sagemaker-core 1.0.30__py3-none-any.whl → 1.0.31__py3-none-any.whl
This diff represents the content of publicly available package versions that have been released to one of the supported registries. The information contained in this diff is provided for informational purposes only and reflects changes between package versions as they appear in their respective public registries.
Potentially problematic release.
This version of sagemaker-core might be problematic. Click here for more details.
- sagemaker_core/main/code_injection/shape_dag.py +82 -1
- sagemaker_core/main/resources.py +10 -6
- sagemaker_core/main/shapes.py +96 -0
- {sagemaker_core-1.0.30.dist-info → sagemaker_core-1.0.31.dist-info}/METADATA +1 -1
- {sagemaker_core-1.0.30.dist-info → sagemaker_core-1.0.31.dist-info}/RECORD +8 -8
- {sagemaker_core-1.0.30.dist-info → sagemaker_core-1.0.31.dist-info}/WHEEL +1 -1
- {sagemaker_core-1.0.30.dist-info → sagemaker_core-1.0.31.dist-info}/licenses/LICENSE +0 -0
- {sagemaker_core-1.0.30.dist-info → sagemaker_core-1.0.31.dist-info}/top_level.txt +0 -0
|
@@ -124,6 +124,10 @@ SHAPE_DAG = {
|
|
|
124
124
|
"members": [{"name": "AlarmName", "shape": "AlarmName", "type": "string"}],
|
|
125
125
|
"type": "structure",
|
|
126
126
|
},
|
|
127
|
+
"AlarmDetails": {
|
|
128
|
+
"members": [{"name": "AlarmName", "shape": "AlarmName", "type": "string"}],
|
|
129
|
+
"type": "structure",
|
|
130
|
+
},
|
|
127
131
|
"AlarmList": {"member_shape": "Alarm", "member_type": "structure", "type": "list"},
|
|
128
132
|
"AlgorithmSpecification": {
|
|
129
133
|
"members": [
|
|
@@ -734,6 +738,11 @@ SHAPE_DAG = {
|
|
|
734
738
|
"type": "structure",
|
|
735
739
|
},
|
|
736
740
|
"AutoParameters": {"member_shape": "AutoParameter", "member_type": "structure", "type": "list"},
|
|
741
|
+
"AutoRollbackAlarms": {
|
|
742
|
+
"member_shape": "AlarmDetails",
|
|
743
|
+
"member_type": "structure",
|
|
744
|
+
"type": "list",
|
|
745
|
+
},
|
|
737
746
|
"AutoRollbackConfig": {
|
|
738
747
|
"members": [{"name": "Alarms", "shape": "AlarmList", "type": "list"}],
|
|
739
748
|
"type": "structure",
|
|
@@ -1069,6 +1078,13 @@ SHAPE_DAG = {
|
|
|
1069
1078
|
],
|
|
1070
1079
|
"type": "structure",
|
|
1071
1080
|
},
|
|
1081
|
+
"CapacitySizeConfig": {
|
|
1082
|
+
"members": [
|
|
1083
|
+
{"name": "Type", "shape": "NodeUnavailabilityType", "type": "string"},
|
|
1084
|
+
{"name": "Value", "shape": "NodeUnavailabilityValue", "type": "integer"},
|
|
1085
|
+
],
|
|
1086
|
+
"type": "structure",
|
|
1087
|
+
},
|
|
1072
1088
|
"CaptureContentTypeHeader": {
|
|
1073
1089
|
"members": [
|
|
1074
1090
|
{"name": "CsvContentTypes", "shape": "CsvContentTypes", "type": "list"},
|
|
@@ -1272,6 +1288,11 @@ SHAPE_DAG = {
|
|
|
1272
1288
|
"type": "string",
|
|
1273
1289
|
},
|
|
1274
1290
|
{"name": "OverrideVpcConfig", "shape": "VpcConfig", "type": "structure"},
|
|
1291
|
+
{
|
|
1292
|
+
"name": "ScheduledUpdateConfig",
|
|
1293
|
+
"shape": "ScheduledUpdateConfig",
|
|
1294
|
+
"type": "structure",
|
|
1295
|
+
},
|
|
1275
1296
|
],
|
|
1276
1297
|
"type": "structure",
|
|
1277
1298
|
},
|
|
@@ -1296,6 +1317,11 @@ SHAPE_DAG = {
|
|
|
1296
1317
|
{"name": "OnStartDeepHealthChecks", "shape": "OnStartDeepHealthChecks", "type": "list"},
|
|
1297
1318
|
{"name": "TrainingPlanArn", "shape": "TrainingPlanArn", "type": "string"},
|
|
1298
1319
|
{"name": "OverrideVpcConfig", "shape": "VpcConfig", "type": "structure"},
|
|
1320
|
+
{
|
|
1321
|
+
"name": "ScheduledUpdateConfig",
|
|
1322
|
+
"shape": "ScheduledUpdateConfig",
|
|
1323
|
+
"type": "structure",
|
|
1324
|
+
},
|
|
1299
1325
|
],
|
|
1300
1326
|
"type": "structure",
|
|
1301
1327
|
},
|
|
@@ -1352,6 +1378,7 @@ SHAPE_DAG = {
|
|
|
1352
1378
|
},
|
|
1353
1379
|
{"name": "InstanceType", "shape": "ClusterInstanceType", "type": "string"},
|
|
1354
1380
|
{"name": "LaunchTime", "shape": "Timestamp", "type": "timestamp"},
|
|
1381
|
+
