sagemaker-core 1.0.38__py3-none-any.whl → 1.0.62__py3-none-any.whl
This diff represents the content of publicly available package versions that have been released to one of the supported registries. The information contained in this diff is provided for informational purposes only and reflects changes between package versions as they appear in their respective public registries.
- sagemaker_core/__init__.py +0 -4
- sagemaker_core/main/code_injection/shape_dag.py +982 -3
- sagemaker_core/main/config_schema.py +2 -1
- sagemaker_core/main/resources.py +362 -24
- sagemaker_core/main/shapes.py +934 -14
- sagemaker_core/main/utils.py +2 -2
- sagemaker_core/tools/resources_codegen.py +12 -10
- {sagemaker_core-1.0.38.dist-info → sagemaker_core-1.0.62.dist-info}/METADATA +4 -4
- {sagemaker_core-1.0.38.dist-info → sagemaker_core-1.0.62.dist-info}/RECORD +12 -12
- {sagemaker_core-1.0.38.dist-info → sagemaker_core-1.0.62.dist-info}/WHEEL +0 -0
- {sagemaker_core-1.0.38.dist-info → sagemaker_core-1.0.62.dist-info}/licenses/LICENSE +0 -0
- {sagemaker_core-1.0.38.dist-info → sagemaker_core-1.0.62.dist-info}/top_level.txt +0 -0
sagemaker_core/main/shapes.py
CHANGED
|
@@ -66,7 +66,7 @@ class InvokeEndpointAsyncOutput(Base):
|
|
|
66
66
|
|
|
67
67
|
Attributes
|
|
68
68
|
----------------------
|
|
69
|
-
inference_id: Identifier for an inference request. This will be the same as the InferenceId specified in the input. Amazon SageMaker will generate an identifier for you if you do not specify one.
|
|
69
|
+
inference_id: Identifier for an inference request. This will be the same as the InferenceId specified in the input. Amazon SageMaker AI will generate an identifier for you if you do not specify one.
|
|
70
70
|
output_location: The Amazon S3 URI where the inference response payload is stored.
|
|
71
71
|
failure_location: The Amazon S3 URI where the inference failure response payload is stored.
|
|
72
72
|
"""
|
|
@@ -85,7 +85,7 @@ class InvokeEndpointOutput(Base):
|
|
|
85
85
|
body: Includes the inference provided by the model. For information about the format of the response body, see Common Data Formats-Inference. If the explainer is activated, the body includes the explanations provided by the model. For more information, see the Response section under Invoke the Endpoint in the Developer Guide.
|
|
86
86
|
content_type: The MIME type of the inference returned from the model container.
|
|
87
87
|
invoked_production_variant: Identifies the production variant that was invoked.
|
|
88
|
-
custom_attributes: Provides additional information in the response about the inference returned by a model hosted at an Amazon SageMaker endpoint. The information is an opaque value that is forwarded verbatim. You could use this value, for example, to return an ID received in the CustomAttributes header of a request or other metadata that a service endpoint was programmed to produce. The value must consist of no more than 1024 visible US-ASCII characters as specified in Section 3.3.6. Field Value Components of the Hypertext Transfer Protocol (HTTP/1.1). If the customer wants the custom attribute returned, the model must set the custom attribute to be included on the way back. The code in your model is responsible for setting or updating any custom attributes in the response. If your code does not set this value in the response, an empty value is returned. For example, if a custom attribute represents the trace ID, your model can prepend the custom attribute with Trace ID: in your post-processing function. This feature is currently supported in the Amazon Web Services SDKs but not in the Amazon SageMaker Python SDK.
|
|
88
|
+
custom_attributes: Provides additional information in the response about the inference returned by a model hosted at an Amazon SageMaker AI endpoint. The information is an opaque value that is forwarded verbatim. You could use this value, for example, to return an ID received in the CustomAttributes header of a request or other metadata that a service endpoint was programmed to produce. The value must consist of no more than 1024 visible US-ASCII characters as specified in Section 3.3.6. Field Value Components of the Hypertext Transfer Protocol (HTTP/1.1). If the customer wants the custom attribute returned, the model must set the custom attribute to be included on the way back. The code in your model is responsible for setting or updating any custom attributes in the response. If your code does not set this value in the response, an empty value is returned. For example, if a custom attribute represents the trace ID, your model can prepend the custom attribute with Trace ID: in your post-processing function. This feature is currently supported in the Amazon Web Services SDKs but not in the Amazon SageMaker AI Python SDK.
|
|
89
89
|
new_session_id: If you created a stateful session with your request, the ID and expiration time that the model assigns to that session.
|
|
90
90
|
closed_session_id: If you closed a stateful session with your request, the ID of that session.
|
|
91
91
|
"""
|
|
@@ -114,12 +114,12 @@ class PayloadPart(Base):
|
|
|
114
114
|
class ModelStreamError(Base):
|
|
115
115
|
"""
|
|
116
116
|
ModelStreamError
|
|
117
|
-
An error occurred while streaming the response body. This error can have the following error codes: ModelInvocationTimeExceeded The model failed to finish sending the response within the timeout period allowed by Amazon SageMaker. StreamBroken The Transmission Control Protocol (TCP) connection between the client and the model was reset or closed.
|
|
117
|
+
An error occurred while streaming the response body. This error can have the following error codes: ModelInvocationTimeExceeded The model failed to finish sending the response within the timeout period allowed by Amazon SageMaker AI. StreamBroken The Transmission Control Protocol (TCP) connection between the client and the model was reset or closed.
|
|
118
118
|
|
|
119
119
|
Attributes
|
|
120
120
|
----------------------
|
|
121
121
|
message
|
|
122
|
-
error_code: This error can have the following error codes: ModelInvocationTimeExceeded The model failed to finish sending the response within the timeout period allowed by Amazon SageMaker. StreamBroken The Transmission Control Protocol (TCP) connection between the client and the model was reset or closed.
|
|
122
|
+
error_code: This error can have the following error codes: ModelInvocationTimeExceeded The model failed to finish sending the response within the timeout period allowed by Amazon SageMaker AI. StreamBroken The Transmission Control Protocol (TCP) connection between the client and the model was reset or closed.
|
|
123
123
|
"""
|
|
124
124
|
|
|
125
125
|
message: Optional[str] = Unassigned()
|
|
@@ -134,7 +134,7 @@ class ResponseStream(Base):
|
|
|
134
134
|
Attributes
|
|
135
135
|
----------------------
|
|
136
136
|
payload_part: A wrapper for pieces of the payload that's returned in response to a streaming inference request. A streaming inference response consists of one or more payload parts.
|
|
137
|
-
model_stream_error: An error occurred while streaming the response body. This error can have the following error codes: ModelInvocationTimeExceeded The model failed to finish sending the response within the timeout period allowed by Amazon SageMaker. StreamBroken The Transmission Control Protocol (TCP) connection between the client and the model was reset or closed.
|
|
137
|
+
model_stream_error: An error occurred while streaming the response body. This error can have the following error codes: ModelInvocationTimeExceeded The model failed to finish sending the response within the timeout period allowed by Amazon SageMaker AI. StreamBroken The Transmission Control Protocol (TCP) connection between the client and the model was reset or closed.
|
|
138
138
|
internal_stream_failure: The stream processing failed because of an unknown error, exception or failure. Try your request again.
|
|
139
139
|
"""
|
|
140
140
|
|
|
@@ -152,7 +152,7 @@ class InvokeEndpointWithResponseStreamOutput(Base):
|
|
|
152
152
|
body
|
|
153
153
|
content_type: The MIME type of the inference returned from the model container.
|
|
154
154
|
invoked_production_variant: Identifies the production variant that was invoked.
|
|
155
|
-
custom_attributes: Provides additional information in the response about the inference returned by a model hosted at an Amazon SageMaker endpoint. The information is an opaque value that is forwarded verbatim. You could use this value, for example, to return an ID received in the CustomAttributes header of a request or other metadata that a service endpoint was programmed to produce. The value must consist of no more than 1024 visible US-ASCII characters as specified in Section 3.3.6. Field Value Components of the Hypertext Transfer Protocol (HTTP/1.1). If the customer wants the custom attribute returned, the model must set the custom attribute to be included on the way back. The code in your model is responsible for setting or updating any custom attributes in the response. If your code does not set this value in the response, an empty value is returned. For example, if a custom attribute represents the trace ID, your model can prepend the custom attribute with Trace ID: in your post-processing function. This feature is currently supported in the Amazon Web Services SDKs but not in the Amazon SageMaker Python SDK.
|
|
155
|
+
custom_attributes: Provides additional information in the response about the inference returned by a model hosted at an Amazon SageMaker AI endpoint. The information is an opaque value that is forwarded verbatim. You could use this value, for example, to return an ID received in the CustomAttributes header of a request or other metadata that a service endpoint was programmed to produce. The value must consist of no more than 1024 visible US-ASCII characters as specified in Section 3.3.6. Field Value Components of the Hypertext Transfer Protocol (HTTP/1.1). If the customer wants the custom attribute returned, the model must set the custom attribute to be included on the way back. The code in your model is responsible for setting or updating any custom attributes in the response. If your code does not set this value in the response, an empty value is returned. For example, if a custom attribute represents the trace ID, your model can prepend the custom attribute with Trace ID: in your post-processing function. This feature is currently supported in the Amazon Web Services SDKs but not in the Amazon SageMaker AI Python SDK.
|
|
156
156
|
"""
|
|
157
157
|
|
|
158
158
|
body: ResponseStream
|
|
@@ -494,6 +494,21 @@ class ActionSummary(Base):
|
|
|
494
494
|
last_modified_time: Optional[datetime.datetime] = Unassigned()
|
|
495
495
|
|
|
496
496
|
|
|
497
|
+
class AddClusterNodeSpecification(Base):
|
|
498
|
+
"""
|
|
499
|
+
AddClusterNodeSpecification
|
|
500
|
+
Specifies an instance group and the number of nodes to add to it.
|
|
501
|
+
|
|
502
|
+
Attributes
|
|
503
|
+
----------------------
|
|
504
|
+
instance_group_name: The name of the instance group to which you want to add nodes.
|
|
505
|
+
increment_target_count_by: The number of nodes to add to the specified instance group. The total number of nodes across all instance groups in a single request cannot exceed 50.
|
|
506
|
+
"""
|
|
507
|
+
|
|
508
|
+
instance_group_name: str
|
|
509
|
+
increment_target_count_by: int
|
|
510
|
+
|
|
511
|
+
|
|
497
512
|
class Tag(Base):
|
|
498
513
|
"""
|
|
499
514
|
Tag
|
|
@@ -509,6 +524,19 @@ class Tag(Base):
|
|
|
509
524
|
value: str
|
|
510
525
|
|
|
511
526
|
|
|
527
|
+
class AdditionalEnis(Base):
|
|
528
|
+
"""
|
|
529
|
+
AdditionalEnis
|
|
530
|
+
Information about additional Elastic Network Interfaces (ENIs) associated with an instance.
|
|
531
|
+
|
|
532
|
+
Attributes
|
|
533
|
+
----------------------
|
|
534
|
+
efa_enis: A list of Elastic Fabric Adapter (EFA) ENIs associated with the instance.
|
|
535
|
+
"""
|
|
536
|
+
|
|
537
|
+
efa_enis: Optional[List[str]] = Unassigned()
|
|
538
|
+
|
|
539
|
+
|
|
512
540
|
class ModelAccessConfig(Base):
|
|
513
541
|
"""
|
|
514
542
|
ModelAccessConfig
|
|
@@ -992,6 +1020,36 @@ class InstanceGroup(Base):
|
|
|
992
1020
|
instance_group_name: str
|
|
993
1021
|
|
|
994
1022
|
|
|
1023
|
+
class PlacementSpecification(Base):
|
|
1024
|
+
"""
|
|
1025
|
+
PlacementSpecification
|
|
1026
|
+
Specifies how instances should be placed on a specific UltraServer.
|
|
1027
|
+
|
|
1028
|
+
Attributes
|
|
1029
|
+
----------------------
|
|
1030
|
+
ultra_server_id: The unique identifier of the UltraServer where instances should be placed.
|
|
1031
|
+
instance_count: The number of ML compute instances required to be placed together on the same UltraServer. Minimum value of 1.
|
|
1032
|
+
"""
|
|
1033
|
+
|
|
1034
|
+
instance_count: int
|
|
1035
|
+
ultra_server_id: Optional[str] = Unassigned()
|
|
1036
|
+
|
|
1037
|
+
|
|
1038
|
+
class InstancePlacementConfig(Base):
|
|
1039
|
+
"""
|
|
1040
|
+
InstancePlacementConfig
|
|
1041
|
+
Configuration for how instances are placed and allocated within UltraServers. This is only applicable for UltraServer capacity.
|
|
1042
|
+
|
|
1043
|
+
Attributes
|
|
1044
|
+
----------------------
|
|
1045
|
+
enable_multiple_jobs: If set to true, allows multiple jobs to share the same UltraServer instances. If set to false, ensures this job's instances are placed on an UltraServer exclusively, with no other jobs sharing the same UltraServer. Default is false.
|
|
1046
|
+
placement_specifications: A list of specifications for how instances should be placed on specific UltraServers. Maximum of 10 items is supported.
|
|
1047
|
+
"""
|
|
1048
|
+
|
|
1049
|
+
enable_multiple_jobs: Optional[bool] = Unassigned()
|
|
1050
|
+
placement_specifications: Optional[List[PlacementSpecification]] = Unassigned()
|
|
1051
|
+
|
|
1052
|
+
|
|
995
1053
|
class ResourceConfig(Base):
|
|
996
1054
|
"""
|
|
997
1055
|
ResourceConfig
|
|
@@ -999,13 +1057,14 @@ class ResourceConfig(Base):
|
|
|
999
1057
|
|
|
1000
1058
|
Attributes
|
|
1001
1059
|
----------------------
|
|
1002
|
-
instance_type: The ML compute instance type.
|
|
1060
|
+
instance_type: The ML compute instance type.
|
|
1003
1061
|
instance_count: The number of ML compute instances to use. For distributed training, provide a value greater than 1.
|
|
1004
1062
|
volume_size_in_gb: The size of the ML storage volume that you want to provision. ML storage volumes store model artifacts and incremental states. Training algorithms might also use the ML storage volume for scratch space. If you want to store the training data in the ML storage volume, choose File as the TrainingInputMode in the algorithm specification. When using an ML instance with NVMe SSD volumes, SageMaker doesn't provision Amazon EBS General Purpose SSD (gp2) storage. Available storage is fixed to the NVMe-type instance's storage capacity. SageMaker configures storage paths for training datasets, checkpoints, model artifacts, and outputs to use the entire capacity of the instance storage. For example, ML instance families with the NVMe-type instance storage include ml.p4d, ml.g4dn, and ml.g5. When using an ML instance with the EBS-only storage option and without instance storage, you must define the size of EBS volume through VolumeSizeInGB in the ResourceConfig API. For example, ML instance families that use EBS volumes include ml.c5 and ml.p2. To look up instance types and their instance storage types and volumes, see Amazon EC2 Instance Types. To find the default local paths defined by the SageMaker training platform, see Amazon SageMaker Training Storage Folders for Training Datasets, Checkpoints, Model Artifacts, and Outputs.
|
|
1005
1063
|
volume_kms_key_id: The Amazon Web Services KMS key that SageMaker uses to encrypt data on the storage volume attached to the ML compute instance(s) that run the training job. Certain Nitro-based instances include local storage, dependent on the instance type. Local storage volumes are encrypted using a hardware module on the instance. You can't request a VolumeKmsKeyId when using an instance type with local storage. For a list of instance types that support local instance storage, see Instance Store Volumes. For more information about local instance storage encryption, see SSD Instance Store Volumes. The VolumeKmsKeyId can be in any of the following formats: // KMS Key ID "1234abcd-12ab-34cd-56ef-1234567890ab" // Amazon Resource Name (ARN) of a KMS Key "arn:aws:kms:us-west-2:111122223333:key/1234abcd-12ab-34cd-56ef-1234567890ab"
|
|
1006
1064
|
keep_alive_period_in_seconds: The duration of time in seconds to retain configured resources in a warm pool for subsequent training jobs.
|
|
1007
1065
|
instance_groups: The configuration of a heterogeneous cluster in JSON format.
|
|
1008
1066
|
training_plan_arn: The Amazon Resource Name (ARN); of the training plan to use for this resource configuration.
|
|
1067
|
+
instance_placement_config: Configuration for how training job instances are placed and allocated within UltraServers. Only applicable for UltraServer capacity.
|
|
1009
1068
|
"""
|
|
1010
1069
|
|
|
1011
1070
|
volume_size_in_gb: int
|
|
@@ -1015,6 +1074,7 @@ class ResourceConfig(Base):
|
|
|
1015
1074
|
keep_alive_period_in_seconds: Optional[int] = Unassigned()
|
|
1016
1075
|
instance_groups: Optional[List[InstanceGroup]] = Unassigned()
|
|
1017
1076
|
training_plan_arn: Optional[str] = Unassigned()
|
|
1077
|
+
instance_placement_config: Optional[InstancePlacementConfig] = Unassigned()
|
|
1018
1078
|
|
|
1019
1079
|
|
|
1020
1080
|
class StoppingCondition(Base):
|
|
@@ -1221,7 +1281,7 @@ class AnnotationConsolidationConfig(Base):
|
|
|
1221
1281
|
|
|
1222
1282
|
Attributes
|
|
1223
1283
|
----------------------
|
|
1224
|
-
annotation_consolidation_lambda_arn: The Amazon Resource Name (ARN) of a Lambda function implements the logic for annotation consolidation and to process output data. For built-in task types, use one of the following Amazon SageMaker Ground Truth Lambda function ARNs for AnnotationConsolidationLambdaArn. For custom labeling workflows, see Post-annotation Lambda. Bounding box - Finds the most similar boxes from different workers based on the Jaccard index of the boxes. arn:aws:lambda:us-east-1:432418664414:function:ACS-BoundingBox arn:aws:lambda:us-east-2:266458841044:function:ACS-BoundingBox arn:aws:lambda:us-west-2:081040173940:function:ACS-BoundingBox arn:aws:lambda:eu-west-1:568282634449:function:ACS-BoundingBox arn:aws:lambda:ap-northeast-1:477331159723:function:ACS-BoundingBox arn:aws:lambda:ap-southeast-2:454466003867:function:ACS-BoundingBox arn:aws:lambda:ap-south-1:565803892007:function:ACS-BoundingBox arn:aws:lambda:eu-central-1:203001061592:function:ACS-BoundingBox arn:aws:lambda:ap-northeast-2:845288260483:function:ACS-BoundingBox arn:aws:lambda:eu-west-2:487402164563:function:ACS-BoundingBox arn:aws:lambda:ap-southeast-1:377565633583:function:ACS-BoundingBox arn:aws:lambda:ca-central-1:918755190332:function:ACS-BoundingBox Image classification - Uses a variant of the Expectation Maximization approach to estimate the true class of an image based on annotations from individual workers. arn:aws:lambda:us-east-1:432418664414:function:ACS-ImageMultiClass arn:aws:lambda:us-east-2:266458841044:function:ACS-ImageMultiClass arn:aws:lambda:us-west-2:081040173940:function:ACS-ImageMultiClass arn:aws:lambda:eu-west-1:568282634449:function:ACS-ImageMultiClass arn:aws:lambda:ap-northeast-1:477331159723:function:ACS-ImageMultiClass arn:aws:lambda:ap-southeast-2:454466003867:function:ACS-ImageMultiClass arn:aws:lambda:ap-south-1:565803892007:function:ACS-ImageMultiClass arn:aws:lambda:eu-central-1:203001061592:function:ACS-ImageMultiClass arn:aws:lambda:ap-northeast-2:845288260483:function:ACS-ImageMultiClass arn:aws:lambda:eu-west-2:487402164563:function:ACS-ImageMultiClass arn:aws:lambda:ap-southeast-1:377565633583:function:ACS-ImageMultiClass arn:aws:lambda:ca-central-1:918755190332:function:ACS-ImageMultiClass Multi-label image classification - Uses a variant of the Expectation Maximization approach to estimate the true classes of an image based on annotations from individual workers. arn:aws:lambda:us-east-1:432418664414:function:ACS-ImageMultiClassMultiLabel arn:aws:lambda:us-east-2:266458841044:function:ACS-ImageMultiClassMultiLabel arn:aws:lambda:us-west-2:081040173940:function:ACS-ImageMultiClassMultiLabel arn:aws:lambda:eu-west-1:568282634449:function:ACS-ImageMultiClassMultiLabel arn:aws:lambda:ap-northeast-1:477331159723:function:ACS-ImageMultiClassMultiLabel arn:aws:lambda:ap-southeast-2:454466003867:function:ACS-ImageMultiClassMultiLabel arn:aws:lambda:ap-south-1:565803892007:function:ACS-ImageMultiClassMultiLabel arn:aws:lambda:eu-central-1:203001061592:function:ACS-ImageMultiClassMultiLabel arn:aws:lambda:ap-northeast-2:845288260483:function:ACS-ImageMultiClassMultiLabel arn:aws:lambda:eu-west-2:487402164563:function:ACS-ImageMultiClassMultiLabel arn:aws:lambda:ap-southeast-1:377565633583:function:ACS-ImageMultiClassMultiLabel arn:aws:lambda:ca-central-1:918755190332:function:ACS-ImageMultiClassMultiLabel Semantic segmentation - Treats each pixel in an image as a multi-class classification and treats pixel annotations from workers as "votes" for the correct label. arn:aws:lambda:us-east-1:432418664414:function:ACS-SemanticSegmentation arn:aws:lambda:us-east-2:266458841044:function:ACS-SemanticSegmentation arn:aws:lambda:us-west-2:081040173940:function:ACS-SemanticSegmentation arn:aws:lambda:eu-west-1:568282634449:function:ACS-SemanticSegmentation arn:aws:lambda:ap-northeast-1:477331159723:function:ACS-SemanticSegmentation arn:aws:lambda:ap-southeast-2:454466003867:function:ACS-SemanticSegmentation arn:aws:lambda:ap-south-1:565803892007:function:ACS-SemanticSegmentation arn:aws:lambda:eu-central-1:203001061592:function:ACS-SemanticSegmentation arn:aws:lambda:ap-northeast-2:845288260483:function:ACS-SemanticSegmentation arn:aws:lambda:eu-west-2:487402164563:function:ACS-SemanticSegmentation arn:aws:lambda:ap-southeast-1:377565633583:function:ACS-SemanticSegmentation arn:aws:lambda:ca-central-1:918755190332:function:ACS-SemanticSegmentation Text classification - Uses a variant of the Expectation Maximization approach to estimate the true class of text based on annotations from individual workers. arn:aws:lambda:us-east-1:432418664414:function:ACS-TextMultiClass arn:aws:lambda:us-east-2:266458841044:function:ACS-TextMultiClass arn:aws:lambda:us-west-2:081040173940:function:ACS-TextMultiClass arn:aws:lambda:eu-west-1:568282634449:function:ACS-TextMultiClass arn:aws:lambda:ap-northeast-1:477331159723:function:ACS-TextMultiClass arn:aws:lambda:ap-southeast-2:454466003867:function:ACS-TextMultiClass arn:aws:lambda:ap-south-1:565803892007:function:ACS-TextMultiClass arn:aws:lambda:eu-central-1:203001061592:function:ACS-TextMultiClass arn:aws:lambda:ap-northeast-2:845288260483:function:ACS-TextMultiClass arn:aws:lambda:eu-west-2:487402164563:function:ACS-TextMultiClass arn:aws:lambda:ap-southeast-1:377565633583:function:ACS-TextMultiClass arn:aws:lambda:ca-central-1:918755190332:function:ACS-TextMultiClass Multi-label text classification - Uses a variant of the Expectation Maximization approach to estimate the true classes of text based on annotations from individual workers. arn:aws:lambda:us-east-1:432418664414:function:ACS-TextMultiClassMultiLabel arn:aws:lambda:us-east-2:266458841044:function:ACS-TextMultiClassMultiLabel arn:aws:lambda:us-west-2:081040173940:function:ACS-TextMultiClassMultiLabel arn:aws:lambda:eu-west-1:568282634449:function:ACS-TextMultiClassMultiLabel arn:aws:lambda:ap-northeast-1:477331159723:function:ACS-TextMultiClassMultiLabel arn:aws:lambda:ap-southeast-2:454466003867:function:ACS-TextMultiClassMultiLabel arn:aws:lambda:ap-south-1:565803892007:function:ACS-TextMultiClassMultiLabel arn:aws:lambda:eu-central-1:203001061592:function:ACS-TextMultiClassMultiLabel arn:aws:lambda:ap-northeast-2:845288260483:function:ACS-TextMultiClassMultiLabel arn:aws:lambda:eu-west-2:487402164563:function:ACS-TextMultiClassMultiLabel arn:aws:lambda:ap-southeast-1:377565633583:function:ACS-TextMultiClassMultiLabel arn:aws:lambda:ca-central-1:918755190332:function:ACS-TextMultiClassMultiLabel Named entity recognition - Groups similar selections and calculates aggregate boundaries, resolving to most-assigned label. arn:aws:lambda:us-east-1:432418664414:function:ACS-NamedEntityRecognition arn:aws:lambda:us-east-2:266458841044:function:ACS-NamedEntityRecognition arn:aws:lambda:us-west-2:081040173940:function:ACS-NamedEntityRecognition arn:aws:lambda:eu-west-1:568282634449:function:ACS-NamedEntityRecognition arn:aws:lambda:ap-northeast-1:477331159723:function:ACS-NamedEntityRecognition arn:aws:lambda:ap-southeast-2:454466003867:function:ACS-NamedEntityRecognition arn:aws:lambda:ap-south-1:565803892007:function:ACS-NamedEntityRecognition arn:aws:lambda:eu-central-1:203001061592:function:ACS-NamedEntityRecognition arn:aws:lambda:ap-northeast-2:845288260483:function:ACS-NamedEntityRecognition arn:aws:lambda:eu-west-2:487402164563:function:ACS-NamedEntityRecognition arn:aws:lambda:ap-southeast-1:377565633583:function:ACS-NamedEntityRecognition arn:aws:lambda:ca-central-1:918755190332:function:ACS-NamedEntityRecognition Video Classification - Use this task type when you need workers to classify videos using predefined labels that you specify. Workers are shown videos and are asked to choose one label for each video. arn:aws:lambda:us-east-1:432418664414:function:ACS-VideoMultiClass arn:aws:lambda:us-east-2:266458841044:function:ACS-VideoMultiClass arn:aws:lambda:us-west-2:081040173940:function:ACS-VideoMultiClass arn:aws:lambda:eu-west-1:568282634449:function:ACS-VideoMultiClass arn:aws:lambda:ap-northeast-1:477331159723:function:ACS-VideoMultiClass arn:aws:lambda:ap-southeast-2:454466003867:function:ACS-VideoMultiClass arn:aws:lambda:ap-south-1:565803892007:function:ACS-VideoMultiClass arn:aws:lambda:eu-central-1:203001061592:function:ACS-VideoMultiClass arn:aws:lambda:ap-northeast-2:845288260483:function:ACS-VideoMultiClass