sagemaker-core 1.0.33__py3-none-any.whl → 1.0.35__py3-none-any.whl

This diff represents the content of publicly available package versions that have been released to one of the supported registries. The information contained in this diff is provided for informational purposes only and reflects changes between package versions as they appear in their respective public registries.

Potentially problematic release.


This version of sagemaker-core might be problematic. Click here for more details.

@@ -22,6 +22,7 @@ from sagemaker_core.main.code_injection.constants import (
22
22
  LIST_TYPE,
23
23
  MAP_TYPE,
24
24
  )
25
+ from io import BytesIO
25
26
 
26
27
 
27
28
  def pascal_to_snake(pascal_str):
@@ -244,6 +245,15 @@ def transform(data, shape, object_instance=None) -> dict:
244
245
  elif _member_type == MAP_TYPE:
245
246
  _map_type_shape = SHAPE_DAG[_member_shape]
246
247
  evaluated_value = _evaluate_map_type(data[_member_name], _map_type_shape)
248
+ elif _member_type == "blob":
249
+ blob_data = data[_member_name]
250
+ if isinstance(blob_data, bytes):
251
+ evaluated_value = BytesIO(blob_data)
252
+ elif hasattr(blob_data, "read"):
253
+ # If it's already a file-like object, use it as is
254
+ evaluated_value = blob_data
255
+ else:
256
+ raise ValueError(f"Unexpected blob data type: {type(blob_data)}")
247
257
  else:
248
258
  raise ValueError(f"Unexpected member type encountered: {_member_type}")
249
259
 
@@ -5098,6 +5098,11 @@ SHAPE_DAG = {
5098
5098
  {"name": "MlflowVersion", "shape": "MlflowVersion", "type": "string"},
5099
5099
  {"name": "RoleArn", "shape": "RoleArn", "type": "string"},
5100
5100
  {"name": "TrackingServerStatus", "shape": "TrackingServerStatus", "type": "string"},
5101
+ {
5102
+ "name": "TrackingServerMaintenanceStatus",
5103
+ "shape": "TrackingServerMaintenanceStatus",
5104
+ "type": "string",
5105
+ },
5101
5106
  {"name": "IsActive", "shape": "IsTrackingServerActive", "type": "string"},
5102
5107
  {"name": "TrackingServerUrl", "shape": "TrackingServerUrl", "type": "string"},
5103
5108
  {
@@ -10291,9 +10296,9 @@ SHAPE_DAG = {
10291
10296
  "MetricDatum": {
10292
10297
  "members": [
10293
10298
  {"name": "MetricName", "shape": "AutoMLMetricEnum", "type": "string"},
10299
+ {"name": "StandardMetricName", "shape": "AutoMLMetricExtendedEnum", "type": "string"},
10294
10300
  {"name": "Value", "shape": "Float", "type": "float"},
10295
10301
  {"name": "Set", "shape": "MetricSetSource", "type": "string"},
10296
- {"name": "StandardMetricName", "shape": "AutoMLMetricExtendedEnum", "type": "string"},
10297
10302
  ],
10298
10303
  "type": "structure",
10299
10304
  },
@@ -6476,7 +6476,6 @@ class DataQualityJobDefinition(Base):
6476
6476
  "monitoring_job_definition_name": "job_definition_name",
6477
6477
  "monitoring_job_definition_arn": "job_definition_arn",
6478
6478
  }
6479
-
6480
6479
  # serialize the input request
6481
6480
  operation_input_args = serialize(operation_input_args)
6482
6481
  logger.debug(f"Serialized input request: {operation_input_args}")
@@ -7369,6 +7368,7 @@ class Domain(Base):
7369
7368
  "domain_execution_role_arn": {"type": "string"}
7370
7369
  },
7371
7370
  "execution_role_identity_config": {"type": "string"},
7371
+ "unified_studio_settings": {"project_s3_path": {"type": "string"}},
7372
7372
  },
7373
7373
  "home_efs_file_system_kms_key_id": {"type": "string"},
7374
7374
  "subnet_ids": {"type": "array", "items": {"type": "string"}},
@@ -17364,6 +17364,7 @@ class MlflowTrackingServer(Base):
17364
17364
  mlflow_version: The MLflow version used for the described tracking server.
17365
17365
  role_arn: The Amazon Resource Name (ARN) for an IAM role in your account that the described MLflow Tracking Server uses to access the artifact store in Amazon S3.
17366
17366
  tracking_server_status: The current creation status of the described MLflow Tracking Server.
17367
+ tracking_server_maintenance_status: The current maintenance status of the described MLflow Tracking Server.
17367
17368
  is_active: Whether the described MLflow Tracking Server is currently active.
17368
17369
  tracking_server_url: The URL to connect to the MLflow user interface for the described tracking server.
17369
17370
  weekly_maintenance_window_start: The day and time of the week when weekly maintenance occurs on the described tracking server.
@@ -17382,6 +17383,7 @@ class MlflowTrackingServer(Base):
17382
17383
  mlflow_version: Optional[str] = Unassigned()
17383
17384
  role_arn: Optional[str] = Unassigned()
17384
17385
  tracking_server_status: Optional[str] = Unassigned()
17386
+ tracking_server_maintenance_status: Optional[str] = Unassigned()
17385
17387
  is_active: Optional[str] = Unassigned()
17386
17388
  tracking_server_url: Optional[str] = Unassigned()
17387
17389
  weekly_maintenance_window_start: Optional[str] = Unassigned()
@@ -18664,7 +18666,6 @@ class ModelBiasJobDefinition(Base):
18664
18666
  "monitoring_job_definition_name": "job_definition_name",
18665
18667
  "monitoring_job_definition_arn": "job_definition_arn",
18666
18668
  }
18667
-
18668
18669
  # serialize the input request
18669
18670
  operation_input_args = serialize(operation_input_args)
18670
18671
  logger.debug(f"Serialized input request: {operation_input_args}")
@@ -19895,7 +19896,6 @@ class ModelExplainabilityJobDefinition(Base):
19895
19896
  "monitoring_job_definition_name": "job_definition_name",
19896
19897
  "monitoring_job_definition_arn": "job_definition_arn",
19897
19898
  }
19898
-
19899
19899
  # serialize the input request
19900
19900
  operation_input_args = serialize(operation_input_args)
19901
19901
  logger.debug(f"Serialized input request: {operation_input_args}")
@@ -21514,7 +21514,6 @@ class ModelQualityJobDefinition(Base):
21514
21514
  "monitoring_job_definition_name": "job_definition_name",
21515
21515
  "monitoring_job_definition_arn": "job_definition_arn",
21516
21516
  }
21517
-
21518
21517
  # serialize the input request
21519
21518
  operation_input_args = serialize(operation_input_args)
21520
21519
  logger.debug(f"Serialized input request: {operation_input_args}")
@@ -1743,15 +1743,15 @@ class MetricDatum(Base):
1743
1743
  Attributes
1744
1744
  ----------------------
1745
1745
  metric_name: The name of the metric.
1746
+ standard_metric_name: The name of the standard metric. For definitions of the standard metrics, see Autopilot candidate metrics .
1746
1747
  value: The value of the metric.
1747
1748
  set: The dataset split from which the AutoML job produced the metric.
1748
- standard_metric_name: The name of the standard metric. For definitions of the standard metrics, see Autopilot candidate metrics .
1749
1749
  """
1750
1750
 
