_files_s3_path, config_file_s3_uri
|
|
1560
|
+
|
|
1561
|
+
|
|
1562
|
+
def _upload_spark_submit_deps(
|
|
1563
|
+
submit_deps: List[str],
|
|
1564
|
+
workspace_name: str,
|
|
1565
|
+
s3_base_uri: str,
|
|
1566
|
+
s3_kms_key: str,
|
|
1567
|
+
sagemaker_session: Session,
|
|
1568
|
+
) -> str:
|
|
1569
|
+
"""Upload the Spark submit dependencies to S3.
|
|
1570
|
+
|
|
1571
|
+
Args:
|
|
1572
|
+
submit_deps (List[str]): A list of path which points to the Spark dependency files.
|
|
1573
|
+
The path can be either a local path or S3 uri. For example ``/local/deps.jar`` or
|
|
1574
|
+
``s3://<your-bucket>/deps.jar``.
|
|
1575
|
+
|
|
1576
|
+
workspace_name (str): workspace name for Spark dependency.
|
|
1577
|
+
s3_base_uri (str): S3 location that the Spark dependencies will be uploaded to.
|
|
1578
|
+
s3_kms_key (str): kms key used to encrypt the files uploaded to S3.
|
|
1579
|
+
sagemaker_session (str): SageMaker boto client session.
|
|
1580
|
+
|
|
1581
|
+
Returns:
|
|
1582
|
+
str : The concatenated path of all dependencies which will be passed to Spark.
|
|
1583
|
+
"""
|
|
1584
|
+
spark_opt_s3_uris = []
|
|
1585
|
+
if not submit_deps:
|
|
1586
|
+
return None
|
|
1587
|
+
|
|
1588
|
+
if not workspace_name or not s3_base_uri:
|
|
1589
|
+
raise ValueError("workspace_name or s3_base_uri may not be empty.")
|
|
1590
|
+
|
|
1591
|
+
for dep_path in submit_deps:
|
|
1592
|
+
dep_url = urlparse(dep_path)
|
|
1593
|
+
|
|
1594
|
+
if dep_url.scheme in ["s3", "s3a"]:
|
|
1595
|
+
spark_opt_s3_uris.append(dep_path)
|
|
1596
|
+
elif not dep_url.scheme or dep_url.scheme == "file":
|
|
1597
|
+
if not os.path.isfile(dep_path):
|
|
1598
|
+
raise ValueError(f"submit_deps path {dep_path} is not a valid local file.")
|
|
1599
|
+
|
|
1600
|
+
upload_path = S3Uploader.upload(
|
|
1601
|
+
local_path=dep_path,
|
|
1602
|
+
desired_s3_uri=s3_path_join(s3_base_uri, workspace_name),
|
|
1603
|
+
kms_key=s3_kms_key,
|
|
1604
|
+
sagemaker_session=sagemaker_session,
|
|
1605
|
+
)
|
|
1606
|
+
|
|
1607
|
+
spark_opt_s3_uris.append(upload_path)
|
|
1608
|
+
logger.info("Uploaded the local file %s to %s", dep_path, upload_path)
|
|
1609
|
+
return str.join(",", spark_opt_s3_uris)
|
|
1610
|
+
|
|
1611
|
+
|
|
1612
|
+
def _upload_serialized_spark_configuration(
|
|
1613
|
+
s3_base_uri: str, s3_kms_key: str, configuration: Dict, sagemaker_session: Session
|
|
1614
|
+
) -> str:
|
|
1615
|
+
"""Upload the Spark configuration json to S3"""
|
|
1616
|
+
if not configuration:
|
|
1617
|
+
return None
|
|
1618
|
+
|
|
1619
|
+
serialized_configuration = BytesIO(json.dumps(configuration).encode("utf-8"))
|
|
1620
|
+
config_file_s3_uri = s3_path_join(s3_base_uri, SPARK_CONF_WORKSPACE, SPARK_CONF_FILE_NAME)
|
|
1621
|
+
|
|
1622
|
+
S3Uploader.upload_string_as_file_body(
|
|
1623
|
+
body=serialized_configuration,
|
|
1624
|
+
desired_s3_uri=config_file_s3_uri,
|
|
1625
|
+
kms_key=s3_kms_key,
|
|
1626
|
+
sagemaker_session=sagemaker_session,
|
|
1627
|
+
)
|
|
1628
|
+
|
|
1629
|
+
logger.info("Uploaded spark configuration json %s to %s", configuration, config_file_s3_uri)
|
|
1630
|
+
|
|
1631
|
+
return config_file_s3_uri
|
|
1632
|
+
|
|
1633
|
+
|
|
1634
|
+
def _extend_mpirun_to_request(
|
|
1635
|
+
request_dict: Dict,
|
|
1636
|
+
job_settings: _JobSettings,
|
|
1637
|
+
) -> Dict:
|
|
1638
|
+
"""Extend the create training job request with mpirun configuration.