arn:aws:lambda:eu-west-2:487402164563:function:ACS-VideoMultiClass arn:aws:lambda:ap-southeast-1:377565633583:function:ACS-VideoMultiClass arn:aws:lambda:ca-central-1:918755190332:function:ACS-VideoMultiClass Video Frame Object Detection - Use this task type to have workers identify and locate objects in a sequence of video frames (images extracted from a video) using bounding boxes. For example, you can use this task to ask workers to identify and localize various objects in a series of video frames, such as cars, bikes, and pedestrians. arn:aws:lambda:us-east-1:432418664414:function:ACS-VideoObjectDetection arn:aws:lambda:us-east-2:266458841044:function:ACS-VideoObjectDetection arn:aws:lambda:us-west-2:081040173940:function:ACS-VideoObjectDetection arn:aws:lambda:eu-west-1:568282634449:function:ACS-VideoObjectDetection arn:aws:lambda:ap-northeast-1:477331159723:function:ACS-VideoObjectDetection arn:aws:lambda:ap-southeast-2:454466003867:function:ACS-VideoObjectDetection arn:aws:lambda:ap-south-1:565803892007:function:ACS-VideoObjectDetection arn:aws:lambda:eu-central-1:203001061592:function:ACS-VideoObjectDetection arn:aws:lambda:ap-northeast-2:845288260483:function:ACS-VideoObjectDetection arn:aws:lambda:eu-west-2:487402164563:function:ACS-VideoObjectDetection arn:aws:lambda:ap-southeast-1:377565633583:function:ACS-VideoObjectDetection arn:aws:lambda:ca-central-1:918755190332:function:ACS-VideoObjectDetection Video Frame Object Tracking - Use this task type to have workers track the movement of objects in a sequence of video frames (images extracted from a video) using bounding boxes. For example, you can use this task to ask workers to track the movement of objects, such as cars, bikes, and pedestrians. arn:aws:lambda:us-east-1:432418664414:function:ACS-VideoObjectTracking arn:aws:lambda:us-east-2:266458841044:function:ACS-VideoObjectTracking arn:aws:lambda:us-west-2:081040173940:function:ACS-VideoObjectTracking arn:aws:lambda:eu-west-1:568282634449:function:ACS-VideoObjectTracking arn:aws:lambda:ap-northeast-1:477331159723:function:ACS-VideoObjectTracking arn:aws:lambda:ap-southeast-2:454466003867:function:ACS-VideoObjectTracking arn:aws:lambda:ap-south-1:565803892007:function:ACS-VideoObjectTracking arn:aws:lambda:eu-central-1:203001061592:function:ACS-VideoObjectTracking arn:aws:lambda:ap-northeast-2:845288260483:function:ACS-VideoObjectTracking arn:aws:lambda:eu-west-2:487402164563:function:ACS-VideoObjectTracking arn:aws:lambda:ap-southeast-1:377565633583:function:ACS-VideoObjectTracking arn:aws:lambda:ca-central-1:918755190332:function:ACS-VideoObjectTracking 3D Point Cloud Object Detection - Use this task type when you want workers to classify objects in a 3D point cloud by drawing 3D cuboids around objects. For example, you can use this task type to ask workers to identify different types of objects in a point cloud, such as cars, bikes, and pedestrians. arn:aws:lambda:us-east-1:432418664414:function:ACS-3DPointCloudObjectDetection arn:aws:lambda:us-east-2:266458841044:function:ACS-3DPointCloudObjectDetection arn:aws:lambda:us-west-2:081040173940:function:ACS-3DPointCloudObjectDetection arn:aws:lambda:eu-west-1:568282634449:function:ACS-3DPointCloudObjectDetection arn:aws:lambda:ap-northeast-1:477331159723:function:ACS-3DPointCloudObjectDetection arn:aws:lambda:ap-southeast-2:454466003867:function:ACS-3DPointCloudObjectDetection arn:aws:lambda:ap-south-1:565803892007:function:ACS-3DPointCloudObjectDetection arn:aws:lambda:eu-central-1:203001061592:function:ACS-3DPointCloudObjectDetection arn:aws:lambda:ap-northeast-2:845288260483:function:ACS-3DPointCloudObjectDetection arn:aws:lambda:eu-west-2:487402164563:function:ACS-3DPointCloudObjectDetection arn:aws:lambda:ap-southeast-1:377565633583:function:ACS-3DPointCloudObjectDetection arn:aws:lambda:ca-central-1:918755190332:function:ACS-3DPointCloudObjectDetection 3D Point Cloud Object Tracking - Use this task type when you want workers to draw 3D cuboids around objects that appear in a sequence of 3D point cloud frames. For example, you can use this task type to ask workers to track the movement of vehicles across multiple point cloud frames. arn:aws:lambda:us-east-1:432418664414:function:ACS-3DPointCloudObjectTracking arn:aws:lambda:us-east-2:266458841044:function:ACS-3DPointCloudObjectTracking arn:aws:lambda:us-west-2:081040173940:function:ACS-3DPointCloudObjectTracking arn:aws:lambda:eu-west-1:568282634449:function:ACS-3DPointCloudObjectTracking arn:aws:lambda:ap-northeast-1:477331159723:function:ACS-3DPointCloudObjectTracking arn:aws:lambda:ap-southeast-2:454466003867:function:ACS-3DPointCloudObjectTracking arn:aws:lambda:ap-south-1:565803892007:function:ACS-3DPointCloudObjectTracking arn:aws:lambda:eu-central-1:203001061592:function:ACS-3DPointCloudObjectTracking arn:aws:lambda:ap-northeast-2:845288260483:function:ACS-3DPointCloudObjectTracking arn:aws:lambda:eu-west-2:487402164563:function:ACS-3DPointCloudObjectTracking arn:aws:lambda:ap-southeast-1:377565633583:function:ACS-3DPointCloudObjectTracking arn:aws:lambda:ca-central-1:918755190332:function:ACS-3DPointCloudObjectTracking 3D Point Cloud Semantic Segmentation - Use this task type when you want workers to create a point-level semantic segmentation masks by painting objects in a 3D point cloud using different colors where each color is assigned to one of the classes you specify. arn:aws:lambda:us-east-1:432418664414:function:ACS-3DPointCloudSemanticSegmentation arn:aws:lambda:us-east-2:266458841044:function:ACS-3DPointCloudSemanticSegmentation arn:aws:lambda:us-west-2:081040173940:function:ACS-3DPointCloudSemanticSegmentation arn:aws:lambda:eu-west-1:568282634449:function:ACS-3DPointCloudSemanticSegmentation arn:aws:lambda:ap-northeast-1:477331159723:function:ACS-3DPointCloudSemanticSegmentation arn:aws:lambda:ap-southeast-2:454466003867:function:ACS-3DPointCloudSemanticSegmentation arn:aws:lambda:ap-south-1:565803892007:function:ACS-3DPointCloudSemanticSegmentation arn:aws:lambda:eu-central-1:203001061592:function:ACS-3DPointCloudSemanticSegmentation arn:aws:lambda:ap-northeast-2:845288260483:function:ACS-3DPointCloudSemanticSegmentation arn:aws:lambda:eu-west-2:487402164563:function:ACS-3DPointCloudSemanticSegmentation arn:aws:lambda:ap-southeast-1:377565633583:function:ACS-3DPointCloudSemanticSegmentation arn:aws:lambda:ca-central-1:918755190332:function:ACS-3DPointCloudSemanticSegmentation Use the following ARNs for Label Verification and Adjustment Jobs Use label verification and adjustment jobs to review and adjust labels. To learn more, see Verify and Adjust Labels . Semantic Segmentation Adjustment - Treats each pixel in an image as a multi-class classification and treats pixel adjusted annotations from workers as "votes" for the correct label. arn:aws:lambda:us-east-1:432418664414:function:ACS-AdjustmentSemanticSegmentation arn:aws:lambda:us-east-2:266458841044:function:ACS-AdjustmentSemanticSegmentation arn:aws:lambda:us-west-2:081040173940:function:ACS-AdjustmentSemanticSegmentation arn:aws:lambda:eu-west-1:568282634449:function:ACS-AdjustmentSemanticSegmentation arn:aws:lambda:ap-northeast-1:477331159723:function:ACS-AdjustmentSemanticSegmentation arn:aws:lambda:ap-southeast-2:454466003867:function:ACS-AdjustmentSemanticSegmentation arn:aws:lambda:ap-south-1:565803892007:function:ACS-AdjustmentSemanticSegmentation arn:aws:lambda:eu-central-1:203001061592:function:ACS-AdjustmentSemanticSegmentation arn:aws:lambda:ap-northeast-2:845288260483:function:ACS-AdjustmentSemanticSegmentation arn:aws:lambda:eu-west-2:487402164563:function:ACS-AdjustmentSemanticSegmentation arn:aws:lambda:ap-southeast-1:377565633583:function:ACS-AdjustmentSemanticSegmentation arn:aws:lambda:ca-central-1:918755190332:function:ACS-AdjustmentSemanticSegmentation Semantic Segmentation Verification - Uses a variant of the Expectation Maximization approach to estimate the true class of verification judgment for semantic segmentation labels based on annotations from individual workers. arn:aws:lambda:us-east-1:432418664414:function:ACS-VerificationSemanticSegmentation arn:aws:lambda:us-east-2:266458841044:function:ACS-VerificationSemanticSegmentation arn:aws:lambda:us-west-2:081040173940:function:ACS-VerificationSemanticSegmentation arn:aws:lambda:eu-west-1:568282634449:function:ACS-VerificationSemanticSegmentation arn:aws:lambda:ap-northeast-1:477331159723:function:ACS-VerificationSemanticSegmentation arn:aws:lambda:ap-southeast-2:454466003867:function:ACS-VerificationSemanticSegmentation arn:aws:lambda:ap-south-1:565803892007:function:ACS-VerificationSemanticSegmentation arn:aws:lambda:eu-central-1:203001061592:function:ACS-VerificationSemanticSegmentation arn:aws:lambda:ap-northeast-2:845288260483:function:ACS-VerificationSemanticSegmentation arn:aws:lambda:eu-west-2:487402164563:function:ACS-VerificationSemanticSegmentation arn:aws:lambda:ap-southeast-1:377565633583:function:ACS-VerificationSemanticSegmentation arn:aws:lambda:ca-central-1:918755190332:function:ACS-VerificationSemanticSegmentation Bounding Box Adjustment - Finds the most similar boxes from different workers based on the Jaccard index of the adjusted annotations. arn:aws:lambda:us-east-1:432418664414:function:ACS-AdjustmentBoundingBox arn:aws:lambda:us-east-2:266458841044:function:ACS-AdjustmentBoundingBox arn:aws:lambda:us-west-2:081040173940:function:ACS-AdjustmentBoundingBox arn:aws:lambda:eu-west-1:568282634449:function:ACS-AdjustmentBoundingBox arn:aws:lambda:ap-northeast-1:477331159723:function:ACS-AdjustmentBoundingBox arn:aws:lambda:ap-southeast-2:454466003867:function:ACS-AdjustmentBoundingBox arn:aws:lambda:ap-south-1:565803892007:function:ACS-AdjustmentBoundingBox arn:aws:lambda:eu-central-1:203001061592:function:ACS-AdjustmentBoundingBox arn:aws:lambda:ap-northeast-2:845288260483:function:ACS-AdjustmentBoundingBox arn:aws:lambda:eu-west-2:487402164563:function:ACS-AdjustmentBoundingBox arn:aws:lambda:ap-southeast-1:377565633583:function:ACS-AdjustmentBoundingBox arn:aws:lambda:ca-central-1:918755190332:function:ACS-AdjustmentBoundingBox Bounding Box Verification - Uses a variant of the Expectation Maximization approach to estimate the true class of verification judgement for bounding box labels based on annotations from individual workers. arn:aws:lambda:us-east-1:432418664414:function:ACS-VerificationBoundingBox arn:aws:lambda:us-east-2:266458841044:function:ACS-VerificationBoundingBox arn:aws:lambda:us-west-2:081040173940:function:ACS-VerificationBoundingBox arn:aws:lambda:eu-west-1:568282634449:function:ACS-VerificationBoundingBox arn:aws:lambda:ap-northeast-1:477331159723:function:ACS-VerificationBoundingBox arn:aws:lambda:ap-southeast-2:454466003867:function:ACS-VerificationBoundingBox arn:aws:lambda:ap-south-1:565803892007:function:ACS-VerificationBoundingBox arn:aws:lambda:eu-central-1:203001061592:function:ACS-VerificationBoundingBox arn:aws:lambda:ap-northeast-2:845288260483:function:ACS-VerificationBoundingBox arn:aws:lambda:eu-west-2:487402164563:function:ACS-VerificationBoundingBox arn:aws:lambda:ap-southeast-1:377565633583:function:ACS-VerificationBoundingBox arn:aws:lambda:ca-central-1:918755190332:function:ACS-VerificationBoundingBox Video Frame Object Detection Adjustment - Use this task type when you want workers to adjust bounding boxes that workers have added to video frames to classify and localize objects in a sequence of video frames. arn:aws:lambda:us-east-1:432418664414:function:ACS-AdjustmentVideoObjectDetection arn:aws:lambda:us-east-2:266458841044:function:ACS-AdjustmentVideoObjectDetection arn:aws:lambda:us-west-2:081040173940:function:ACS-AdjustmentVideoObjectDetection arn:aws:lambda:eu-west-1:568282634449:function:ACS-AdjustmentVideoObjectDetection arn:aws:lambda:ap-northeast-1:477331159723:function:ACS-AdjustmentVideoObjectDetection arn:aws:lambda:ap-southeast-2:454466003867:function:ACS-AdjustmentVideoObjectDetection arn:aws:lambda:ap-south-1:565803892007:function:ACS-AdjustmentVideoObjectDetection arn:aws:lambda:eu-central-1:203001061592:function:ACS-AdjustmentVideoObjectDetection arn:aws:lambda:ap-northeast-2:845288260483:function:ACS-AdjustmentVideoObjectDetection arn:aws:lambda:eu-west-2:487402164563:function:ACS-AdjustmentVideoObjectDetection arn:aws:lambda:ap-southeast-1:377565633583:function:ACS-AdjustmentVideoObjectDetection arn:aws:lambda:ca-central-1:918755190332:function:ACS-AdjustmentVideoObjectDetection Video Frame Object Tracking Adjustment - Use this task type when you want workers to adjust bounding boxes that workers have added to video frames to track object movement across a sequence of video frames. arn:aws:lambda:us-east-1:432418664414:function:ACS-AdjustmentVideoObjectTracking arn:aws:lambda:us-east-2:266458841044:function:ACS-AdjustmentVideoObjectTracking arn:aws:lambda:us-west-2:081040173940:function:ACS-AdjustmentVideoObjectTracking arn:aws:lambda:eu-west-1:568282634449:function:ACS-AdjustmentVideoObjectTracking arn:aws:lambda:ap-northeast-1:477331159723:function:ACS-AdjustmentVideoObjectTracking arn:aws:lambda:ap-southeast-2:454466003867:function:ACS-AdjustmentVideoObjectTracking arn:aws:lambda:ap-south-1:565803892007:function:ACS-AdjustmentVideoObjectTracking arn:aws:lambda:eu-central-1:203001061592:function:ACS-AdjustmentVideoObjectTracking arn:aws:lambda:ap-northeast-2:845288260483:function:ACS-AdjustmentVideoObjectTracking arn:aws:lambda:eu-west-2:487402164563:function:ACS-AdjustmentVideoObjectTracking arn:aws:lambda:ap-southeast-1:377565633583:function:ACS-AdjustmentVideoObjectTracking arn:aws:lambda:ca-central-1:918755190332:function:ACS-AdjustmentVideoObjectTracking 3D Point Cloud Object Detection Adjustment - Use this task type when you want workers to adjust 3D cuboids around objects in a 3D point cloud. arn:aws:lambda:us-east-1:432418664414:function:ACS-Adjustment3DPointCloudObjectDetection arn:aws:lambda:us-east-2:266458841044:function:ACS-Adjustment3DPointCloudObjectDetection arn:aws:lambda:us-west-2:081040173940:function:ACS-Adjustment3DPointCloudObjectDetection arn:aws:lambda:eu-west-1:568282634449:function:ACS-Adjustment3DPointCloudObjectDetection arn:aws:lambda:ap-northeast-1:477331159723:function:ACS-Adjustment3DPointCloudObjectDetection arn:aws:lambda:ap-southeast-2:454466003867:function:ACS-Adjustment3DPointCloudObjectDetection arn:aws:lambda:ap-south-1:565803892007:function:ACS-Adjustment3DPointCloudObjectDetection arn:aws:lambda:eu-central-1:203001061592:function:ACS-Adjustment3DPointCloudObjectDetection arn:aws:lambda:ap-northeast-2:845288260483:function:ACS-Adjustment3DPointCloudObjectDetection arn:aws:lambda:eu-west-2:487402164563:function:ACS-Adjustment3DPointCloudObjectDetection arn:aws:lambda:ap-southeast-1:377565633583:function:ACS-Adjustment3DPointCloudObjectDetection arn:aws:lambda:ca-central-1:918755190332:function:ACS-Adjustment3DPointCloudObjectDetection 3D Point Cloud Object Tracking Adjustment - Use this task type when you want workers to adjust 3D cuboids around objects that appear in a sequence of 3D point cloud frames. arn:aws:lambda:us-east-1:432418664414:function:ACS-Adjustment3DPointCloudObjectTracking arn:aws:lambda:us-east-2:266458841044:function:ACS-Adjustment3DPointCloudObjectTracking arn:aws:lambda:us-west-2:081040173940:function:ACS-Adjustment3DPointCloudObjectTracking arn:aws:lambda:eu-west-1:568282634449:function:ACS-Adjustment3DPointCloudObjectTracking arn:aws:lambda:ap-northeast-1:477331159723:function:ACS-Adjustment3DPointCloudObjectTracking arn:aws:lambda:ap-southeast-2:454466003867:function:ACS-Adjustment3DPointCloudObjectTracking arn:aws:lambda:ap-south-1:565803892007:function:ACS-Adjustment3DPointCloudObjectTracking arn:aws:lambda:eu-central-1:203001061592:function:ACS-Adjustment3DPointCloudObjectTracking arn:aws:lambda:ap-northeast-2:845288260483:function:ACS-Adjustment3DPointCloudObjectTracking arn:aws:lambda:eu-west-2:487402164563:function:ACS-Adjustment3DPointCloudObjectTracking arn:aws:lambda:ap-southeast-1:377565633583:function:ACS-Adjustment3DPointCloudObjectTracking arn:aws:lambda:ca-central-1:918755190332:function:ACS-Adjustment3DPointCloudObjectTracking 3D Point Cloud Semantic Segmentation Adjustment - Use this task type when you want workers to adjust a point-level semantic segmentation masks using a paint tool. arn:aws:lambda:us-east-1:432418664414:function:ACS-3DPointCloudSemanticSegmentation arn:aws:lambda:us-east-1:432418664414:function:ACS-Adjustment3DPointCloudSemanticSegmentation arn:aws:lambda:us-east-2:266458841044:function:ACS-Adjustment3DPointCloudSemanticSegmentation arn:aws:lambda:us-west-2:081040173940:function:ACS-Adjustment3DPointCloudSemanticSegmentation arn:aws:lambda:eu-west-1:568282634449:function:ACS-Adjustment3DPointCloudSemanticSegmentation arn:aws:lambda:ap-northeast-1:477331159723:function:ACS-Adjustment3DPointCloudSemanticSegmentation arn:aws:lambda:ap-southeast-2:454466003867:function:ACS-Adjustment3DPointCloudSemanticSegmentation arn:aws:lambda:ap-south-1:565803892007:function:ACS-Adjustment3DPointCloudSemanticSegmentation arn:aws:lambda:eu-central-1:203001061592:function:ACS-Adjustment3DPointCloudSemanticSegmentation arn:aws:lambda:ap-northeast-2:845288260483:function:ACS-Adjustment3DPointCloudSemanticSegmentation arn:aws:lambda:eu-west-2:487402164563:function:ACS-Adjustment3DPointCloudSemanticSegmentation arn:aws:lambda:ap-southeast-1:377565633583:function:ACS-Adjustment3DPointCloudSemanticSegmentation arn:aws:lambda:ca-central-1:918755190332:function:ACS-Adjustment3DPointCloudSemanticSegmentation
|
|
1284
|
+
annotation_consolidation_lambda_arn: The Amazon Resource Name (ARN) of a Lambda function implements the logic for annotation consolidation and to process output data. For built-in task types, use one of the following Amazon SageMaker Ground Truth Lambda function ARNs for AnnotationConsolidationLambdaArn. For custom labeling workflows, see Post-annotation Lambda. Bounding box - Finds the most similar boxes from different workers based on the Jaccard index of the boxes. arn:aws:lambda:us-east-1:432418664414:function:ACS-BoundingBox arn:aws:lambda:us-east-2:266458841044:function:ACS-BoundingBox arn:aws:lambda:us-west-2:081040173940:function:ACS-BoundingBox arn:aws:lambda:eu-west-1:568282634449:function:ACS-BoundingBox arn:aws:lambda:ap-northeast-1:477331159723:function:ACS-BoundingBox arn:aws:lambda:ap-southeast-2:454466003867:function:ACS-BoundingBox arn:aws:lambda:ap-south-1:565803892007:function:ACS-BoundingBox arn:aws:lambda:eu-central-1:203001061592:function:ACS-BoundingBox arn:aws:lambda:ap-northeast-2:845288260483:function:ACS-BoundingBox arn:aws:lambda:eu-west-2:487402164563:function:ACS-BoundingBox arn:aws:lambda:ap-southeast-1:377565633583:function:ACS-BoundingBox arn:aws:lambda:ca-central-1:918755190332:function:ACS-BoundingBox Image classification - Uses a variant of the Expectation Maximization approach to estimate the true class of an image based on annotations from individual workers. arn:aws:lambda:us-east-1:432418664414:function:ACS-ImageMultiClass arn:aws:lambda:us-east-2:266458841044:function:ACS-ImageMultiClass arn:aws:lambda:us-west-2:081040173940:function:ACS-ImageMultiClass arn:aws:lambda:eu-west-1:568282634449:function:ACS-ImageMultiClass arn:aws:lambda:ap-northeast-1:477331159723:function:ACS-ImageMultiClass arn:aws:lambda:ap-southeast-2:454466003867:function:ACS-ImageMultiClass arn:aws:lambda:ap-south-1:565803892007:function:ACS-ImageMultiClass arn:aws:lambda:eu-central-1:203001061592:function:ACS-ImageMultiClass arn:aws:lambda:ap-northeast-2:845288260483:function:ACS-ImageMultiClass arn:aws:lambda:eu-west-2:487402164563:function:ACS-ImageMultiClass arn:aws:lambda:ap-southeast-1:377565633583:function:ACS-ImageMultiClass arn:aws:lambda:ca-central-1:918755190332:function:ACS-ImageMultiClass Multi-label image classification - Uses a variant of the Expectation Maximization approach to estimate the true classes of an image based on annotations from individual workers. arn:aws:lambda:us-east-1:432418664414:function:ACS-ImageMultiClassMultiLabel arn:aws:lambda:us-east-2:266458841044:function:ACS-ImageMultiClassMultiLabel arn:aws:lambda:us-west-2:081040173940:function:ACS-ImageMultiClassMultiLabel arn:aws:lambda:eu-west-1:568282634449:function:ACS-ImageMultiClassMultiLabel arn:aws:lambda:ap-northeast-1:477331159723:function:ACS-ImageMultiClassMultiLabel arn:aws:lambda:ap-southeast-2:454466003867:function:ACS-ImageMultiClassMultiLabel arn:aws:lambda:ap-south-1:565803892007:function:ACS-ImageMultiClassMultiLabel arn:aws:lambda:eu-central-1:203001061592:function:ACS-ImageMultiClassMultiLabel arn:aws:lambda:ap-northeast-2:845288260483:function:ACS-ImageMultiClassMultiLabel arn:aws:lambda:eu-west-2:487402164563:function:ACS-ImageMultiClassMultiLabel arn:aws:lambda:ap-southeast-1:377565633583:function:ACS-ImageMultiClassMultiLabel arn:aws:lambda:ca-central-1:918755190332:function:ACS-ImageMultiClassMultiLabel Semantic segmentation - Treats each pixel in an image as a multi-class classification and treats pixel annotations from workers as "votes" for the correct label. arn:aws:lambda:us-east-1:432418664414:function:ACS-SemanticSegmentation arn:aws:lambda:us-east-2:266458841044:function:ACS-SemanticSegmentation arn:aws:lambda:us-west-2:081040173940:function:ACS-SemanticSegmentation arn:aws:lambda:eu-west-1:568282634449:function:ACS-SemanticSegmentation arn:aws:lambda:ap-northeast-1:477331159723:function:ACS-SemanticSegmentation arn:aws:lambda:ap-southeast-2:454466003867:function:ACS-SemanticSegmentation arn:aws:lambda:ap-south-1:565803892007:function:ACS-SemanticSegmentation arn:aws:lambda:eu-central-1:203001061592:function:ACS-SemanticSegmentation arn:aws:lambda:ap-northeast-2:845288260483:function:ACS-SemanticSegmentation arn:aws:lambda:eu-west-2:487402164563:function:ACS-SemanticSegmentation arn:aws:lambda:ap-southeast-1:377565633583:function:ACS-SemanticSegmentation arn:aws:lambda:ca-central-1:918755190332:function:ACS-SemanticSegmentation Text classification - Uses a variant of the Expectation Maximization approach to estimate the true class of text based on annotations from individual workers. arn:aws:lambda:us-east-1:432418664414:function:ACS-TextMultiClass arn:aws:lambda:us-east-2:266458841044:function:ACS-TextMultiClass arn:aws:lambda:us-west-2:081040173940:function:ACS-TextMultiClass arn:aws:lambda:eu-west-1:568282634449:function:ACS-TextMultiClass arn:aws:lambda:ap-northeast-1:477331159723:function:ACS-TextMultiClass arn:aws:lambda:ap-southeast-2:454466003867:function:ACS-TextMultiClass arn:aws:lambda:ap-south-1:565803892007:function:ACS-TextMultiClass arn:aws:lambda:eu-central-1:203001061592:function:ACS-TextMultiClass arn:aws:lambda:ap-northeast-2:845288260483:function:ACS-TextMultiClass arn:aws:lambda:eu-west-2:487402164563:function:ACS-TextMultiClass arn:aws:lambda:ap-southeast-1:377565633583:function:ACS-TextMultiClass arn:aws:lambda:ca-central-1:918755190332:function:ACS-TextMultiClass Multi-label text classification - Uses a variant of the Expectation Maximization approach to estimate the true classes of text based on annotations from individual workers. arn:aws:lambda:us-east-1:432418664414:function:ACS-TextMultiClassMultiLabel arn:aws:lambda:us-east-2:266458841044:function:ACS-TextMultiClassMultiLabel arn:aws:lambda:us-west-2:081040173940:function:ACS-TextMultiClassMultiLabel arn:aws:lambda:eu-west-1:568282634449:function:ACS-TextMultiClassMultiLabel arn:aws:lambda:ap-northeast-1:477331159723:function:ACS-TextMultiClassMultiLabel arn:aws:lambda:ap-southeast-2:454466003867:function:ACS-TextMultiClassMultiLabel arn:aws:lambda:ap-south-1:565803892007:function:ACS-TextMultiClassMultiLabel arn:aws:lambda:eu-central-1:203001061592:function:ACS-TextMultiClassMultiLabel arn:aws:lambda:ap-northeast-2:845288260483:function:ACS-TextMultiClassMultiLabel arn:aws:lambda:eu-west-2:487402164563:function:ACS-TextMultiClassMultiLabel arn:aws:lambda:ap-southeast-1:377565633583:function:ACS-TextMultiClassMultiLabel arn:aws:lambda:ca-central-1:918755190332:function:ACS-TextMultiClassMultiLabel Named entity recognition - Groups similar selections and calculates aggregate boundaries, resolving to most-assigned label. arn:aws:lambda:us-east-1:432418664414:function:ACS-NamedEntityRecognition arn:aws:lambda:us-east-2:266458841044:function:ACS-NamedEntityRecognition arn:aws:lambda:us-west-2:081040173940:function:ACS-NamedEntityRecognition arn:aws:lambda:eu-west-1:568282634449:function:ACS-NamedEntityRecognition arn:aws:lambda:ap-northeast-1:477331159723:function:ACS-NamedEntityRecognition arn:aws:lambda:ap-southeast-2:454466003867:function:ACS-NamedEntityRecognition arn:aws:lambda:ap-south-1:565803892007:function:ACS-NamedEntityRecognition arn:aws:lambda:eu-central-1:203001061592:function:ACS-NamedEntityRecognition arn:aws:lambda:ap-northeast-2:845288260483:function:ACS-NamedEntityRecognition arn:aws:lambda:eu-west-2:487402164563:function:ACS-NamedEntityRecognition arn:aws:lambda:ap-southeast-1:377565633583:function:ACS-NamedEntityRecognition arn:aws:lambda:ca-central-1:918755190332:function:ACS-NamedEntityRecognition Video Classification - Use this task type when you need workers to classify videos using predefined labels that you specify. Workers are shown videos and are asked to choose one label for each video. arn:aws:lambda:us-east-1:432418664414:function:ACS-VideoMultiClass arn:aws:lambda:us-east-2:266458841044:function:ACS-VideoMultiClass arn:aws:lambda:us-west-2:081040173940:function:ACS-VideoMultiClass arn:aws:lambda:eu-west-1:568282634449:function:ACS-VideoMultiClass arn:aws:lambda:ap-northeast-1:477331159723:function:ACS-VideoMultiClass arn:aws:lambda:ap-southeast-2:454466003867:function:ACS-VideoMultiClass arn:aws:lambda:ap-south-1:565803892007:function:ACS-VideoMultiClass arn:aws:lambda:eu-central-1:203001061592:function:ACS-VideoMultiClass arn:aws:lambda:ap-northeast-2:845288260483:function:ACS-VideoMultiClass arn:aws:lambda:eu-west-2:487402164563:function:ACS-VideoMultiClass arn:aws:lambda:ap-southeast-1:377565633583:function:ACS-VideoMultiClass arn:aws:lambda:ca-central-1:918755190332:function:ACS-VideoMultiClass Video Frame Object Detection - Use this task type to have workers identify and locate objects in a sequence of video frames (images extracted from a video) using bounding boxes. For