1751
1751
  metric_name: Optional[str] = Unassigned()
1752
+ standard_metric_name: Optional[str] = Unassigned()
1752
1753
  value: Optional[float] = Unassigned()
1753
1754
  set: Optional[str] = Unassigned()
1754
- standard_metric_name: Optional[str] = Unassigned()
1755
1755
 
1756
1756
 
1757
1757
  class CandidateProperties(Base):
@@ -457,13 +457,13 @@ class ResourceIterator(Generic[T]):
457
457
  elif (
458
458
  len(self.summary_list) > 0
459
459
  and self.index >= len(self.summary_list)
460
- and self.next_token is None
460
+ and (not self.next_token)
461
461
  ):
462
462
  raise StopIteration
463
463
 
464
464
  # Otherwise, get the next page of summaries by calling the list method with the next token if available
465
465
  else:
466
- if self.next_token is not None:
466
+ if self.next_token:
467
467
  response = getattr(self.client, self.list_method)(
468
468
  NextToken=self.next_token, **self.list_method_kwargs
469
469
  )
@@ -1,6 +1,6 @@
1
1
  Metadata-Version: 2.4
2
2
  Name: sagemaker-core
3
- Version: 1.0.33
3
+ Version: 1.0.35
4
4
  Summary: An python package for sagemaker core functionalities
5
5
  Author-email: AWS <sagemaker-interests@amazon.com>
6
6
  Project-URL: Repository, https://github.com/aws/sagemaker-core.git
@@ -7,15 +7,15 @@ sagemaker_core/main/config_schema.py,sha256=Wxe2gJash1rrxBomGhSYmII1LmJ3E70LIuSW
7
7
  sagemaker_core/main/exceptions.py,sha256=87DUlrmHxaWoiYNlpNY9ixxFMPRk_dIGPsA2e_xdVwQ,5602
8
8
  sagemaker_core/main/intelligent_defaults_helper.py,sha256=5SDM6UavZtp-k5LhqRL7GRIDgzFB5UsC_p7YuiSPK9A,8334
9
9
  sagemaker_core/main/logs.py,sha256=yfEH7uP91nbE1lefymOlBr81ziBzsDSIOF2Qyd54FJE,6241
10
- sagemaker_core/main/resources.py,sha256=jtD_9MUoyJkTDGAAnvEVpaconzPF6kRFBdio_mN_3zs,1427804
11
- sagemaker_core/main/shapes.py,sha256=YfcsZIpYetJPZHNo-VfajMCaqT6eGYXI_1EvCLr0dGg,739047
10
+ sagemaker_core/main/resources.py,sha256=dNDFf5ANJ8NrVd5sy3Onr_W4Ls-0UEw7RsER7vyLOg8,1428074
11
+ sagemaker_core/main/shapes.py,sha256=JuLWvrd3YSaVMnmERMB0jOPLtpAu98O5icSf7BwBpVU,739047
12
12
  sagemaker_core/main/user_agent.py,sha256=BPYDAfDd70ObP-VAjl7aDHALHyGknkpRP21ktVr_LDw,2744
13
- sagemaker_core/main/utils.py,sha256=tJyHjHFwwmz8LHMlOLf5_Exu4h-kFVnAxvXkbChkuHQ,19215
13
+ sagemaker_core/main/utils.py,sha256=Ge_KdFKWo-qoIXlXkgLbaJbfXMVdUVHTq6BbDQn48Tw,19201
14
14
  sagemaker_core/main/code_injection/__init__.py,sha256=47DEQpj8HBSa-_TImW-5JCeuQeRkm5NMpJWZG3hSuFU,0
15
15