|
|
1639
|
+
|
|
1640
|
+
Args:
|
|
1641
|
+
request_dict (Dict): create training job request dict.
|
|
1642
|
+
job_settings (_JobSettings): the job settings.
|
|
1643
|
+
"""
|
|
1644
|
+
use_mpirun = job_settings.use_mpirun
|
|
1645
|
+
instance_count = job_settings.instance_count
|
|
1646
|
+
|
|
1647
|
+
if not use_mpirun:
|
|
1648
|
+
return request_dict
|
|
1649
|
+
|
|
1650
|
+
if instance_count == 1:
|
|
1651
|
+
return request_dict
|
|
1652
|
+
|
|
1653
|
+
extended_request = request_dict.copy()
|
|
1654
|
+
|
|
1655
|
+
for input_channel in extended_request["InputDataConfig"]:
|
|
1656
|
+
s3_data_source = input_channel["DataSource"].get("S3DataSource", None)
|
|
1657
|
+
if s3_data_source:
|
|
1658
|
+
s3_data_source["S3DataDistributionType"] = "FullyReplicated"
|
|
1659
|
+
|
|
1660
|
+
return extended_request
|
|
1661
|
+
|
|
1662
|
+
|
|
1663
|
+
def _extend_torchrun_to_request(
|
|
1664
|
+
request_dict: Dict,
|
|
1665
|
+
job_settings: _JobSettings,
|
|
1666
|
+
) -> Dict:
|
|
1667
|
+
"""Extend the create training job request with torchrun configuration.
|
|
1668
|
+
|
|
1669
|
+
Args:
|
|
1670
|
+
request_dict (Dict): create training job request dict.
|
|
1671
|
+
job_settings (_JobSettings): the job settings.
|
|
1672
|
+
"""
|
|
1673
|
+
use_torchrun = job_settings.use_torchrun
|
|
1674
|
+
instance_count = job_settings.instance_count
|
|
1675
|
+
|
|
1676
|
+
if not use_torchrun:
|
|
1677
|
+
return request_dict
|
|
1678
|
+
|
|
1679
|
+
if instance_count == 1:
|
|
1680
|
+
return request_dict
|
|
1681
|
+
|
|
1682
|
+
extended_request = request_dict.copy()
|
|
1683
|
+
|
|
1684
|
+
for input_channel in extended_request["InputDataConfig"]:
|
|
1685
|
+
s3_data_source = input_channel["DataSource"].get("S3DataSource", None)
|
|
1686
|
+
if s3_data_source:
|
|
1687
|
+
s3_data_source["S3DataDistributionType"] = "FullyReplicated"
|
|
1688
|
+
|
|
1689
|
+
return extended_request
|
|
1690
|
+
|
|
1691
|
+
|
|
1692
|
+
def _extend_spark_config_to_request(
|
|
1693
|
+
request_dict: Dict,
|
|
1694
|
+
job_settings: _JobSettings,
|
|
1695
|
+
s3_base_uri: str,
|
|
1696
|
+
) -> Dict:
|
|
1697
|
+
"""Extend the create training job request with spark configurations.
|
|
1698
|
+
|
|
1699
|
+
Args:
|
|
1700
|
+
request_dict (Dict): create training job request dict.
|
|
1701
|
+
job_settings (_JobSettings): the job settings.
|
|
1702
|
+
s3_base_uri (str): S3 location that the Spark dependencies will be uploaded to.