example, you can use this task to ask workers to identify and localize various objects in a series of video frames, such as cars, bikes, and pedestrians. arn:aws:lambda:us-east-1:432418664414:function:ACS-VideoObjectDetection arn:aws:lambda:us-east-2:266458841044:function:ACS-VideoObjectDetection arn:aws:lambda:us-west-2:081040173940:function:ACS-VideoObjectDetection arn:aws:lambda:eu-west-1:568282634449:function:ACS-VideoObjectDetection arn:aws:lambda:ap-northeast-1:477331159723:function:ACS-VideoObjectDetection arn:aws:lambda:ap-southeast-2:454466003867:function:ACS-VideoObjectDetection arn:aws:lambda:ap-south-1:565803892007:function:ACS-VideoObjectDetection arn:aws:lambda:eu-central-1:203001061592:function:ACS-VideoObjectDetection arn:aws:lambda:ap-northeast-2:845288260483:function:ACS-VideoObjectDetection arn:aws:lambda:eu-west-2:487402164563:function:ACS-VideoObjectDetection arn:aws:lambda:ap-southeast-1:377565633583:function:ACS-VideoObjectDetection arn:aws:lambda:ca-central-1:918755190332:function:ACS-VideoObjectDetection Video Frame Object Tracking - Use this task type to have workers track the movement of objects in a sequence of video frames (images extracted from a video) using bounding boxes. For example, you can use this task to ask workers to track the movement of objects, such as cars, bikes, and pedestrians. arn:aws:lambda:us-east-1:432418664414:function:ACS-VideoObjectTracking arn:aws:lambda:us-east-2:266458841044:function:ACS-VideoObjectTracking arn:aws:lambda:us-west-2:081040173940:function:ACS-VideoObjectTracking arn:aws:lambda:eu-west-1:568282634449:function:ACS-VideoObjectTracking arn:aws:lambda:ap-northeast-1:477331159723:function:ACS-VideoObjectTracking arn:aws:lambda:ap-southeast-2:454466003867:function:ACS-VideoObjectTracking arn:aws:lambda:ap-south-1:565803892007:function:ACS-VideoObjectTracking arn:aws:lambda:eu-central-1:203001061592:function:ACS-VideoObjectTracking arn:aws:lambda:ap-northeast-2:845288260483:function:ACS-VideoObjectTracking arn:aws:lambda:eu-west-2:487402164563:function:ACS-VideoObjectTracking arn:aws:lambda:ap-southeast-1:377565633583:function:ACS-VideoObjectTracking arn:aws:lambda:ca-central-1:918755190332:function:ACS-VideoObjectTracking 3D Point Cloud Object Detection - Use this task type when you want workers to classify objects in a 3D point cloud by drawing 3D cuboids around objects. For example, you can use this task type to ask workers to identify different types of objects in a point cloud, such as cars, bikes, and pedestrians. arn:aws:lambda:us-east-1:432418664414:function:ACS-3DPointCloudObjectDetection arn:aws:lambda:us-east-2:266458841044:function:ACS-3DPointCloudObjectDetection arn:aws:lambda:us-west-2:081040173940:function:ACS-3DPointCloudObjectDetection arn:aws:lambda:eu-west-1:568282634449:function:ACS-3DPointCloudObjectDetection arn:aws:lambda:ap-northeast-1:477331159723:function:ACS-3DPointCloudObjectDetection arn:aws:lambda:ap-southeast-2:454466003867:function:ACS-3DPointCloudObjectDetection arn:aws:lambda:ap-south-1:565803892007:function:ACS-3DPointCloudObjectDetection arn:aws:lambda:eu-central-1:203001061592:function:ACS-3DPointCloudObjectDetection arn:aws:lambda:ap-northeast-2:845288260483:function:ACS-3DPointCloudObjectDetection arn:aws:lambda:eu-west-2:487402164563:function:ACS-3DPointCloudObjectDetection arn:aws:lambda:ap-southeast-1:377565633583:function:ACS-3DPointCloudObjectDetection arn:aws:lambda:ca-central-1:918755190332:function:ACS-3DPointCloudObjectDetection 3D Point Cloud Object Tracking - Use this task type when you want workers to draw 3D cuboids around objects that appear in a sequence of 3D point cloud frames. For example, you can use this task type to ask workers to track the movement of vehicles across multiple point cloud frames. arn:aws:lambda:us-east-1:432418664414:function:ACS-3DPointCloudObjectTracking arn:aws:lambda:us-east-2:266458841044:function:ACS-3DPointCloudObjectTracking arn:aws:lambda:us-west-2:081040173940:function:ACS-3DPointCloudObjectTracking arn:aws:lambda:eu-west-1:568282634449:function:ACS-3DPointCloudObjectTracking arn:aws:lambda:ap-northeast-1:477331159723:function:ACS-3DPointCloudObjectTracking arn:aws:lambda:ap-southeast-2:454466003867:function:ACS-3DPointCloudObjectTracking arn:aws:lambda:ap-south-1:565803892007:function:ACS-3DPointCloudObjectTracking arn:aws:lambda:eu-central-1:203001061592:function:ACS-3DPointCloudObjectTracking arn:aws:lambda:ap-northeast-2:845288260483:function:ACS-3DPointCloudObjectTracking arn:aws:lambda:eu-west-2:487402164563:function:ACS-3DPointCloudObjectTracking arn:aws:lambda:ap-southeast-1:377565633583:function:ACS-3DPointCloudObjectTracking arn:aws:lambda:ca-central-1:918755190332:function:ACS-3DPointCloudObjectTracking 3D Point Cloud Semantic Segmentation - Use this task type when you want workers to create a point-level semantic segmentation masks by painting objects in a 3D point cloud using different colors where each color is assigned to one of the classes you specify. arn:aws:lambda:us-east-1:432418664414:function:ACS-3DPointCloudSemanticSegmentation arn:aws:lambda:us-east-2:266458841044:function:ACS-3DPointCloudSemanticSegmentation arn:aws:lambda:us-west-2:081040173940:function:ACS-3DPointCloudSemanticSegmentation arn:aws:lambda:eu-west-1:568282634449:function:ACS-3DPointCloudSemanticSegmentation arn:aws:lambda:ap-northeast-1:477331159723:function:ACS-3DPointCloudSemanticSegmentation arn:aws:lambda:ap-southeast-2:454466003867:function:ACS-3DPointCloudSemanticSegmentation arn:aws:lambda:ap-south-1:565803892007:function:ACS-3DPointCloudSemanticSegmentation arn:aws:lambda:eu-central-1:203001061592:function:ACS-3DPointCloudSemanticSegmentation arn:aws:lambda:ap-northeast-2:845288260483:function:ACS-3DPointCloudSemanticSegmentation arn:aws:lambda:eu-west-2:487402164563:function:ACS-3DPointCloudSemanticSegmentation arn:aws:lambda:ap-southeast-1:377565633583:function:ACS-3DPointCloudSemanticSegmentation arn:aws:lambda:ca-central-1:918755190332:function:ACS-3DPointCloudSemanticSegmentation Use the following ARNs for Label Verification and Adjustment Jobs Use label verification and adjustment jobs to review and adjust labels. To learn more, see Verify and Adjust Labels . Semantic Segmentation Adjustment - Treats each pixel in an image as a multi-class classification and treats pixel adjusted annotations from workers as "votes" for the correct label. arn:aws:lambda:us-east-1:432418664414:function:ACS-AdjustmentSemanticSegmentation arn:aws:lambda:us-east-2:266458841044:function:ACS-AdjustmentSemanticSegmentation arn:aws:lambda:us-west-2:081040173940:function:ACS-AdjustmentSemanticSegmentation arn:aws:lambda:eu-west-1:568282634449:function:ACS-AdjustmentSemanticSegmentation arn:aws:lambda:ap-northeast-1:477331159723:function:ACS-AdjustmentSemanticSegmentation arn:aws:lambda:ap-southeast-2:454466003867:function:ACS-AdjustmentSemanticSegmentation arn:aws:lambda:ap-south-1:565803892007:function:ACS-AdjustmentSemanticSegmentation arn:aws:lambda:eu-central-1:203001061592:function:ACS-AdjustmentSemanticSegmentation arn:aws:lambda:ap-northeast-2:845288260483:function:ACS-AdjustmentSemanticSegmentation arn:aws:lambda:eu-west-2:487402164563:function:ACS-AdjustmentSemanticSegmentation arn:aws:lambda:ap-southeast-1:377565633583:function:ACS-AdjustmentSemanticSegmentation arn:aws:lambda:ca-central-1:918755190332:function:ACS-AdjustmentSemanticSegmentation Semantic Segmentation Verification - Uses a variant of the Expectation Maximization approach to estimate the true class of verification judgment for semantic segmentation labels based on annotations from individual workers. arn:aws:lambda:us-east-1:432418664414:function:ACS-VerificationSemanticSegmentation arn:aws:lambda:us-east-2:266458841044:function:ACS-VerificationSemanticSegmentation arn:aws:lambda:us-west-2:081040173940:function:ACS-VerificationSemanticSegmentation arn:aws:lambda:eu-west-1:568282634449:function:ACS-VerificationSemanticSegmentation arn:aws:lambda:ap-northeast-1:477331159723:function:ACS-VerificationSemanticSegmentation arn:aws:lambda:ap-southeast-2:454466003867:function:ACS-VerificationSemanticSegmentation arn:aws:lambda:ap-south-1:565803892007:function:ACS-VerificationSemanticSegmentation arn:aws:lambda:eu-central-1:203001061592:function:ACS-VerificationSemanticSegmentation arn:aws:lambda:ap-northeast-2:845288260483:function:ACS-VerificationSemanticSegmentation arn:aws:lambda:eu-west-2:487402164563:function:ACS-VerificationSemanticSegmentation arn:aws:lambda:ap-southeast-1:377565633583:function:ACS-VerificationSemanticSegmentation arn:aws:lambda:ca-central-1:918755190332:function:ACS-VerificationSemanticSegmentation Bounding Box Adjustment - Finds the most similar boxes from different workers based on the Jaccard index of the adjusted annotations. arn:aws:lambda:us-east-1:432418664414:function:ACS-AdjustmentBoundingBox arn:aws:lambda:us-east-2:266458841044:function:ACS-AdjustmentBoundingBox arn:aws:lambda:us-west-2:081040173940:function:ACS-AdjustmentBoundingBox arn:aws:lambda:eu-west-1:568282634449:function:ACS-AdjustmentBoundingBox arn:aws:lambda:ap-northeast-1:477331159723:function:ACS-AdjustmentBoundingBox arn:aws:lambda:ap-southeast-2:454466003867:function:ACS-AdjustmentBoundingBox arn:aws:lambda:ap-south-1:565803892007:function:ACS-AdjustmentBoundingBox arn:aws:lambda:eu-central-1:203001061592:function:ACS-AdjustmentBoundingBox arn:aws:lambda:ap-northeast-2:845288260483:function:ACS-AdjustmentBoundingBox arn:aws:lambda:eu-west-2:487402164563:function:ACS-AdjustmentBoundingBox arn:aws:lambda:ap-southeast-1:377565633583:function:ACS-AdjustmentBoundingBox arn:aws:lambda:ca-central-1:918755190332:function:ACS-AdjustmentBoundingBox Bounding Box Verification - Uses a variant of the Expectation Maximization approach to estimate the true class of verification judgement for bounding box labels based on annotations from individual workers. arn:aws:lambda:us-east-1:432418664414:function:ACS-VerificationBoundingBox arn:aws:lambda:us-east-2:266458841044:function:ACS-VerificationBoundingBox arn:aws:lambda:us-west-2:081040173940:function:ACS-VerificationBoundingBox arn:aws:lambda:eu-west-1:568282634449:function:ACS-VerificationBoundingBox arn:aws:lambda:ap-northeast-1:477331159723:function:ACS-VerificationBoundingBox arn:aws:lambda:ap-southeast-2:454466003867:function:ACS-VerificationBoundingBox arn:aws:lambda:ap-south-1:565803892007:function:ACS-VerificationBoundingBox arn:aws:lambda:eu-central-1:203001061592:function:ACS-VerificationBoundingBox arn:aws:lambda:ap-northeast-2:845288260483:function:ACS-VerificationBoundingBox arn:aws:lambda:eu-west-2:487402164563:function:ACS-VerificationBoundingBox arn:aws:lambda:ap-southeast-1:377565633583:function:ACS-VerificationBoundingBox arn:aws:lambda:ca-central-1:918755190332:function:ACS-VerificationBoundingBox Video Frame Object Detection Adjustment - Use this task type when you want workers to adjust bounding boxes that workers have added to video frames to classify and localize objects in a sequence of video frames. arn:aws:lambda:us-east-1:432418664414:function:ACS-AdjustmentVideoObjectDetection arn:aws:lambda:us-east-2:266458841044:function:ACS-AdjustmentVideoObjectDetection arn:aws:lambda:us-west-2:081040173940:function:ACS-AdjustmentVideoObjectDetection arn:aws:lambda:eu-west-1:568282634449:function:ACS-AdjustmentVideoObjectDetection arn:aws:lambda:ap-northeast-1:477331159723:function:ACS-AdjustmentVideoObjectDetection arn:aws:lambda:ap-southeast-2:454466003867:function:ACS-AdjustmentVideoObjectDetection arn:aws:lambda:ap-south-1:565803892007:function:ACS-AdjustmentVideoObjectDetection arn:aws:lambda:eu-central-1:203001061592:function:ACS-AdjustmentVideoObjectDetection arn:aws:lambda:ap-northeast-2:845288260483:function:ACS-AdjustmentVideoObjectDetection arn:aws:lambda:eu-west-2:487402164563:function:ACS-AdjustmentVideoObjectDetection arn:aws:lambda:ap-southeast-1:377565633583:function:ACS-AdjustmentVideoObjectDetection arn:aws:lambda:ca-central-1:918755190332:function:ACS-AdjustmentVideoObjectDetection Video Frame Object Tracking Adjustment - Use this task type when you want workers to adjust bounding boxes that workers have added to video frames to track object movement across a sequence of video frames. arn:aws:lambda:us-east-1:432418664414:function:ACS-AdjustmentVideoObjectTracking arn:aws:lambda:us-east-2:266458841044:function:ACS-AdjustmentVideoObjectTracking arn:aws:lambda:us-west-2:081040173940:function:ACS-AdjustmentVideoObjectTracking arn:aws:lambda:eu-west-1:568282634449:function:ACS-AdjustmentVideoObjectTracking arn:aws:lambda:ap-northeast-1:477331159723:function:ACS-AdjustmentVideoObjectTracking arn:aws:lambda:ap-southeast-2:454466003867:function:ACS-AdjustmentVideoObjectTracking arn:aws:lambda:ap-south-1:565803892007:function:ACS-AdjustmentVideoObjectTracking arn:aws:lambda:eu-central-1:203001061592:function:ACS-AdjustmentVideoObjectTracking arn:aws:lambda:ap-northeast-2:845288260483:function:ACS-AdjustmentVideoObjectTracking arn:aws:lambda:eu-west-2:487402164563:function:ACS-AdjustmentVideoObjectTracking arn:aws:lambda:ap-southeast-1:377565633583:function:ACS-AdjustmentVideoObjectTracking arn:aws:lambda:ca-central-1:918755190332:function:ACS-AdjustmentVideoObjectTracking 3D Point Cloud Object Detection Adjustment - Use this task type when you want workers to adjust 3D cuboids around objects in a 3D point cloud. arn:aws:lambda:us-east-1:432418664414:function:ACS-Adjustment3DPointCloudObjectDetection arn:aws:lambda:us-east-2:266458841044:function:ACS-Adjustment3DPointCloudObjectDetection arn:aws:lambda:us-west-2:081040173940:function:ACS-Adjustment3DPointCloudObjectDetection arn:aws:lambda:eu-west-1:568282634449:function:ACS-Adjustment3DPointCloudObjectDetection arn:aws:lambda:ap-northeast-1:477331159723:function:ACS-Adjustment3DPointCloudObjectDetection arn:aws:lambda:ap-southeast-2:454466003867:function:ACS-Adjustment3DPointCloudObjectDetection arn:aws:lambda:ap-south-1:565803892007:function:ACS-Adjustment3DPointCloudObjectDetection arn:aws:lambda:eu-central-1:203001061592:function:ACS-Adjustment3DPointCloudObjectDetection arn:aws:lambda:ap-northeast-2:845288260483:function:ACS-Adjustment3DPointCloudObjectDetection arn:aws:lambda:eu-west-2:487402164563:function:ACS-Adjustment3DPointCloudObjectDetection arn:aws:lambda:ap-southeast-1:377565633583:function:ACS-Adjustment3DPointCloudObjectDetection arn:aws:lambda:ca-central-1:918755190332:function:ACS-Adjustment3DPointCloudObjectDetection 3D Point Cloud Object Tracking Adjustment - Use this task type when you want workers to adjust 3D cuboids around objects that appear in a sequence of 3D point cloud frames. arn:aws:lambda:us-east-1:432418664414:function:ACS-Adjustment3DPointCloudObjectTracking arn:aws:lambda:us-east-2:266458841044:function:ACS-Adjustment3DPointCloudObjectTracking arn:aws:lambda:us-west-2:081040173940:function:ACS-Adjustment3DPointCloudObjectTracking arn:aws:lambda:eu-west-1:568282634449:function:ACS-Adjustment3DPointCloudObjectTracking arn:aws:lambda:ap-northeast-1:477331159723:function:ACS-Adjustment3DPointCloudObjectTracking arn:aws:lambda:ap-southeast-2:454466003867:function:ACS-Adjustment3DPointCloudObjectTracking arn:aws:lambda:ap-south-1:565803892007:function:ACS-Adjustment3DPointCloudObjectTracking arn:aws:lambda:eu-central-1:203001061592:function:ACS-Adjustment3DPointCloudObjectTracking arn:aws:lambda:ap-northeast-2:845288260483:function:ACS-Adjustment3DPointCloudObjectTracking arn:aws:lambda:eu-west-2:487402164563:function:ACS-Adjustment3DPointCloudObjectTracking arn:aws:lambda:ap-southeast-1:377565633583:function:ACS-Adjustment3DPointCloudObjectTracking arn:aws:lambda:ca-central-1:918755190332:function:ACS-Adjustment3DPointCloudObjectTracking 3D Point Cloud Semantic Segmentation Adjustment - Use this task type when you want workers to adjust a point-level semantic segmentation masks using a paint tool. arn:aws:lambda:us-east-1:432418664414:function:ACS-3DPointCloudSemanticSegmentation arn:aws:lambda:us-east-1:432418664414:function:ACS-Adjustment3DPointCloudSemanticSegmentation arn:aws:lambda:us-east-2:266458841044:function:ACS-Adjustment3DPointCloudSemanticSegmentation arn:aws:lambda:us-west-2:081040173940:function:ACS-Adjustment3DPointCloudSemanticSegmentation arn:aws:lambda:eu-west-1:568282634449:function:ACS-Adjustment3DPointCloudSemanticSegmentation arn:aws:lambda:ap-northeast-1:477331159723:function:ACS-Adjustment3DPointCloudSemanticSegmentation arn:aws:lambda:ap-southeast-2:454466003867:function:ACS-Adjustment3DPointCloudSemanticSegmentation arn:aws:lambda:ap-south-1:565803892007:function:ACS-Adjustment3DPointCloudSemanticSegmentation arn:aws:lambda:eu-central-1:203001061592:function:ACS-Adjustment3DPointCloudSemanticSegmentation arn:aws:lambda:ap-northeast-2:845288260483:function:ACS-Adjustment3DPointCloudSemanticSegmentation arn:aws:lambda:eu-west-2:487402164563:function:ACS-Adjustment3DPointCloudSemanticSegmentation arn:aws:lambda:ap-southeast-1:377565633583:function:ACS-Adjustment3DPointCloudSemanticSegmentation arn:aws:lambda:ca-central-1:918755190332:function:ACS-Adjustment3DPointCloudSemanticSegmentation Generative AI/Custom - Direct passthrough of output data without any transformation. arn:aws:lambda:us-east-1:432418664414:function:ACS-PassThrough arn:aws:lambda:us-east-2:266458841044:function:ACS-PassThrough arn:aws:lambda:us-west-2:081040173940:function:ACS-PassThrough arn:aws:lambda:eu-west-1:568282634449:function:ACS-PassThrough arn:aws:lambda:ap-northeast-1:477331159723:function:ACS-PassThrough arn:aws:lambda:ap-southeast-2:454466003867:function:ACS-PassThrough arn:aws:lambda:ap-south-1:565803892007:function:ACS-PassThrough arn:aws:lambda:eu-central-1:203001061592:function:ACS-PassThrough arn:aws:lambda:ap-northeast-2:845288260483:function:ACS-PassThrough arn:aws:lambda:eu-west-2:487402164563:function:ACS-PassThrough arn:aws:lambda:ap-southeast-1:377565633583:function:ACS-PassThrough arn:aws:lambda:ca-central-1:918755190332:function:ACS-PassThrough
|
|
1225
1285
|
"""
|
|
1226
1286
|
|
|
1227
1287
|
annotation_consolidation_lambda_arn: str
|
|
@@ -1516,7 +1576,7 @@ class IamIdentity(Base):
|
|
|
1516
1576
|
class UserContext(Base):
|
|
1517
1577
|
"""
|
|
1518
1578
|
UserContext
|
|
1519
|
-
Information about the user who created or modified
|
|
1579
|
+
Information about the user who created or modified a SageMaker resource.
|
|
1520
1580
|
|
|
1521
1581
|
Attributes
|
|
1522
1582
|
----------------------
|
|
@@ -1652,6 +1712,21 @@ class AthenaDatasetDefinition(Base):
|
|
|
1652
1712
|
output_compression: Optional[str] = Unassigned()
|
|
1653
1713
|
|
|
1654
1714
|
|
|
1715
|
+
class AuthorizedUrl(Base):
|
|
1716
|
+
"""
|
|
1717
|
+
AuthorizedUrl
|
|
1718
|
+
Contains a presigned URL and its associated local file path for downloading hub content artifacts.
|
|
1719
|
+
|
|
1720
|
+
Attributes
|
|
1721
|
+
----------------------
|
|
1722
|
+
url: The presigned S3 URL that provides temporary, secure access to download the file. URLs expire within 15 minutes for security purposes.
|
|
1723
|
+
local_path: The recommended local file path where the downloaded file should be stored to maintain proper directory structure and file organization.
|
|
1724
|
+
"""
|
|
1725
|
+
|
|
1726
|
+
url: Optional[str] = Unassigned()
|
|
1727
|
+
local_path: Optional[str] = Unassigned()
|
|
1728
|
+
|
|
1729
|
+
|
|
1655
1730
|
class AutoMLAlgorithmConfig(Base):
|
|
1656
1731
|
"""
|
|
1657
1732
|
AutoMLAlgorithmConfig
|
|
@@ -2385,6 +2460,42 @@ class Autotune(Base):
|
|
|
2385
2460
|
mode: str
|
|
2386
2461
|
|
|
2387
2462
|
|
|
2463
|
+
class BatchAddClusterNodesError(Base):
|
|
2464
|
+
"""
|
|
2465
|
+
BatchAddClusterNodesError
|
|
2466
|
+
Information about an error that occurred during the node addition operation.
|
|
2467
|
+
|
|
2468
|
+
Attributes
|
|
2469
|
+
----------------------
|
|
2470
|
+
instance_group_name: The name of the instance group for which the error occurred.
|
|
2471
|
+
error_code: The error code associated with the failure. Possible values include InstanceGroupNotFound and InvalidInstanceGroupState.
|
|
2472
|
+
failed_count: The number of nodes that failed to be added to the specified instance group.
|
|
2473
|
+
message: A descriptive message providing additional details about the error.
|
|
2474
|
+
"""
|
|
2475
|
+
|
|
2476
|
+
instance_group_name: str
|
|
2477
|
+
error_code: str
|
|
2478
|
+
failed_count: int
|
|
2479
|
+
message: Optional[str] = Unassigned()
|
|
2480
|
+
|
|
2481
|
+
|
|
2482
|
+
class NodeAdditionResult(Base):
|
|
2483
|
+
"""
|
|
2484
|
+
NodeAdditionResult
|
|
2485
|
+
Information about a node that was successfully added to the cluster.
|
|
2486
|
+
|
|
2487
|
+
Attributes
|
|
2488
|
+
----------------------
|
|
2489
|
+
node_logical_id: A unique identifier assigned to the node that can be used to track its provisioning status through the DescribeClusterNode operation.
|
|
2490
|
+
instance_group_name: The name of the instance group to which the node was added.
|
|
2491
|
+
status: The current status of the node. Possible values include Pending, Running, Failed, ShuttingDown, SystemUpdating, DeepHealthCheckInProgress, and NotFound.
|
|
2492
|
+
"""
|
|
2493
|
+
|
|
2494
|
+
node_logical_id: str
|
|
2495
|
+
instance_group_name: str
|
|
2496
|
+
status: str
|
|
2497
|
+
|
|
2498
|
+
|
|
2388
2499
|
class BatchDataCaptureConfig(Base):
|
|
2389
2500
|
"""
|
|
2390
2501
|
BatchDataCaptureConfig
|
|
@@ -2402,6 +2513,23 @@ class BatchDataCaptureConfig(Base):
|
|
|
2402
2513
|
generate_inference_id: Optional[bool] = Unassigned()
|
|
2403
2514
|
|
|
2404
2515
|
|
|
2516
|
+
class BatchDeleteClusterNodeLogicalIdsError(Base):
|
|
2517
|
+
"""
|
|
2518
|
+
BatchDeleteClusterNodeLogicalIdsError
|
|
2519
|
+
Information about an error that occurred when attempting to delete a node identified by its NodeLogicalId.
|
|
2520
|
+
|
|
2521
|
+
Attributes
|
|
2522
|
+
----------------------
|
|
2523
|
+
code: The error code associated with the failure. Possible values include NodeLogicalIdNotFound, InvalidNodeStatus, and InternalError.
|
|
2524
|
+
message: A descriptive message providing additional details about the error.
|
|
2525
|
+
node_logical_id: The NodeLogicalId of the node that could not be deleted.
|
|
2526
|
+
"""
|
|
2527
|
+
|
|
2528
|
+
code: str
|
|
2529
|
+
message: str
|
|
2530
|
+
node_logical_id: str
|
|
2531
|
+
|
|
2532
|
+
|
|
2405
2533
|
class BatchDeleteClusterNodesError(Base):
|
|
2406
2534
|
"""
|
|
2407
2535
|
BatchDeleteClusterNodesError
|
|
@@ -2427,10 +2555,14 @@ class BatchDeleteClusterNodesResponse(Base):
|
|
|
2427
2555
|
----------------------
|
|
2428
2556
|
failed: A list of errors encountered when deleting the specified nodes.
|
|
2429
2557
|
successful: A list of node IDs that were successfully deleted from the specified cluster.
|
|
2558
|
+
failed_node_logical_ids: A list of NodeLogicalIds that could not be deleted, along with error information explaining why the deletion failed.
|
|
2559
|
+
successful_node_logical_ids: A list of NodeLogicalIds that were successfully deleted from the cluster.
|
|
2430
2560
|
"""
|
|
2431
2561
|
|
|
2432
2562
|
failed: Optional[List[BatchDeleteClusterNodesError]] = Unassigned()
|
|
2433
2563
|
successful: Optional[List[str]] = Unassigned()
|
|
2564
|
+
failed_node_logical_ids: Optional[List[BatchDeleteClusterNodeLogicalIdsError]] = Unassigned()
|
|
2565
|
+
successful_node_logical_ids: Optional[List[str]] = Unassigned()
|
|
2434
2566
|
|
|
2435
2567
|
|
|
2436
2568
|
class BatchDescribeModelPackageError(Base):
|
|
@@ -2886,6 +3018,21 @@ class CanvasAppSettings(Base):
|
|
|
2886
3018
|
emr_serverless_settings: Optional[EmrServerlessSettings] = Unassigned()
|
|
2887
3019
|
|
|
2888
3020
|
|
|
3021
|
+
class CapacityReservation(Base):
|
|
3022
|
+
"""
|
|
3023
|
+
CapacityReservation
|
|
3024
|
+
Information about the Capacity Reservation used by an instance or instance group.
|
|
3025
|
+
|
|
3026
|
+
Attributes
|
|
3027
|
+
----------------------
|
|
3028
|
+
arn: The Amazon Resource Name (ARN) of the Capacity Reservation.
|
|
3029
|
+
type: The type of Capacity Reservation. Valid values are ODCR (On-Demand Capacity Reservation) or CRG (Capacity Reservation Group).
|
|
3030
|
+
"""
|
|
3031
|
+
|
|
3032
|
+
arn: Optional[str] = Unassigned()
|
|
3033
|
+
type: Optional[str] = Unassigned()
|
|
3034
|
+
|
|
3035
|
+
|
|
2889
3036
|
class CapacitySizeConfig(Base):
|
|
2890
3037
|
"""
|
|
2891
3038
|
CapacitySizeConfig
|
|
@@ -2972,6 +3119,125 @@ class CategoricalParameterRangeSpecification(Base):
|
|
|
2972
3119
|
values: List[str]
|
|
2973
3120
|
|
|
2974
3121
|
|
|
3122
|
+
class CfnStackCreateParameter(Base):
|
|
3123
|
+
"""
|
|
3124
|
+
CfnStackCreateParameter
|
|
3125
|
+
A key-value pair that represents a parameter for the CloudFormation stack.
|
|
3126
|
+
|
|
3127
|
+
Attributes
|
|
3128
|
+
----------------------
|
|
3129
|
+
key: The name of the CloudFormation parameter.
|
|
3130
|
+
value: The value of the CloudFormation parameter.
|
|
3131
|
+
"""
|
|
3132
|
+
|
|
3133
|
+
key: str
|
|
3134
|
+
value: Optional[str] = Unassigned()
|
|
3135
|
+
|
|
3136
|
+
|
|
3137
|
+
class CfnCreateTemplateProvider(Base):
|
|
3138
|
+
"""
|
|
3139
|
+
CfnCreateTemplateProvider
|
|
3140
|
+
The CloudFormation template provider configuration for creating infrastructure resources.
|
|
3141
|
+
|
|
3142
|
+
Attributes
|
|
3143
|
+
----------------------
|
|
3144
|
+
template_name: A unique identifier for the template within the project.
|
|
3145
|
+
template_url: The Amazon S3 URL of the CloudFormation template.
|
|
3146
|
+
role_arn: The IAM role that CloudFormation assumes when creating the stack.
|
|
3147
|
+
parameters: An array of CloudFormation stack parameters.
|
|
3148
|
+
"""
|
|
3149
|
+
|
|
3150
|
+
template_name: str
|
|
3151
|
+
template_url: str
|
|
3152
|
+
role_arn: Optional[str] = Unassigned()
|
|
3153
|
+
parameters: Optional[List[CfnStackCreateParameter]] = Unassigned()
|
|
3154
|
+
|
|
3155
|
+
|
|
3156
|
+
class CfnStackDetail(Base):
|
|
3157
|
+
"""
|
|
3158
|
+
CfnStackDetail
|
|
3159
|
+
Details about the CloudFormation stack.
|
|
3160
|
+
|
|
3161
|
+
Attributes
|
|
3162
|
+
----------------------
|
|
3163
|
+
name: The name of the CloudFormation stack.
