sagemaker-core 1.0.35__py3-none-any.whl → 1.0.36__py3-none-any.whl

This diff represents the content of publicly available package versions that have been released to one of the supported registries. The information contained in this diff is provided for informational purposes only and reflects changes between package versions as they appear in their respective public registries.

Potentially problematic release.


This version of sagemaker-core might be problematic. Click here for more details.

@@ -6296,6 +6296,24 @@ SHAPE_DAG = {
6296
6296
  ],
6297
6297
  "type": "structure",
6298
6298
  },
6299
+ "Ec2CapacityReservation": {
6300
+ "members": [
6301
+ {
6302
+ "name": "Ec2CapacityReservationId",
6303
+ "shape": "Ec2CapacityReservationId",
6304
+ "type": "string",
6305
+ },
6306
+ {"name": "TotalInstanceCount", "shape": "TaskCount", "type": "integer"},
6307
+ {"name": "AvailableInstanceCount", "shape": "TaskCount", "type": "integer"},
6308
+ {"name": "UsedByCurrentEndpoint", "shape": "TaskCount", "type": "integer"},
6309
+ ],
6310
+ "type": "structure",
6311
+ },
6312
+ "Ec2CapacityReservationsList": {
6313
+ "member_shape": "Ec2CapacityReservation",
6314
+ "member_type": "structure",
6315
+ "type": "list",
6316
+ },
6299
6317
  "Edge": {
6300
6318
  "members": [
6301
6319
  {"name": "SourceArn", "shape": "AssociationEntityArn", "type": "string"},
@@ -12393,6 +12411,41 @@ SHAPE_DAG = {
12393
12411
  "shape": "ProductionVariantInferenceAmiVersion",
12394
12412
  "type": "string",
12395
12413
  },
12414
+ {
12415
+ "name": "CapacityReservationConfig",
12416
+ "shape": "ProductionVariantCapacityReservationConfig",
12417
+ "type": "structure",
12418
+ },
12419
+ ],
12420
+ "type": "structure",
12421
+ },
12422
+ "ProductionVariantCapacityReservationConfig": {
12423
+ "members": [
12424
+ {
12425
+ "name": "CapacityReservationPreference",
12426
+ "shape": "CapacityReservationPreference",
12427
+ "type": "string",
12428
+ },
12429
+ {"name": "MlReservationArn", "shape": "MlReservationArn", "type": "string"},
12430
+ ],
12431
+ "type": "structure",
12432
+ },
12433
+ "ProductionVariantCapacityReservationSummary": {
12434
+ "members": [
12435
+ {"name": "MlReservationArn", "shape": "MlReservationArn", "type": "string"},
12436
+ {
12437
+ "name": "CapacityReservationPreference",
12438
+ "shape": "CapacityReservationPreference",
12439
+ "type": "string",
12440
+ },
12441
+ {"name": "TotalInstanceCount", "shape": "TaskCount", "type": "integer"},
12442
+ {"name": "AvailableInstanceCount", "shape": "TaskCount", "type": "integer"},
12443
+ {"name": "UsedByCurrentEndpoint", "shape": "TaskCount", "type": "integer"},
12444
+ {
12445
+ "name": "Ec2CapacityReservations",
12446
+ "shape": "Ec2CapacityReservationsList",
12447
+ "type": "list",
12448
+ },
12396
12449
  ],
12397
12450
  "type": "structure",
12398
12451
  },
@@ -12493,6 +12546,11 @@ SHAPE_DAG = {
12493
12546
  "shape": "ProductionVariantRoutingConfig",
12494
12547
  "type": "structure",
12495
12548
  },
12549
+ {
12550
+ "name": "CapacityReservationConfig",
12551
+ "shape": "ProductionVariantCapacityReservationSummary",
12552
+ "type": "structure",
12553
+ },
12496
12554
  ],
12497
12555
  "type": "structure",
12498
12556
  },
@@ -14833,6 +14891,11 @@ SHAPE_DAG = {
14833
14891
  {"name": "ProjectId", "shape": "UnifiedStudioProjectId", "type": "string"},
14834
14892
  {"name": "EnvironmentId", "shape": "UnifiedStudioEnvironmentId", "type": "string"},
14835
14893
  {"name": "ProjectS3Path", "shape": "S3Uri", "type": "string"},
14894
+ {
14895
+ "name": "SingleSignOnApplicationArn",
14896
+ "shape": "SingleSignOnApplicationArn",
14897
+ "type": "string",
14898
+ },
14836
14899
  ],
14837
14900
  "type": "structure",
14838
14901
  },
@@ -4779,6 +4779,7 @@ class UnifiedStudioSettings(Base):
4779
4779
  project_id: The ID of the Amazon SageMaker Unified Studio project that corresponds to the domain.
4780
4780
  environment_id: The ID of the environment that Amazon SageMaker Unified Studio associates with the domain.
4781
4781
  project_s3_path: The location where Amazon S3 stores temporary execution data and other artifacts for the project that corresponds to the domain.
4782
+ single_sign_on_application_arn: The ARN of the application managed by SageMaker AI and SageMaker Unified Studio in the Amazon Web Services IAM Identity Center.
4782
4783
  """
4783
4784
 