|
|
1703
|
+
"""
|
|
1704
|
+
spark_config = job_settings.spark_config
|
|
1705
|
+
|
|
1706
|
+
if not spark_config:
|
|
1707
|
+
return request_dict
|
|
1708
|
+
|
|
1709
|
+
extended_request = request_dict.copy()
|
|
1710
|
+
container_entrypoint = extended_request["AlgorithmSpecification"]["ContainerEntrypoint"]
|
|
1711
|
+
|
|
1712
|
+
(
|
|
1713
|
+
submit_jars_s3_paths,
|
|
1714
|
+
submit_py_files_s3_paths,
|
|
1715
|
+
submit_files_s3_path,
|
|
1716
|
+
config_file_s3_uri,
|
|
1717
|
+
) = _prepare_and_upload_spark_dependent_files(
|
|
1718
|
+
spark_config=spark_config,
|
|
1719
|
+
s3_base_uri=s3_base_uri,
|
|
1720
|
+
s3_kms_key=job_settings.s3_kms_key,
|
|
1721
|
+
sagemaker_session=job_settings.sagemaker_session,
|
|
1722
|
+
)
|
|
1723
|
+
|
|
1724
|
+
input_data_config = extended_request["InputDataConfig"]
|
|
1725
|
+
|
|
1726
|
+
if config_file_s3_uri:
|
|
1727
|
+
input_data_config.append(
|
|
1728
|
+
dict(
|
|
1729
|
+
ChannelName=SPARK_CONF_CHANNEL_NAME,
|
|
1730
|
+
DataSource={
|
|
1731
|
+
"S3DataSource": {
|
|
1732
|
+
"S3Uri": config_file_s3_uri,
|
|
1733
|
+
"S3DataType": "S3Prefix",
|
|
1734
|
+
}
|
|
1735
|
+
},
|
|
1736
|
+
)
|
|
1737
|
+
)
|
|
1738
|
+
|
|
1739
|
+
for input_channel in extended_request["InputDataConfig"]:
|
|
1740
|
+
s3_data_source = input_channel["DataSource"].get("S3DataSource", None)
|
|
1741
|
+
if s3_data_source:
|
|
1742
|
+
s3_data_source["S3DataDistributionType"] = "FullyReplicated"
|
|
1743
|
+
|
|
1744
|
+
if spark_config.spark_event_logs_uri:
|
|
1745
|
+
container_entrypoint.extend(
|
|
1746
|
+
["--spark-event-logs-s3-uri", spark_config.spark_event_logs_uri]
|
|
1747
|
+
)
|
|
1748
|
+
|
|
1749
|
+
if submit_jars_s3_paths:
|
|
1750
|
+
container_entrypoint.extend(["--jars", submit_jars_s3_paths])
|
|
1751
|
+
|
|
1752
|
+
if submit_py_files_s3_paths:
|
|
1753
|
+
container_entrypoint.extend(["--py-files", submit_py_files_s3_paths])
|
|
1754
|
+
|
|
1755
|
+
if submit_files_s3_path:
|
|
1756
|
+
container_entrypoint.extend(["--files", submit_files_s3_path])
|
|
1757
|
+
|
|
1758
|
+
if spark_config:
|
|
1759
|
+
container_entrypoint.extend([SPARK_APP_SCRIPT_PATH])
|
|
1760
|
+
|
|
1761
|
+
return extended_request
|
|
1762
|
+
|
|
1763
|
+
|
|
1764
|
+
def _update_job_request_with_checkpoint_config(args, kwargs, request_dict):
|
|
1765
|
+
"""Extend job request with checkpoint config based on CheckpointLocation in function args.
|
|
1766
|
+
|
|
1767
|
+
Args:
|
|
1768
|
+
args (tuple): The positional arguments of the remote function.
|
|
1769
|
+
kwargs (Dict): The keyword arguments of the remote function.
|
|
1770
|
+
request_dict (Dict): create training job request dict.
|
|
1771
|
+
"""
|
|
1772
|
+
checkpoint_location_index_in_args = None
|
|
1773
|
+
checkpoint_location_key_in_kwargs = None
|
|
1774
|
+
checkpoint_location_count = 0
|
|
1775
|
+
|
|
1776
|
+
for index, arg in enumerate(args):
|
|
1777
|
+
if isinstance(arg, CheckpointLocation):
|
|
1778
|
+
checkpoint_location_index_in_args = index
|
|
1779
|
+
checkpoint_location_count += 1
|
|
1780
|
+
|
|
1781
|
+
for key, value in kwargs.items():
|
|
1782
|
+
if isinstance(value, CheckpointLocation):
|
|
1783
|
+
checkpoint_location_key_in_kwargs = key
|
|
1784
|
+
checkpoint_location_count += 1
|
|
1785
|
+
|
|
1786
|
+
if checkpoint_location_count < 1:
|
|
1787
|
+
return
|
|
1788
|
+
|
|
1789
|
+
if checkpoint_location_count > 1:
|
|
1790
|
+
raise ValueError(
|
|
1791
|
+
"Remote function cannot have more than one argument of type CheckpointLocation."