|
|
3164
|
+
id: The unique identifier of the CloudFormation stack.
|
|
3165
|
+
status_message: A human-readable message about the stack's current status.
|
|
3166
|
+
"""
|
|
3167
|
+
|
|
3168
|
+
status_message: str
|
|
3169
|
+
name: Optional[str] = Unassigned()
|
|
3170
|
+
id: Optional[str] = Unassigned()
|
|
3171
|
+
|
|
3172
|
+
|
|
3173
|
+
class CfnStackParameter(Base):
|
|
3174
|
+
"""
|
|
3175
|
+
CfnStackParameter
|
|
3176
|
+
A key-value pair representing a parameter used in the CloudFormation stack.
|
|
3177
|
+
|
|
3178
|
+
Attributes
|
|
3179
|
+
----------------------
|
|
3180
|
+
key: The name of the CloudFormation parameter.
|
|
3181
|
+
value: The value of the CloudFormation parameter.
|
|
3182
|
+
"""
|
|
3183
|
+
|
|
3184
|
+
key: str
|
|
3185
|
+
value: Optional[str] = Unassigned()
|
|
3186
|
+
|
|
3187
|
+
|
|
3188
|
+
class CfnStackUpdateParameter(Base):
|
|
3189
|
+
"""
|
|
3190
|
+
CfnStackUpdateParameter
|
|
3191
|
+
A key-value pair representing a parameter used in the CloudFormation stack.
|
|
3192
|
+
|
|
3193
|
+
Attributes
|
|
3194
|
+
----------------------
|
|
3195
|
+
key: The name of the CloudFormation parameter.
|
|
3196
|
+
value: The value of the CloudFormation parameter.
|
|
3197
|
+
"""
|
|
3198
|
+
|
|
3199
|
+
key: str
|
|
3200
|
+
value: Optional[str] = Unassigned()
|
|
3201
|
+
|
|
3202
|
+
|
|
3203
|
+
class CfnTemplateProviderDetail(Base):
|
|
3204
|
+
"""
|
|
3205
|
+
CfnTemplateProviderDetail
|
|
3206
|
+
Details about a CloudFormation template provider configuration and associated provisioning information.
|
|
3207
|
+
|
|
3208
|
+
Attributes
|
|
3209
|
+
----------------------
|
|
3210
|
+
template_name: The unique identifier of the template within the project.
|
|
3211
|
+
template_url: The Amazon S3 URL of the CloudFormation template.
|
|
3212
|
+
role_arn: The IAM role used by CloudFormation to create the stack.
|
|
3213
|
+
parameters: An array of CloudFormation stack parameters.
|
|
3214
|
+
stack_detail: Information about the CloudFormation stack created by the template provider.
|
|
3215
|
+
"""
|
|
3216
|
+
|
|
3217
|
+
template_name: str
|
|
3218
|
+
template_url: str
|
|
3219
|
+
role_arn: Optional[str] = Unassigned()
|
|
3220
|
+
parameters: Optional[List[CfnStackParameter]] = Unassigned()
|
|
3221
|
+
stack_detail: Optional[CfnStackDetail] = Unassigned()
|
|
3222
|
+
|
|
3223
|
+
|
|
3224
|
+
class CfnUpdateTemplateProvider(Base):
|
|
3225
|
+
"""
|
|
3226
|
+
CfnUpdateTemplateProvider
|
|
3227
|
+
Contains configuration details for updating an existing CloudFormation template provider in the project.
|
|
3228
|
+
|
|
3229
|
+
Attributes
|
|
3230
|
+
----------------------
|
|
3231
|
+
template_name: The unique identifier of the template to update within the project.
|
|
3232
|
+
template_url: The Amazon S3 URL of the CloudFormation template.
|
|
3233
|
+
parameters: An array of CloudFormation stack parameters.
|
|
3234
|
+
"""
|
|
3235
|
+
|
|
3236
|
+
template_name: str
|
|
3237
|
+
template_url: str
|
|
3238
|
+
parameters: Optional[List[CfnStackUpdateParameter]] = Unassigned()
|
|
3239
|
+
|
|
3240
|
+
|
|
2975
3241
|
class ChannelSpecification(Base):
|
|
2976
3242
|
"""
|
|
2977
3243
|
ChannelSpecification
|
|
@@ -3140,6 +3406,40 @@ class ClarifyExplainerConfig(Base):
|
|
|
3140
3406
|
inference_config: Optional[ClarifyInferenceConfig] = Unassigned()
|
|
3141
3407
|
|
|
3142
3408
|
|
|
3409
|
+
class ClusterAutoScalingConfig(Base):
|
|
3410
|
+
"""
|
|
3411
|
+
ClusterAutoScalingConfig
|
|
3412
|
+
Specifies the autoscaling configuration for a HyperPod cluster.
|
|
3413
|
+
|
|
3414
|
+
Attributes
|
|
3415
|
+
----------------------
|
|
3416
|
+
mode: Describes whether autoscaling is enabled or disabled for the cluster. Valid values are Enable and Disable.
|
|
3417
|
+
auto_scaler_type: The type of autoscaler to use. Currently supported value is Karpenter.
|
|
3418
|
+
"""
|
|
3419
|
+
|
|
3420
|
+
mode: str
|
|
3421
|
+
auto_scaler_type: Optional[str] = Unassigned()
|
|
3422
|
+
|
|
3423
|
+
|
|
3424
|
+
class ClusterAutoScalingConfigOutput(Base):
|
|
3425
|
+
"""
|
|
3426
|
+
ClusterAutoScalingConfigOutput
|
|
3427
|
+
The autoscaling configuration and status information for a HyperPod cluster.
|
|
3428
|
+
|
|
3429
|
+
Attributes
|
|
3430
|
+
----------------------
|
|
3431
|
+
mode: Describes whether autoscaling is enabled or disabled for the cluster.
|
|
3432
|
+
auto_scaler_type: The type of autoscaler configured for the cluster.
|
|
3433
|
+
status: The current status of the autoscaling configuration. Valid values are InService, Failed, Creating, and Deleting.
|
|
3434
|
+
failure_message: If the autoscaling status is Failed, this field contains a message describing the failure.
|
|
3435
|
+
"""
|
|
3436
|
+
|
|
3437
|
+
mode: str
|
|
3438
|
+
status: str
|
|
3439
|
+
auto_scaler_type: Optional[str] = Unassigned()
|
|
3440
|
+
failure_message: Optional[str] = Unassigned()
|
|
3441
|
+
|
|
3442
|
+
|
|
3143
3443
|
class ClusterEbsVolumeConfig(Base):
|
|
3144
3444
|
"""
|
|
3145
3445
|
ClusterEbsVolumeConfig
|
|
@@ -3148,9 +3448,181 @@ class ClusterEbsVolumeConfig(Base):
|
|
|
3148
3448
|
Attributes
|
|
3149
3449
|
----------------------
|
|
3150
3450
|
volume_size_in_gb: The size in gigabytes (GB) of the additional EBS volume to be attached to the instances in the SageMaker HyperPod cluster instance group. The additional EBS volume is attached to each instance within the SageMaker HyperPod cluster instance group and mounted to /opt/sagemaker.
|
|
3451
|
+
volume_kms_key_id: The ID of a KMS key to encrypt the Amazon EBS volume.
|
|
3452
|
+
root_volume: Specifies whether the configuration is for the cluster's root or secondary Amazon EBS volume. You can specify two ClusterEbsVolumeConfig fields to configure both the root and secondary volumes. Set the value to True if you'd like to provide your own customer managed Amazon Web Services KMS key to encrypt the root volume. When True: The configuration is applied to the root volume. You can't specify the VolumeSizeInGB field. The size of the root volume is determined for you. You must specify a KMS key ID for VolumeKmsKeyId to encrypt the root volume with your own KMS key instead of an Amazon Web Services owned KMS key. Otherwise, by default, the value is False, and the following applies: The configuration is applied to the secondary volume, while the root volume is encrypted with an Amazon Web Services owned key. You must specify the VolumeSizeInGB field. You can optionally specify the VolumeKmsKeyId to encrypt the secondary volume with your own KMS key instead of an Amazon Web Services owned KMS key.
|
|
3151
3453
|
"""
|
|
3152
3454
|
|
|
3153
|
-
volume_size_in_gb: int
|
|
3455
|
+
volume_size_in_gb: Optional[int] = Unassigned()
|
|
3456
|
+
volume_kms_key_id: Optional[str] = Unassigned()
|
|
3457
|
+
root_volume: Optional[bool] = Unassigned()
|
|
3458
|
+
|
|
3459
|
+
|
|
3460
|
+
class ClusterMetadata(Base):
|
|
3461
|
+
"""
|
|
3462
|
+
ClusterMetadata
|
|
3463
|
+
Metadata information about a HyperPod cluster showing information about the cluster level operations, such as creating, updating, and deleting.
|
|
3464
|
+
|
|
3465
|
+
Attributes
|
|
3466
|
+
----------------------
|
|
3467
|
+
failure_message: An error message describing why the cluster level operation (such as creating, updating, or deleting) failed.
|
|
3468
|
+
eks_role_access_entries: A list of Amazon EKS IAM role ARNs associated with the cluster. This is created by HyperPod on your behalf and only applies for EKS orchestrated clusters.
|
|
3469
|
+
slr_access_entry: The Service-Linked Role (SLR) associated with the cluster. This is created by HyperPod on your behalf and only applies for EKS orchestrated clusters.
|
|
3470
|
+
"""
|
|
3471
|
+
|
|
3472
|
+
failure_message: Optional[str] = Unassigned()
|
|
3473
|
+
eks_role_access_entries: Optional[List[str]] = Unassigned()
|
|
3474
|
+
slr_access_entry: Optional[str] = Unassigned()
|
|
3475
|
+
|
|
3476
|
+
|
|
3477
|
+
class InstanceGroupMetadata(Base):
|
|
3478
|
+
"""
|
|
3479
|
+
InstanceGroupMetadata
|
|
3480
|
+
Metadata information about an instance group in a HyperPod cluster.
|
|
3481
|
+
|
|
3482
|
+
Attributes
|
|
3483
|
+
----------------------
|
|
3484
|
+
failure_message: An error message describing why the instance group level operation (such as creating, scaling, or deleting) failed.
|
|
3485
|
+
availability_zone_id: The ID of the Availability Zone where the instance group is located.
|
|
3486
|
+
capacity_reservation: Information about the Capacity Reservation used by the instance group.
|
|
3487
|
+
subnet_id: The ID of the subnet where the instance group is located.
|
|
3488
|
+
security_group_ids: A list of security group IDs associated with the instance group.
|
|
3489
|
+
ami_override: If you use a custom Amazon Machine Image (AMI) for the instance group, this field shows the ID of the custom AMI.
|
|
3490
|
+
"""
|
|
3491
|
+
|
|
3492
|
+
failure_message: Optional[str] = Unassigned()
|
|
3493
|
+
availability_zone_id: Optional[str] = Unassigned()
|
|
3494
|
+
capacity_reservation: Optional[CapacityReservation] = Unassigned()
|
|
3495
|
+
subnet_id: Optional[str] = Unassigned()
|
|
3496
|
+
security_group_ids: Optional[List[str]] = Unassigned()
|
|
3497
|
+
ami_override: Optional[str] = Unassigned()
|
|
3498
|
+
|
|
3499
|
+
|
|
3500
|
+
class InstanceGroupScalingMetadata(Base):
|
|
3501
|
+
"""
|
|
3502
|
+
InstanceGroupScalingMetadata
|
|
3503
|
+
Metadata information about scaling operations for an instance group.
|
|
3504
|
+
|
|
3505
|
+
Attributes
|
|
3506
|
+
----------------------
|
|
3507
|
+
instance_count: The current number of instances in the group.
|
|
3508
|
+
target_count: The desired number of instances for the group after scaling.
|
|
3509
|
+
failure_message: An error message describing why the scaling operation failed, if applicable.
|
|
3510
|
+
"""
|
|
3511
|
+
|
|
3512
|
+
instance_count: Optional[int] = Unassigned()
|
|
3513
|
+
target_count: Optional[int] = Unassigned()
|
|
3514
|
+
failure_message: Optional[str] = Unassigned()
|
|
3515
|
+
|
|
3516
|
+
|
|
3517
|
+
class InstanceMetadata(Base):
|
|
3518
|
+
"""
|
|
3519
|
+
InstanceMetadata
|
|
3520
|
+
Metadata information about an instance in a HyperPod cluster.
|
|
3521
|
+
|
|
3522
|
+
Attributes
|
|
3523
|
+
----------------------
|
|
3524
|
+
customer_eni: The ID of the customer-managed Elastic Network Interface (ENI) associated with the instance.
|
|
3525
|
+
additional_enis: Information about additional Elastic Network Interfaces (ENIs) associated with the instance.
|
|
3526
|
+
capacity_reservation: Information about the Capacity Reservation used by the instance.
|
|
3527
|
+
failure_message: An error message describing why the instance creation or update failed, if applicable.
|
|
3528
|
+
lcs_execution_state: The execution state of the Lifecycle Script (LCS) for the instance.
|
|
3529
|
+
node_logical_id: The unique logical identifier of the node within the cluster. The ID used here is the same object as in the BatchAddClusterNodes API.
|
|
3530
|
+
"""
|
|
3531
|
+
|
|
3532
|
+
customer_eni: Optional[str] = Unassigned()
|
|
3533
|
+
additional_enis: Optional[AdditionalEnis] = Unassigned()
|
|
3534
|
+
capacity_reservation: Optional[CapacityReservation] = Unassigned()
|
|
3535
|
+
failure_message: Optional[str] = Unassigned()
|
|
3536
|
+
lcs_execution_state: Optional[str] = Unassigned()
|
|
3537
|
+
node_logical_id: Optional[str] = Unassigned()
|
|
3538
|
+
|
|
3539
|
+
|
|
3540
|
+
class EventMetadata(Base):
|
|
3541
|
+
"""
|
|
3542
|
+
EventMetadata
|
|
3543
|
+
Metadata associated with a cluster event, which may include details about various resource types.
|
|
3544
|
+
|
|
3545
|
+
Attributes
|
|
3546
|
+
----------------------
|
|
3547
|
+
cluster: Metadata specific to cluster-level events.
|
|
3548
|
+
instance_group: Metadata specific to instance group-level events.
|
|
3549
|
+
instance_group_scaling: Metadata related to instance group scaling events.
|
|
3550
|
+
instance: Metadata specific to instance-level events.
|
|
3551
|
+
"""
|
|
3552
|
+
|
|
3553
|
+
cluster: Optional[ClusterMetadata] = Unassigned()
|
|
3554
|
+
instance_group: Optional[InstanceGroupMetadata] = Unassigned()
|
|
3555
|
+
instance_group_scaling: Optional[InstanceGroupScalingMetadata] = Unassigned()
|
|
3556
|
+
instance: Optional[InstanceMetadata] = Unassigned()
|
|
3557
|
+
|
|
3558
|
+
|
|
3559
|
+
class EventDetails(Base):
|
|
3560
|
+
"""
|
|
3561
|
+
EventDetails
|
|
3562
|
+
Detailed information about a specific event, including event metadata.
|
|
3563
|
+
|
|
3564
|
+
Attributes
|
|
3565
|
+
----------------------
|
|
3566
|
+
event_metadata: Metadata specific to the event, which may include information about the cluster, instance group, or instance involved.
|
|
3567
|
+
"""
|
|
3568
|
+
|
|
3569
|
+
event_metadata: Optional[EventMetadata] = Unassigned()
|
|
3570
|
+
|
|
3571
|
+
|
|
3572
|
+
class ClusterEventDetail(Base):
|
|
3573
|
+
"""
|
|
3574
|
+
ClusterEventDetail
|
|
3575
|
+
Detailed information about a specific event in a HyperPod cluster.
|
|
3576
|
+
|
|
3577
|
+
Attributes
|
|
3578
|
+
----------------------
|
|
3579
|
+
event_id: The unique identifier (UUID) of the event.
|
|
3580
|
+
cluster_arn: The Amazon Resource Name (ARN) of the HyperPod cluster associated with the event.
|
|
3581
|
+
cluster_name: The name of the HyperPod cluster associated with the event.
|
|
3582
|
+
instance_group_name: The name of the instance group associated with the event, if applicable.
|
|
3583
|
+
instance_id: The EC2 instance ID associated with the event, if applicable.
|
|
3584
|
+
resource_type: The type of resource associated with the event. Valid values are Cluster, InstanceGroup, or Instance.
|
|
3585
|
+
event_time: The timestamp when the event occurred.
|
|
3586
|
+
event_details: Additional details about the event, including event-specific metadata.
|
|
3587
|
+
description: A human-readable description of the event.
|
|
3588
|
+
"""
|
|
3589
|
+
|
|
3590
|
+
event_id: str
|
|
3591
|
+
cluster_arn: str
|
|
3592
|
+
cluster_name: Union[str, object]
|
|
3593
|
+
resource_type: str
|
|
3594
|
+
event_time: datetime.datetime
|
|
3595
|
+
instance_group_name: Optional[str] = Unassigned()
|
|
3596
|
+
instance_id: Optional[str] = Unassigned()
|
|
3597
|
+
event_details: Optional[EventDetails] = Unassigned()
|
|
3598
|
+
description: Optional[str] = Unassigned()
|
|
3599
|
+
|
|
3600
|
+
|
|
3601
|
+
class ClusterEventSummary(Base):
|
|
3602
|
+
"""
|
|
3603
|
+
ClusterEventSummary
|
|
3604
|
+
A summary of an event in a HyperPod cluster.
|
|
3605
|
+
|
|
3606
|
+
Attributes
|
|
3607
|
+
----------------------
|
|
3608
|
+
event_id: The unique identifier (UUID) of the event.
|
|
3609
|
+
cluster_arn: The Amazon Resource Name (ARN) of the HyperPod cluster associated with the event.
|
|
3610
|
+
cluster_name: The name of the HyperPod cluster associated with the event.
|
|
3611
|
+
instance_group_name: The name of the instance group associated with the event, if applicable.
|
|
3612
|
+
instance_id: The Amazon Elastic Compute Cloud (EC2) instance ID associated with the event, if applicable.
|
|
3613
|
+
resource_type: The type of resource associated with the event. Valid values are Cluster, InstanceGroup, or Instance.
|
|
3614
|
+
event_time: The timestamp when the event occurred.
|
|
3615
|
+
description: A brief, human-readable description of the event.
|
|
3616
|
+
"""
|
|
3617
|
+
|
|
3618
|
+
event_id: str
|
|
3619
|
+
cluster_arn: str
|
|
3620
|
+
cluster_name: Union[str, object]
|
|
3621
|
+
resource_type: str
|
|
3622
|
+
event_time: datetime.datetime
|
|
3623
|
+
instance_group_name: Optional[str] = Unassigned()
|
|
3624
|
+
instance_id: Optional[str] = Unassigned()
|
|
3625
|
+
description: Optional[str] = Unassigned()
|
|
3154
3626
|
|
|
3155
3627
|
|
|
3156
3628
|
class ClusterLifeCycleConfig(Base):
|
|
@@ -3249,6 +3721,8 @@ class ClusterInstanceGroupDetails(Base):
|
|
|
3249
3721
|
training_plan_status: The current status of the training plan associated with this cluster instance group.
|
|
3250
3722
|
override_vpc_config: The customized Amazon VPC configuration at the instance group level that overrides the default Amazon VPC configuration of the SageMaker HyperPod cluster.
|
|
3251
3723
|
scheduled_update_config: The configuration object of the schedule that SageMaker follows when updating the AMI.
|
|
3724
|
+
current_image_id: The ID of the Amazon Machine Image (AMI) currently in use by the instance group.
|
|
3725
|
+
desired_image_id: The ID of the Amazon Machine Image (AMI) desired for the instance group.
|
|
3252
3726
|
"""
|
|
3253
3727
|
|
|
3254
3728
|
current_count: Optional[int] = Unassigned()
|
|
@@ -3265,6 +3739,8 @@ class ClusterInstanceGroupDetails(Base):
|
|
|
3265
3739
|
training_plan_status: Optional[str] = Unassigned()
|
|
3266
3740
|
override_vpc_config: Optional[VpcConfig] = Unassigned()
|
|
3267
3741
|
scheduled_update_config: Optional[ScheduledUpdateConfig] = Unassigned()
|
|
3742
|
+
current_image_id: Optional[str] = Unassigned()
|
|
3743
|
+
desired_image_id: Optional[str] = Unassigned()
|
|
3268
3744
|
|
|
3269
3745
|
|
|
3270
3746
|
class ClusterInstanceGroupSpecification(Base):
|
|
@@ -3285,6 +3761,7 @@ class ClusterInstanceGroupSpecification(Base):
|
|
|
3285
3761
|
training_plan_arn: The Amazon Resource Name (ARN); of the training plan to use for this cluster instance group. For more information about how to reserve GPU capacity for your SageMaker HyperPod clusters using Amazon SageMaker Training Plan, see CreateTrainingPlan .
|
|
3286
3762
|
override_vpc_config: To configure multi-AZ deployments, customize the Amazon VPC configuration at the instance group level. You can specify different subnets and security groups across different AZs in the instance group specification to override a SageMaker HyperPod cluster's default Amazon VPC configuration. For more information about deploying a cluster in multiple AZs, see Setting up SageMaker HyperPod clusters across multiple AZs. When your Amazon VPC and subnets support IPv6, network communications differ based on the cluster orchestration platform: Slurm-orchestrated clusters automatically configure nodes with dual IPv6 and IPv4 addresses, allowing immediate IPv6 network communications. In Amazon EKS-orchestrated clusters, nodes receive dual-stack addressing, but pods can only use IPv6 when the Amazon EKS cluster is explicitly IPv6-enabled. For information about deploying an IPv6 Amazon EKS cluster, see Amazon EKS IPv6 Cluster Deployment. Additional resources for IPv6 configuration: For information about adding IPv6 support to your VPC, see to IPv6 Support for VPC. For information about creating a new IPv6-compatible VPC, see Amazon VPC Creation Guide. To configure SageMaker HyperPod with a custom Amazon VPC, see Custom Amazon VPC Setup for SageMaker HyperPod.
|
|
3287
3763
|
scheduled_update_config: The configuration object of the schedule that SageMaker uses to update the AMI.
|
|
3764
|
+
image_id: When configuring your HyperPod cluster, you can specify an image ID using one of the following options: HyperPodPublicAmiId: Use a HyperPod public AMI CustomAmiId: Use your custom AMI default: Use the default latest system image If you choose to use a custom AMI (CustomAmiId), ensure it meets the following requirements: Encryption: The custom AMI must be unencrypted. Ownership: The custom AMI must be owned by the same Amazon Web Services account that is creating the HyperPod cluster. Volume support: Only the primary AMI snapshot volume is supported; additional AMI volumes are not supported. When updating the instance group's AMI through the UpdateClusterSoftware operation, if an instance group uses a custom AMI, you must provide an ImageId or use the default as input. Note that if you don't specify an instance group in your UpdateClusterSoftware request, then all of the instance groups are patched with the specified image.
|
|
3288
3765
|
"""
|
|
3289
3766
|
|
|
3290
3767
|
instance_count: int
|
|
@@ -3298,6 +3775,7 @@ class ClusterInstanceGroupSpecification(Base):
|
|
|
3298
3775
|
training_plan_arn: Optional[str] = Unassigned()
|
|
3299
3776
|
override_vpc_config: Optional[VpcConfig] = Unassigned()
|
|
3300
3777
|
scheduled_update_config: Optional[ScheduledUpdateConfig] = Unassigned()
|
|
3778
|
+
image_id: Optional[str] = Unassigned()
|
|
3301
3779
|
|
|
3302
3780
|
|
|
3303
3781
|
class ClusterInstancePlacement(Base):
|
|
@@ -3330,6 +3808,19 @@ class ClusterInstanceStatusDetails(Base):
|
|
|
3330
3808
|
message: Optional[str] = Unassigned()
|
|
3331
3809
|
|
|
3332
3810
|
|
|
3811
|
+
class UltraServerInfo(Base):
|
|
3812
|
+
"""
|
|
3813
|
+
UltraServerInfo
|
|
3814
|
+
Contains information about the UltraServer object.
|
|
3815
|
+
|
|
3816
|
+
Attributes
|
|
3817
|
+
----------------------
|
|
3818
|
+
id: The unique identifier of the UltraServer.
|
|
3819
|
+
"""
|
|
3820
|
+
|
|
3821
|
+
id: Optional[str] = Unassigned()
|
|
3822
|
+
|
|
3823
|
+
|
|
3333
3824
|
class ClusterNodeDetails(Base):
|
|
3334
3825
|
"""
|
|
3335
3826
|
ClusterNodeDetails
|
|
@@ -3339,6 +3830,7 @@ class ClusterNodeDetails(Base):
|
|
|
3339
3830
|
----------------------
|
|
3340
3831
|
instance_group_name: The instance group name in which the instance is.
|
|
3341
3832
|
instance_id: The ID of the instance.
|
|
3833
|
+
node_logical_id: A unique identifier for the node that persists throughout its lifecycle, from provisioning request to termination. This identifier can be used to track the node even before it has an assigned InstanceId.
|
|
3342
3834
|
instance_status: The status of the instance.
|
|
3343
3835
|
instance_type: The type of the instance.
|
|
3344
3836
|
launch_time: The time when the instance is launched.
|
|
@@ -3351,10 +3843,14 @@ class ClusterNodeDetails(Base):
|
|
|
3351
3843
|
private_primary_ipv6: The private primary IPv6 address of the SageMaker HyperPod cluster node when configured with an Amazon VPC that supports IPv6 and includes subnets with IPv6 addressing enabled in either the cluster Amazon VPC configuration or the instance group Amazon VPC configuration.
|
|
3352
3844
|
private_dns_hostname: The private DNS hostname of the SageMaker HyperPod cluster node.
|
|
3353
3845
|
placement: The placement details of the SageMaker HyperPod cluster node.
|
|
3846
|
+
current_image_id: The ID of the Amazon Machine Image (AMI) currently in use by the node.
|
|
3847
|
+
desired_image_id: The ID of the Amazon Machine Image (AMI) desired for the node.
|
|
3848
|
+
ultra_server_info: Contains information about the UltraServer.
|
|
3354
3849
|
"""
|
|
3355
3850
|
|
|
3356
3851
|
instance_group_name: Optional[str] = Unassigned()
|
|
3357
3852
|
instance_id: Optional[str] = Unassigned()
|
|
3853
|
+
node_logical_id: Optional[str] = Unassigned()
|
|
3358
3854
|
instance_status: Optional[ClusterInstanceStatusDetails] = Unassigned()
|
|
3359
3855
|
instance_type: Optional[str] = Unassigned()
|
|
3360
3856
|
launch_time: Optional[datetime.datetime] = Unassigned()
|
|
@@ -3367,6 +3863,9 @@ class ClusterNodeDetails(Base):
|
|
|
3367
3863
|
private_primary_ipv6: Optional[str] = Unassigned()
|
|
3368
3864
|
private_dns_hostname: Optional[str] = Unassigned()
|
|
3369
3865
|
placement: Optional[ClusterInstancePlacement] = Unassigned()
|
|
3866
|
+
current_image_id: Optional[str] = Unassigned()
|
|
3867
|
+
desired_image_id: Optional[str] = Unassigned()
|
|
3868
|
+
ultra_server_info: Optional[UltraServerInfo] = Unassigned()
|
|
3370
3869
|
|
|
3371
3870
|
|
|
3372
3871
|
class ClusterNodeSummary(Base):
|
|
@@ -3378,10 +3877,12 @@ class ClusterNodeSummary(Base):
|
|
|
3378
3877
|
----------------------
|
|
3379
3878
|
instance_group_name: The name of the instance group in which the instance is.
|
|
3380
3879
|
instance_id: The ID of the instance.
|
|
3880
|
+
node_logical_id: A unique identifier for the node that persists throughout its lifecycle, from provisioning request to termination. This identifier can be used to track the node even before it has an assigned InstanceId. This field is only included when IncludeNodeLogicalIds is set to True in the ListClusterNodes request.
|
|
3381
3881
|
instance_type: The type of the instance.
|
|
3382
3882
|
launch_time: The time when the instance is launched.
|
|
3383
3883
|
last_software_update_time: The time when SageMaker last updated the software of the instances in the cluster.
|
|
3384
3884
|
instance_status: The status of the instance.
|
|
3885
|
+
ultra_server_info: Contains information about the UltraServer.
|
|
3385
3886
|
"""
|
|
3386
3887
|
|
|
3387
3888
|
instance_group_name: str
|
|
@@ -3389,7 +3890,9 @@ class ClusterNodeSummary(Base):
|
|
|
3389
3890
|
instance_type: str
|
|
3390
3891
|
launch_time: datetime.datetime
|
|
3391
3892
|
instance_status: ClusterInstanceStatusDetails
|
|
3893
|
+
node_logical_id: Optional[str] = Unassigned()
|
|
3392
3894
|
last_software_update_time: Optional[datetime.datetime] = Unassigned()
|
|
3895
|
+
ultra_server_info: Optional[UltraServerInfo] = Unassigned()
|
|
3393
3896
|
|
|
3394
3897
|
|
|
3395
3898
|
class ClusterOrchestratorEksConfig(Base):
|
|
@@ -3418,6 +3921,121 @@ class ClusterOrchestrator(Base):
|
|
|
3418
3921
|
eks: ClusterOrchestratorEksConfig
|
|
3419
3922
|
|
|
3420
3923
|
|
|
3924
|
+
class FSxLustreConfig(Base):
|
|
3925
|
+
"""
|
|
3926
|
+
FSxLustreConfig
|
|
3927
|
+
Configuration settings for an Amazon FSx for Lustre file system to be used with the cluster.