{"name": "LastSoftwareUpdateTime", "shape": "Timestamp", "type": "timestamp"},
|
|
1355
1382
|
{"name": "LifeCycleConfig", "shape": "ClusterLifeCycleConfig", "type": "structure"},
|
|
1356
1383
|
{"name": "OverrideVpcConfig", "shape": "VpcConfig", "type": "structure"},
|
|
1357
1384
|
{"name": "ThreadsPerCore", "shape": "ClusterThreadsPerCore", "type": "integer"},
|
|
@@ -1379,6 +1406,7 @@ SHAPE_DAG = {
|
|
|
1379
1406
|
{"name": "InstanceId", "shape": "String", "type": "string"},
|
|
1380
1407
|
{"name": "InstanceType", "shape": "ClusterInstanceType", "type": "string"},
|
|
1381
1408
|
{"name": "LaunchTime", "shape": "Timestamp", "type": "timestamp"},
|
|
1409
|
+
{"name": "LastSoftwareUpdateTime", "shape": "Timestamp", "type": "timestamp"},
|
|
1382
1410
|
{
|
|
1383
1411
|
"name": "InstanceStatus",
|
|
1384
1412
|
"shape": "ClusterInstanceStatusDetails",
|
|
@@ -3889,6 +3917,22 @@ SHAPE_DAG = {
|
|
|
3889
3917
|
],
|
|
3890
3918
|
"type": "structure",
|
|
3891
3919
|
},
|
|
3920
|
+
"DeploymentConfiguration": {
|
|
3921
|
+
"members": [
|
|
3922
|
+
{
|
|
3923
|
+
"name": "RollingUpdatePolicy",
|
|
3924
|
+
"shape": "RollingDeploymentPolicy",
|
|
3925
|
+
"type": "structure",
|
|
3926
|
+
},
|
|
3927
|
+
{
|
|
3928
|
+
"name": "WaitIntervalInSeconds",
|
|
3929
|
+
"shape": "WaitTimeIntervalInSeconds",
|
|
3930
|
+
"type": "integer",
|
|
3931
|
+
},
|
|
3932
|
+
{"name": "AutoRollbackConfiguration", "shape": "AutoRollbackAlarms", "type": "list"},
|
|
3933
|
+
],
|
|
3934
|
+
"type": "structure",
|
|
3935
|
+
},
|
|
3892
3936
|
"DeploymentRecommendation": {
|
|
3893
3937
|
"members": [
|
|
3894
3938
|
{"name": "RecommendationStatus", "shape": "RecommendationStatus", "type": "string"},
|
|
@@ -13174,6 +13218,17 @@ SHAPE_DAG = {
|
|
|
13174
13218
|
],
|
|
13175
13219
|
"type": "structure",
|
|
13176
13220
|
},
|
|
13221
|
+
"RollingDeploymentPolicy": {
|
|
13222
|
+
"members": [
|
|
13223
|
+
{"name": "MaximumBatchSize", "shape": "CapacitySizeConfig", "type": "structure"},
|
|
13224
|
+
{
|
|
13225
|
+
"name": "RollbackMaximumBatchSize",
|
|
13226
|
+
"shape": "CapacitySizeConfig",
|
|
13227
|
+
"type": "structure",
|
|
13228
|
+
},
|
|
13229
|
+
],
|
|
13230
|
+
"type": "structure",
|
|
13231
|
+
},
|
|
13177
13232
|
"RollingUpdatePolicy": {
|
|
13178
13233
|
"members": [
|
|
13179
13234
|
{"name": "MaximumBatchSize", "shape": "CapacitySize", "type": "structure"},
|
|
@@ -13280,6 +13335,13 @@ SHAPE_DAG = {
|
|
|
13280
13335
|
],
|
|
13281
13336
|
"type": "structure",
|
|
13282
13337
|
},
|
|
13338
|
+
"ScheduledUpdateConfig": {
|
|
13339
|
+
"members": [
|
|
13340
|
+
{"name": "ScheduleExpression", "shape": "CronScheduleExpression", "type": "string"},
|
|
13341
|
+
{"name": "DeploymentConfig", "shape": "DeploymentConfiguration", "type": "structure"},
|
|
13342
|
+
],
|
|
13343
|
+
"type": "structure",
|
|
13344
|
+
},
|
|
13283
13345
|
"SchedulerConfig": {
|
|
13284
13346
|
"members": [
|
|
13285
13347
|
{"name": "PriorityClasses", "shape": "PriorityClassList", "type": "list"},
|
|
@@ -14856,8 +14918,27 @@ SHAPE_DAG = {
|
|
|
14856
14918
|
],
|
|
14857
14919
|
"type": "structure",
|
|
14858
14920
|
},
|
|
14921
|
+
"UpdateClusterSoftwareInstanceGroupSpecification": {
|
|
14922
|
+
"members": [
|
|
14923
|
+
{"name": "InstanceGroupName", "shape": "ClusterInstanceGroupName", "type": "string"}
|
|
14924
|
+
],
|
|
14925
|
+
"type": "structure",
|
|
14926
|
+
},
|
|
14927
|
+
"UpdateClusterSoftwareInstanceGroups": {
|
|
14928
|
+
"member_shape": "UpdateClusterSoftwareInstanceGroupSpecification",
|
|
14929
|
+
"member_type": "structure",
|
|
14930
|
+
"type": "list",
|
|
14931
|
+
},
|
|
14859
14932
|
"UpdateClusterSoftwareRequest": {
|
|
14860
|
-
"members": [
|
|
14933
|
+
"members": [
|
|
14934
|
+
{"name": "ClusterName", "shape": "ClusterNameOrArn", "type": "string"},
|
|
14935
|
+
{
|
|
14936
|
+
"name": "InstanceGroups",
|
|
14937
|
+
"shape": "UpdateClusterSoftwareInstanceGroups",