|
|
1792
|
+
)
|
|
1793
|
+
|
|
1794
|
+
if checkpoint_location_index_in_args is not None:
|
|
1795
|
+
checkpoint_location_arg = args[checkpoint_location_index_in_args]
|
|
1796
|
+
else:
|
|
1797
|
+
checkpoint_location_arg = kwargs[checkpoint_location_key_in_kwargs]
|
|
1798
|
+
|
|
1799
|
+
checkpoint_s3_uri = checkpoint_location_arg._s3_uri
|
|
1800
|
+
checkpoint_local_path = checkpoint_location_arg._local_path
|
|
1801
|
+
|
|
1802
|
+
request_dict["CheckpointConfig"] = {
|
|
1803
|
+
"LocalPath": checkpoint_local_path,
|
|
1804
|
+
"S3Uri": checkpoint_s3_uri,
|
|
1805
|
+
}
|
|
1806
|
+
|
|
1807
|
+
|
|
1808
|
+
@dataclasses.dataclass
|
|
1809
|
+
class _RunInfo:
|
|
1810
|
+
"""Data class to hold information of the run object from context."""
|
|
1811
|
+
|
|
1812
|
+
experiment_name: str
|
|
1813
|
+
run_name: str
|
|
1814
|
+
|
|
1815
|
+
|
|
1816
|
+
def _get_initial_job_state(description, status_key, wait):
|
|
1817
|
+
"""Placeholder docstring"""
|
|
1818
|
+
status = description[status_key]
|
|
1819
|
+
job_already_completed = status in ("Completed", "Failed", "Stopped")
|
|
1820
|
+
return LogState.TAILING if wait and not job_already_completed else LogState.COMPLETE
|
|
1821
|
+
|
|
1822
|
+
|
|
1823
|
+
def _logs_for_job( # noqa: C901 - suppress complexity warning for this method
|
|
1824
|
+
sagemaker_session, job_name, wait=False, poll=10, log_type="All", timeout=None
|
|
1825
|
+
):
|
|
1826
|
+
"""Display logs for a given training job, optionally tailing them until job is complete.
|
|
1827
|
+
|
|
1828
|
+
If the output is a tty or a Jupyter cell, it will be color-coded
|
|
1829
|
+
based on which instance the log entry is from.
|
|
1830
|
+
|
|
1831
|
+
Args:
|
|
1832
|
+
sagemaker_session (sagemaker.core.helper.session.Session): A SageMaker Session
|
|
1833
|
+
object, used for SageMaker interactions.
|
|
1834
|
+
job_name (str): Name of the training job to display the logs for.
|
|
1835
|
+
wait (bool): Whether to keep looking for new log entries until the job completes
|
|
1836
|
+
(default: False).
|
|
1837
|
+
poll (int): The interval in seconds between polling for new log entries and job
|
|
1838
|
+
completion (default: 5).
|
|
1839
|
+
log_type ([str]): A list of strings specifying which logs to print. Acceptable
|
|
1840
|
+
strings are "All", "None", "Training", or "Rules". To maintain backwards
|
|
1841
|
+
compatibility, boolean values are also accepted and converted to strings.
|
|
1842
|
+
timeout (int): Timeout in seconds to wait until the job is completed. ``None`` by
|
|
1843
|
+
default.
|
|
1844
|
+
Returns:
|
|
1845
|
+
Last call to sagemaker DescribeTrainingJob
|
|
1846
|
+
Raises:
|
|
1847
|
+
exceptions.CapacityError: If the training job fails with CapacityError.
|
|
1848
|
+
exceptions.UnexpectedStatusException: If waiting and the training job fails.