4784
4785
  studio_web_portal_access: Optional[str] = Unassigned()
@@ -4788,6 +4789,7 @@ class UnifiedStudioSettings(Base):
4788
4789
  project_id: Optional[str] = Unassigned()
4789
4790
  environment_id: Optional[str] = Unassigned()
4790
4791
  project_s3_path: Optional[str] = Unassigned()
4792
+ single_sign_on_application_arn: Optional[str] = Unassigned()
4791
4793
 
4792
4794
 
4793
4795
  class DomainSettings(Base):
@@ -4966,6 +4968,21 @@ class ProductionVariantRoutingConfig(Base):
4966
4968
  routing_strategy: str
4967
4969
 
4968
4970
 
4971
+ class ProductionVariantCapacityReservationConfig(Base):
4972
+ """
4973
+ ProductionVariantCapacityReservationConfig
4974
+ Settings for the capacity reservation for the compute instances that SageMaker AI reserves for an endpoint.
4975
+
4976
+ Attributes
4977
+ ----------------------
4978
+ capacity_reservation_preference: Options that you can choose for the capacity reservation. SageMaker AI supports the following options: capacity-reservations-only SageMaker AI launches instances only into an ML capacity reservation. If no capacity is available, the instances fail to launch.
4979
+ ml_reservation_arn: The Amazon Resource Name (ARN) that uniquely identifies the ML capacity reservation that SageMaker AI applies when it deploys the endpoint.
4980
+ """
4981
+
4982
+ capacity_reservation_preference: Optional[str] = Unassigned()
4983
+ ml_reservation_arn: Optional[str] = Unassigned()
4984
+
4985
+
4969
4986
  class ProductionVariant(Base):
4970
4987
  """
4971
4988
  ProductionVariant
@@ -4988,6 +5005,7 @@ class ProductionVariant(Base):
4988
5005
  managed_instance_scaling: Settings that control the range in the number of instances that the endpoint provisions as it scales up or down to accommodate traffic.
4989
5006
  routing_config: Settings that control how the endpoint routes incoming traffic to the instances that the endpoint hosts.
4990
5007
  inference_ami_version: Specifies an option from a collection of preconfigured Amazon Machine Image (AMI) images. Each image is configured by Amazon Web Services with a set of software and driver versions. Amazon Web Services optimizes these configurations for different machine learning workloads. By selecting an AMI version, you can ensure that your inference environment is compatible with specific software requirements, such as CUDA driver versions, Linux kernel versions, or Amazon Web Services Neuron driver versions. The AMI version names, and their configurations, are the following: al2-ami-sagemaker-inference-gpu-2 Accelerator: GPU NVIDIA driver version: 535 CUDA version: 12.2 al2-ami-sagemaker-inference-gpu-2-1 Accelerator: GPU NVIDIA driver version: 535 CUDA version: 12.2 NVIDIA Container Toolkit with disabled CUDA-compat mounting al2-ami-sagemaker-inference-gpu-3-1 Accelerator: GPU NVIDIA driver version: 550 CUDA version: 12.4 NVIDIA Container Toolkit with disabled CUDA-compat mounting al2-ami-sagemaker-inference-neuron-2 Accelerator: Inferentia2 and Trainium Neuron driver version: 2.19
5008
+ capacity_reservation_config: Settings for the capacity reservation for the compute instances that SageMaker AI reserves for an endpoint.
4991
5009
  """
4992
5010
 