|
|
3928
|
+
|
|
3929
|
+
Attributes
|
|
3930
|
+
----------------------
|
|
3931
|
+
size_in_gi_b: The storage capacity of the Amazon FSx for Lustre file system, specified in gibibytes (GiB).
|
|
3932
|
+
per_unit_storage_throughput: The throughput capacity of the Amazon FSx for Lustre file system, measured in MB/s per TiB of storage.
|
|
3933
|
+
"""
|
|
3934
|
+
|
|
3935
|
+
size_in_gi_b: int
|
|
3936
|
+
per_unit_storage_throughput: int
|
|
3937
|
+
|
|
3938
|
+
|
|
3939
|
+
class EnvironmentConfigDetails(Base):
|
|
3940
|
+
"""
|
|
3941
|
+
EnvironmentConfigDetails
|
|
3942
|
+
The configuration details for the restricted instance groups (RIG) environment.
|
|
3943
|
+
|
|
3944
|
+
Attributes
|
|
3945
|
+
----------------------
|
|
3946
|
+
f_sx_lustre_config: Configuration settings for an Amazon FSx for Lustre file system to be used with the cluster.
|
|
3947
|
+
s3_output_path: The Amazon S3 path where output data from the restricted instance group (RIG) environment will be stored.
|
|
3948
|
+
"""
|
|
3949
|
+
|
|
3950
|
+
f_sx_lustre_config: Optional[FSxLustreConfig] = Unassigned()
|
|
3951
|
+
s3_output_path: Optional[str] = Unassigned()
|
|
3952
|
+
|
|
3953
|
+
|
|
3954
|
+
class ClusterRestrictedInstanceGroupDetails(Base):
|
|
3955
|
+
"""
|
|
3956
|
+
ClusterRestrictedInstanceGroupDetails
|
|
3957
|
+
The instance group details of the restricted instance group (RIG).
|
|
3958
|
+
|
|
3959
|
+
Attributes
|
|
3960
|
+
----------------------
|
|
3961
|
+
current_count: The number of instances that are currently in the restricted instance group of a SageMaker HyperPod cluster.
|
|
3962
|
+
target_count: The number of instances you specified to add to the restricted instance group of a SageMaker HyperPod cluster.
|
|
3963
|
+
instance_group_name: The name of the restricted instance group of a SageMaker HyperPod cluster.
|
|
3964
|
+
instance_type: The instance type of the restricted instance group of a SageMaker HyperPod cluster.
|
|
3965
|
+
execution_role: The execution role for the restricted instance group to assume.
|
|
3966
|
+
threads_per_core: The number you specified to TreadsPerCore in CreateCluster for enabling or disabling multithreading. For instance types that support multithreading, you can specify 1 for disabling multithreading and 2 for enabling multithreading. For more information, see the reference table of CPU cores and threads per CPU core per instance type in the Amazon Elastic Compute Cloud User Guide.
|
|
3967
|
+
instance_storage_configs: The additional storage configurations for the instances in the SageMaker HyperPod cluster restricted instance group.
|
|
3968
|
+
on_start_deep_health_checks: A flag indicating whether deep health checks should be performed when the cluster's restricted instance group is created or updated.
|
|
3969
|
+
status: The current status of the cluster's restricted instance group. InService: The restricted instance group is active and healthy. Creating: The restricted instance group is being provisioned. Updating: The restricted instance group is being updated. Failed: The restricted instance group has failed to provision or is no longer healthy. Degraded: The restricted instance group is degraded, meaning that some instances have failed to provision or are no longer healthy. Deleting: The restricted instance group is being deleted.
|
|
3970
|
+
training_plan_arn: The Amazon Resource Name (ARN) of the training plan to filter clusters by. For more information about reserving GPU capacity for your SageMaker HyperPod clusters using Amazon SageMaker Training Plan, see CreateTrainingPlan .
|
|
3971
|
+
training_plan_status: The current status of the training plan associated with this cluster restricted instance group.
|
|
3972
|
+
override_vpc_config
|
|
3973
|
+
scheduled_update_config
|
|
3974
|
+
environment_config: The configuration for the restricted instance groups (RIG) environment.
|
|
3975
|
+
"""
|
|
3976
|
+
|
|
3977
|
+
current_count: Optional[int] = Unassigned()
|
|
3978
|
+
target_count: Optional[int] = Unassigned()
|
|
3979
|
+
instance_group_name: Optional[str] = Unassigned()
|
|
3980
|
+
instance_type: Optional[str] = Unassigned()
|
|
3981
|
+
execution_role: Optional[str] = Unassigned()
|
|
3982
|
+
threads_per_core: Optional[int] = Unassigned()
|
|
3983
|
+
instance_storage_configs: Optional[List[ClusterInstanceStorageConfig]] = Unassigned()
|
|
3984
|
+
on_start_deep_health_checks: Optional[List[str]] = Unassigned()
|
|
3985
|
+
status: Optional[str] = Unassigned()
|
|
3986
|
+
training_plan_arn: Optional[str] = Unassigned()
|
|
3987
|
+
training_plan_status: Optional[str] = Unassigned()
|
|
3988
|
+
override_vpc_config: Optional[VpcConfig] = Unassigned()
|
|
3989
|
+
scheduled_update_config: Optional[ScheduledUpdateConfig] = Unassigned()
|
|
3990
|
+
environment_config: Optional[EnvironmentConfigDetails] = Unassigned()
|
|
3991
|
+
|
|
3992
|
+
|
|
3993
|
+
class EnvironmentConfig(Base):
|
|
3994
|
+
"""
|
|
3995
|
+
EnvironmentConfig
|
|
3996
|
+
The configuration for the restricted instance groups (RIG) environment.
|
|
3997
|
+
|
|
3998
|
+
Attributes
|
|
3999
|
+
----------------------
|
|
4000
|
+
f_sx_lustre_config: Configuration settings for an Amazon FSx for Lustre file system to be used with the cluster.
|
|
4001
|
+
"""
|
|
4002
|
+
|
|
4003
|
+
f_sx_lustre_config: Optional[FSxLustreConfig] = Unassigned()
|
|
4004
|
+
|
|
4005
|
+
|
|
4006
|
+
class ClusterRestrictedInstanceGroupSpecification(Base):
|
|
4007
|
+
"""
|
|
4008
|
+
ClusterRestrictedInstanceGroupSpecification
|
|
4009
|
+
The specifications of a restricted instance group that you need to define.
|
|
4010
|
+
|
|
4011
|
+
Attributes
|
|
4012
|
+
----------------------
|
|
4013
|
+
instance_count: Specifies the number of instances to add to the restricted instance group of a SageMaker HyperPod cluster.
|
|
4014
|
+
instance_group_name: Specifies the name of the restricted instance group.
|
|
4015
|
+
instance_type: Specifies the instance type of the restricted instance group.
|
|
4016
|
+
execution_role: Specifies an IAM execution role to be assumed by the restricted instance group.
|
|
4017
|
+
threads_per_core: The number you specified to TreadsPerCore in CreateCluster for enabling or disabling multithreading. For instance types that support multithreading, you can specify 1 for disabling multithreading and 2 for enabling multithreading. For more information, see the reference table of CPU cores and threads per CPU core per instance type in the Amazon Elastic Compute Cloud User Guide.
|
|
4018
|
+
instance_storage_configs: Specifies the additional storage configurations for the instances in the SageMaker HyperPod cluster restricted instance group.
|
|
4019
|
+
on_start_deep_health_checks: A flag indicating whether deep health checks should be performed when the cluster restricted instance group is created or updated.
|
|
4020
|
+
training_plan_arn: The Amazon Resource Name (ARN) of the training plan to filter clusters by. For more information about reserving GPU capacity for your SageMaker HyperPod clusters using Amazon SageMaker Training Plan, see CreateTrainingPlan .
|
|
4021
|
+
override_vpc_config
|
|
4022
|
+
scheduled_update_config
|
|
4023
|
+
environment_config: The configuration for the restricted instance groups (RIG) environment.
|
|
4024
|
+
"""
|
|
4025
|
+
|
|
4026
|
+
instance_count: int
|
|
4027
|
+
instance_group_name: str
|
|
4028
|
+
instance_type: str
|
|
4029
|
+
execution_role: str
|
|
4030
|
+
environment_config: EnvironmentConfig
|
|
4031
|
+
threads_per_core: Optional[int] = Unassigned()
|
|
4032
|
+
instance_storage_configs: Optional[List[ClusterInstanceStorageConfig]] = Unassigned()
|
|
4033
|
+
on_start_deep_health_checks: Optional[List[str]] = Unassigned()
|
|
4034
|
+
training_plan_arn: Optional[str] = Unassigned()
|
|
4035
|
+
override_vpc_config: Optional[VpcConfig] = Unassigned()
|
|
4036
|
+
scheduled_update_config: Optional[ScheduledUpdateConfig] = Unassigned()
|
|
4037
|
+
|
|
4038
|
+
|
|
3421
4039
|
class ClusterSchedulerConfigSummary(Base):
|
|
3422
4040
|
"""
|
|
3423
4041
|
ClusterSchedulerConfigSummary
|
|
@@ -3466,6 +4084,21 @@ class ClusterSummary(Base):
|
|
|
3466
4084
|
training_plan_arns: Optional[List[str]] = Unassigned()
|
|
3467
4085
|
|
|
3468
4086
|
|
|
4087
|
+
class ClusterTieredStorageConfig(Base):
|
|
4088
|
+
"""
|
|
4089
|
+
ClusterTieredStorageConfig
|
|
4090
|
+
Defines the configuration for managed tier checkpointing in a HyperPod cluster. Managed tier checkpointing uses multiple storage tiers, including cluster CPU memory, to provide faster checkpoint operations and improved fault tolerance for large-scale model training. The system automatically saves checkpoints at high frequency to memory and periodically persists them to durable storage, like Amazon S3.
|
|
4091
|
+
|
|
4092
|
+
Attributes
|
|
4093
|
+
----------------------
|
|
4094
|
+
mode: Specifies whether managed tier checkpointing is enabled or disabled for the HyperPod cluster. When set to Enable, the system installs a memory management daemon that provides disaggregated memory as a service for checkpoint storage. When set to Disable, the feature is turned off and the memory management daemon is removed from the cluster.
|
|
4095
|
+
instance_memory_allocation_percentage: The percentage (int) of cluster memory to allocate for checkpointing.
|
|
4096
|
+
"""
|
|
4097
|
+
|
|
4098
|
+
mode: str
|
|
4099
|
+
instance_memory_allocation_percentage: Optional[int] = Unassigned()
|
|
4100
|
+
|
|
4101
|
+
|
|
3469
4102
|
class CustomImage(Base):
|
|
3470
4103
|
"""
|
|
3471
4104
|
CustomImage
|
|
@@ -3670,10 +4303,16 @@ class ComputeQuotaResourceConfig(Base):
|
|
|
3670
4303
|
----------------------
|
|
3671
4304
|
instance_type: The instance type of the instance group for the cluster.
|
|
3672
4305
|
count: The number of instances to add to the instance group of a SageMaker HyperPod cluster.
|
|
4306
|
+
accelerators: The number of accelerators to allocate. If you don't specify a value for vCPU and MemoryInGiB, SageMaker AI automatically allocates ratio-based values for those parameters based on the number of accelerators you provide. For example, if you allocate 16 out of 32 total accelerators, SageMaker AI uses the ratio of 0.5 and allocates values to vCPU and MemoryInGiB.
|
|
4307
|
+
v_cpu: The number of vCPU to allocate. If you specify a value only for vCPU, SageMaker AI automatically allocates ratio-based values for MemoryInGiB based on this vCPU parameter. For example, if you allocate 20 out of 40 total vCPU, SageMaker AI uses the ratio of 0.5 and allocates values to MemoryInGiB. Accelerators are set to 0.
|
|
4308
|
+
memory_in_gi_b: The amount of memory in GiB to allocate. If you specify a value only for this parameter, SageMaker AI automatically allocates a ratio-based value for vCPU based on this memory that you provide. For example, if you allocate 200 out of 400 total memory in GiB, SageMaker AI uses the ratio of 0.5 and allocates values to vCPU. Accelerators are set to 0.
|
|
3673
4309
|
"""
|
|
3674
4310
|
|
|
3675
4311
|
instance_type: str
|
|
3676
|
-
count: int
|
|
4312
|
+
count: Optional[int] = Unassigned()
|
|
4313
|
+
accelerators: Optional[int] = Unassigned()
|
|
4314
|
+
v_cpu: Optional[float] = Unassigned()
|
|
4315
|
+
memory_in_gi_b: Optional[float] = Unassigned()
|
|
3677
4316
|
|
|
3678
4317
|
|
|
3679
4318
|
class ResourceSharingConfig(Base):
|
|
@@ -4635,6 +5274,21 @@ class FSxLustreFileSystemConfig(Base):
|
|
|
4635
5274
|
file_system_path: Optional[str] = Unassigned()
|
|
4636
5275
|
|
|
4637
5276
|
|
|
5277
|
+
class S3FileSystemConfig(Base):
|
|
5278
|
+
"""
|
|
5279
|
+
S3FileSystemConfig
|
|
5280
|
+
Configuration for the custom Amazon S3 file system.
|
|
5281
|
+
|
|
5282
|
+
Attributes
|
|
5283
|
+
----------------------
|
|
5284
|
+
mount_path: The file system path where the Amazon S3 storage location will be mounted within the Amazon SageMaker Studio environment.
|
|
5285
|
+
s3_uri: The Amazon S3 URI of the S3 file system configuration.
|
|
5286
|
+
"""
|
|
5287
|
+
|
|
5288
|
+
s3_uri: str
|
|
5289
|
+
mount_path: Optional[str] = Unassigned()
|
|
5290
|
+
|
|
5291
|
+
|
|
4638
5292
|
class CustomFileSystemConfig(Base):
|
|
4639
5293
|
"""
|
|
4640
5294
|
CustomFileSystemConfig
|
|
@@ -4644,10 +5298,12 @@ class CustomFileSystemConfig(Base):
|
|
|
4644
5298
|
----------------------
|
|
4645
5299
|
efs_file_system_config: The settings for a custom Amazon EFS file system.
|
|
4646
5300
|
f_sx_lustre_file_system_config: The settings for a custom Amazon FSx for Lustre file system.
|
|
5301
|
+
s3_file_system_config: Configuration settings for a custom Amazon S3 file system.
|
|
4647
5302
|
"""
|
|
4648
5303
|
|
|
4649
5304
|
efs_file_system_config: Optional[EFSFileSystemConfig] = Unassigned()
|
|
4650
5305
|
f_sx_lustre_file_system_config: Optional[FSxLustreFileSystemConfig] = Unassigned()
|
|
5306
|
+
s3_file_system_config: Optional[S3FileSystemConfig] = Unassigned()
|
|
4651
5307
|
|
|
4652
5308
|
|
|
4653
5309
|
class HiddenSageMakerImage(Base):
|
|
@@ -4750,6 +5406,19 @@ class RStudioServerProDomainSettings(Base):
|
|
|
4750
5406
|
default_resource_spec: Optional[ResourceSpec] = Unassigned()
|
|
4751
5407
|
|
|
4752
5408
|
|
|
5409
|
+
class TrustedIdentityPropagationSettings(Base):
|
|
5410
|
+
"""
|
|
5411
|
+
TrustedIdentityPropagationSettings
|
|
5412
|
+
The Trusted Identity Propagation (TIP) settings for the SageMaker domain. These settings determine how user identities from IAM Identity Center are propagated through the domain to TIP enabled Amazon Web Services services.
|
|
5413
|
+
|
|
5414
|
+
Attributes
|
|
5415
|
+
----------------------
|
|
5416
|
+
status: The status of Trusted Identity Propagation (TIP) at the SageMaker domain level. When disabled, standard IAM role-based access is used. When enabled: User identities from IAM Identity Center are propagated through the application to TIP enabled Amazon Web Services services. New applications or existing applications that are automatically patched, will use the domain level configuration.
|
|
5417
|
+
"""
|
|
5418
|
+
|
|
5419
|
+
status: str
|
|
5420
|
+
|
|
5421
|
+
|
|
4753
5422
|
class DockerSettings(Base):
|
|
4754
5423
|
"""
|
|
4755
5424
|
DockerSettings
|
|
@@ -4759,10 +5428,12 @@ class DockerSettings(Base):
|
|
|
4759
5428
|
----------------------
|
|
4760
5429
|
enable_docker_access: Indicates whether the domain can access Docker.
|
|
4761
5430
|
vpc_only_trusted_accounts: The list of Amazon Web Services accounts that are trusted when the domain is created in VPC-only mode.
|
|
5431
|
+
rootless_docker: Indicates whether to use rootless Docker.
|
|
4762
5432
|
"""
|
|
4763
5433
|
|
|
4764
5434
|
enable_docker_access: Optional[str] = Unassigned()
|
|
4765
5435
|
vpc_only_trusted_accounts: Optional[List[str]] = Unassigned()
|
|
5436
|
+
rootless_docker: Optional[str] = Unassigned()
|
|
4766
5437
|
|
|
4767
5438
|
|
|
4768
5439
|
class UnifiedStudioSettings(Base):
|
|
@@ -4779,7 +5450,7 @@ class UnifiedStudioSettings(Base):
|
|
|
4779
5450
|
project_id: The ID of the Amazon SageMaker Unified Studio project that corresponds to the domain.
|
|
4780
5451
|
environment_id: The ID of the environment that Amazon SageMaker Unified Studio associates with the domain.
|
|
4781
5452
|
project_s3_path: The location where Amazon S3 stores temporary execution data and other artifacts for the project that corresponds to the domain.
|
|
4782
|
-
single_sign_on_application_arn: The ARN of the application managed by
|
|
5453
|
+
single_sign_on_application_arn: The ARN of the Amazon DataZone application managed by Amazon SageMaker Unified Studio in the Amazon Web Services IAM Identity Center.
|
|
4783
5454
|
"""
|
|
4784
5455
|
|
|
4785
5456
|
studio_web_portal_access: Optional[str] = Unassigned()
|
|
@@ -4802,17 +5473,23 @@ class DomainSettings(Base):
|
|
|
4802
5473
|
security_group_ids: The security groups for the Amazon Virtual Private Cloud that the Domain uses for communication between Domain-level apps and user apps.
|
|
4803
5474
|
r_studio_server_pro_domain_settings: A collection of settings that configure the RStudioServerPro Domain-level app.
|
|
4804
5475
|
execution_role_identity_config: The configuration for attaching a SageMaker AI user profile name to the execution role as a sts:SourceIdentity key.
|
|
5476
|
+
trusted_identity_propagation_settings: The Trusted Identity Propagation (TIP) settings for the SageMaker domain. These settings determine how user identities from IAM Identity Center are propagated through the domain to TIP enabled Amazon Web Services services.
|
|
4805
5477
|
docker_settings: A collection of settings that configure the domain's Docker interaction.
|
|
4806
5478
|
amazon_q_settings: A collection of settings that configure the Amazon Q experience within the domain. The AuthMode that you use to create the domain must be SSO.
|
|
4807
5479
|
unified_studio_settings: The settings that apply to an SageMaker AI domain when you use it in Amazon SageMaker Unified Studio.
|
|
5480
|
+
ip_address_type: The IP address type for the domain. Specify ipv4 for IPv4-only connectivity or dualstack for both IPv4 and IPv6 connectivity. When you specify dualstack, the subnet must support IPv6 CIDR blocks. If not specified, defaults to ipv4.
|
|
4808
5481
|
"""
|
|
4809
5482
|
|
|
4810
5483
|
security_group_ids: Optional[List[str]] = Unassigned()
|
|
4811
5484
|
r_studio_server_pro_domain_settings: Optional[RStudioServerProDomainSettings] = Unassigned()
|
|
4812
5485
|
execution_role_identity_config: Optional[str] = Unassigned()
|
|
5486
|
+
trusted_identity_propagation_settings: Optional[TrustedIdentityPropagationSettings] = (
|
|
5487
|
+
Unassigned()
|
|
5488
|
+
)
|
|
4813
5489
|
docker_settings: Optional[DockerSettings] = Unassigned()
|
|
4814
5490
|
amazon_q_settings: Optional[AmazonQSettings] = Unassigned()
|
|
4815
5491
|
unified_studio_settings: Optional[UnifiedStudioSettings] = Unassigned()
|
|
5492
|
+
ip_address_type: Optional[str] = Unassigned()
|
|
4816
5493
|
|
|
4817
5494
|
|
|
4818
5495
|
class DefaultSpaceSettings(Base):
|
|
@@ -5332,6 +6009,21 @@ class FlowDefinitionOutputConfig(Base):
|
|
|
5332
6009
|
kms_key_id: Optional[str] = Unassigned()
|
|
5333
6010
|
|
|
5334
6011
|
|
|
6012
|
+
class PresignedUrlAccessConfig(Base):
|
|
6013
|
+
"""
|
|
6014
|
+
PresignedUrlAccessConfig
|
|
6015
|
+
Configuration for accessing hub content through presigned URLs, including license agreement acceptance and URL validation settings.
|
|
6016
|
+
|
|
6017
|
+
Attributes
|
|
6018
|
+
----------------------
|
|
6019
|
+
accept_eula: Indicates acceptance of the End User License Agreement (EULA) for gated models. Set to true to acknowledge acceptance of the license terms required for accessing gated content.
|
|
6020
|
+
expected_s3_url: The expected S3 URL prefix for validation purposes. This parameter helps ensure consistency between the resolved S3 URIs and the deployment configuration, reducing potential compatibility issues.
|
|
6021
|
+
"""
|
|
6022
|
+
|
|
6023
|
+
accept_eula: Optional[bool] = Unassigned()
|
|
6024
|
+
expected_s3_url: Optional[str] = Unassigned()
|
|
6025
|
+
|
|
6026
|
+
|
|
5335
6027
|
class HubS3StorageConfig(Base):
|
|
5336
6028
|
"""
|
|
5337
6029
|
HubS3StorageConfig
|
|
@@ -5685,6 +6377,19 @@ class InferenceComponentComputeResourceRequirements(Base):
|
|
|
5685
6377
|
max_memory_required_in_mb: Optional[int] = Unassigned()
|
|
5686
6378
|
|
|
5687
6379
|
|
|
6380
|
+
class InferenceComponentDataCacheConfig(Base):
|
|
6381
|
+
"""
|
|
6382
|
+
InferenceComponentDataCacheConfig
|
|
6383
|
+
Settings that affect how the inference component caches data.
|
|
6384
|
+
|
|
6385
|
+
Attributes
|
|
6386
|
+
----------------------
|
|
6387
|
+
enable_caching: Sets whether the endpoint that hosts the inference component caches the model artifacts and container image. With caching enabled, the endpoint caches this data in each instance that it provisions for the inference component. That way, the inference component deploys faster during the auto scaling process. If caching isn't enabled, the inference component takes longer to deploy because of the time it spends downloading the data.
|
|
6388
|
+
"""
|
|
6389
|
+
|
|
6390
|
+
enable_caching: bool
|
|
6391
|
+
|
|
6392
|
+
|
|
5688
6393
|
class InferenceComponentSpecification(Base):
|
|
5689
6394
|
"""
|
|
5690
6395
|
InferenceComponentSpecification
|
|
@@ -5697,6 +6402,7 @@ class InferenceComponentSpecification(Base):
|
|
|
5697
6402
|
startup_parameters: Settings that take effect while the model container starts up.
|
|
5698
6403
|
compute_resource_requirements: The compute resources allocated to run the model, plus any adapter models, that you assign to the inference component. Omit this parameter if your request is meant to create an adapter inference component. An adapter inference component is loaded by a base inference component, and it uses the compute resources of the base inference component.
|
|
5699
6404
|
base_inference_component_name: The name of an existing inference component that is to contain the inference component that you're creating with your request. Specify this parameter only if your request is meant to create an adapter inference component. An adapter inference component contains the path to an adapter model. The purpose of the adapter model is to tailor the inference output of a base foundation model, which is hosted by the base inference component. The adapter inference component uses the compute resources that you assigned to the base inference component. When you create an adapter inference component, use the Container parameter to specify the location of the adapter artifacts. In the parameter value, use the ArtifactUrl parameter of the InferenceComponentContainerSpecification data type. Before you can create an adapter inference component, you must have an existing inference component that contains the foundation model that you want to adapt.
|
|
6405
|
+
data_cache_config: Settings that affect how the inference component caches data.
|
|
5700
6406
|
"""
|
|
5701
6407
|
|
|
5702
6408
|
model_name: Optional[Union[str, object]] = Unassigned()
|
|
@@ -5706,6 +6412,7 @@ class InferenceComponentSpecification(Base):
|
|
|
5706
6412
|
Unassigned()
|
|
5707
6413
|
)
|
|
5708
6414
|
base_inference_component_name: Optional[str] = Unassigned()
|
|
6415
|
+
data_cache_config: Optional[InferenceComponentDataCacheConfig] = Unassigned()
|
|
5709
6416
|
|
|
5710
6417
|
|
|
5711
6418
|
class InferenceComponentRuntimeConfig(Base):
|
|
@@ -6250,7 +6957,7 @@ class HumanTaskConfig(Base):
|
|
|
6250
6957
|
----------------------
|
|
6251
6958
|
workteam_arn: The Amazon Resource Name (ARN) of the work team assigned to complete the tasks.
|
|
6252
6959
|
ui_config: Information about the user interface that workers use to complete the labeling task.