  sagemaker_core/main/code_injection/base.py,sha256=11_Jif0nOzfbLGlXaacKf-wcizzfS64U0OSZGoVffFU,1733
16
- sagemaker_core/main/code_injection/codec.py,sha256=nA51E9iNWHyKou1G23rKSRL4WitdkFRbMuFkyrGHzKU,8428
16
+ sagemaker_core/main/code_injection/codec.py,sha256=2YzJ-iYEzmguVaJVcZeyCR0OpTSR7UOixATrOm4MiBk,8885
17
17
  sagemaker_core/main/code_injection/constants.py,sha256=2ICExGge8vAWx7lSTW0JGh-bH1korkvpOpDu5M63eI4,980
18
- sagemaker_core/main/code_injection/shape_dag.py,sha256=v4admWbDBIaum364qkuvq76WM8eOC0wOOfH8KpuA3Gc,704183
18
+ sagemaker_core/main/code_injection/shape_dag.py,sha256=Kdjew_4KCxfAjauG-0fPaHtiA3Ttc8IGzpKcAnQZO7A,704365
19
19
  sagemaker_core/resources/__init__.py,sha256=EAYTFMN-nPjnPjjBbhIUeaL67FLKNPd7qbcbl9VIrws,31
20
20
  sagemaker_core/shapes/__init__.py,sha256=RnbIu9eTxKt-DNsOFJabrWIgrrtS9_SdAozP9JBl_ic,28
21
21
  sagemaker_core/tools/__init__.py,sha256=xX79JImxCVzrWMnjgntLCve2G5I-R4pRar5s20kT9Rs,56
@@ -28,8 +28,8 @@ sagemaker_core/tools/resources_extractor.py,sha256=hN61ehZbPnhFW-2FIVDi7NsEz4rLv
28
28
  sagemaker_core/tools/shapes_codegen.py,sha256=4lsePZpjk7M6RpJs5yar_m4z5MzwGHFrvCkdS_-R12c,12172
29
29
  sagemaker_core/tools/shapes_extractor.py,sha256=vxVKjXD3lmjrkoKiexjUnOt8ITbFxQSeiDtx7P6Qtkw,14226
30
30
  sagemaker_core/tools/templates.py,sha256=0lOIH3Rq2CXWkQhK6VenN_TE_v5p852s2kQyb_BeQxA,23460
31
- sagemaker_core-1.0.33.dist-info/licenses/LICENSE,sha256=xx0jnfkXJvxRnG63LTGOxlggYnIysveWIZ6H3PNdCrQ,11357
32
- sagemaker_core-1.0.33.dist-info/METADATA,sha256=0AkeGwVa8WdSOps6dTQQZh0_KmS3uRLV_NWmH0PkuEM,4885
33
- sagemaker_core-1.0.33.dist-info/WHEEL,sha256=0CuiUZ_p9E4cD6NyLD6UG80LBXYyiSYZOKDm5lp32xk,91
34
- sagemaker_core-1.0.33.dist-info/top_level.txt,sha256=R3GAZZ1zC5JxqdE_0x2Lu_WYi2Xfke7VsiP3L5zngfA,15
35
- sagemaker_core-1.0.33.dist-info/RECORD,,
31
+ sagemaker_core-1.0.35.dist-info/licenses/LICENSE,sha256=xx0jnfkXJvxRnG63LTGOxlggYnIysveWIZ6H3PNdCrQ,11357
32
+ sagemaker_core-1.0.35.dist-info/METADATA,sha256=NymLf-CKNE3RMT34LBnDeDLcGMBEfUrWOdSzsWLJ-P4,4885
33
+ sagemaker_core-1.0.35.dist-info/WHEEL,sha256=_zCd3N1l69ArxyTb8rzEoP9TpbYXkqRFSNOD5OuxnTs,91
34
+ sagemaker_core-1.0.35.dist-info/top_level.txt,sha256=R3GAZZ1zC5JxqdE_0x2Lu_WYi2Xfke7VsiP3L5zngfA,15
35
+ sagemaker_core-1.0.35.dist-info/RECORD,,
@@ -1,5 +1,5 @@
1
1
  Wheel-Version: 1.0
2
- Generator: setuptools (80.3.1)
2
+ Generator: setuptools (80.9.0)
3
3
  Root-Is-Purelib: true
4
4
  Tag: py3-none-any
5
5