|
|
14938
|
+
"type": "list",
|
|
14939
|
+
},
|
|
14940
|
+
{"name": "DeploymentConfig", "shape": "DeploymentConfiguration", "type": "structure"},
|
|
14941
|
+
],
|
|
14861
14942
|
"type": "structure",
|
|
14862
14943
|
},
|
|
14863
14944
|
"UpdateClusterSoftwareResponse": {
|
sagemaker_core/main/resources.py
CHANGED
|
@@ -3833,6 +3833,7 @@ class Cluster(Base):
|
|
|
3833
3833
|
@Base.add_validate_call
|
|
3834
3834
|
def update_software(
|
|
3835
3835
|
self,
|
|
3836
|
+
deployment_config: Optional[shapes.DeploymentConfiguration] = Unassigned(),
|
|
3836
3837
|
session: Optional[Session] = None,
|
|
3837
3838
|
region: Optional[str] = None,
|
|
3838
3839
|
) -> None:
|
|
@@ -3840,6 +3841,7 @@ class Cluster(Base):
|
|
|
3840
3841
|
Updates the platform software of a SageMaker HyperPod cluster for security patching.
|
|
3841
3842
|
|
|
3842
3843
|
Parameters:
|
|
3844
|
+
deployment_config: The configuration to use when updating the AMI versions.
|
|
3843
3845
|
session: Boto3 session.
|
|
3844
3846
|
region: Region name.
|
|
3845
3847
|
|
|
@@ -3859,6 +3861,8 @@ class Cluster(Base):
|
|
|
3859
3861
|
|
|
3860
3862
|
operation_input_args = {
|
|
3861
3863
|
"ClusterName": self.cluster_name,
|
|
3864
|
+
"InstanceGroups": self.instance_groups,
|
|
3865
|
+
"DeploymentConfig": deployment_config,
|
|
3862
3866
|
}
|
|
3863
3867
|
# serialize the input request
|
|
3864
3868
|
operation_input_args = serialize(operation_input_args)
|
|
@@ -25812,9 +25816,9 @@ class ProcessingJob(Base):
|
|
|
25812
25816
|
processing_inputs: An array of inputs configuring the data to download into the processing container.
|
|
25813
25817
|
processing_output_config: Output configuration for the processing job.
|
|
25814
25818
|
stopping_condition: The time limit for how long the processing job is allowed to run.
|
|
25815
|
-
environment: The environment variables to set in the Docker container. Up to 100 key and values entries in the map are supported.
|
|
25819
|
+
environment: The environment variables to set in the Docker container. Up to 100 key and values entries in the map are supported. Do not include any security-sensitive information including account access IDs, secrets, or tokens in any environment fields. As part of the shared responsibility model, you are responsible for any potential exposure, unauthorized access, or compromise of your sensitive data if caused by security-sensitive information included in the request environment variable or plain text fields.
|
|
25816
25820
|
network_config: Networking options for a processing job, such as whether to allow inbound and outbound network calls to and from processing containers, and the VPC subnets and security groups to use for VPC-enabled processing jobs.
|
|
25817
|
-
tags: (Optional) An array of key-value pairs. For more information, see Using Cost Allocation Tags in the Amazon Web Services Billing and Cost Management User Guide.
|
|
25821
|
+
tags: (Optional) An array of key-value pairs. For more information, see Using Cost Allocation Tags in the Amazon Web Services Billing and Cost Management User Guide. Do not include any security-sensitive information including account access IDs, secrets, or tokens in any tags. As part of the shared responsibility model, you are responsible for any potential exposure, unauthorized access, or compromise of your sensitive data if caused by security-sensitive information included in the request tag variable or plain text fields.
|
|
25818
25822
|
experiment_config:
|
|
25819
25823
|
session: Boto3 session.
|
|
25820
25824
|
region: Region name.
|
|
@@ -27979,7 +27983,7 @@ class TrainingJob(Base):
|
|
|
27979
27983
|
profiler_rule_configurations: Configuration information for Amazon SageMaker Debugger rules for profiling system and framework metrics.
|
|
27980
27984
|
profiler_rule_evaluation_statuses: Evaluation status of Amazon SageMaker Debugger rules for profiling on a training job.