|
|
1849
|
+
"""
|
|
1850
|
+
sagemaker_client = sagemaker_session.sagemaker_client
|
|
1851
|
+
request_end_time = time.time() + timeout if timeout else None
|
|
1852
|
+
description = _wait_until(
|
|
1853
|
+
lambda: sagemaker_client.describe_training_job(TrainingJobName=job_name)
|
|
1854
|
+
)
|
|
1855
|
+
print(secondary_training_status_message(description, None), end="")
|
|
1856
|
+
|
|
1857
|
+
instance_count, stream_names, positions, client, log_group, dot, color_wrap = _logs_init(
|
|
1858
|
+
sagemaker_session.boto_session, description, job="Training"
|
|
1859
|
+
)
|
|
1860
|
+
|
|
1861
|
+
state = _get_initial_job_state(description, "TrainingJobStatus", wait)
|
|
1862
|
+
|
|
1863
|
+
# The loop below implements a state machine that alternates between checking the job status
|
|
1864
|
+
# and reading whatever is available in the logs at this point. Note, that if we were
|
|
1865
|
+
# called with wait == False, we never check the job status.
|
|
1866
|
+
#
|
|
1867
|
+
# If wait == TRUE and job is not completed, the initial state is TAILING
|
|
1868
|
+
# If wait == FALSE, the initial state is COMPLETE (doesn't matter if the job really is
|
|
1869
|
+
# complete).
|
|
1870
|
+
#
|
|
1871
|
+
# The state table:
|
|
1872
|
+
#
|
|
1873
|
+
# STATE ACTIONS CONDITION NEW STATE
|
|
1874
|
+
# ---------------- ---------------- ----------------- ----------------
|
|
1875
|
+
# TAILING Read logs, Pause, Get status Job complete JOB_COMPLETE
|
|
1876
|
+
# Else TAILING
|
|
1877
|
+
# JOB_COMPLETE Read logs, Pause Any COMPLETE
|
|
1878
|
+
# COMPLETE Read logs, Exit N/A
|
|
1879
|
+
#
|
|
1880
|
+
# Notes:
|
|
1881
|
+
# - The JOB_COMPLETE state forces us to do an extra pause and read any items that got to
|
|
1882
|
+
# Cloudwatch after the job was marked complete.
|
|
1883
|
+
last_describe_job_call = time.time()
|
|
1884
|
+
last_description = description
|
|
1885
|
+
last_debug_rule_statuses = None
|
|
1886
|
+
last_profiler_rule_statuses = None
|
|
1887
|
+
|
|
1888
|
+
while True:
|
|
1889
|
+
_flush_log_streams(
|
|
1890
|
+
stream_names,
|
|
1891
|
+
instance_count,
|
|
1892
|
+
client,
|
|
1893
|
+
log_group,
|
|
1894
|
+
job_name,
|
|
1895
|
+
positions,
|
|
1896
|
+
dot,
|
|
1897
|
+
color_wrap,
|
|
1898
|
+
)
|
|
1899
|
+
if timeout and time.time() > request_end_time:
|
|
1900
|
+
print("Timeout Exceeded. {} seconds elapsed.".format(timeout))
|
|
1901
|
+
break
|
|
1902
|
+
|
|
1903
|
+
if state == LogState.COMPLETE:
|
|
1904
|
+
break
|
|
1905
|
+
|
|
1906
|
+
time.sleep(poll)
|
|
1907
|
+
|
|
1908
|
+
if state == LogState.JOB_COMPLETE:
|
|
1909
|
+
state = LogState.COMPLETE
|
|
1910
|
+
elif time.time() - last_describe_job_call >= 30:
|
|
1911
|
+
description = sagemaker_client.describe_training_job(TrainingJobName=job_name)
|
|
1912
|
+
last_describe_job_call = time.time()
|
|
1913
|
+
|
|
1914
|
+
if secondary_training_status_changed(description, last_description):
|
|
1915
|
+
print()
|
|
1916
|
+
print(secondary_training_status_message(description, last_description), end="")
|
|
1917
|
+
last_description = description
|
|
1918
|
+
|
|
1919
|
+
status = description["TrainingJobStatus"]
|
|
1920
|
+
|
|
1921
|
+
if status in ("Completed", "Failed", "Stopped"):
|
|
1922
|
+
print()