|
|
6253
|
-
pre_human_task_lambda_arn: The Amazon Resource Name (ARN) of a Lambda function that is run before a data object is sent to a human worker. Use this function to provide input to a custom labeling job. For built-in task types, use one of the following Amazon SageMaker Ground Truth Lambda function ARNs for PreHumanTaskLambdaArn. For custom labeling workflows, see Pre-annotation Lambda. Bounding box - Finds the most similar boxes from different workers based on the Jaccard index of the boxes. arn:aws:lambda:us-east-1:432418664414:function:PRE-BoundingBox arn:aws:lambda:us-east-2:266458841044:function:PRE-BoundingBox arn:aws:lambda:us-west-2:081040173940:function:PRE-BoundingBox arn:aws:lambda:ca-central-1:918755190332:function:PRE-BoundingBox arn:aws:lambda:eu-west-1:568282634449:function:PRE-BoundingBox arn:aws:lambda:eu-west-2:487402164563:function:PRE-BoundingBox arn:aws:lambda:eu-central-1:203001061592:function:PRE-BoundingBox arn:aws:lambda:ap-northeast-1:477331159723:function:PRE-BoundingBox arn:aws:lambda:ap-northeast-2:845288260483:function:PRE-BoundingBox arn:aws:lambda:ap-south-1:565803892007:function:PRE-BoundingBox arn:aws:lambda:ap-southeast-1:377565633583:function:PRE-BoundingBox arn:aws:lambda:ap-southeast-2:454466003867:function:PRE-BoundingBox Image classification - Uses a variant of the Expectation Maximization approach to estimate the true class of an image based on annotations from individual workers. arn:aws:lambda:us-east-1:432418664414:function:PRE-ImageMultiClass arn:aws:lambda:us-east-2:266458841044:function:PRE-ImageMultiClass arn:aws:lambda:us-west-2:081040173940:function:PRE-ImageMultiClass arn:aws:lambda:ca-central-1:918755190332:function:PRE-ImageMultiClass arn:aws:lambda:eu-west-1:568282634449:function:PRE-ImageMultiClass arn:aws:lambda:eu-west-2:487402164563:function:PRE-ImageMultiClass arn:aws:lambda:eu-central-1:203001061592:function:PRE-ImageMultiClass arn:aws:lambda:ap-northeast-1:477331159723:function:PRE-ImageMultiClass arn:aws:lambda:ap-northeast-2:845288260483:function:PRE-ImageMultiClass arn:aws:lambda:ap-south-1:565803892007:function:PRE-ImageMultiClass arn:aws:lambda:ap-southeast-1:377565633583:function:PRE-ImageMultiClass arn:aws:lambda:ap-southeast-2:454466003867:function:PRE-ImageMultiClass Multi-label image classification - Uses a variant of the Expectation Maximization approach to estimate the true classes of an image based on annotations from individual workers. arn:aws:lambda:us-east-1:432418664414:function:PRE-ImageMultiClassMultiLabel arn:aws:lambda:us-east-2:266458841044:function:PRE-ImageMultiClassMultiLabel arn:aws:lambda:us-west-2:081040173940:function:PRE-ImageMultiClassMultiLabel arn:aws:lambda:ca-central-1:918755190332:function:PRE-ImageMultiClassMultiLabel arn:aws:lambda:eu-west-1:568282634449:function:PRE-ImageMultiClassMultiLabel arn:aws:lambda:eu-west-2:487402164563:function:PRE-ImageMultiClassMultiLabel arn:aws:lambda:eu-central-1:203001061592:function:PRE-ImageMultiClassMultiLabel arn:aws:lambda:ap-northeast-1:477331159723:function:PRE-ImageMultiClassMultiLabel arn:aws:lambda:ap-northeast-2:845288260483:function:PRE-ImageMultiClassMultiLabel arn:aws:lambda:ap-south-1:565803892007:function:PRE-ImageMultiClassMultiLabel arn:aws:lambda:ap-southeast-1:377565633583:function:PRE-ImageMultiClassMultiLabel arn:aws:lambda:ap-southeast-2:454466003867:function:PRE-ImageMultiClassMultiLabel Semantic segmentation - Treats each pixel in an image as a multi-class classification and treats pixel annotations from workers as "votes" for the correct label. arn:aws:lambda:us-east-1:432418664414:function:PRE-SemanticSegmentation arn:aws:lambda:us-east-2:266458841044:function:PRE-SemanticSegmentation arn:aws:lambda:us-west-2:081040173940:function:PRE-SemanticSegmentation arn:aws:lambda:ca-central-1:918755190332:function:PRE-SemanticSegmentation arn:aws:lambda:eu-west-1:568282634449:function:PRE-SemanticSegmentation arn:aws:lambda:eu-west-2:487402164563:function:PRE-SemanticSegmentation arn:aws:lambda:eu-central-1:203001061592:function:PRE-SemanticSegmentation arn:aws:lambda:ap-northeast-1:477331159723:function:PRE-SemanticSegmentation arn:aws:lambda:ap-northeast-2:845288260483:function:PRE-SemanticSegmentation arn:aws:lambda:ap-south-1:565803892007:function:PRE-SemanticSegmentation arn:aws:lambda:ap-southeast-1:377565633583:function:PRE-SemanticSegmentation arn:aws:lambda:ap-southeast-2:454466003867:function:PRE-SemanticSegmentation Text classification - Uses a variant of the Expectation Maximization approach to estimate the true class of text based on annotations from individual workers. arn:aws:lambda:us-east-1:432418664414:function:PRE-TextMultiClass arn:aws:lambda:us-east-2:266458841044:function:PRE-TextMultiClass arn:aws:lambda:us-west-2:081040173940:function:PRE-TextMultiClass arn:aws:lambda:ca-central-1:918755190332:function:PRE-TextMultiClass arn:aws:lambda:eu-west-1:568282634449:function:PRE-TextMultiClass arn:aws:lambda:eu-west-2:487402164563:function:PRE-TextMultiClass arn:aws:lambda:eu-central-1:203001061592:function:PRE-TextMultiClass arn:aws:lambda:ap-northeast-1:477331159723:function:PRE-TextMultiClass arn:aws:lambda:ap-northeast-2:845288260483:function:PRE-TextMultiClass arn:aws:lambda:ap-south-1:565803892007:function:PRE-TextMultiClass arn:aws:lambda:ap-southeast-1:377565633583:function:PRE-TextMultiClass arn:aws:lambda:ap-southeast-2:454466003867:function:PRE-TextMultiClass Multi-label text classification - Uses a variant of the Expectation Maximization approach to estimate the true classes of text based on annotations from individual workers. arn:aws:lambda:us-east-1:432418664414:function:PRE-TextMultiClassMultiLabel arn:aws:lambda:us-east-2:266458841044:function:PRE-TextMultiClassMultiLabel arn:aws:lambda:us-west-2:081040173940:function:PRE-TextMultiClassMultiLabel arn:aws:lambda:ca-central-1:918755190332:function:PRE-TextMultiClassMultiLabel arn:aws:lambda:eu-west-1:568282634449:function:PRE-TextMultiClassMultiLabel arn:aws:lambda:eu-west-2:487402164563:function:PRE-TextMultiClassMultiLabel arn:aws:lambda:eu-central-1:203001061592:function:PRE-TextMultiClassMultiLabel arn:aws:lambda:ap-northeast-1:477331159723:function:PRE-TextMultiClassMultiLabel arn:aws:lambda:ap-northeast-2:845288260483:function:PRE-TextMultiClassMultiLabel arn:aws:lambda:ap-south-1:565803892007:function:PRE-TextMultiClassMultiLabel arn:aws:lambda:ap-southeast-1:377565633583:function:PRE-TextMultiClassMultiLabel arn:aws:lambda:ap-southeast-2:454466003867:function:PRE-TextMultiClassMultiLabel Named entity recognition - Groups similar selections and calculates aggregate boundaries, resolving to most-assigned label. arn:aws:lambda:us-east-1:432418664414:function:PRE-NamedEntityRecognition arn:aws:lambda:us-east-2:266458841044:function:PRE-NamedEntityRecognition arn:aws:lambda:us-west-2:081040173940:function:PRE-NamedEntityRecognition arn:aws:lambda:ca-central-1:918755190332:function:PRE-NamedEntityRecognition arn:aws:lambda:eu-west-1:568282634449:function:PRE-NamedEntityRecognition arn:aws:lambda:eu-west-2:487402164563:function:PRE-NamedEntityRecognition arn:aws:lambda:eu-central-1:203001061592:function:PRE-NamedEntityRecognition arn:aws:lambda:ap-northeast-1:477331159723:function:PRE-NamedEntityRecognition arn:aws:lambda:ap-northeast-2:845288260483:function:PRE-NamedEntityRecognition arn:aws:lambda:ap-south-1:565803892007:function:PRE-NamedEntityRecognition arn:aws:lambda:ap-southeast-1:377565633583:function:PRE-NamedEntityRecognition arn:aws:lambda:ap-southeast-2:454466003867:function:PRE-NamedEntityRecognition Video Classification - Use this task type when you need workers to classify videos using predefined labels that you specify. Workers are shown videos and are asked to choose one label for each video. arn:aws:lambda:us-east-1:432418664414:function:PRE-VideoMultiClass arn:aws:lambda:us-east-2:266458841044:function:PRE-VideoMultiClass arn:aws:lambda:us-west-2:081040173940:function:PRE-VideoMultiClass arn:aws:lambda:eu-west-1:568282634449:function:PRE-VideoMultiClass arn:aws:lambda:ap-northeast-1:477331159723:function:PRE-VideoMultiClass arn:aws:lambda:ap-southeast-2:454466003867:function:PRE-VideoMultiClass arn:aws:lambda:ap-south-1:565803892007:function:PRE-VideoMultiClass arn:aws:lambda:eu-central-1:203001061592:function:PRE-VideoMultiClass arn:aws:lambda:ap-northeast-2:845288260483:function:PRE-VideoMultiClass arn:aws:lambda:eu-west-2:487402164563:function:PRE-VideoMultiClass arn:aws:lambda:ap-southeast-1:377565633583:function:PRE-VideoMultiClass arn:aws:lambda:ca-central-1:918755190332:function:PRE-VideoMultiClass Video Frame Object Detection - Use this task type to have workers identify and locate objects in a sequence of video frames (images extracted from a video) using bounding boxes. For example, you can use this task to ask workers to identify and localize various objects in a series of video frames, such as cars, bikes, and pedestrians. arn:aws:lambda:us-east-1:432418664414:function:PRE-VideoObjectDetection arn:aws:lambda:us-east-2:266458841044:function:PRE-VideoObjectDetection arn:aws:lambda:us-west-2:081040173940:function:PRE-VideoObjectDetection arn:aws:lambda:eu-west-1:568282634449:function:PRE-VideoObjectDetection arn:aws:lambda:ap-northeast-1:477331159723:function:PRE-VideoObjectDetection arn:aws:lambda:ap-southeast-2:454466003867:function:PRE-VideoObjectDetection arn:aws:lambda:ap-south-1:565803892007:function:PRE-VideoObjectDetection arn:aws:lambda:eu-central-1:203001061592:function:PRE-VideoObjectDetection arn:aws:lambda:ap-northeast-2:845288260483:function:PRE-VideoObjectDetection arn:aws:lambda:eu-west-2:487402164563:function:PRE-VideoObjectDetection arn:aws:lambda:ap-southeast-1:377565633583:function:PRE-VideoObjectDetection arn:aws:lambda:ca-central-1:918755190332:function:PRE-VideoObjectDetection Video Frame Object Tracking - Use this task type to have workers track the movement of objects in a sequence of video frames (images extracted from a video) using bounding boxes. For example, you can use this task to ask workers to track the movement of objects, such as cars, bikes, and pedestrians. arn:aws:lambda:us-east-1:432418664414:function:PRE-VideoObjectTracking arn:aws:lambda:us-east-2:266458841044:function:PRE-VideoObjectTracking arn:aws:lambda:us-west-2:081040173940:function:PRE-VideoObjectTracking arn:aws:lambda:eu-west-1:568282634449:function:PRE-VideoObjectTracking arn:aws:lambda:ap-northeast-1:477331159723:function:PRE-VideoObjectTracking arn:aws:lambda:ap-southeast-2:454466003867:function:PRE-VideoObjectTracking arn:aws:lambda:ap-south-1:565803892007:function:PRE-VideoObjectTracking arn:aws:lambda:eu-central-1:203001061592:function:PRE-VideoObjectTracking arn:aws:lambda:ap-northeast-2:845288260483:function:PRE-VideoObjectTracking arn:aws:lambda:eu-west-2:487402164563:function:PRE-VideoObjectTracking arn:aws:lambda:ap-southeast-1:377565633583:function:PRE-VideoObjectTracking arn:aws:lambda:ca-central-1:918755190332:function:PRE-VideoObjectTracking 3D Point Cloud Modalities Use the following pre-annotation lambdas for 3D point cloud labeling modality tasks. See 3D Point Cloud Task types to learn more. 3D Point Cloud Object Detection - Use this task type when you want workers to classify objects in a 3D point cloud by drawing 3D cuboids around objects. For example, you can use this task type to ask workers to identify different types of objects in a point cloud, such as cars, bikes, and pedestrians. arn:aws:lambda:us-east-1:432418664414:function:PRE-3DPointCloudObjectDetection arn:aws:lambda:us-east-2:266458841044:function:PRE-3DPointCloudObjectDetection arn:aws:lambda:us-west-2:081040173940:function:PRE-3DPointCloudObjectDetection arn:aws:lambda:eu-west-1:568282634449:function:PRE-3DPointCloudObjectDetection arn:aws:lambda:ap-northeast-1:477331159723:function:PRE-3DPointCloudObjectDetection arn:aws:lambda:ap-southeast-2:454466003867:function:PRE-3DPointCloudObjectDetection arn:aws:lambda:ap-south-1:565803892007:function:PRE-3DPointCloudObjectDetection arn:aws:lambda:eu-central-1:203001061592:function:PRE-3DPointCloudObjectDetection arn:aws:lambda:ap-northeast-2:845288260483:function:PRE-3DPointCloudObjectDetection arn:aws:lambda:eu-west-2:487402164563:function:PRE-3DPointCloudObjectDetection arn:aws:lambda:ap-southeast-1:377565633583:function:PRE-3DPointCloudObjectDetection arn:aws:lambda:ca-central-1:918755190332:function:PRE-3DPointCloudObjectDetection 3D Point Cloud Object Tracking - Use this task type when you want workers to draw 3D cuboids around objects that appear in a sequence of 3D point cloud frames. For example, you can use this task type to ask workers to track the movement of vehicles across multiple point cloud frames. arn:aws:lambda:us-east-1:432418664414:function:PRE-3DPointCloudObjectTracking arn:aws:lambda:us-east-2:266458841044:function:PRE-3DPointCloudObjectTracking arn:aws:lambda:us-west-2:081040173940:function:PRE-3DPointCloudObjectTracking arn:aws:lambda:eu-west-1:568282634449:function:PRE-3DPointCloudObjectTracking arn:aws:lambda:ap-northeast-1:477331159723:function:PRE-3DPointCloudObjectTracking arn:aws:lambda:ap-southeast-2:454466003867:function:PRE-3DPointCloudObjectTracking arn:aws:lambda:ap-south-1:565803892007:function:PRE-3DPointCloudObjectTracking arn:aws:lambda:eu-central-1:203001061592:function:PRE-3DPointCloudObjectTracking arn:aws:lambda:ap-northeast-2:845288260483:function:PRE-3DPointCloudObjectTracking arn:aws:lambda:eu-west-2:487402164563:function:PRE-3DPointCloudObjectTracking arn:aws:lambda:ap-southeast-1:377565633583:function:PRE-3DPointCloudObjectTracking arn:aws:lambda:ca-central-1:918755190332:function:PRE-3DPointCloudObjectTracking 3D Point Cloud Semantic Segmentation - Use this task type when you want workers to create a point-level semantic segmentation masks by painting objects in a 3D point cloud using different colors where each color is assigned to one of the classes you specify. arn:aws:lambda:us-east-1:432418664414:function:PRE-3DPointCloudSemanticSegmentation arn:aws:lambda:us-east-2:266458841044:function:PRE-3DPointCloudSemanticSegmentation arn:aws:lambda:us-west-2:081040173940:function:PRE-3DPointCloudSemanticSegmentation arn:aws:lambda:eu-west-1:568282634449:function:PRE-3DPointCloudSemanticSegmentation arn:aws:lambda:ap-northeast-1:477331159723:function:PRE-3DPointCloudSemanticSegmentation arn:aws:lambda:ap-southeast-2:454466003867:function:PRE-3DPointCloudSemanticSegmentation arn:aws:lambda:ap-south-1:565803892007:function:PRE-3DPointCloudSemanticSegmentation arn:aws:lambda:eu-central-1:203001061592:function:PRE-3DPointCloudSemanticSegmentation arn:aws:lambda:ap-northeast-2:845288260483:function:PRE-3DPointCloudSemanticSegmentation arn:aws:lambda:eu-west-2:487402164563:function:PRE-3DPointCloudSemanticSegmentation arn:aws:lambda:ap-southeast-1:377565633583:function:PRE-3DPointCloudSemanticSegmentation arn:aws:lambda:ca-central-1:918755190332:function:PRE-3DPointCloudSemanticSegmentation Use the following ARNs for Label Verification and Adjustment Jobs Use label verification and adjustment jobs to review and adjust labels. To learn more, see Verify and Adjust Labels . Bounding box verification - Uses a variant of the Expectation Maximization approach to estimate the true class of verification judgement for bounding box labels based on annotations from individual workers. arn:aws:lambda:us-east-1:432418664414:function:PRE-VerificationBoundingBox arn:aws:lambda:us-east-2:266458841044:function:PRE-VerificationBoundingBox arn:aws:lambda:us-west-2:081040173940:function:PRE-VerificationBoundingBox arn:aws:lambda:eu-west-1:568282634449:function:PRE-VerificationBoundingBox arn:aws:lambda:ap-northeast-1:477331159723:function:PRE-VerificationBoundingBox arn:aws:lambda:ap-southeast-2:454466003867:function:PRE-VerificationBoundingBox arn:aws:lambda:ap-south-1:565803892007:function:PRE-VerificationBoundingBox arn:aws:lambda:eu-central-1:203001061592:function:PRE-VerificationBoundingBox arn:aws:lambda:ap-northeast-2:845288260483:function:PRE-VerificationBoundingBox arn:aws:lambda:eu-west-2:487402164563:function:PRE-VerificationBoundingBox arn:aws:lambda:ap-southeast-1:377565633583:function:PRE-VerificationBoundingBox arn:aws:lambda:ca-central-1:918755190332:function:PRE-VerificationBoundingBox Bounding box adjustment - Finds the most similar boxes from different workers based on the Jaccard index of the adjusted annotations. arn:aws:lambda:us-east-1:432418664414:function:PRE-AdjustmentBoundingBox arn:aws:lambda:us-east-2:266458841044:function:PRE-AdjustmentBoundingBox arn:aws:lambda:us-west-2:081040173940:function:PRE-AdjustmentBoundingBox arn:aws:lambda:ca-central-1:918755190332:function:PRE-AdjustmentBoundingBox arn:aws:lambda:eu-west-1:568282634449:function:PRE-AdjustmentBoundingBox arn:aws:lambda:eu-west-2:487402164563:function:PRE-AdjustmentBoundingBox arn:aws:lambda:eu-central-1:203001061592:function:PRE-AdjustmentBoundingBox arn:aws:lambda:ap-northeast-1:477331159723:function:PRE-AdjustmentBoundingBox arn:aws:lambda:ap-northeast-2:845288260483:function:PRE-AdjustmentBoundingBox arn:aws:lambda:ap-south-1:565803892007:function:PRE-AdjustmentBoundingBox arn:aws:lambda:ap-southeast-1:377565633583:function:PRE-AdjustmentBoundingBox arn:aws:lambda:ap-southeast-2:454466003867:function:PRE-AdjustmentBoundingBox Semantic segmentation verification - Uses a variant of the Expectation Maximization approach to estimate the true class of verification judgment for semantic segmentation labels based on annotations from individual workers. arn:aws:lambda:us-east-1:432418664414:function:PRE-VerificationSemanticSegmentation arn:aws:lambda:us-east-2:266458841044:function:PRE-VerificationSemanticSegmentation arn:aws:lambda:us-west-2:081040173940:function:PRE-VerificationSemanticSegmentation arn:aws:lambda:ca-central-1:918755190332:function:PRE-VerificationSemanticSegmentation arn:aws:lambda:eu-west-1:568282634449:function:PRE-VerificationSemanticSegmentation arn:aws:lambda:eu-west-2:487402164563:function:PRE-VerificationSemanticSegmentation arn:aws:lambda:eu-central-1:203001061592:function:PRE-VerificationSemanticSegmentation arn:aws:lambda:ap-northeast-1:477331159723:function:PRE-VerificationSemanticSegmentation arn:aws:lambda:ap-northeast-2:845288260483:function:PRE-VerificationSemanticSegmentation arn:aws:lambda:ap-south-1:565803892007:function:PRE-VerificationSemanticSegmentation arn:aws:lambda:ap-southeast-1:377565633583:function:PRE-VerificationSemanticSegmentation arn:aws:lambda:ap-southeast-2:454466003867:function:PRE-VerificationSemanticSegmentation Semantic segmentation adjustment - Treats each pixel in an image as a multi-class classification and treats pixel adjusted annotations from workers as "votes" for the correct label. arn:aws:lambda:us-east-1:432418664414:function:PRE-AdjustmentSemanticSegmentation arn:aws:lambda:us-east-2:266458841044:function:PRE-AdjustmentSemanticSegmentation arn:aws:lambda:us-west-2:081040173940:function:PRE-AdjustmentSemanticSegmentation arn:aws:lambda:ca-central-1:918755190332:function:PRE-AdjustmentSemanticSegmentation arn:aws:lambda:eu-west-1:568282634449:function:PRE-AdjustmentSemanticSegmentation arn:aws:lambda:eu-west-2:487402164563:function:PRE-AdjustmentSemanticSegmentation arn:aws:lambda:eu-central-1:203001061592:function:PRE-AdjustmentSemanticSegmentation arn:aws:lambda:ap-northeast-1:477331159723:function:PRE-AdjustmentSemanticSegmentation arn:aws:lambda:ap-northeast-2:845288260483:function:PRE-AdjustmentSemanticSegmentation arn:aws:lambda:ap-south-1:565803892007:function:PRE-AdjustmentSemanticSegmentation arn:aws:lambda:ap-southeast-1:377565633583:function:PRE-AdjustmentSemanticSegmentation arn:aws:lambda:ap-southeast-2:454466003867:function:PRE-AdjustmentSemanticSegmentation Video Frame Object Detection Adjustment - Use this task type when you want workers to adjust bounding boxes that workers have added to video frames to classify and localize objects in a sequence of video frames. arn:aws:lambda:us-east-1:432418664414:function:PRE-AdjustmentVideoObjectDetection arn:aws:lambda:us-east-2:266458841044:function:PRE-AdjustmentVideoObjectDetection arn:aws:lambda:us-west-2:081040173940:function:PRE-AdjustmentVideoObjectDetection arn:aws:lambda:eu-west-1:568282634449:function:PRE-AdjustmentVideoObjectDetection arn:aws:lambda:ap-northeast-1:477331159723:function:PRE-AdjustmentVideoObjectDetection arn:aws:lambda:ap-southeast-2:454466003867:function:PRE-AdjustmentVideoObjectDetection arn:aws:lambda:ap-south-1:565803892007:function:PRE-AdjustmentVideoObjectDetection arn:aws:lambda:eu-central-1:203001061592:function:PRE-AdjustmentVideoObjectDetection arn:aws:lambda:ap-northeast-2:845288260483:function:PRE-AdjustmentVideoObjectDetection arn:aws:lambda:eu-west-2:487402164563:function:PRE-AdjustmentVideoObjectDetection arn:aws:lambda:ap-southeast-1:377565633583:function:PRE-AdjustmentVideoObjectDetection arn:aws:lambda:ca-central-1:918755190332:function:PRE-AdjustmentVideoObjectDetection Video Frame Object Tracking Adjustment - Use this task type when you want workers to adjust bounding boxes that workers have added to video frames to track object movement across a sequence of video frames. arn:aws:lambda:us-east-1:432418664414:function:PRE-AdjustmentVideoObjectTracking arn:aws:lambda:us-east-2:266458841044:function:PRE-AdjustmentVideoObjectTracking arn:aws:lambda:us-west-2:081040173940:function:PRE-AdjustmentVideoObjectTracking arn:aws:lambda:eu-west-1:568282634449:function:PRE-AdjustmentVideoObjectTracking arn:aws:lambda:ap-northeast-1:477331159723:function:PRE-AdjustmentVideoObjectTracking arn:aws:lambda:ap-southeast-2:454466003867:function:PRE-AdjustmentVideoObjectTracking arn:aws:lambda:ap-south-1:565803892007:function:PRE-AdjustmentVideoObjectTracking arn:aws:lambda:eu-central-1:203001061592:function:PRE-AdjustmentVideoObjectTracking arn:aws:lambda:ap-northeast-2:845288260483:function:PRE-AdjustmentVideoObjectTracking arn:aws:lambda:eu-west-2:487402164563:function:PRE-AdjustmentVideoObjectTracking arn:aws:lambda:ap-southeast-1:377565633583:function:PRE-AdjustmentVideoObjectTracking arn:aws:lambda:ca-central-1:918755190332:function:PRE-AdjustmentVideoObjectTracking 3D point cloud object detection adjustment - Adjust 3D cuboids in a point cloud frame. arn:aws:lambda:us-east-1:432418664414:function:PRE-Adjustment3DPointCloudObjectDetection arn:aws:lambda:us-east-2:266458841044:function:PRE-Adjustment3DPointCloudObjectDetection arn:aws:lambda:us-west-2:081040173940:function:PRE-Adjustment3DPointCloudObjectDetection arn:aws:lambda:eu-west-1:568282634449:function:PRE-Adjustment3DPointCloudObjectDetection arn:aws:lambda:ap-northeast-1:477331159723:function:PRE-Adjustment3DPointCloudObjectDetection arn:aws:lambda:ap-southeast-2:454466003867:function:PRE-Adjustment3DPointCloudObjectDetection arn:aws:lambda:ap-south-1:565803892007:function:PRE-Adjustment3DPointCloudObjectDetection arn:aws:lambda:eu-central-1:203001061592:function:PRE-Adjustment3DPointCloudObjectDetection arn:aws:lambda:ap-northeast-2:845288260483:function:PRE-Adjustment3DPointCloudObjectDetection arn:aws:lambda:eu-west-2:487402164563:function:PRE-Adjustment3DPointCloudObjectDetection arn:aws:lambda:ap-southeast-1:377565633583:function:PRE-Adjustment3DPointCloudObjectDetection arn:aws:lambda:ca-central-1:918755190332:function:PRE-Adjustment3DPointCloudObjectDetection 3D point cloud object tracking adjustment - Adjust 3D cuboids across a sequence of point cloud frames. arn:aws:lambda:us-east-1:432418664414:function:PRE-Adjustment3DPointCloudObjectTracking arn:aws:lambda:us-east-2:266458841044:function:PRE-Adjustment3DPointCloudObjectTracking arn:aws:lambda:us-west-2:081040173940:function:PRE-Adjustment3DPointCloudObjectTracking arn:aws:lambda:eu-west-1:568282634449:function:PRE-Adjustment3DPointCloudObjectTracking arn:aws:lambda:ap-northeast-1:477331159723:function:PRE-Adjustment3DPointCloudObjectTracking arn:aws:lambda:ap-southeast-2:454466003867:function:PRE-Adjustment3DPointCloudObjectTracking arn:aws:lambda:ap-south-1:565803892007:function:PRE-Adjustment3DPointCloudObjectTracking arn:aws:lambda:eu-central-1:203001061592:function:PRE-Adjustment3DPointCloudObjectTracking arn:aws:lambda:ap-northeast-2:845288260483:function:PRE-Adjustment3DPointCloudObjectTracking arn:aws:lambda:eu-west-2:487402164563:function:PRE-Adjustment3DPointCloudObjectTracking arn:aws:lambda:ap-southeast-1:377565633583:function:PRE-Adjustment3DPointCloudObjectTracking arn:aws:lambda:ca-central-1:918755190332:function:PRE-Adjustment3DPointCloudObjectTracking 3D point cloud semantic segmentation adjustment - Adjust semantic segmentation masks in a 3D point cloud. arn:aws:lambda:us-east-1:432418664414:function:PRE-Adjustment3DPointCloudSemanticSegmentation arn:aws:lambda:us-east-2:266458841044:function:PRE-Adjustment3DPointCloudSemanticSegmentation arn:aws:lambda:us-west-2:081040173940:function:PRE-Adjustment3DPointCloudSemanticSegmentation arn:aws:lambda:eu-west-1:568282634449:function:PRE-Adjustment3DPointCloudSemanticSegmentation arn:aws:lambda:ap-northeast-1:477331159723:function:PRE-Adjustment3DPointCloudSemanticSegmentation arn:aws:lambda:ap-southeast-2:454466003867:function:PRE-Adjustment3DPointCloudSemanticSegmentation arn:aws:lambda:ap-south-1:565803892007:function:PRE-Adjustment3DPointCloudSemanticSegmentation arn:aws:lambda:eu-central-1:203001061592:function:PRE-Adjustment3DPointCloudSemanticSegmentation arn:aws:lambda:ap-northeast-2:845288260483:function:PRE-Adjustment3DPointCloudSemanticSegmentation arn:aws:lambda:eu-west-2:487402164563:function:PRE-Adjustment3DPointCloudSemanticSegmentation arn:aws:lambda:ap-southeast-1:377565633583:function:PRE-Adjustment3DPointCloudSemanticSegmentation arn:aws:lambda:ca-central-1:918755190332:function:PRE-Adjustment3DPointCloudSemanticSegmentation
|
|
6960
|
+