|
|
27981
27985
|
profiling_status: Profiling status of a training job.
|
|
27982
|
-
environment: The environment variables to set in the Docker container.
|
|
27986
|
+
environment: The environment variables to set in the Docker container. Do not include any security-sensitive information including account access IDs, secrets, or tokens in any environment fields. As part of the shared responsibility model, you are responsible for any potential exposure, unauthorized access, or compromise of your sensitive data if caused by security-sensitive information included in the request environment variable or plain text fields.
|
|
27983
27987
|
retry_strategy: The number of times to retry the job when the job fails due to an InternalServerError.
|
|
27984
27988
|
remote_debug_config: Configuration for remote debugging. To learn more about the remote debugging functionality of SageMaker, see Access a training container through Amazon Web Services Systems Manager (SSM) for remote debugging.
|
|
27985
27989
|
infra_check_config: Contains information about the infrastructure health check configuration for the training job.
|
|
@@ -28122,10 +28126,10 @@ class TrainingJob(Base):
|
|
|
28122
28126
|
output_data_config: Specifies the path to the S3 location where you want to store model artifacts. SageMaker creates subfolders for the artifacts.
|
|
28123
28127
|
resource_config: The resources, including the ML compute instances and ML storage volumes, to use for model training. ML storage volumes store model artifacts and incremental states. Training algorithms might also use ML storage volumes for scratch space. If you want SageMaker to use the ML storage volume to store the training data, choose File as the TrainingInputMode in the algorithm specification. For distributed training algorithms, specify an instance count greater than 1.
|
|
28124
28128
|
stopping_condition: Specifies a limit to how long a model training job can run. It also specifies how long a managed Spot training job has to complete. When the job reaches the time limit, SageMaker ends the training job. Use this API to cap model training costs. To stop a job, SageMaker sends the algorithm the SIGTERM signal, which delays job termination for 120 seconds. Algorithms can use this 120-second window to save the model artifacts, so the results of training are not lost.
|
|
28125
|
-
hyper_parameters: Algorithm-specific parameters that influence the quality of the model. You set hyperparameters before you start the learning process. For a list of hyperparameters for each training algorithm provided by SageMaker, see Algorithms. You can specify a maximum of 100 hyperparameters. Each hyperparameter is a key-value pair. Each key and value is limited to 256 characters, as specified by the Length Constraint. Do not include any security-sensitive information including account access IDs, secrets or tokens in any hyperparameter
|
|
28129
|
+
hyper_parameters: Algorithm-specific parameters that influence the quality of the model. You set hyperparameters before you start the learning process. For a list of hyperparameters for each training algorithm provided by SageMaker, see Algorithms. You can specify a maximum of 100 hyperparameters. Each hyperparameter is a key-value pair. Each key and value is limited to 256 characters, as specified by the Length Constraint. Do not include any security-sensitive information including account access IDs, secrets, or tokens in any hyperparameter fields. As part of the shared responsibility model, you are responsible for any potential exposure, unauthorized access, or compromise of your sensitive data if caused by any security-sensitive information included in the request hyperparameter variable or plain text fields.
|
|
28126
28130
|
input_data_config: An array of Channel objects. Each channel is a named input source. InputDataConfig describes the input data and its location. Algorithms can accept input data from one or more channels. For example, an algorithm might have two channels of input data, training_data and validation_data. The configuration for each channel provides the S3, EFS, or FSx location where the input data is stored. It also provides information about the stored data: the MIME type, compression method, and whether the data is wrapped in RecordIO format. Depending on the input mode that the algorithm supports, SageMaker either copies input data files from an S3 bucket to a local directory in the Docker container, or makes it available as input streams. For example, if you specify an EFS location, input data files are available as input streams. They do not need to be downloaded. Your input must be in the same Amazon Web Services region as your training job.
|
|
28127
28131
|
vpc_config: A VpcConfig object that specifies the VPC that you want your training job to connect to. Control access to and from your training container by configuring the VPC. For more information, see Protect Training Jobs by Using an Amazon Virtual Private Cloud.
|
|
28128
|
-
tags: An array of key-value pairs. You can use tags to categorize your Amazon Web Services resources in different ways, for example, by purpose, owner, or environment. For more information, see Tagging Amazon Web Services Resources.
|
|
28132
|
+
tags: An array of key-value pairs. You can use tags to categorize your Amazon Web Services resources in different ways, for example, by purpose, owner, or environment. For more information, see Tagging Amazon Web Services Resources. Do not include any security-sensitive information including account access IDs, secrets, or tokens in any tags. As part of the shared responsibility model, you are responsible for any potential exposure, unauthorized access, or compromise of your sensitive data if caused by any security-sensitive information included in the request tag variable or plain text fields.
|
|
28129
28133
|
enable_network_isolation: Isolates the training container. No inbound or outbound network calls can be made, except for calls between peers within a training cluster for distributed training. If you enable network isolation for training jobs that are configured to use a VPC, SageMaker downloads and uploads customer data and model artifacts through the specified VPC, but the training container does not have network access.