4993
5011
  variant_name: str
@@ -5005,6 +5023,7 @@ class ProductionVariant(Base):
5005
5023
  managed_instance_scaling: Optional[ProductionVariantManagedInstanceScaling] = Unassigned()
5006
5024
  routing_config: Optional[ProductionVariantRoutingConfig] = Unassigned()
5007
5025
  inference_ami_version: Optional[str] = Unassigned()
5026
+ capacity_reservation_config: Optional[ProductionVariantCapacityReservationConfig] = Unassigned()
5008
5027
 
5009
5028
 
5010
5029
  class DataCaptureConfig(Base):
@@ -8164,6 +8183,48 @@ class ProductionVariantStatus(Base):
8164
8183
  start_time: Optional[datetime.datetime] = Unassigned()
8165
8184
 
8166
8185
 
8186
+ class Ec2CapacityReservation(Base):
8187
+ """
8188
+ Ec2CapacityReservation
8189
+ The EC2 capacity reservations that are shared to an ML capacity reservation.
8190
+
8191
+ Attributes
8192
+ ----------------------
8193
+ ec2_capacity_reservation_id: The unique identifier for an EC2 capacity reservation that's part of the ML capacity reservation.
8194
+ total_instance_count: The number of instances that you allocated to the EC2 capacity reservation.
8195
+ available_instance_count: The number of instances that are currently available in the EC2 capacity reservation.
8196
+ used_by_current_endpoint: The number of instances from the EC2 capacity reservation that are being used by the endpoint.
8197
+ """
8198
+
8199
+ ec2_capacity_reservation_id: Optional[str] = Unassigned()
8200
+ total_instance_count: Optional[int] = Unassigned()
8201
+ available_instance_count: Optional[int] = Unassigned()
8202
+ used_by_current_endpoint: Optional[int] = Unassigned()
8203
+
8204
+
8205
+ class ProductionVariantCapacityReservationSummary(Base):
8206
+ """
8207
+ ProductionVariantCapacityReservationSummary
8208
+ Details about an ML capacity reservation.
8209
+
8210
+ Attributes
8211
+ ----------------------
8212
+ ml_reservation_arn: The Amazon Resource Name (ARN) that uniquely identifies the ML capacity reservation that SageMaker AI applies when it deploys the endpoint.
8213
+ capacity_reservation_preference: The option that you chose for the capacity reservation. SageMaker AI supports the following options: capacity-reservations-only SageMaker AI launches instances only into an ML capacity reservation. If no capacity is available, the instances fail to launch.
8214
+ total_instance_count: The number of instances that you allocated to the ML capacity reservation.
8215
+ available_instance_count: The number of instances that are currently available in the ML capacity reservation.
8216
+ used_by_current_endpoint: The number of instances from the ML capacity reservation that are being used by the endpoint.
8217
+ ec2_capacity_reservations: The EC2 capacity reservations that are shared to this ML capacity reservation, if any.
8218
+ """
8219
+
8220
+ ml_reservation_arn: Optional[str] = Unassigned()
8221
+ capacity_reservation_preference: Optional[str] = Unassigned()
8222
+ total_instance_count: Optional[int] = Unassigned()
8223
+ available_instance_count: Optional[int] = Unassigned()
8224
+ used_by_current_endpoint: Optional[int] = Unassigned()
8225
+ ec2_capacity_reservations: Optional[List[Ec2CapacityReservation]] = Unassigned()
8226
+
8227
+
8167
8228
  class ProductionVariantSummary(Base):
8168
8229
  """
8169
8230
  ProductionVariantSummary
@@ -8182,6 +8243,7 @@ class ProductionVariantSummary(Base):
8182
8243
  desired_serverless_config: The serverless configuration requested for the endpoint update.
8183
8244
  managed_instance_scaling: Settings that control the range in the number of instances that the endpoint provisions as it scales up or down to accommodate traffic.
8184
8245
  routing_config: Settings that control how the endpoint routes incoming traffic to the instances that the endpoint hosts.
8246
+ capacity_reservation_config: Settings for the capacity reservation for the compute instances that SageMaker AI reserves for an endpoint.
8185
8247
  """
8186
8248
 