pre_human_task_lambda_arn: The Amazon Resource Name (ARN) of a Lambda function that is run before a data object is sent to a human worker. Use this function to provide input to a custom labeling job. For built-in task types, use one of the following Amazon SageMaker Ground Truth Lambda function ARNs for PreHumanTaskLambdaArn. For custom labeling workflows, see Pre-annotation Lambda. Bounding box - Finds the most similar boxes from different workers based on the Jaccard index of the boxes. arn:aws:lambda:us-east-1:432418664414:function:PRE-BoundingBox arn:aws:lambda:us-east-2:266458841044:function:PRE-BoundingBox arn:aws:lambda:us-west-2:081040173940:function:PRE-BoundingBox arn:aws:lambda:ca-central-1:918755190332:function:PRE-BoundingBox arn:aws:lambda:eu-west-1:568282634449:function:PRE-BoundingBox arn:aws:lambda:eu-west-2:487402164563:function:PRE-BoundingBox arn:aws:lambda:eu-central-1:203001061592:function:PRE-BoundingBox arn:aws:lambda:ap-northeast-1:477331159723:function:PRE-BoundingBox arn:aws:lambda:ap-northeast-2:845288260483:function:PRE-BoundingBox arn:aws:lambda:ap-south-1:565803892007:function:PRE-BoundingBox arn:aws:lambda:ap-southeast-1:377565633583:function:PRE-BoundingBox arn:aws:lambda:ap-southeast-2:454466003867:function:PRE-BoundingBox Image classification - Uses a variant of the Expectation Maximization approach to estimate the true class of an image based on annotations from individual workers. arn:aws:lambda:us-east-1:432418664414:function:PRE-ImageMultiClass arn:aws:lambda:us-east-2:266458841044:function:PRE-ImageMultiClass arn:aws:lambda:us-west-2:081040173940:function:PRE-ImageMultiClass arn:aws:lambda:ca-central-1:918755190332:function:PRE-ImageMultiClass arn:aws:lambda:eu-west-1:568282634449:function:PRE-ImageMultiClass arn:aws:lambda:eu-west-2:487402164563:function:PRE-ImageMultiClass arn:aws:lambda:eu-central-1:203001061592:function:PRE-ImageMultiClass arn:aws:lambda:ap-northeast-1:477331159723:function:PRE-ImageMultiClass arn:aws:lambda:ap-northeast-2:845288260483:function:PRE-ImageMultiClass arn:aws:lambda:ap-south-1:565803892007:function:PRE-ImageMultiClass arn:aws:lambda:ap-southeast-1:377565633583:function:PRE-ImageMultiClass arn:aws:lambda:ap-southeast-2:454466003867:function:PRE-ImageMultiClass Multi-label image classification - Uses a variant of the Expectation Maximization approach to estimate the true classes of an image based on annotations from individual workers. arn:aws:lambda:us-east-1:432418664414:function:PRE-ImageMultiClassMultiLabel arn:aws:lambda:us-east-2:266458841044:function:PRE-ImageMultiClassMultiLabel arn:aws:lambda:us-west-2:081040173940:function:PRE-ImageMultiClassMultiLabel arn:aws:lambda:ca-central-1:918755190332:function:PRE-ImageMultiClassMultiLabel arn:aws:lambda:eu-west-1:568282634449:function:PRE-ImageMultiClassMultiLabel arn:aws:lambda:eu-west-2:487402164563:function:PRE-ImageMultiClassMultiLabel arn:aws:lambda:eu-central-1:203001061592:function:PRE-ImageMultiClassMultiLabel arn:aws:lambda:ap-northeast-1:477331159723:function:PRE-ImageMultiClassMultiLabel arn:aws:lambda:ap-northeast-2:845288260483:function:PRE-ImageMultiClassMultiLabel arn:aws:lambda:ap-south-1:565803892007:function:PRE-ImageMultiClassMultiLabel arn:aws:lambda:ap-southeast-1:377565633583:function:PRE-ImageMultiClassMultiLabel arn:aws:lambda:ap-southeast-2:454466003867:function:PRE-ImageMultiClassMultiLabel Semantic segmentation - Treats each pixel in an image as a multi-class classification and treats pixel annotations from workers as "votes" for the correct label. arn:aws:lambda:us-east-1:432418664414:function:PRE-SemanticSegmentation arn:aws:lambda:us-east-2:266458841044:function:PRE-SemanticSegmentation arn:aws:lambda:us-west-2:081040173940:function:PRE-SemanticSegmentation arn:aws:lambda:ca-central-1:918755190332:function:PRE-SemanticSegmentation arn:aws:lambda:eu-west-1:568282634449:function:PRE-SemanticSegmentation arn:aws:lambda:eu-west-2:487402164563:function:PRE-SemanticSegmentation arn:aws:lambda:eu-central-1:203001061592:function:PRE-SemanticSegmentation arn:aws:lambda:ap-northeast-1:477331159723:function:PRE-SemanticSegmentation arn:aws:lambda:ap-northeast-2:845288260483:function:PRE-SemanticSegmentation arn:aws:lambda:ap-south-1:565803892007:function:PRE-SemanticSegmentation arn:aws:lambda:ap-southeast-1:377565633583:function:PRE-SemanticSegmentation arn:aws:lambda:ap-southeast-2:454466003867:function:PRE-SemanticSegmentation Text classification - Uses a variant of the Expectation Maximization approach to estimate the true class of text based on annotations from individual workers. arn:aws:lambda:us-east-1:432418664414:function:PRE-TextMultiClass arn:aws:lambda:us-east-2:266458841044:function:PRE-TextMultiClass arn:aws:lambda:us-west-2:081040173940:function:PRE-TextMultiClass arn:aws:lambda:ca-central-1:918755190332:function:PRE-TextMultiClass arn:aws:lambda:eu-west-1:568282634449:function:PRE-TextMultiClass arn:aws:lambda:eu-west-2:487402164563:function:PRE-TextMultiClass arn:aws:lambda:eu-central-1:203001061592:function:PRE-TextMultiClass arn:aws:lambda:ap-northeast-1:477331159723:function:PRE-TextMultiClass arn:aws:lambda:ap-northeast-2:845288260483:function:PRE-TextMultiClass arn:aws:lambda:ap-south-1:565803892007:function:PRE-TextMultiClass arn:aws:lambda:ap-southeast-1:377565633583:function:PRE-TextMultiClass arn:aws:lambda:ap-southeast-2:454466003867:function:PRE-TextMultiClass Multi-label text classification - Uses a variant of the Expectation Maximization approach to estimate the true classes of text based on annotations from individual workers. arn:aws:lambda:us-east-1:432418664414:function:PRE-TextMultiClassMultiLabel arn:aws:lambda:us-east-2:266458841044:function:PRE-TextMultiClassMultiLabel arn:aws:lambda:us-west-2:081040173940:function:PRE-TextMultiClassMultiLabel arn:aws:lambda:ca-central-1:918755190332:function:PRE-TextMultiClassMultiLabel arn:aws:lambda:eu-west-1:568282634449:function:PRE-TextMultiClassMultiLabel arn:aws:lambda:eu-west-2:487402164563:function:PRE-TextMultiClassMultiLabel arn:aws:lambda:eu-central-1:203001061592:function:PRE-TextMultiClassMultiLabel arn:aws:lambda:ap-northeast-1:477331159723:function:PRE-TextMultiClassMultiLabel arn:aws:lambda:ap-northeast-2:845288260483:function:PRE-TextMultiClassMultiLabel arn:aws:lambda:ap-south-1:565803892007:function:PRE-TextMultiClassMultiLabel arn:aws:lambda:ap-southeast-1:377565633583:function:PRE-TextMultiClassMultiLabel arn:aws:lambda:ap-southeast-2:454466003867:function:PRE-TextMultiClassMultiLabel Named entity recognition - Groups similar selections and calculates aggregate boundaries, resolving to most-assigned label. arn:aws:lambda:us-east-1:432418664414:function:PRE-NamedEntityRecognition arn:aws:lambda:us-east-2:266458841044:function:PRE-NamedEntityRecognition arn:aws:lambda:us-west-2:081040173940:function:PRE-NamedEntityRecognition arn:aws:lambda:ca-central-1:918755190332:function:PRE-NamedEntityRecognition arn:aws:lambda:eu-west-1:568282634449:function:PRE-NamedEntityRecognition arn:aws:lambda:eu-west-2:487402164563:function:PRE-NamedEntityRecognition arn:aws:lambda:eu-central-1:203001061592:function:PRE-NamedEntityRecognition arn:aws:lambda:ap-northeast-1:477331159723:function:PRE-NamedEntityRecognition arn:aws:lambda:ap-northeast-2:845288260483:function:PRE-NamedEntityRecognition arn:aws:lambda:ap-south-1:565803892007:function:PRE-NamedEntityRecognition arn:aws:lambda:ap-southeast-1:377565633583:function:PRE-NamedEntityRecognition arn:aws:lambda:ap-southeast-2:454466003867:function:PRE-NamedEntityRecognition Video Classification - Use this task type when you need workers to classify videos using predefined labels that you specify. Workers are shown videos and are asked to choose one label for each video. arn:aws:lambda:us-east-1:432418664414:function:PRE-VideoMultiClass arn:aws:lambda:us-east-2:266458841044:function:PRE-VideoMultiClass arn:aws:lambda:us-west-2:081040173940:function:PRE-VideoMultiClass arn:aws:lambda:eu-west-1:568282634449:function:PRE-VideoMultiClass arn:aws:lambda:ap-northeast-1:477331159723:function:PRE-VideoMultiClass arn:aws:lambda:ap-southeast-2:454466003867:function:PRE-VideoMultiClass arn:aws:lambda:ap-south-1:565803892007:function:PRE-VideoMultiClass arn:aws:lambda:eu-central-1:203001061592:function:PRE-VideoMultiClass arn:aws:lambda:ap-northeast-2:845288260483:function:PRE-VideoMultiClass arn:aws:lambda:eu-west-2:487402164563:function:PRE-VideoMultiClass arn:aws:lambda:ap-southeast-1:377565633583:function:PRE-VideoMultiClass arn:aws:lambda:ca-central-1:918755190332:function:PRE-VideoMultiClass Video Frame Object Detection - Use this task type to have workers identify and locate objects in a sequence of video frames (images extracted from a video) using bounding boxes. For example, you can use this task to ask workers to identify and localize various objects in a series of video frames, such as cars, bikes, and pedestrians. arn:aws:lambda:us-east-1:432418664414:function:PRE-VideoObjectDetection arn:aws:lambda:us-east-2:266458841044:function:PRE-VideoObjectDetection arn:aws:lambda:us-west-2:081040173940:function:PRE-VideoObjectDetection arn:aws:lambda:eu-west-1:568282634449:function:PRE-VideoObjectDetection arn:aws:lambda:ap-northeast-1:477331159723:function:PRE-VideoObjectDetection arn:aws:lambda:ap-southeast-2:454466003867:function:PRE-VideoObjectDetection arn:aws:lambda:ap-south-1:565803892007:function:PRE-VideoObjectDetection arn:aws:lambda:eu-central-1:203001061592:function:PRE-VideoObjectDetection arn:aws:lambda:ap-northeast-2:845288260483:function:PRE-VideoObjectDetection arn:aws:lambda:eu-west-2:487402164563:function:PRE-VideoObjectDetection arn:aws:lambda:ap-southeast-1:377565633583:function:PRE-VideoObjectDetection arn:aws:lambda:ca-central-1:918755190332:function:PRE-VideoObjectDetection Video Frame Object Tracking - Use this task type to have workers track the movement of objects in a sequence of video frames (images extracted from a video) using bounding boxes. For example, you can use this task to ask workers to track the movement of objects, such as cars, bikes, and pedestrians. arn:aws:lambda:us-east-1:432418664414:function:PRE-VideoObjectTracking arn:aws:lambda:us-east-2:266458841044:function:PRE-VideoObjectTracking arn:aws:lambda:us-west-2:081040173940:function:PRE-VideoObjectTracking arn:aws:lambda:eu-west-1:568282634449:function:PRE-VideoObjectTracking arn:aws:lambda:ap-northeast-1:477331159723:function:PRE-VideoObjectTracking arn:aws:lambda:ap-southeast-2:454466003867:function:PRE-VideoObjectTracking arn:aws:lambda:ap-south-1:565803892007:function:PRE-VideoObjectTracking arn:aws:lambda:eu-central-1:203001061592:function:PRE-VideoObjectTracking arn:aws:lambda:ap-northeast-2:845288260483:function:PRE-VideoObjectTracking arn:aws:lambda:eu-west-2:487402164563:function:PRE-VideoObjectTracking arn:aws:lambda:ap-southeast-1:377565633583:function:PRE-VideoObjectTracking arn:aws:lambda:ca-central-1:918755190332:function:PRE-VideoObjectTracking 3D Point Cloud Modalities Use the following pre-annotation lambdas for 3D point cloud labeling modality tasks. See 3D Point Cloud Task types to learn more. 3D Point Cloud Object Detection - Use this task type when you want workers to classify objects in a 3D point cloud by drawing 3D cuboids around objects. For example, you can use this task type to ask workers to identify different types of objects in a point cloud, such as cars, bikes, and pedestrians. arn:aws:lambda:us-east-1:432418664414:function:PRE-3DPointCloudObjectDetection arn:aws:lambda:us-east-2:266458841044:function:PRE-3DPointCloudObjectDetection arn:aws:lambda:us-west-2:081040173940:function:PRE-3DPointCloudObjectDetection arn:aws:lambda:eu-west-1:568282634449:function:PRE-3DPointCloudObjectDetection arn:aws:lambda:ap-northeast-1:477331159723:function:PRE-3DPointCloudObjectDetection arn:aws:lambda:ap-southeast-2:454466003867:function:PRE-3DPointCloudObjectDetection arn:aws:lambda:ap-south-1:565803892007:function:PRE-3DPointCloudObjectDetection arn:aws:lambda:eu-central-1:203001061592:function:PRE-3DPointCloudObjectDetection arn:aws:lambda:ap-northeast-2:845288260483:function:PRE-3DPointCloudObjectDetection arn:aws:lambda:eu-west-2:487402164563:function:PRE-3DPointCloudObjectDetection arn:aws:lambda:ap-southeast-1:377565633583:function:PRE-3DPointCloudObjectDetection arn:aws:lambda:ca-central-1:918755190332:function:PRE-3DPointCloudObjectDetection 3D Point Cloud Object Tracking - Use this task type when you want workers to draw 3D cuboids around objects that appear in a sequence of 3D point cloud frames. For example, you can use this task type to ask workers to track the movement of vehicles across multiple point cloud frames. arn:aws:lambda:us-east-1:432418664414:function:PRE-3DPointCloudObjectTracking arn:aws:lambda:us-east-2:266458841044:function:PRE-3DPointCloudObjectTracking arn:aws:lambda:us-west-2:081040173940:function:PRE-3DPointCloudObjectTracking arn:aws:lambda:eu-west-1:568282634449:function:PRE-3DPointCloudObjectTracking arn:aws:lambda:ap-northeast-1:477331159723:function:PRE-3DPointCloudObjectTracking arn:aws:lambda:ap-southeast-2:454466003867:function:PRE-3DPointCloudObjectTracking arn:aws:lambda:ap-south-1:565803892007:function:PRE-3DPointCloudObjectTracking arn:aws:lambda:eu-central-1:203001061592:function:PRE-3DPointCloudObjectTracking arn:aws:lambda:ap-northeast-2:845288260483:function:PRE-3DPointCloudObjectTracking arn:aws:lambda:eu-west-2:487402164563:function:PRE-3DPointCloudObjectTracking arn:aws:lambda:ap-southeast-1:377565633583:function:PRE-3DPointCloudObjectTracking arn:aws:lambda:ca-central-1:918755190332:function:PRE-3DPointCloudObjectTracking 3D Point Cloud Semantic Segmentation - Use this task type when you want workers to create a point-level semantic segmentation masks by painting objects in a 3D point cloud using different colors where each color is assigned to one of the classes you specify. arn:aws:lambda:us-east-1:432418664414:function:PRE-3DPointCloudSemanticSegmentation arn:aws:lambda:us-east-2:266458841044:function:PRE-3DPointCloudSemanticSegmentation arn:aws:lambda:us-west-2:081040173940:function:PRE-3DPointCloudSemanticSegmentation arn:aws:lambda:eu-west-1:568282634449:function:PRE-3DPointCloudSemanticSegmentation arn:aws:lambda:ap-northeast-1:477331159723:function:PRE-3DPointCloudSemanticSegmentation arn:aws:lambda:ap-southeast-2:454466003867:function:PRE-3DPointCloudSemanticSegmentation arn:aws:lambda:ap-south-1:565803892007:function:PRE-3DPointCloudSemanticSegmentation arn:aws:lambda:eu-central-1:203001061592:function:PRE-3DPointCloudSemanticSegmentation arn:aws:lambda:ap-northeast-2:845288260483:function:PRE-3DPointCloudSemanticSegmentation arn:aws:lambda:eu-west-2:487402164563:function:PRE-3DPointCloudSemanticSegmentation arn:aws:lambda:ap-southeast-1:377565633583:function:PRE-3DPointCloudSemanticSegmentation arn:aws:lambda:ca-central-1:918755190332:function:PRE-3DPointCloudSemanticSegmentation Use the following ARNs for Label Verification and Adjustment Jobs Use label verification and adjustment jobs to review and adjust labels. To learn more, see Verify and Adjust Labels . Bounding box verification - Uses a variant of the Expectation Maximization approach to estimate the true class of verification judgement for bounding box labels based on annotations from individual workers. arn:aws:lambda:us-east-1:432418664414:function:PRE-VerificationBoundingBox arn:aws:lambda:us-east-2:266458841044:function:PRE-VerificationBoundingBox arn:aws:lambda:us-west-2:081040173940:function:PRE-VerificationBoundingBox arn:aws:lambda:eu-west-1:568282634449:function:PRE-VerificationBoundingBox arn:aws:lambda:ap-northeast-1:477331159723:function:PRE-VerificationBoundingBox arn:aws:lambda:ap-southeast-2:454466003867:function:PRE-VerificationBoundingBox arn:aws:lambda:ap-south-1:565803892007:function:PRE-VerificationBoundingBox arn:aws:lambda:eu-central-1:203001061592:function:PRE-VerificationBoundingBox arn:aws:lambda:ap-northeast-2:845288260483:function:PRE-VerificationBoundingBox arn:aws:lambda:eu-west-2:487402164563:function:PRE-VerificationBoundingBox arn:aws:lambda:ap-southeast-1:377565633583:function:PRE-VerificationBoundingBox arn:aws:lambda:ca-central-1:918755190332:function:PRE-VerificationBoundingBox Bounding box adjustment - Finds the most similar boxes from different workers based on the Jaccard index of the adjusted annotations. arn:aws:lambda:us-east-1:432418664414:function:PRE-AdjustmentBoundingBox arn:aws:lambda:us-east-2:266458841044:function:PRE-AdjustmentBoundingBox arn:aws:lambda:us-west-2:081040173940:function:PRE-AdjustmentBoundingBox arn:aws:lambda:ca-central-1:918755190332:function:PRE-AdjustmentBoundingBox arn:aws:lambda:eu-west-1:568282634449:function:PRE-AdjustmentBoundingBox arn:aws:lambda:eu-west-2:487402164563:function:PRE-AdjustmentBoundingBox arn:aws:lambda:eu-central-1:203001061592:function:PRE-AdjustmentBoundingBox arn:aws:lambda:ap-northeast-1:477331159723:function:PRE-AdjustmentBoundingBox arn:aws:lambda:ap-northeast-2:845288260483:function:PRE-AdjustmentBoundingBox arn:aws:lambda:ap-south-1:565803892007:function:PRE-AdjustmentBoundingBox arn:aws:lambda:ap-southeast-1:377565633583:function:PRE-AdjustmentBoundingBox arn:aws:lambda:ap-southeast-2:454466003867:function:PRE-AdjustmentBoundingBox Semantic segmentation verification - Uses a variant of the Expectation Maximization approach to estimate the true class of verification judgment for semantic segmentation labels based on annotations from individual workers. arn:aws:lambda:us-east-1:432418664414:function:PRE-VerificationSemanticSegmentation arn:aws:lambda:us-east-2:266458841044:function:PRE-VerificationSemanticSegmentation arn:aws:lambda:us-west-2:081040173940:function:PRE-VerificationSemanticSegmentation arn:aws:lambda:ca-central-1:918755190332:function:PRE-VerificationSemanticSegmentation arn:aws:lambda:eu-west-1:568282634449:function:PRE-VerificationSemanticSegmentation arn:aws:lambda:eu-west-2:487402164563:function:PRE-VerificationSemanticSegmentation arn:aws:lambda:eu-central-1:203001061592:function:PRE-VerificationSemanticSegmentation arn:aws:lambda:ap-northeast-1:477331159723:function:PRE-VerificationSemanticSegmentation arn:aws:lambda:ap-northeast-2:845288260483:function:PRE-VerificationSemanticSegmentation arn:aws:lambda:ap-south-1:565803892007:function:PRE-VerificationSemanticSegmentation arn:aws:lambda:ap-southeast-1:377565633583:function:PRE-VerificationSemanticSegmentation arn:aws:lambda:ap-southeast-2:454466003867:function:PRE-VerificationSemanticSegmentation Semantic segmentation adjustment - Treats each pixel in an image as a multi-class classification and treats pixel adjusted annotations from workers as "votes" for the correct label. arn:aws:lambda:us-east-1:432418664414:function:PRE-AdjustmentSemanticSegmentation arn:aws:lambda:us-east-2:266458841044:function:PRE-AdjustmentSemanticSegmentation arn:aws:lambda:us-west-2:081040173940:function:PRE-AdjustmentSemanticSegmentation arn:aws:lambda:ca-central-1:918755190332:function:PRE-AdjustmentSemanticSegmentation arn:aws:lambda:eu-west-1:568282634449:function:PRE-AdjustmentSemanticSegmentation arn:aws:lambda:eu-west-2:487402164563:function:PRE-AdjustmentSemanticSegmentation arn:aws:lambda:eu-central-1:203001061592:function:PRE-AdjustmentSemanticSegmentation arn:aws:lambda:ap-northeast-1:477331159723:function:PRE-AdjustmentSemanticSegmentation arn:aws:lambda:ap-northeast-2:845288260483:function:PRE-AdjustmentSemanticSegmentation arn:aws:lambda:ap-south-1:565803892007:function:PRE-AdjustmentSemanticSegmentation arn:aws:lambda:ap-southeast-1:377565633583:function:PRE-AdjustmentSemanticSegmentation arn:aws:lambda:ap-southeast-2:454466003867:function:PRE-AdjustmentSemanticSegmentation Video Frame Object Detection Adjustment - Use this task type when you want workers to adjust bounding boxes that workers have added to video frames to classify and localize objects in a sequence of video frames. arn:aws:lambda:us-east-1:432418664414:function:PRE-AdjustmentVideoObjectDetection arn:aws:lambda:us-east-2:266458841044:function:PRE-AdjustmentVideoObjectDetection arn:aws:lambda:us-west-2:081040173940:function:PRE-AdjustmentVideoObjectDetection arn:aws:lambda:eu-west-1:568282634449:function:PRE-AdjustmentVideoObjectDetection arn:aws:lambda:ap-northeast-1:477331159723:function:PRE-AdjustmentVideoObjectDetection arn:aws:lambda:ap-southeast-2:454466003867:function:PRE-AdjustmentVideoObjectDetection arn:aws:lambda:ap-south-1:565803892007:function:PRE-AdjustmentVideoObjectDetection arn:aws:lambda:eu-central-1:203001061592:function:PRE-AdjustmentVideoObjectDetection arn:aws:lambda:ap-northeast-2:845288260483:function:PRE-AdjustmentVideoObjectDetection arn:aws:lambda:eu-west-2:487402164563:function:PRE-AdjustmentVideoObjectDetection arn:aws:lambda:ap-southeast-1:377565633583:function:PRE-AdjustmentVideoObjectDetection arn:aws:lambda:ca-central-1:918755190332:function:PRE-AdjustmentVideoObjectDetection Video Frame Object Tracking Adjustment - Use this task type when you want workers to adjust bounding boxes that workers have added to video frames to track object movement across a sequence of video frames. arn:aws:lambda:us-east-1:432418664414:function:PRE-AdjustmentVideoObjectTracking arn:aws:lambda:us-east-2:266458841044:function:PRE-AdjustmentVideoObjectTracking arn:aws:lambda:us-west-2:081040173940:function:PRE-AdjustmentVideoObjectTracking arn:aws:lambda:eu-west-1:568282634449:function:PRE-AdjustmentVideoObjectTracking arn:aws:lambda:ap-northeast-1:477331159723:function:PRE-AdjustmentVideoObjectTracking arn:aws:lambda:ap-southeast-2:454466003867:function:PRE-AdjustmentVideoObjectTracking arn:aws:lambda:ap-south-1:565803892007:function:PRE-AdjustmentVideoObjectTracking arn:aws:lambda:eu-central-1:203001061592:function:PRE-AdjustmentVideoObjectTracking arn:aws:lambda:ap-northeast-2:845288260483:function:PRE-AdjustmentVideoObjectTracking arn:aws:lambda:eu-west-2:487402164563:function:PRE-AdjustmentVideoObjectTracking arn:aws:lambda:ap-southeast-1:377565633583:function:PRE-AdjustmentVideoObjectTracking arn:aws:lambda:ca-central-1:918755190332:function:PRE-AdjustmentVideoObjectTracking 3D point cloud object detection adjustment - Adjust 3D cuboids in a point cloud frame. arn:aws:lambda:us-east-1:432418664414:function:PRE-Adjustment3DPointCloudObjectDetection arn:aws:lambda:us-east-2:266458841044:function:PRE-Adjustment3DPointCloudObjectDetection arn:aws:lambda:us-west-2:081040173940:function:PRE-Adjustment3DPointCloudObjectDetection arn:aws:lambda:eu-west-1:568282634449:function:PRE-Adjustment3DPointCloudObjectDetection arn:aws:lambda:ap-northeast-1:477331159723:function:PRE-Adjustment3DPointCloudObjectDetection arn:aws:lambda:ap-southeast-2:454466003867:function:PRE-Adjustment3DPointCloudObjectDetection arn:aws:lambda:ap-south-1:565803892007:function:PRE-Adjustment3DPointCloudObjectDetection arn:aws:lambda:eu-central-1:203001061592:function:PRE-Adjustment3DPointCloudObjectDetection arn:aws:lambda:ap-northeast-2:845288260483:function:PRE-Adjustment3DPointCloudObjectDetection arn:aws:lambda:eu-west-2:487402164563:function:PRE-Adjustment3DPointCloudObjectDetection arn:aws:lambda:ap-southeast-1:377565633583:function:PRE-Adjustment3DPointCloudObjectDetection arn:aws:lambda:ca-central-1:918755190332:function:PRE-Adjustment3DPointCloudObjectDetection 3D point cloud object tracking adjustment - Adjust 3D cuboids across a sequence of point cloud frames. arn:aws:lambda:us-east-1:432418664414:function:PRE-Adjustment3DPointCloudObjectTracking arn:aws:lambda:us-east-2:266458841044:function:PRE-Adjustment3DPointCloudObjectTracking arn:aws:lambda:us-west-2:081040173940:function:PRE-Adjustment3DPointCloudObjectTracking arn:aws:lambda:eu-west-1:568282634449:function:PRE-Adjustment3DPointCloudObjectTracking arn:aws:lambda:ap-northeast-1:477331159723:function:PRE-Adjustment3DPointCloudObjectTracking arn:aws:lambda:ap-southeast-2:454466003867:function:PRE-Adjustment3DPointCloudObjectTracking arn:aws:lambda:ap-south-1:565803892007:function:PRE-Adjustment3DPointCloudObjectTracking arn:aws:lambda:eu-central-1:203001061592:function:PRE-Adjustment3DPointCloudObjectTracking arn:aws:lambda:ap-northeast-2:845288260483:function:PRE-Adjustment3DPointCloudObjectTracking arn:aws:lambda:eu-west-2:487402164563:function:PRE-Adjustment3DPointCloudObjectTracking arn:aws:lambda:ap-southeast-1:377565633583:function:PRE-Adjustment3DPointCloudObjectTracking arn:aws:lambda:ca-central-1:918755190332:function:PRE-Adjustment3DPointCloudObjectTracking 3D point cloud semantic segmentation adjustment - Adjust semantic segmentation masks in a 3D point cloud. arn:aws:lambda:us-east-1:432418664414:function:PRE-Adjustment3DPointCloudSemanticSegmentation arn:aws:lambda:us-east-2:266458841044:function:PRE-Adjustment3DPointCloudSemanticSegmentation arn:aws:lambda:us-west-2:081040173940:function:PRE-Adjustment3DPointCloudSemanticSegmentation arn:aws:lambda:eu-west-1:568282634449:function:PRE-Adjustment3DPointCloudSemanticSegmentation arn:aws:lambda:ap-northeast-1:477331159723:function:PRE-Adjustment3DPointCloudSemanticSegmentation arn:aws:lambda:ap-southeast-2:454466003867:function:PRE-Adjustment3DPointCloudSemanticSegmentation arn:aws:lambda:ap-south-1:565803892007:function:PRE-Adjustment3DPointCloudSemanticSegmentation arn:aws:lambda:eu-central-1:203001061592:function:PRE-Adjustment3DPointCloudSemanticSegmentation arn:aws:lambda:ap-northeast-2:845288260483:function:PRE-Adjustment3DPointCloudSemanticSegmentation arn:aws:lambda:eu-west-2:487402164563:function:PRE-Adjustment3DPointCloudSemanticSegmentation arn:aws:lambda:ap-southeast-1:377565633583:function:PRE-Adjustment3DPointCloudSemanticSegmentation arn:aws:lambda:ca-central-1:918755190332:function:PRE-Adjustment3DPointCloudSemanticSegmentation Generative AI/Custom - Direct passthrough of input data without any transformation. arn:aws:lambda:us-east-1:432418664414:function:PRE-PassThrough arn:aws:lambda:us-east-2:266458841044:function:PRE-PassThrough arn:aws:lambda:us-west-2:081040173940:function:PRE-PassThrough arn:aws:lambda:ca-central-1:918755190332:function:PRE-PassThrough arn:aws:lambda:eu-west-1:568282634449:function:PRE-PassThrough arn:aws:lambda:eu-west-2:487402164563:function:PRE-PassThrough arn:aws:lambda:eu-central-1:203001061592:function:PRE-PassThrough arn:aws:lambda:ap-northeast-1:477331159723:function:PRE-PassThrough arn:aws:lambda:ap-northeast-2:845288260483:function:PRE-PassThrough arn:aws:lambda:ap-south-1:565803892007:function:PRE-PassThrough arn:aws:lambda:ap-southeast-1:377565633583:function:PRE-PassThrough arn:aws:lambda:ap-southeast-2:454466003867:function:PRE-PassThrough
|
|
6254
6961
|
task_keywords: Keywords used to describe the task so that workers on Amazon Mechanical Turk can discover the task.
|
|
6255
6962
|
task_title: A title for the task for your human workers.
|
|
6256
6963
|
task_description: A description of the task for your human workers.
|
|
@@ -7111,7 +7818,7 @@ class ProcessingS3Input(Base):
|
|
|
7111
7818
|
local_path: The local path in your container where you want Amazon SageMaker to write input data to. LocalPath is an absolute path to the input data and must begin with /opt/ml/processing/. LocalPath is a required parameter when AppManaged is False (default).
|
|
7112
7819
|
s3_data_type: Whether you use an S3Prefix or a ManifestFile for the data type. If you choose S3Prefix, S3Uri identifies a key name prefix. Amazon SageMaker uses all objects with the specified key name prefix for the processing job. If you choose ManifestFile, S3Uri identifies an object that is a manifest file containing a list of object keys that you want Amazon SageMaker to use for the processing job.
|
|
7113
7820
|
s3_input_mode: Whether to use File or Pipe input mode. In File mode, Amazon SageMaker copies the data from the input source onto the local ML storage volume before starting your processing container. This is the most commonly used input mode. In Pipe mode, Amazon SageMaker streams input data from the source directly to your processing container into named pipes without using the ML storage volume.
|
|
7114
|
-
s3_data_distribution_type: Whether to distribute the data from Amazon S3 to all processing instances with FullyReplicated, or whether the data from Amazon S3 is
|
|
7821
|
+
s3_data_distribution_type: Whether to distribute the data from Amazon S3 to all processing instances with FullyReplicated, or whether the data from Amazon S3 is sharded by Amazon S3 key, downloading one shard of data to each processing instance.
|
|
7115
7822
|
s3_compression_type: Whether to GZIP-decompress the data in Amazon S3 as it is streamed into the processing container. Gzip can only be used when Pipe mode is specified as the S3InputMode. In Pipe mode, Amazon SageMaker streams input data from the source directly to your container without using the EBS volume.
|
|
7116
7823
|
"""
|
|
7117
7824
|
|
|
@@ -7354,6 +8061,19 @@ class ServiceCatalogProvisioningDetails(Base):
|
|
|
7354
8061
|
provisioning_parameters: Optional[List[ProvisioningParameter]] = Unassigned()
|
|
7355
8062
|
|
|
7356
8063
|
|
|
8064
|
+
class CreateTemplateProvider(Base):
|
|
8065
|
+
"""
|
|
8066
|
+
CreateTemplateProvider
|
|
8067
|
+
Contains configuration details for a template provider. Only one type of template provider can be specified.