|
|
28130
28134
|
enable_inter_container_traffic_encryption: To encrypt all communications between ML compute instances in distributed training, choose True. Encryption provides greater security for distributed training, but training might take longer. How long it takes depends on the amount of communication between compute instances, especially if you use a deep learning algorithm in distributed training. For more information, see Protect Communications Between ML Compute Instances in a Distributed Training Job.
|
|
28131
28135
|
enable_managed_spot_training: To train models using managed spot training, choose True. Managed spot training provides a fully managed and scalable infrastructure for training machine learning models. this option is useful when training jobs can be interrupted and when there is flexibility when the training job is run. The complete and intermediate results of jobs are stored in an Amazon S3 bucket, and can be used as a starting point to train models incrementally. Amazon SageMaker provides metrics and logs in CloudWatch. They can be used to see when managed spot training jobs are running, interrupted, resumed, or completed.
|
|
@@ -28136,7 +28140,7 @@ class TrainingJob(Base):
|
|
|
28136
28140
|
experiment_config:
|
|
28137
28141
|
profiler_config:
|
|
28138
28142
|
profiler_rule_configurations: Configuration information for Amazon SageMaker Debugger rules for profiling system and framework metrics.
|
|
28139
|
-
environment: The environment variables to set in the Docker container.
|
|
28143
|
+
environment: The environment variables to set in the Docker container. Do not include any security-sensitive information including account access IDs, secrets, or tokens in any environment fields. As part of the shared responsibility model, you are responsible for any potential exposure, unauthorized access, or compromise of your sensitive data if caused by security-sensitive information included in the request environment variable or plain text fields.
|
|
28140
28144
|
retry_strategy: The number of times to retry the job when the job fails due to an InternalServerError.
|
|
28141
28145
|
remote_debug_config: Configuration for remote debugging. To learn more about the remote debugging functionality of SageMaker, see Access a training container through Amazon Web Services Systems Manager (SSM) for remote debugging.
|
|
28142
28146
|
infra_check_config: Contains information about the infrastructure health check configuration for the training job.
|
sagemaker_core/main/shapes.py
CHANGED
|
@@ -712,6 +712,19 @@ class Alarm(Base):
|
|
|
712
712
|
alarm_name: Optional[str] = Unassigned()
|
|
713
713
|
|
|
714
714
|
|
|
715
|
+
class AlarmDetails(Base):
|
|
716
|
+
"""
|
|
717
|
+
AlarmDetails
|
|
718
|
+
The details of the alarm to monitor during the AMI update.
|
|
719
|
+
|
|
720
|
+
Attributes
|
|
721
|
+
----------------------
|
|
722
|
+
alarm_name: The name of the alarm.
|
|
723
|
+
"""
|
|
724
|
+
|
|
725
|
+
alarm_name: str
|
|
726
|
+
|
|
727
|
+
|
|
715
728
|
class MetricDefinition(Base):
|
|
716
729
|
"""
|
|
717
730
|
MetricDefinition
|
|
@@ -2873,6 +2886,21 @@ class CanvasAppSettings(Base):
|
|
|
2873
2886
|
emr_serverless_settings: Optional[EmrServerlessSettings] = Unassigned()
|
|
2874
2887
|
|
|
2875
2888
|
|
|
2889
|
+
class CapacitySizeConfig(Base):
|
|
2890
|
+
"""
|
|
2891
|
+
CapacitySizeConfig
|
|
2892
|
+
The configuration of the size measurements of the AMI update. Using this configuration, you can specify whether SageMaker should update your instance group by an amount or percentage of instances.
|
|
2893
|
+
|
|
2894
|
+
Attributes
|
|
2895
|
+
----------------------
|
|
2896
|
+
type: Specifies whether SageMaker should process the update by amount or percentage of instances.
|
|
2897
|
+
value: Specifies the amount or percentage of instances SageMaker updates at a time.
|
|
2898
|
+
"""
|
|
2899
|
+
|
|
2900
|
+
type: str
|
|
2901
|
+
value: int
|
|
2902
|
+
|
|
2903
|
+
|
|
2876
2904
|
class CaptureContentTypeHeader(Base):
|
|
2877
2905
|
"""
|
|
2878
2906
|
CaptureContentTypeHeader
|
|
@@ -3153,6 +3181,53 @@ class ClusterInstanceStorageConfig(Base):
|
|
|
3153
3181
|
ebs_volume_config: Optional[ClusterEbsVolumeConfig] = Unassigned()
|
|
3154
3182
|
|
|
3155
3183
|
|
|
3184
|
+
class RollingDeploymentPolicy(Base):
|
|
3185
|
+
"""
|
|
3186
|
+
RollingDeploymentPolicy
|
|
3187
|
+
The configurations that SageMaker uses when updating the AMI versions.
|
|
3188
|
+
|
|
3189
|
+
Attributes
|
|
3190
|
+
----------------------
|
|
3191
|
+
maximum_batch_size: The maximum amount of instances in the cluster that SageMaker can update at a time.
|
|
3192
|
+
rollback_maximum_batch_size: The maximum amount of instances in the cluster that SageMaker can roll back at a time.
