sagemaker-core 1.0.16__py3-none-any.whl → 1.0.18__py3-none-any.whl
This diff represents the content of publicly available package versions that have been released to one of the supported registries. The information contained in this diff is provided for informational purposes only and reflects changes between package versions as they appear in their respective public registries.
Potentially problematic release.
This version of sagemaker-core might be problematic. Click here for more details.
- sagemaker_core/main/code_injection/codec.py +16 -2
- sagemaker_core/main/code_injection/shape_dag.py +714 -2
- sagemaker_core/main/config_schema.py +4 -0
- sagemaker_core/main/resources.py +10401 -8434
- sagemaker_core/main/shapes.py +474 -61
- sagemaker_core/main/user_agent.py +1 -1
- sagemaker_core/tools/method.py +3 -2
- sagemaker_core/tools/resources_codegen.py +7 -2
- sagemaker_core/tools/shapes_extractor.py +12 -7
- {sagemaker_core-1.0.16.dist-info → sagemaker_core-1.0.18.dist-info}/METADATA +3 -3
- {sagemaker_core-1.0.16.dist-info → sagemaker_core-1.0.18.dist-info}/RECORD +14 -14
- {sagemaker_core-1.0.16.dist-info → sagemaker_core-1.0.18.dist-info}/WHEEL +1 -1
- {sagemaker_core-1.0.16.dist-info → sagemaker_core-1.0.18.dist-info}/LICENSE +0 -0
- {sagemaker_core-1.0.16.dist-info → sagemaker_core-1.0.18.dist-info}/top_level.txt +0 -0
sagemaker_core/main/shapes.py
CHANGED
|
@@ -548,6 +548,8 @@ class S3ModelDataSource(Base):
|
|
|
548
548
|
model_access_config: Specifies the access configuration file for the ML model. You can explicitly accept the model end-user license agreement (EULA) within the ModelAccessConfig. You are responsible for reviewing and complying with any applicable license terms and making sure they are acceptable for your use case before downloading or using a model.
|
|
549
549
|
hub_access_config: Configuration information for hub access.
|
|
550
550
|
manifest_s3_uri: The Amazon S3 URI of the manifest file. The manifest file is a CSV file that stores the artifact locations.
|
|
551
|
+
e_tag: The ETag associated with S3 URI.
|
|
552
|
+
manifest_etag: The ETag associated with Manifest S3 URI.
|
|
551
553
|
"""
|
|
552
554
|
|
|
553
555
|
s3_uri: str
|
|
@@ -556,6 +558,8 @@ class S3ModelDataSource(Base):
|
|
|
556
558
|
model_access_config: Optional[ModelAccessConfig] = Unassigned()
|
|
557
559
|
hub_access_config: Optional[InferenceHubAccessConfig] = Unassigned()
|
|
558
560
|
manifest_s3_uri: Optional[str] = Unassigned()
|
|
561
|
+
e_tag: Optional[str] = Unassigned()
|
|
562
|
+
manifest_etag: Optional[str] = Unassigned()
|
|
559
563
|
|
|
560
564
|
|
|
561
565
|
class ModelDataSource(Base):
|
|
@@ -594,11 +598,13 @@ class AdditionalS3DataSource(Base):
|
|
|
594
598
|
s3_data_type: The data type of the additional data source that you specify for use in inference or training.
|
|
595
599
|
s3_uri: The uniform resource identifier (URI) used to identify an additional data source used in inference or training.
|
|
596
600
|
compression_type: The type of compression used for an additional data source used in inference or training. Specify None if your additional data source is not compressed.
|
|
601
|
+
e_tag: The ETag associated with S3 URI.
|
|
597
602
|
"""
|
|
598
603
|
|
|
599
604
|
s3_data_type: str
|
|
600
605
|
s3_uri: str
|
|
601
606
|
compression_type: Optional[str] = Unassigned()
|
|
607
|
+
e_tag: Optional[str] = Unassigned()
|
|
602
608
|
|
|
603
609
|
|
|
604
610
|
class ModelPackageContainerDefinition(Base):
|
|
@@ -609,7 +615,7 @@ class ModelPackageContainerDefinition(Base):
|
|
|
609
615
|
Attributes
|
|
610
616
|
----------------------
|
|
611
617
|
container_hostname: The DNS host name for the Docker container.