|
|
1923
|
+
state = LogState.JOB_COMPLETE
|
|
1924
|
+
|
|
1925
|
+
# Print prettified logs related to the status of SageMaker Debugger rules.
|
|
1926
|
+
debug_rule_statuses = description.get("DebugRuleEvaluationStatuses", {})
|
|
1927
|
+
if (
|
|
1928
|
+
debug_rule_statuses
|
|
1929
|
+
and _rule_statuses_changed(debug_rule_statuses, last_debug_rule_statuses)
|
|
1930
|
+
and (log_type in {"All", "Rules"})
|
|
1931
|
+
):
|
|
1932
|
+
for status in debug_rule_statuses:
|
|
1933
|
+
rule_log = (
|
|
1934
|
+
f"{status['RuleConfigurationName']}: {status['RuleEvaluationStatus']}"
|
|
1935
|
+
)
|
|
1936
|
+
print(rule_log)
|
|
1937
|
+
|
|
1938
|
+
last_debug_rule_statuses = debug_rule_statuses
|
|
1939
|
+
|
|
1940
|
+
# Print prettified logs related to the status of SageMaker Profiler rules.
|
|
1941
|
+
profiler_rule_statuses = description.get("ProfilerRuleEvaluationStatuses", {})
|
|
1942
|
+
if (
|
|
1943
|
+
profiler_rule_statuses
|
|
1944
|
+
and _rule_statuses_changed(profiler_rule_statuses, last_profiler_rule_statuses)
|
|
1945
|
+
and (log_type in {"All", "Rules"})
|
|
1946
|
+
):
|
|
1947
|
+
for status in profiler_rule_statuses:
|
|
1948
|
+
rule_log = (
|
|
1949
|
+
f"{status['RuleConfigurationName']}: {status['RuleEvaluationStatus']}"
|
|
1950
|
+
)
|
|
1951
|
+
print(rule_log)
|
|
1952
|
+
|
|
1953
|
+
last_profiler_rule_statuses = profiler_rule_statuses
|
|
1954
|
+
|
|
1955
|
+
if wait:
|
|
1956
|
+
_check_job_status(job_name, description, "TrainingJobStatus")
|
|
1957
|
+
if dot:
|
|
1958
|
+
print()
|
|
1959
|
+
# Customers are not billed for hardware provisioning, so billable time is less than
|
|
1960
|
+
# total time
|
|
1961
|
+
training_time = description.get("TrainingTimeInSeconds")
|
|
1962
|
+
billable_time = description.get("BillableTimeInSeconds")
|
|
1963
|
+
if training_time is not None:
|
|
1964
|
+
print("Training seconds:", training_time * instance_count)
|
|
1965
|
+
if billable_time is not None:
|
|
1966
|
+
print("Billable seconds:", billable_time * instance_count)
|
|
1967
|
+
if description.get("EnableManagedSpotTraining"):
|
|
1968
|
+
saving = (1 - float(billable_time) / training_time) * 100
|
|
1969
|
+
print("Managed Spot Training savings: {:.1f}%".format(saving))
|
|
1970
|
+
return last_description
|
|
1971
|
+
|
|
1972
|
+
|
|
1973
|
+
def _check_job_status(job, desc, status_key_name):
|
|
1974
|
+
"""Check to see if the job completed successfully.
|
|
1975
|
+
|
|
1976
|
+
If not, construct and raise a exceptions. (UnexpectedStatusException).
|
|
1977
|
+
|
|
1978
|
+
Args:
|
|
1979
|
+
job (str): The name of the job to check.
|
|
1980
|
+
desc (dict[str, str]): The result of ``describe_training_job()``.
|
|
1981
|
+
status_key_name (str): Status key name to check for.
|
|
1982
|
+
|
|
1983
|
+
Raises:
|
|
1984
|
+
exceptions.CapacityError: If the training job fails with CapacityError.
|
|
1985
|
+
exceptions.UnexpectedStatusException: If the training job fails.
|
|
1986
|
+
"""
|
|
1987
|
+
status = desc[status_key_name]
|
|
1988
|
+
# If the status is capital case, then convert it to Camel case
|
|
1989
|
+
status = _STATUS_CODE_TABLE.get(status, status)
|
|
1990
|
+
|
|
1991
|
+
if status == "Stopped":
|
|
1992
|
+
logger.warning(
|
|
1993
|
+
"Job ended with status 'Stopped' rather than 'Completed'. "
|
|
1994
|
+
"This could mean the job timed out or stopped early for some other reason: "
|
|
1995
|
+
"Consider checking whether it completed as you expect."