|
|
3193
|
+
"""
|
|
3194
|
+
|
|
3195
|
+
maximum_batch_size: CapacitySizeConfig
|
|
3196
|
+
rollback_maximum_batch_size: Optional[CapacitySizeConfig] = Unassigned()
|
|
3197
|
+
|
|
3198
|
+
|
|
3199
|
+
class DeploymentConfiguration(Base):
|
|
3200
|
+
"""
|
|
3201
|
+
DeploymentConfiguration
|
|
3202
|
+
The configuration to use when updating the AMI versions.
|
|
3203
|
+
|
|
3204
|
+
Attributes
|
|
3205
|
+
----------------------
|
|
3206
|
+
rolling_update_policy: The policy that SageMaker uses when updating the AMI versions of the cluster.
|
|
3207
|
+
wait_interval_in_seconds: The duration in seconds that SageMaker waits before updating more instances in the cluster.
|
|
3208
|
+
auto_rollback_configuration: An array that contains the alarms that SageMaker monitors to know whether to roll back the AMI update.
|
|
3209
|
+
"""
|
|
3210
|
+
|
|
3211
|
+
rolling_update_policy: Optional[RollingDeploymentPolicy] = Unassigned()
|
|
3212
|
+
wait_interval_in_seconds: Optional[int] = Unassigned()
|
|
3213
|
+
auto_rollback_configuration: Optional[List[AlarmDetails]] = Unassigned()
|
|
3214
|
+
|
|
3215
|
+
|
|
3216
|
+
class ScheduledUpdateConfig(Base):
|
|
3217
|
+
"""
|
|
3218
|
+
ScheduledUpdateConfig
|
|
3219
|
+
The configuration object of the schedule that SageMaker follows when updating the AMI.
|
|
3220
|
+
|
|
3221
|
+
Attributes
|
|
3222
|
+
----------------------
|
|
3223
|
+
schedule_expression: A cron expression that specifies the schedule that SageMaker follows when updating the AMI.
|
|
3224
|
+
deployment_config: The configuration to use when updating the AMI versions.
|
|
3225
|
+
"""
|
|
3226
|
+
|
|
3227
|
+
schedule_expression: str
|
|
3228
|
+
deployment_config: Optional[DeploymentConfiguration] = Unassigned()
|
|
3229
|
+
|
|
3230
|
+
|
|
3156
3231
|
class ClusterInstanceGroupDetails(Base):
|
|
3157
3232
|
"""
|
|
3158
3233
|
ClusterInstanceGroupDetails
|
|
@@ -3173,6 +3248,7 @@ class ClusterInstanceGroupDetails(Base):
|
|
|
3173
3248
|
training_plan_arn: The Amazon Resource Name (ARN); of the training plan associated with this cluster instance group. For more information about how to reserve GPU capacity for your SageMaker HyperPod clusters using Amazon SageMaker Training Plan, see CreateTrainingPlan .
|
|
3174
3249
|
training_plan_status: The current status of the training plan associated with this cluster instance group.
|
|
3175
3250
|
override_vpc_config: The customized Amazon VPC configuration at the instance group level that overrides the default Amazon VPC configuration of the SageMaker HyperPod cluster.
|
|
3251
|
+
scheduled_update_config: The configuration object of the schedule that SageMaker follows when updating the AMI.
|
|
3176
3252
|
"""
|
|
3177
3253
|
|
|
3178
3254
|
current_count: Optional[int] = Unassigned()
|
|
@@ -3188,6 +3264,7 @@ class ClusterInstanceGroupDetails(Base):
|
|
|
3188
3264
|
training_plan_arn: Optional[str] = Unassigned()
|
|
3189
3265
|
training_plan_status: Optional[str] = Unassigned()
|
|
3190
3266
|
override_vpc_config: Optional[VpcConfig] = Unassigned()
|
|
3267
|
+
scheduled_update_config: Optional[ScheduledUpdateConfig] = Unassigned()
|
|
3191
3268
|
|
|
3192
3269
|
|
|
3193
3270
|
class ClusterInstanceGroupSpecification(Base):
|
|
@@ -3207,6 +3284,7 @@ class ClusterInstanceGroupSpecification(Base):
|
|
|
3207
3284
|
on_start_deep_health_checks: A flag indicating whether deep health checks should be performed when the cluster instance group is created or updated.
|
|
3208
3285
|
training_plan_arn: The Amazon Resource Name (ARN); of the training plan to use for this cluster instance group. For more information about how to reserve GPU capacity for your SageMaker HyperPod clusters using Amazon SageMaker Training Plan, see CreateTrainingPlan .
|
|
3209
3286
|
override_vpc_config: To configure multi-AZ deployments, customize the Amazon VPC configuration at the instance group level. You can specify different subnets and security groups across different AZs in the instance group specification to override a SageMaker HyperPod cluster's default Amazon VPC configuration. For more information about deploying a cluster in multiple AZs, see Setting up SageMaker HyperPod clusters across multiple AZs. When your Amazon VPC and subnets support IPv6, network communications differ based on the cluster orchestration platform: Slurm-orchestrated clusters automatically configure nodes with dual IPv6 and IPv4 addresses, allowing immediate IPv6 network communications. In Amazon EKS-orchestrated clusters, nodes receive dual-stack addressing, but pods can only use IPv6 when the Amazon EKS cluster is explicitly IPv6-enabled. For information about deploying an IPv6 Amazon EKS cluster, see Amazon EKS IPv6 Cluster Deployment. Additional resources for IPv6 configuration: For information about adding IPv6 support to your VPC, see to IPv6 Support for VPC. For information about creating a new IPv6-compatible VPC, see Amazon VPC Creation Guide. To configure SageMaker HyperPod with a custom Amazon VPC, see Custom Amazon VPC Setup for SageMaker HyperPod.