|
|
612
|
-
image: The Amazon EC2 Container Registry
|
|
618
|
+
image: The Amazon EC2 Container Registry path where inference code is stored. If you are using your own custom algorithm instead of an algorithm provided by SageMaker, the inference code must meet SageMaker requirements. SageMaker supports both registry/repository[:tag] and registry/repository[@digest] image path formats. For more information, see Using Your Own Algorithms with Amazon SageMaker.
|
|
613
619
|
image_digest: An MD5 hash of the training algorithm that identifies the Docker image used for training.
|
|
614
620
|
model_data_url: The Amazon S3 path where the model artifacts, which result from model training, are stored. This path must point to a single gzip compressed tar archive (.tar.gz suffix). The model artifacts must be in an S3 bucket that is in the same region as the model package.
|
|
615
621
|
model_data_source: Specifies the location of ML model data to deploy during endpoint creation.
|
|
@@ -620,6 +626,7 @@ class ModelPackageContainerDefinition(Base):
|
|
|
620
626
|
framework_version: The framework version of the Model Package Container Image.
|
|
621
627
|
nearest_model_name: The name of a pre-trained machine learning benchmarked by Amazon SageMaker Inference Recommender model that matches your model. You can find a list of benchmarked models by calling ListModelMetadata.
|
|
622
628
|
additional_s3_data_source: The additional data source that is used during inference in the Docker container for your model package.
|
|
629
|
+
model_data_e_tag: The ETag associated with Model Data URL.
|
|
623
630
|
"""
|
|
624
631
|
|
|
625
632
|
image: str
|
|
@@ -634,6 +641,7 @@ class ModelPackageContainerDefinition(Base):
|
|
|
634
641
|
framework_version: Optional[str] = Unassigned()
|
|
635
642
|
nearest_model_name: Optional[str] = Unassigned()
|
|
636
643
|
additional_s3_data_source: Optional[AdditionalS3DataSource] = Unassigned()
|
|
644
|
+
model_data_e_tag: Optional[str] = Unassigned()
|
|
637
645
|
|
|
638
646
|
|
|
639
647
|
class AdditionalInferenceSpecificationDefinition(Base):
|
|
@@ -750,7 +758,7 @@ class TrainingImageConfig(Base):
|
|
|
750
758
|
class AlgorithmSpecification(Base):
|
|
751
759
|
"""
|
|
752
760
|
AlgorithmSpecification
|
|
753
|
-
Specifies the training algorithm to use in a CreateTrainingJob request. For more information about algorithms provided by SageMaker, see Algorithms. For information about using your own algorithms, see Using Your Own Algorithms with Amazon SageMaker.
|
|
761
|
+
Specifies the training algorithm to use in a CreateTrainingJob request. SageMaker uses its own SageMaker account credentials to pull and access built-in algorithms so built-in algorithms are universally accessible across all Amazon Web Services accounts. As a result, built-in algorithms have standard, unrestricted access. You cannot restrict built-in algorithms using IAM roles. Use custom algorithms if you require specific access controls. For more information about algorithms provided by SageMaker, see Algorithms. For information about using your own algorithms, see Using Your Own Algorithms with Amazon SageMaker.
|
|
754
762
|
|
|
755
763
|
Attributes
|
|
756
764
|
----------------------
|
|
@@ -967,6 +975,7 @@ class ResourceConfig(Base):
|
|
|
967
975
|
volume_kms_key_id: The Amazon Web Services KMS key that SageMaker uses to encrypt data on the storage volume attached to the ML compute instance(s) that run the training job. Certain Nitro-based instances include local storage, dependent on the instance type. Local storage volumes are encrypted using a hardware module on the instance. You can't request a VolumeKmsKeyId when using an instance type with local storage. For a list of instance types that support local instance storage, see Instance Store Volumes. For more information about local instance storage encryption, see SSD Instance Store Volumes. The VolumeKmsKeyId can be in any of the following formats: // KMS Key ID "1234abcd-12ab-34cd-56ef-1234567890ab" // Amazon Resource Name (ARN) of a KMS Key "arn:aws:kms:us-west-2:111122223333:key/1234abcd-12ab-34cd-56ef-1234567890ab"
|
|
968
976
|
keep_alive_period_in_seconds: The duration of time in seconds to retain configured resources in a warm pool for subsequent training jobs.