8187
8249
  variant_name: str
@@ -8195,6 +8257,9 @@ class ProductionVariantSummary(Base):
8195
8257
  desired_serverless_config: Optional[ProductionVariantServerlessConfig] = Unassigned()
8196
8258
  managed_instance_scaling: Optional[ProductionVariantManagedInstanceScaling] = Unassigned()
8197
8259
  routing_config: Optional[ProductionVariantRoutingConfig] = Unassigned()
8260
+ capacity_reservation_config: Optional[ProductionVariantCapacityReservationSummary] = (
8261
+ Unassigned()
8262
+ )
8198
8263
 
8199
8264
 
8200
8265
  class PendingProductionVariantSummary(Base):
@@ -1,6 +1,6 @@
1
1
  Metadata-Version: 2.4
2
2
  Name: sagemaker-core
3
- Version: 1.0.35
3
+ Version: 1.0.36
4
4
  Summary: An python package for sagemaker core functionalities
5
5
  Author-email: AWS <sagemaker-interests@amazon.com>
6
6
  Project-URL: Repository, https://github.com/aws/sagemaker-core.git
@@ -8,14 +8,14 @@ sagemaker_core/main/exceptions.py,sha256=87DUlrmHxaWoiYNlpNY9ixxFMPRk_dIGPsA2e_x
8
8
  sagemaker_core/main/intelligent_defaults_helper.py,sha256=5SDM6UavZtp-k5LhqRL7GRIDgzFB5UsC_p7YuiSPK9A,8334
9
9
  sagemaker_core/main/logs.py,sha256=yfEH7uP91nbE1lefymOlBr81ziBzsDSIOF2Qyd54FJE,6241
10
10
  sagemaker_core/main/resources.py,sha256=dNDFf5ANJ8NrVd5sy3Onr_W4Ls-0UEw7RsER7vyLOg8,1428074
11
- sagemaker_core/main/shapes.py,sha256=JuLWvrd3YSaVMnmERMB0jOPLtpAu98O5icSf7BwBpVU,739047
11
+ sagemaker_core/main/shapes.py,sha256=H4U1MbZ4Y2uot83EdW76wSj3wRNh95R5sYMxz1gzkSY,743064
12
12
  sagemaker_core/main/user_agent.py,sha256=BPYDAfDd70ObP-VAjl7aDHALHyGknkpRP21ktVr_LDw,2744
13
13
  sagemaker_core/main/utils.py,sha256=Ge_KdFKWo-qoIXlXkgLbaJbfXMVdUVHTq6BbDQn48Tw,19201
14
14
  sagemaker_core/main/code_injection/__init__.py,sha256=47DEQpj8HBSa-_TImW-5JCeuQeRkm5NMpJWZG3hSuFU,0
15
15
  sagemaker_core/main/code_injection/base.py,sha256=11_Jif0nOzfbLGlXaacKf-wcizzfS64U0OSZGoVffFU,1733
16
16
  sagemaker_core/main/code_injection/codec.py,sha256=2YzJ-iYEzmguVaJVcZeyCR0OpTSR7UOixATrOm4MiBk,8885