|
|
3287
|
+
scheduled_update_config: The configuration object of the schedule that SageMaker uses to update the AMI.
|
|
3210
3288
|
"""
|
|
3211
3289
|
|
|
3212
3290
|
instance_count: int
|
|
@@ -3219,6 +3297,7 @@ class ClusterInstanceGroupSpecification(Base):
|
|
|
3219
3297
|
on_start_deep_health_checks: Optional[List[str]] = Unassigned()
|
|
3220
3298
|
training_plan_arn: Optional[str] = Unassigned()
|
|
3221
3299
|
override_vpc_config: Optional[VpcConfig] = Unassigned()
|
|
3300
|
+
scheduled_update_config: Optional[ScheduledUpdateConfig] = Unassigned()
|
|
3222
3301
|
|
|
3223
3302
|
|
|
3224
3303
|
class ClusterInstancePlacement(Base):
|
|
@@ -3263,6 +3342,7 @@ class ClusterNodeDetails(Base):
|
|
|
3263
3342
|
instance_status: The status of the instance.
|
|
3264
3343
|
instance_type: The type of the instance.
|
|
3265
3344
|
launch_time: The time when the instance is launched.
|
|
3345
|
+
last_software_update_time: The time of when the cluster was last updated.
|
|
3266
3346
|
life_cycle_config: The LifeCycle configuration applied to the instance.
|
|
3267
3347
|
override_vpc_config: The customized Amazon VPC configuration at the instance group level that overrides the default Amazon VPC configuration of the SageMaker HyperPod cluster.
|
|
3268
3348
|
threads_per_core: The number of threads per CPU core you specified under CreateCluster.
|
|
@@ -3278,6 +3358,7 @@ class ClusterNodeDetails(Base):
|
|
|
3278
3358
|
instance_status: Optional[ClusterInstanceStatusDetails] = Unassigned()
|
|
3279
3359
|
instance_type: Optional[str] = Unassigned()
|
|
3280
3360
|
launch_time: Optional[datetime.datetime] = Unassigned()
|
|
3361
|
+
last_software_update_time: Optional[datetime.datetime] = Unassigned()
|
|
3281
3362
|
life_cycle_config: Optional[ClusterLifeCycleConfig] = Unassigned()
|
|
3282
3363
|
override_vpc_config: Optional[VpcConfig] = Unassigned()
|
|
3283
3364
|
threads_per_core: Optional[int] = Unassigned()
|
|
@@ -3299,6 +3380,7 @@ class ClusterNodeSummary(Base):
|
|
|
3299
3380
|
instance_id: The ID of the instance.
|
|
3300
3381
|
instance_type: The type of the instance.
|
|
3301
3382
|
launch_time: The time when the instance is launched.
|
|
3383
|
+
last_software_update_time: The time of when SageMaker last updated the software of the instances in the cluster.
|
|
3302
3384
|
instance_status: The status of the instance.
|
|
3303
3385
|
"""
|
|
3304
3386
|
|
|
@@ -3307,6 +3389,7 @@ class ClusterNodeSummary(Base):
|
|
|
3307
3389
|
instance_type: str
|
|
3308
3390
|
launch_time: datetime.datetime
|
|
3309
3391
|
instance_status: ClusterInstanceStatusDetails
|
|
3392
|
+
last_software_update_time: Optional[datetime.datetime] = Unassigned()
|
|
3310
3393
|
|
|
3311
3394
|
|
|
3312
3395
|
class ClusterOrchestratorEksConfig(Base):
|
|
@@ -12600,6 +12683,19 @@ class ThroughputConfigUpdate(Base):
|
|
|
12600
12683
|
provisioned_write_capacity_units: Optional[int] = Unassigned()
|
|
12601
12684
|
|
|
12602
12685
|
|
|
12686
|
+
class UpdateClusterSoftwareInstanceGroupSpecification(Base):
|
|
12687
|
+
"""
|
|
12688
|
+
UpdateClusterSoftwareInstanceGroupSpecification
|
|
12689
|
+
The configuration that describes specifications of the instance groups to update.
|
|
12690
|
+
|
|
12691
|
+
Attributes
|
|
12692
|
+
----------------------
|
|
12693
|
+
instance_group_name: The name of the instance group to update.