|
|
8068
|
+
|
|
8069
|
+
Attributes
|
|
8070
|
+
----------------------
|
|
8071
|
+
cfn_template_provider: The CloudFormation template provider configuration for creating infrastructure resources.
|
|
8072
|
+
"""
|
|
8073
|
+
|
|
8074
|
+
cfn_template_provider: Optional[CfnCreateTemplateProvider] = Unassigned()
|
|
8075
|
+
|
|
8076
|
+
|
|
7357
8077
|
class SpaceIdleSettings(Base):
|
|
7358
8078
|
"""
|
|
7359
8079
|
SpaceIdleSettings
|
|
@@ -7464,6 +8184,19 @@ class FSxLustreFileSystem(Base):
|
|
|
7464
8184
|
file_system_id: str
|
|
7465
8185
|
|
|
7466
8186
|
|
|
8187
|
+
class S3FileSystem(Base):
|
|
8188
|
+
"""
|
|
8189
|
+
S3FileSystem
|
|
8190
|
+
A custom file system in Amazon S3. This is only supported in Amazon SageMaker Unified Studio.
|
|
8191
|
+
|
|
8192
|
+
Attributes
|
|
8193
|
+
----------------------
|
|
8194
|
+
s3_uri: The Amazon S3 URI that specifies the location in S3 where files are stored, which is mounted within the Studio environment. For example: s3://<bucket-name>/<prefix>/.
|
|
8195
|
+
"""
|
|
8196
|
+
|
|
8197
|
+
s3_uri: str
|
|
8198
|
+
|
|
8199
|
+
|
|
7467
8200
|
class CustomFileSystem(Base):
|
|
7468
8201
|
"""
|
|
7469
8202
|
CustomFileSystem
|
|
@@ -7473,10 +8206,12 @@ class CustomFileSystem(Base):
|
|
|
7473
8206
|
----------------------
|
|
7474
8207
|
efs_file_system: A custom file system in Amazon EFS.
|
|
7475
8208
|
f_sx_lustre_file_system: A custom file system in Amazon FSx for Lustre.
|
|
8209
|
+
s3_file_system: A custom file system in Amazon S3. This is only supported in Amazon SageMaker Unified Studio.
|
|
7476
8210
|
"""
|
|
7477
8211
|
|
|
7478
8212
|
efs_file_system: Optional[EFSFileSystem] = Unassigned()
|
|
7479
8213
|
f_sx_lustre_file_system: Optional[FSxLustreFileSystem] = Unassigned()
|
|
8214
|
+
s3_file_system: Optional[S3FileSystem] = Unassigned()
|
|
7480
8215
|
|
|
7481
8216
|
|
|
7482
8217
|
class SpaceSettings(Base):
|
|
@@ -7494,6 +8229,7 @@ class SpaceSettings(Base):
|
|
|
7494
8229
|
space_storage_settings: The storage settings for a space.
|
|
7495
8230
|
space_managed_resources: If you enable this option, SageMaker AI creates the following resources on your behalf when you create the space: The user profile that possesses the space. The app that the space contains.
|
|
7496
8231
|
custom_file_systems: A file system, created by you, that you assign to a space for an Amazon SageMaker AI Domain. Permitted users can access this file system in Amazon SageMaker AI Studio.
|
|
8232
|
+
remote_access: A setting that enables or disables remote access for a SageMaker space. When enabled, this allows you to connect to the remote space from your local IDE.
|
|
7497
8233
|
"""
|
|
7498
8234
|
|
|
7499
8235
|
jupyter_server_app_settings: Optional[JupyterServerAppSettings] = Unassigned()
|
|
@@ -7504,6 +8240,7 @@ class SpaceSettings(Base):
|
|
|
7504
8240
|
space_storage_settings: Optional[SpaceStorageSettings] = Unassigned()
|
|
7505
8241
|
space_managed_resources: Optional[str] = Unassigned()
|
|
7506
8242
|
custom_file_systems: Optional[List[CustomFileSystem]] = Unassigned()
|
|
8243
|
+
remote_access: Optional[str] = Unassigned()
|
|
7507
8244
|
|
|
7508
8245
|
|
|
7509
8246
|
class OwnershipSettings(Base):
|
|
@@ -8562,6 +9299,19 @@ class InferenceComponentContainerSpecificationSummary(Base):
|
|
|
8562
9299
|
environment: Optional[Dict[str, str]] = Unassigned()
|
|
8563
9300
|
|
|
8564
9301
|
|
|
9302
|
+
class InferenceComponentDataCacheConfigSummary(Base):
|
|
9303
|
+
"""
|
|
9304
|
+
InferenceComponentDataCacheConfigSummary
|
|
9305
|
+
Settings that affect how the inference component caches data.
|
|
9306
|
+
|
|
9307
|
+
Attributes
|
|
9308
|
+
----------------------
|
|
9309
|
+
enable_caching: Indicates whether the inference component caches model artifacts as part of the auto scaling process.
|
|
9310
|
+
"""
|
|
9311
|
+
|
|
9312
|
+
enable_caching: bool
|
|
9313
|
+
|
|
9314
|
+
|
|
8565
9315
|
class InferenceComponentSpecificationSummary(Base):
|
|
8566
9316
|
"""
|
|
8567
9317
|
InferenceComponentSpecificationSummary
|
|
@@ -8574,6 +9324,7 @@ class InferenceComponentSpecificationSummary(Base):
|
|
|
8574
9324
|
startup_parameters: Settings that take effect while the model container starts up.
|
|
8575
9325
|
compute_resource_requirements: The compute resources allocated to run the model, plus any adapter models, that you assign to the inference component.
|
|
8576
9326
|
base_inference_component_name: The name of the base inference component that contains this inference component.
|
|
9327
|
+
data_cache_config: Settings that affect how the inference component caches data.
|
|
8577
9328
|
"""
|
|
8578
9329
|
|
|
8579
9330
|
model_name: Optional[Union[str, object]] = Unassigned()
|
|
@@ -8583,6 +9334,7 @@ class InferenceComponentSpecificationSummary(Base):
|
|
|
8583
9334
|
Unassigned()
|
|
8584
9335
|
)
|
|
8585
9336
|
base_inference_component_name: Optional[str] = Unassigned()
|
|
9337
|
+
data_cache_config: Optional[InferenceComponentDataCacheConfigSummary] = Unassigned()
|
|
8586
9338
|
|
|
8587
9339
|
|
|
8588
9340
|
class InferenceComponentRuntimeConfigSummary(Base):
|
|
@@ -9032,6 +9784,40 @@ class ServiceCatalogProvisionedProductDetails(Base):
|
|
|
9032
9784
|
provisioned_product_status_message: Optional[str] = Unassigned()
|
|
9033
9785
|
|
|
9034
9786
|
|
|
9787
|
+
class TemplateProviderDetail(Base):
|
|
9788
|
+
"""
|
|
9789
|
+
TemplateProviderDetail
|
|
9790
|
+
Details about a template provider configuration and associated provisioning information.
|
|
9791
|
+
|
|
9792
|
+
Attributes
|
|
9793
|
+
----------------------
|
|
9794
|
+
cfn_template_provider_detail: Details about a CloudFormation template provider configuration and associated provisioning information.
|
|
9795
|
+
"""
|
|
9796
|
+
|
|
9797
|
+
cfn_template_provider_detail: Optional[CfnTemplateProviderDetail] = Unassigned()
|
|
9798
|
+
|
|
9799
|
+
|
|
9800
|
+
class UltraServerSummary(Base):
|
|
9801
|
+
"""
|
|
9802
|
+
UltraServerSummary
|
|
9803
|
+
A summary of UltraServer resources and their current status.
|
|
9804
|
+
|
|
9805
|
+
Attributes
|
|
9806
|
+
----------------------
|
|
9807
|
+
ultra_server_type: The type of UltraServer, such as ml.u-p6e-gb200x72.
|
|
9808
|
+
instance_type: The Amazon EC2 instance type used in the UltraServer.
|
|
9809
|
+
ultra_server_count: The number of UltraServers of this type.
|
|
9810
|
+
available_spare_instance_count: The number of available spare instances in the UltraServers.
|
|
9811
|
+
unhealthy_instance_count: The total number of instances across all UltraServers of this type that are currently in an unhealthy state.
|
|
9812
|
+
"""
|
|
9813
|
+
|
|
9814
|
+
ultra_server_type: str
|
|
9815
|
+
instance_type: str
|
|
9816
|
+
ultra_server_count: Optional[int] = Unassigned()
|
|
9817
|
+
available_spare_instance_count: Optional[int] = Unassigned()
|
|
9818
|
+
unhealthy_instance_count: Optional[int] = Unassigned()
|
|
9819
|
+
|
|
9820
|
+
|
|
9035
9821
|
class SubscribedWorkteam(Base):
|
|
9036
9822
|
"""
|
|
9037
9823
|
SubscribedWorkteam
|
|
@@ -9135,6 +9921,9 @@ class ReservedCapacitySummary(Base):
|
|
|
9135
9921
|
Attributes
|
|
9136
9922
|
----------------------
|
|
9137
9923
|
reserved_capacity_arn: The Amazon Resource Name (ARN); of the reserved capacity.
|
|
9924
|
+
reserved_capacity_type: The type of reserved capacity.
|
|
9925
|
+
ultra_server_type: The type of UltraServer included in this reserved capacity, such as ml.u-p6e-gb200x72.
|
|
9926
|
+
ultra_server_count: The number of UltraServers included in this reserved capacity.
|
|
9138
9927
|
instance_type: The instance type for the reserved capacity.
|
|
9139
9928
|
total_instance_count: The total number of instances in the reserved capacity.
|
|
9140
9929
|
status: The current status of the reserved capacity.
|
|
@@ -9149,6 +9938,9 @@ class ReservedCapacitySummary(Base):
|
|
|
9149
9938
|
instance_type: str
|
|
9150
9939
|
total_instance_count: int
|
|
9151
9940
|
status: str
|
|
9941
|
+
reserved_capacity_type: Optional[str] = Unassigned()
|
|
9942
|
+
ultra_server_type: Optional[str] = Unassigned()
|
|
9943
|
+
ultra_server_count: Optional[int] = Unassigned()
|
|
9152
9944
|
availability_zone: Optional[str] = Unassigned()
|
|
9153
9945
|
duration_hours: Optional[int] = Unassigned()
|
|
9154
9946
|
duration_minutes: Optional[int] = Unassigned()
|
|
@@ -9281,6 +10073,7 @@ class Workforce(Base):
|
|
|
9281
10073
|
workforce_vpc_config: The configuration of a VPC workforce.
|
|
9282
10074
|
status: The status of your workforce.
|
|
9283
10075
|
failure_reason: The reason your workforce failed.
|
|
10076
|
+
ip_address_type: The IP address type you specify - either IPv4 only or dualstack (IPv4 and IPv6) - to support your labeling workforce.
|
|
9284
10077
|
"""
|
|
9285
10078
|
|
|
9286
10079
|
workforce_name: Union[str, object]
|
|
@@ -9294,6 +10087,7 @@ class Workforce(Base):
|
|
|
9294
10087
|
workforce_vpc_config: Optional[WorkforceVpcConfigResponse] = Unassigned()
|
|
9295
10088
|
status: Optional[str] = Unassigned()
|
|
9296
10089
|
failure_reason: Optional[str] = Unassigned()
|
|
10090
|
+
ip_address_type: Optional[str] = Unassigned()
|
|
9297
10091
|
|
|
9298
10092
|
|
|
9299
10093
|
class Workteam(Base):
|
|
@@ -9545,9 +10339,11 @@ class DomainSettingsForUpdate(Base):
|
|
|
9545
10339
|
r_studio_server_pro_domain_settings_for_update: A collection of RStudioServerPro Domain-level app settings to update. A single RStudioServerPro application is created for a domain.
|
|
9546
10340
|
execution_role_identity_config: The configuration for attaching a SageMaker AI user profile name to the execution role as a sts:SourceIdentity key. This configuration can only be modified if there are no apps in the InService or Pending state.
|
|
9547
10341
|
security_group_ids: The security groups for the Amazon Virtual Private Cloud that the Domain uses for communication between Domain-level apps and user apps.
|
|
10342
|
+
trusted_identity_propagation_settings: The Trusted Identity Propagation (TIP) settings for the SageMaker domain. These settings determine how user identities from IAM Identity Center are propagated through the domain to TIP enabled Amazon Web Services services.
|
|
9548
10343
|
docker_settings: A collection of settings that configure the domain's Docker interaction.
|
|
9549
10344
|
amazon_q_settings: A collection of settings that configure the Amazon Q experience within the domain.
|
|
9550
10345
|
unified_studio_settings: The settings that apply to an SageMaker AI domain when you use it in Amazon SageMaker Unified Studio.
|
|
10346
|
+
ip_address_type: The IP address type for the domain. Specify ipv4 for IPv4-only connectivity or dualstack for both IPv4 and IPv6 connectivity. When you specify dualstack, the subnet must support IPv6 CIDR blocks.
|
|
9551
10347
|
"""
|
|
9552
10348
|
|
|
9553
10349
|
r_studio_server_pro_domain_settings_for_update: Optional[
|
|
@@ -9555,9 +10351,13 @@ class DomainSettingsForUpdate(Base):
|
|
|
9555
10351
|
] = Unassigned()
|
|
9556
10352
|
execution_role_identity_config: Optional[str] = Unassigned()
|
|
9557
10353
|
security_group_ids: Optional[List[str]] = Unassigned()
|
|
10354
|
+
trusted_identity_propagation_settings: Optional[TrustedIdentityPropagationSettings] = (
|
|
10355
|
+
Unassigned()
|
|
10356
|
+
)
|
|
9558
10357
|
docker_settings: Optional[DockerSettings] = Unassigned()
|
|
9559
10358
|
amazon_q_settings: Optional[AmazonQSettings] = Unassigned()
|
|
9560
10359
|
unified_studio_settings: Optional[UnifiedStudioSettings] = Unassigned()
|
|
10360
|
+
ip_address_type: Optional[str] = Unassigned()
|
|
9561
10361
|
|
|
9562
10362
|
|
|
9563
10363
|
class PredefinedMetricSpecification(Base):
|
|
@@ -11323,6 +12123,29 @@ class Parameter(Base):
|
|
|
11323
12123
|
value: str
|
|
11324
12124
|
|
|
11325
12125
|
|
|
12126
|
+
class PipelineVersionSummary(Base):
|
|
12127
|
+
"""
|
|
12128
|
+
PipelineVersionSummary
|
|
12129
|
+
The summary of the pipeline version.
|
|
12130
|
+
|
|
12131
|
+
Attributes
|
|
12132
|
+
----------------------
|
|
12133
|
+
pipeline_arn: The Amazon Resource Name (ARN) of the pipeline.
|
|
12134
|
+
pipeline_version_id: The ID of the pipeline version.
|
|
12135
|
+
creation_time: The creation time of the pipeline version.
|
|
12136
|
+
pipeline_version_description: The description of the pipeline version.
|
|
12137
|
+
pipeline_version_display_name: The display name of the pipeline version.
|
|
12138
|
+
last_execution_pipeline_execution_arn: The Amazon Resource Name (ARN) of the most recent pipeline execution created from this pipeline version.
|
|
12139
|
+
"""
|
|
12140
|
+
|
|
12141
|
+
pipeline_arn: Optional[str] = Unassigned()
|
|
12142
|
+
pipeline_version_id: Optional[int] = Unassigned()
|
|
12143
|
+
creation_time: Optional[datetime.datetime] = Unassigned()
|
|
12144
|
+
pipeline_version_description: Optional[str] = Unassigned()
|
|
12145
|
+
pipeline_version_display_name: Optional[str] = Unassigned()
|
|
12146
|
+
last_execution_pipeline_execution_arn: Optional[str] = Unassigned()
|
|
12147
|
+
|
|
12148
|
+
|
|
11326
12149
|
class PipelineSummary(Base):
|
|
11327
12150
|
"""
|
|
11328
12151
|
PipelineSummary
|
|
@@ -11427,10 +12250,12 @@ class SpaceSettingsSummary(Base):
|
|
|
11427
12250
|
Attributes
|
|
11428
12251
|
----------------------
|
|
11429
12252
|
app_type: The type of app created within the space.
|
|
12253
|
+
remote_access: A setting that enables or disables remote access for a SageMaker space. When enabled, this allows you to connect to the remote space from your local IDE.
|
|
11430
12254
|
space_storage_settings: The storage settings for a space.
|
|
11431
12255
|
"""
|
|
11432
12256
|
|
|
11433
12257
|
app_type: Optional[str] = Unassigned()
|
|
12258
|
+
remote_access: Optional[str] = Unassigned()
|
|
11434
12259
|
space_storage_settings: Optional[SpaceStorageSettings] = Unassigned()
|
|
11435
12260
|
|
|
11436
12261
|
|
|
@@ -11574,6 +12399,7 @@ class TrainingPlanSummary(Base):
|
|
|
11574
12399
|
total_instance_count: The total number of instances reserved in this training plan.
|
|
11575
12400
|
available_instance_count: The number of instances currently available for use in this training plan.
|
|
11576
12401
|
in_use_instance_count: The number of instances currently in use from this training plan.
|
|
12402
|
+
total_ultra_server_count: The total number of UltraServers allocated to this training plan.
|
|
11577
12403
|
target_resources: The target resources (e.g., training jobs, HyperPod clusters) that can use this training plan. Training plans are specific to their target resource. A training plan designed for SageMaker training jobs can only be used to schedule and run training jobs. A training plan for HyperPod clusters can be used exclusively to provide compute resources to a cluster's instance group.
|
|
11578
12404
|
reserved_capacity_summaries: A list of reserved capacities associated with this training plan, including details such as instance types, counts, and availability zones.
|
|
11579
12405
|
"""
|
|
@@ -11591,6 +12417,7 @@ class TrainingPlanSummary(Base):
|
|
|
11591
12417
|
total_instance_count: Optional[int] = Unassigned()
|
|
11592
12418
|
available_instance_count: Optional[int] = Unassigned()
|
|
11593
12419
|
in_use_instance_count: Optional[int] = Unassigned()
|
|
12420
|
+
total_ultra_server_count: Optional[int] = Unassigned()
|
|
11594
12421
|
target_resources: Optional[List[str]] = Unassigned()
|
|
11595
12422
|
reserved_capacity_summaries: Optional[List[ReservedCapacitySummary]] = Unassigned()
|
|
11596
12423
|
|
|
@@ -11676,6 +12503,39 @@ class TrialSummary(Base):
|
|
|
11676
12503
|
last_modified_time: Optional[datetime.datetime] = Unassigned()
|
|
11677
12504
|
|
|
11678
12505
|
|
|
12506
|
+
class UltraServer(Base):
|
|
12507
|
+
"""
|
|
12508
|
+
UltraServer
|
|
12509
|
+
Represents a high-performance compute server used for distributed training in SageMaker AI. An UltraServer consists of multiple instances within a shared NVLink interconnect domain.
|
|
12510
|
+
|
|
12511
|
+
Attributes
|
|
12512
|
+
----------------------
|
|
12513
|
+
ultra_server_id: The unique identifier for the UltraServer.
|
|
12514
|
+
ultra_server_type: The type of UltraServer, such as ml.u-p6e-gb200x72.
|
|
12515
|
+
availability_zone: The name of the Availability Zone where the UltraServer is provisioned.
|
|
12516
|
+
instance_type: The Amazon EC2 instance type used in the UltraServer.
|
|
12517
|
+
total_instance_count: The total number of instances in this UltraServer.
|
|
12518
|
+
configured_spare_instance_count: The number of spare instances configured for this UltraServer to provide enhanced resiliency.
|
|
12519
|
+
available_instance_count: The number of instances currently available for use in this UltraServer.
|
|
12520
|
+
in_use_instance_count: The number of instances currently in use in this UltraServer.
|
|
12521
|
+
available_spare_instance_count: The number of available spare instances in the UltraServer.
|
|
12522
|
+
unhealthy_instance_count: The number of instances in this UltraServer that are currently in an unhealthy state.
|
|
12523
|
+
health_status: The overall health status of the UltraServer.
|
|
12524
|
+
"""
|
|
12525
|
+
|
|
12526
|
+
ultra_server_id: str
|
|
12527
|
+
ultra_server_type: str
|
|
12528
|
+
availability_zone: str
|
|
12529
|
+
instance_type: str
|
|
12530
|
+
total_instance_count: int
|
|
12531
|
+
configured_spare_instance_count: Optional[int] = Unassigned()
|
|
12532
|
+
available_instance_count: Optional[int] = Unassigned()
|
|
12533
|
+
in_use_instance_count: Optional[int] = Unassigned()
|
|
12534
|
+
available_spare_instance_count: Optional[int] = Unassigned()
|
|
12535
|
+
unhealthy_instance_count: Optional[int] = Unassigned()
|
|
12536
|
+
health_status: Optional[str] = Unassigned()
|
|
12537
|
+
|
|
12538
|
+
|
|
11679
12539
|
class UserProfileDetails(Base):
|
|
11680
12540
|
"""
|
|
11681
12541
|
UserProfileDetails
|
|
@@ -12137,6 +12997,8 @@ class PipelineExecution(Base):
|
|
|
12137
12997
|
parallelism_configuration: The parallelism configuration applied to the pipeline execution.
|
|
12138
12998
|
selective_execution_config: The selective execution configuration applied to the pipeline run.
|
|
12139
12999
|
pipeline_parameters: Contains a list of pipeline parameters. This list can be empty.
|
|
13000
|
+
pipeline_version_id: The ID of the pipeline version that started this execution.
|
|
13001
|
+
pipeline_version_display_name: The display name of the pipeline version that started this execution.
|
|
12140
13002
|
"""
|
|
12141
13003
|
|
|
12142
13004
|
pipeline_arn: Optional[str] = Unassigned()
|
|
@@ -12153,6 +13015,41 @@ class PipelineExecution(Base):
|
|
|
12153
13015
|
parallelism_configuration: Optional[ParallelismConfiguration] = Unassigned()
|
|
12154
13016
|
selective_execution_config: Optional[SelectiveExecutionConfig] = Unassigned()
|
|
12155
13017
|
pipeline_parameters: Optional[List[Parameter]] = Unassigned()
|
|
13018
|
+
pipeline_version_id: Optional[int] = Unassigned()
|
|
13019
|
+
pipeline_version_display_name: Optional[str] = Unassigned()
|
|
13020
|
+
|
|
13021
|
+
|
|
13022
|
+
class PipelineVersion(Base):
|
|
13023
|
+
"""
|
|
13024
|
+
PipelineVersion
|
|
13025
|
+
The version of the pipeline.
|
|
13026
|
+
|
|
13027
|
+
Attributes
|
|
13028
|
+
----------------------
|
|
13029
|
+
pipeline_arn: The Amazon Resource Name (ARN) of the pipeline.
|
|
13030
|
+
pipeline_version_id: The ID of the pipeline version.
|
|
13031
|
+
pipeline_version_display_name: The display name of the pipeline version.
|
|
13032
|
+
pipeline_version_description: The description of the pipeline version.
|
|
13033
|
+
creation_time: The creation time of the pipeline version.
|
|
13034
|
+
last_modified_time: The time when the pipeline version was last modified.
|
|
13035
|
+
created_by
|
|
13036
|
+
last_modified_by
|
|
13037
|
+
last_executed_pipeline_execution_arn: The Amazon Resource Name (ARN) of the most recent pipeline execution created from this pipeline version.
|
|
13038
|
+
last_executed_pipeline_execution_display_name: The display name of the most recent pipeline execution created from this pipeline version.
|
|
13039
|
+
last_executed_pipeline_execution_status: The status of the most recent pipeline execution created from this pipeline version.
|
|
13040
|
+
"""
|
|
13041
|
+
|
|
13042
|
+
pipeline_arn: Optional[str] = Unassigned()
|
|
13043
|
+
pipeline_version_id: Optional[int] = Unassigned()
|
|
13044
|
+
pipeline_version_display_name: Optional[str] = Unassigned()
|
|
13045
|
+
pipeline_version_description: Optional[str] = Unassigned()
|
|
13046
|
+
creation_time: Optional[datetime.datetime] = Unassigned()
|
|
13047
|
+
last_modified_time: Optional[datetime.datetime] = Unassigned()
|
|
13048
|
+
created_by: Optional[UserContext] = Unassigned()
|
|
13049
|
+
last_modified_by: Optional[UserContext] = Unassigned()
|
|
13050
|
+
last_executed_pipeline_execution_arn: Optional[str] = Unassigned()
|
|
13051
|
+
last_executed_pipeline_execution_display_name: Optional[str] = Unassigned()
|
|
13052
|
+
last_executed_pipeline_execution_status: Optional[str] = Unassigned()
|
|
12156
13053
|
|
|
12157
13054
|
|
|
12158
13055
|
class ProcessingJob(Base):
|
|
@@ -12245,6 +13142,7 @@ class Project(Base):
|
|
|
12245
13142
|
project_status: The status of the project.
|
|
12246
13143
|
created_by: Who created the project.
|
|
12247
13144
|
creation_time: A timestamp specifying when the project was created.
|
|
13145
|
+
template_provider_details: An array of template providers associated with the project.
|
|
12248
13146
|
tags: An array of key-value pairs. You can use tags to categorize your Amazon Web Services resources in different ways, for example, by purpose, owner, or environment. For more information, see Tagging Amazon Web Services Resources.
|
|
12249
13147
|
last_modified_time: A timestamp container for when the project was last modified.
|
|
12250
13148
|
last_modified_by
|
|
@@ -12261,6 +13159,7 @@ class Project(Base):
|
|
|
12261
13159
|
project_status: Optional[str] = Unassigned()
|
|
12262
13160
|
created_by: Optional[UserContext] = Unassigned()
|
|
12263
13161
|
creation_time: Optional[datetime.datetime] = Unassigned()
|
|
13162
|
+
template_provider_details: Optional[List[TemplateProviderDetail]] = Unassigned()
|
|
12264
13163
|
tags: Optional[List[Tag]] = Unassigned()
|
|
12265
13164
|
last_modified_time: Optional[datetime.datetime] = Unassigned()
|
|
12266
13165
|
last_modified_by: Optional[UserContext] = Unassigned()
|
|
@@ -12356,6 +13255,9 @@ class ReservedCapacityOffering(Base):
|
|
|
12356
13255
|
|
|
12357
13256
|
Attributes
|
|
12358
13257
|
----------------------
|
|
13258
|
+
reserved_capacity_type: The type of reserved capacity offering.
|
|
13259
|
+
ultra_server_type: The type of UltraServer included in this reserved capacity offering, such as ml.u-p6e-gb200x72.
|
|
13260
|
+
ultra_server_count: The number of UltraServers included in this reserved capacity offering.
|
|
12359
13261
|
instance_type: The instance type for the reserved capacity offering.
|
|
12360
13262
|
instance_count: The number of instances in the reserved capacity offering.
|
|
12361
13263
|
availability_zone: The availability zone for the reserved capacity offering.
|
|
@@ -12367,6 +13269,9 @@ class ReservedCapacityOffering(Base):
|
|
|
12367
13269
|
|
|
12368
13270
|
instance_type: str
|
|
12369
13271
|
instance_count: int
|
|
13272
|
+
reserved_capacity_type: Optional[str] = Unassigned()
|
|
13273
|
+
ultra_server_type: Optional[str] = Unassigned()
|
|
13274
|
+
ultra_server_count: Optional[int] = Unassigned()
|
|
12370
13275
|
availability_zone: Optional[str] = Unassigned()
|
|
12371
13276
|
duration_hours: Optional[int] = Unassigned()
|
|
12372
13277
|
duration_minutes: Optional[int] = Unassigned()
|
|
@@ -12663,6 +13568,7 @@ class SearchRecord(Base):
|
|
|
12663
13568
|
model_package_group
|
|
12664
13569
|
pipeline
|
|
12665
13570
|
pipeline_execution
|
|
13571
|
+
pipeline_version: The version of the pipeline.
|
|
12666
13572
|
feature_group
|
|
12667
13573
|
feature_metadata: The feature metadata used to search through the features.
|
|
12668
13574
|
project: The properties of a project.
|
|
@@ -12680,6 +13586,7 @@ class SearchRecord(Base):
|
|
|
12680
13586
|
model_package_group: Optional[ModelPackageGroup] = Unassigned()
|
|
12681
13587
|
pipeline: Optional[Pipeline] = Unassigned()
|
|
12682
13588
|
pipeline_execution: Optional[PipelineExecution] = Unassigned()
|
|
13589
|
+
pipeline_version: Optional[PipelineVersion] = Unassigned()
|
|
12683
13590
|
feature_group: Optional[FeatureGroup] = Unassigned()
|
|
12684
13591
|
feature_metadata: Optional[FeatureMetadata] = Unassigned()
|
|
12685
13592
|
project: Optional[Project] = Unassigned()
|
|
@@ -12803,3 +13710,16 @@ class VariantProperty(Base):
|
|
|
12803
13710
|
"""
|
|
12804
13711
|
|
|
12805
13712
|
variant_property_type: str
|
|
13713
|
+
|
|
13714
|
+
|
|
13715
|
+
class UpdateTemplateProvider(Base):
|
|
13716
|
+
"""
|
|
13717
|
+
UpdateTemplateProvider
|
|
13718
|
+
Contains configuration details for updating an existing template provider in the project.
|
|
13719
|
+
|
|
13720
|
+
Attributes
|
|
13721
|
+
----------------------
|
|
13722
|
+
cfn_template_provider: The CloudFormation template provider configuration to update.
|
|
13723
|
+
"""
|
|
13724
|
+
|
|
13725
|
+
cfn_template_provider: Optional[CfnUpdateTemplateProvider] = Unassigned()
|