|
|
1996
|
+
)
|
|
1997
|
+
elif status != "Completed":
|
|
1998
|
+
reason = desc.get("FailureReason", "(No reason provided)")
|
|
1999
|
+
job_type = status_key_name.replace("JobStatus", " job")
|
|
2000
|
+
troubleshooting = (
|
|
2001
|
+
"https://docs.aws.amazon.com/sagemaker/latest/dg/"
|
|
2002
|
+
"sagemaker-python-sdk-troubleshooting.html"
|
|
2003
|
+
)
|
|
2004
|
+
message = (
|
|
2005
|
+
"Error for {job_type} {job_name}: {status}. Reason: {reason}. "
|
|
2006
|
+
"Check troubleshooting guide for common errors: {troubleshooting}"
|
|
2007
|
+
).format(
|
|
2008
|
+
job_type=job_type,
|
|
2009
|
+
job_name=job,
|
|
2010
|
+
status=status,
|
|
2011
|
+
reason=reason,
|
|
2012
|
+
troubleshooting=troubleshooting,
|
|
2013
|
+
)
|
|
2014
|
+
if "CapacityError" in str(reason):
|
|
2015
|
+
raise exceptions.CapacityError(
|
|
2016
|
+
message=message,
|
|
2017
|
+
allowed_statuses=["Completed", "Stopped"],
|
|
2018
|
+
actual_status=status,
|
|
2019
|
+
)
|
|
2020
|
+
raise exceptions.UnexpectedStatusException(
|
|
2021
|
+
message=message,
|
|
2022
|
+
allowed_statuses=["Completed", "Stopped"],
|
|
2023
|
+
actual_status=status,
|
|
2024
|
+
)
|
|
2025
|
+
|
|
2026
|
+
|
|
2027
|
+
def _flush_log_streams(
|
|
2028
|
+
stream_names, instance_count, client, log_group, job_name, positions, dot, color_wrap
|
|
2029
|
+
):
|
|
2030
|
+
"""Placeholder docstring"""
|
|
2031
|
+
if len(stream_names) < instance_count:
|
|
2032
|
+
# Log streams are created whenever a container starts writing to stdout/err, so this list
|
|
2033
|
+
# may be dynamic until we have a stream for every instance.
|
|
2034
|
+
try:
|
|
2035
|
+
streams = client.describe_log_streams(
|
|
2036
|
+
logGroupName=log_group,
|
|
2037
|
+
logStreamNamePrefix=job_name + "/",
|
|
2038
|
+
orderBy="LogStreamName",
|
|
2039
|
+
limit=min(instance_count, 50),
|
|
2040
|
+
)
|
|
2041
|
+
stream_names = [s["logStreamName"] for s in streams["logStreams"]]
|
|
2042
|
+
|
|
2043
|
+
while "nextToken" in streams:
|
|
2044
|
+
streams = client.describe_log_streams(
|
|
2045
|
+
logGroupName=log_group,
|
|
2046
|
+
logStreamNamePrefix=job_name + "/",
|
|
2047
|
+
orderBy="LogStreamName",
|
|
2048
|
+
limit=50,
|
|
2049
|
+
)
|
|
2050
|
+
|
|
2051
|
+
stream_names.extend([s["logStreamName"] for s in streams["logStreams"]])
|
|
2052
|
+
|
|
2053
|
+
positions.update(
|
|
2054
|
+
[
|
|
2055
|
+
(s, sagemaker_logs.Position(timestamp=0, skip=0))
|
|
2056
|
+
for s in stream_names
|
|
2057
|
+
if s not in positions
|
|
2058
|
+
]
|
|
2059
|
+
)
|
|
2060
|
+
except ClientError as e:
|
|
2061
|
+
# On the very first training job run on an account, there's no log group until
|
|
2062
|
+
# the container starts logging, so ignore any errors thrown about that
|
|
2063
|
+
err = e.response.get("Error", {})
|
|
2064
|
+
if err.get("Code", None) != "ResourceNotFoundException":
|
|
2065
|
+
raise
|
|
2066
|
+
|
|
2067
|
+
if len(stream_names) > 0:
|
|
2068
|
+
if dot:
|
|
2069
|
+
print("")
|
|
2070
|
+
dot = False
|
|
2071
|
+
for idx, event in sagemaker_logs.multi_stream_iter(
|
|
2072
|
+
client, log_group, stream_names, positions
|
|
2073
|
+
):
|
|
2074
|
+
color_wrap(idx, event["message"])
|
|
2075
|
+
ts, count = positions[stream_names[idx]]
|
|
2076
|
+
if event["timestamp"] == ts:
|
|
2077
|
+
positions[stream_names[idx]] = sagemaker_logs.Position(timestamp=ts, skip=count + 1)
|
|
2078
|
+
else:
|
|
2079
|
+
positions[stream_names[idx]] = sagemaker_logs.Position(
|
|
2080
|
+
timestamp=event["timestamp"], skip=1
|
|
2081
|
+
)
|
|
2082
|
+
else:
|
|
2083
|
+
dot = True
|
|
2084
|
+
print(".", end="")
|
|
2085
|
+
sys.stdout.flush()
|
|
2086
|
+
|
|
2087
|
+
|
|
2088
|
+
def _rule_statuses_changed(current_statuses, last_statuses):
|
|
2089
|
+
"""Checks the rule evaluation statuses for SageMaker Debugger and Profiler rules."""