|
|
12694
|
+
"""
|
|
12695
|
+
|
|
12696
|
+
instance_group_name: str
|
|
12697
|
+
|
|
12698
|
+
|
|
12603
12699
|
class VariantProperty(Base):
|
|
12604
12700
|
"""
|
|
12605
12701
|
VariantProperty
|
|
@@ -7,15 +7,15 @@ sagemaker_core/main/config_schema.py,sha256=lBwIm5CT_dSXeW5i6cgRzbiLDjs0qtH1FrM7
|
|
|
7
7
|
sagemaker_core/main/exceptions.py,sha256=87DUlrmHxaWoiYNlpNY9ixxFMPRk_dIGPsA2e_xdVwQ,5602
|
|
8
8
|
sagemaker_core/main/intelligent_defaults_helper.py,sha256=5SDM6UavZtp-k5LhqRL7GRIDgzFB5UsC_p7YuiSPK9A,8334
|
|
9
9
|
sagemaker_core/main/logs.py,sha256=yfEH7uP91nbE1lefymOlBr81ziBzsDSIOF2Qyd54FJE,6241
|
|
10
|
-
sagemaker_core/main/resources.py,sha256=
|
|
11
|
-
sagemaker_core/main/shapes.py,sha256=
|
|
10
|
+
sagemaker_core/main/resources.py,sha256=jNX5jp5tmwa0t8PYPxWrRRBAGIn0G-iq3C-7TvBxEPw,1420815
|
|
11
|
+
sagemaker_core/main/shapes.py,sha256=r6a24wbWncTXBpDqmP_VPUtO0Uc7QYFdOs7EZ-bLz0A,736265
|
|
12
12
|
sagemaker_core/main/user_agent.py,sha256=BPYDAfDd70ObP-VAjl7aDHALHyGknkpRP21ktVr_LDw,2744
|
|
13
13
|
sagemaker_core/main/utils.py,sha256=qTGJDcZwrAQSsdyg8A78x4PKU4Wu1rY6Cn3OIbIspaA,18546
|
|
14
14
|
sagemaker_core/main/code_injection/__init__.py,sha256=47DEQpj8HBSa-_TImW-5JCeuQeRkm5NMpJWZG3hSuFU,0
|
|
15
15
|
sagemaker_core/main/code_injection/base.py,sha256=11_Jif0nOzfbLGlXaacKf-wcizzfS64U0OSZGoVffFU,1733
|
|
16
16
|
sagemaker_core/main/code_injection/codec.py,sha256=nA51E9iNWHyKou1G23rKSRL4WitdkFRbMuFkyrGHzKU,8428
|
|
17
17
|
sagemaker_core/main/code_injection/constants.py,sha256=2ICExGge8vAWx7lSTW0JGh-bH1korkvpOpDu5M63eI4,980
|
|
18
|
-
sagemaker_core/main/code_injection/shape_dag.py,sha256=
|
|
18
|
+
sagemaker_core/main/code_injection/shape_dag.py,sha256=qUUqZfPh9q7lYjifbApH_t94xN03N1e6JgWOv7ttofw,703067
|
|
19
19
|
sagemaker_core/resources/__init__.py,sha256=EAYTFMN-nPjnPjjBbhIUeaL67FLKNPd7qbcbl9VIrws,31
|
|
20
20
|
sagemaker_core/shapes/__init__.py,sha256=RnbIu9eTxKt-DNsOFJabrWIgrrtS9_SdAozP9JBl_ic,28
|
|
21
21
|
sagemaker_core/tools/__init__.py,sha256=xX79JImxCVzrWMnjgntLCve2G5I-R4pRar5s20kT9Rs,56
|
|
@@ -28,8 +28,8 @@ sagemaker_core/tools/resources_extractor.py,sha256=hN61ehZbPnhFW-2FIVDi7NsEz4rLv
|
|
|
28
28
|
sagemaker_core/tools/shapes_codegen.py,sha256=4lsePZpjk7M6RpJs5yar_m4z5MzwGHFrvCkdS_-R12c,12172
|
|
29
29
|
sagemaker_core/tools/shapes_extractor.py,sha256=vxVKjXD3lmjrkoKiexjUnOt8ITbFxQSeiDtx7P6Qtkw,14226
|
|
30
30
|
sagemaker_core/tools/templates.py,sha256=vIgRWConRGAQ-Mri6LwfkArqWHlL3KXcvbbYa-t_MV4,23414
|
|
31
|
-
sagemaker_core-1.0.
|
|
32
|
-
sagemaker_core-1.0.
|
|
33
|
-
sagemaker_core-1.0.
|
|
34
|
-
sagemaker_core-1.0.
|
|
35
|
-
sagemaker_core-1.0.
|
|
31
|
+
sagemaker_core-1.0.31.dist-info/licenses/LICENSE,sha256=xx0jnfkXJvxRnG63LTGOxlggYnIysveWIZ6H3PNdCrQ,11357
|
|
32
|
+
sagemaker_core-1.0.31.dist-info/METADATA,sha256=oPcMceosjqH8YzEQe2pcSyFkoyWbWbdt0IPptyEGwsg,4885
|
|
33
|
+
sagemaker_core-1.0.31.dist-info/WHEEL,sha256=wXxTzcEDnjrTwFYjLPcsW_7_XihufBwmpiBeiXNBGEA,91
|
|
34
|
+
sagemaker_core-1.0.31.dist-info/top_level.txt,sha256=R3GAZZ1zC5JxqdE_0x2Lu_WYi2Xfke7VsiP3L5zngfA,15
|
|
35
|
+
sagemaker_core-1.0.31.dist-info/RECORD,,
|
|
File without changes
|
|
File without changes
|