17
17
  sagemaker_core/main/code_injection/constants.py,sha256=2ICExGge8vAWx7lSTW0JGh-bH1korkvpOpDu5M63eI4,980
18
- sagemaker_core/main/code_injection/shape_dag.py,sha256=Kdjew_4KCxfAjauG-0fPaHtiA3Ttc8IGzpKcAnQZO7A,704365
18
+ sagemaker_core/main/code_injection/shape_dag.py,sha256=GXfeEMcXLNSiBJax4063m5Hxg5hs0bwyC6-H71pNPy0,706807
19
19
  sagemaker_core/resources/__init__.py,sha256=EAYTFMN-nPjnPjjBbhIUeaL67FLKNPd7qbcbl9VIrws,31
20
20
  sagemaker_core/shapes/__init__.py,sha256=RnbIu9eTxKt-DNsOFJabrWIgrrtS9_SdAozP9JBl_ic,28
21
21
  sagemaker_core/tools/__init__.py,sha256=xX79JImxCVzrWMnjgntLCve2G5I-R4pRar5s20kT9Rs,56
@@ -28,8 +28,8 @@ sagemaker_core/tools/resources_extractor.py,sha256=hN61ehZbPnhFW-2FIVDi7NsEz4rLv
28
28
  sagemaker_core/tools/shapes_codegen.py,sha256=4lsePZpjk7M6RpJs5yar_m4z5MzwGHFrvCkdS_-R12c,12172
29
29
  sagemaker_core/tools/shapes_extractor.py,sha256=vxVKjXD3lmjrkoKiexjUnOt8ITbFxQSeiDtx7P6Qtkw,14226
30
30
  sagemaker_core/tools/templates.py,sha256=0lOIH3Rq2CXWkQhK6VenN_TE_v5p852s2kQyb_BeQxA,23460
31
- sagemaker_core-1.0.35.dist-info/licenses/LICENSE,sha256=xx0jnfkXJvxRnG63LTGOxlggYnIysveWIZ6H3PNdCrQ,11357
32
- sagemaker_core-1.0.35.dist-info/METADATA,sha256=NymLf-CKNE3RMT34LBnDeDLcGMBEfUrWOdSzsWLJ-P4,4885
33
- sagemaker_core-1.0.35.dist-info/WHEEL,sha256=_zCd3N1l69ArxyTb8rzEoP9TpbYXkqRFSNOD5OuxnTs,91
34
- sagemaker_core-1.0.35.dist-info/top_level.txt,sha256=R3GAZZ1zC5JxqdE_0x2Lu_WYi2Xfke7VsiP3L5zngfA,15
35
- sagemaker_core-1.0.35.dist-info/RECORD,,
31
+ sagemaker_core-1.0.36.dist-info/licenses/LICENSE,sha256=xx0jnfkXJvxRnG63LTGOxlggYnIysveWIZ6H3PNdCrQ,11357
32
+ sagemaker_core-1.0.36.dist-info/METADATA,sha256=7wwEVAYUTGJfEbQQwBdMrWxylyIjk5ymE3CDcUceO2s,4885
33
+ sagemaker_core-1.0.36.dist-info/WHEEL,sha256=_zCd3N1l69ArxyTb8rzEoP9TpbYXkqRFSNOD5OuxnTs,91
34
+ sagemaker_core-1.0.36.dist-info/top_level.txt,sha256=R3GAZZ1zC5JxqdE_0x2Lu_WYi2Xfke7VsiP3L5zngfA,15
35
+ sagemaker_core-1.0.36.dist-info/RECORD,,