|
|
2090
|
+
if not last_statuses:
|
|
2091
|
+
return True
|
|
2092
|
+
|
|
2093
|
+
for current, last in zip(current_statuses, last_statuses):
|
|
2094
|
+
if (current["RuleConfigurationName"] == last["RuleConfigurationName"]) and (
|
|
2095
|
+
current["RuleEvaluationStatus"] != last["RuleEvaluationStatus"]
|
|
2096
|
+
):
|
|
2097
|
+
return True
|
|
2098
|
+
|
|
2099
|
+
return False
|
|
2100
|
+
|
|
2101
|
+
|
|
2102
|
+
def _get_initial_job_state(description, status_key, wait):
|
|
2103
|
+
"""Placeholder docstring"""
|
|
2104
|
+
status = description[status_key]
|
|
2105
|
+
job_already_completed = status in ("Completed", "Failed", "Stopped")
|
|
2106
|
+
return LogState.TAILING if wait and not job_already_completed else LogState.COMPLETE
|
|
2107
|
+
|
|
2108
|
+
|
|
2109
|
+
def _logs_init(boto_session, description, job):
|
|
2110
|
+
"""Placeholder docstring"""
|
|
2111
|
+
if job == "Training":
|
|
2112
|
+
if "InstanceGroups" in description["ResourceConfig"]:
|
|
2113
|
+
instance_count = 0
|
|
2114
|
+
for instanceGroup in description["ResourceConfig"]["InstanceGroups"]:
|
|
2115
|
+
instance_count += instanceGroup["InstanceCount"]
|
|
2116
|
+
else:
|
|
2117
|
+
instance_count = description["ResourceConfig"]["InstanceCount"]
|
|
2118
|
+
elif job == "Transform":
|
|
2119
|
+
instance_count = description["TransformResources"]["InstanceCount"]
|
|
2120
|
+
elif job == "Processing":
|
|
2121
|
+
instance_count = description["ProcessingResources"]["ClusterConfig"]["InstanceCount"]
|
|
2122
|
+
elif job == "AutoML":
|
|
2123
|
+
instance_count = 0
|
|
2124
|
+
|
|
2125
|
+
stream_names = [] # The list of log streams
|
|
2126
|
+
positions = {} # The current position in each stream, map of stream name -> position
|
|
2127
|
+
|
|
2128
|
+
# Increase retries allowed (from default of 4), as we don't want waiting for a training job
|
|
2129
|
+
# to be interrupted by a transient exception.
|
|
2130
|
+
config = botocore.config.Config(retries={"max_attempts": 15})
|
|
2131
|
+
client = boto_session.client("logs", config=config)
|
|
2132
|
+
log_group = "/aws/sagemaker/" + job + "Jobs"
|
|
2133
|
+
|
|
2134
|
+
dot = False
|
|
2135
|
+
|
|
2136
|
+
from sagemaker.core.logs import ColorWrap
|
|
2137
|
+
|
|
2138
|
+
color_wrap = ColorWrap()
|
|
2139
|
+
|
|
2140
|
+
return instance_count, stream_names, positions, client, log_group, dot, color_wrap
|