|
|
969
977
|
instance_groups: The configuration of a heterogeneous cluster in JSON format.
|
|
978
|
+
training_plan_arn: The Amazon Resource Name (ARN); of the training plan to use for this resource configuration.
|
|
970
979
|
"""
|
|
971
980
|
|
|
972
981
|
volume_size_in_gb: int
|
|
@@ -975,6 +984,7 @@ class ResourceConfig(Base):
|
|
|
975
984
|
volume_kms_key_id: Optional[str] = Unassigned()
|
|
976
985
|
keep_alive_period_in_seconds: Optional[int] = Unassigned()
|
|
977
986
|
instance_groups: Optional[List[InstanceGroup]] = Unassigned()
|
|
987
|
+
training_plan_arn: Optional[str] = Unassigned()
|
|
978
988
|
|
|
979
989
|
|
|
980
990
|
class StoppingCondition(Base):
|
|
@@ -1188,11 +1198,11 @@ class AnnotationConsolidationConfig(Base):
|
|
|
1188
1198
|
class ResourceSpec(Base):
|
|
1189
1199
|
"""
|
|
1190
1200
|
ResourceSpec
|
|
1191
|
-
Specifies the ARN's of a SageMaker image and SageMaker image version, and the instance type that the version runs on.
|
|
1201
|
+
Specifies the ARN's of a SageMaker AI image and SageMaker AI image version, and the instance type that the version runs on.
|
|
1192
1202
|
|
|
1193
1203
|
Attributes
|
|
1194
1204
|
----------------------
|
|
1195
|
-
sage_maker_image_arn: The ARN of the SageMaker image that the image version belongs to.
|
|
1205
|
+
sage_maker_image_arn: The ARN of the SageMaker AI image that the image version belongs to.
|
|
1196
1206
|
sage_maker_image_version_arn: The ARN of the image version created on the instance.
|
|
1197
1207
|
sage_maker_image_version_alias: The SageMakerImageVersionAlias of the image to launch with. This value is in SemVer 2.0.0 versioning format.
|
|
1198
1208
|
instance_type: The instance type that the image version runs on. JupyterServer apps only support the system value. For KernelGateway apps, the system value is translated to ml.t3.medium. KernelGateway apps also support all other values for available instance types.
|
|
@@ -1209,7 +1219,7 @@ class ResourceSpec(Base):
|
|
|
1209
1219
|
class AppDetails(Base):
|
|
1210
1220
|
"""
|
|
1211
1221
|
AppDetails
|
|
1212
|
-
Details about an Amazon SageMaker app.
|
|
1222
|
+
Details about an Amazon SageMaker AI app.
|
|
1213
1223
|
|
|
1214
1224
|
Attributes
|
|
1215
1225
|
----------------------
|
|
@@ -1251,7 +1261,7 @@ class KernelSpec(Base):
|
|
|
1251
1261
|
class FileSystemConfig(Base):
|
|
1252
1262
|
"""
|
|
1253
1263
|
FileSystemConfig
|
|
1254
|
-
The Amazon Elastic File System storage configuration for a SageMaker image.
|
|
1264
|
+
The Amazon Elastic File System storage configuration for a SageMaker AI image.
|
|
1255
1265
|
|
|
1256
1266
|
Attributes
|
|
1257
1267
|
----------------------
|
|
@@ -1268,12 +1278,12 @@ class FileSystemConfig(Base):
|
|
|
1268
1278
|
class KernelGatewayImageConfig(Base):
|
|
1269
1279
|
"""
|
|
1270
1280
|
KernelGatewayImageConfig
|
|
1271
|
-
The configuration for the file system and kernels in a SageMaker image running as a KernelGateway app.
|
|
1281
|
+
The configuration for the file system and kernels in a SageMaker AI image running as a KernelGateway app.
|
|
1272
1282
|
|
|
1273
1283
|
Attributes
|
|
1274
1284
|
----------------------
|
|
1275
1285
|
kernel_specs: The specification of the Jupyter kernels in the image.
|
|
1276
|
-
file_system_config: The Amazon Elastic File System storage configuration for a SageMaker image.
|
|
1286
|
+
file_system_config: The Amazon Elastic File System storage configuration for a SageMaker AI image.
|
|
1277
1287
|
"""
|
|
1278
1288
|
|
|
1279
1289
|
kernel_specs: List[KernelSpec]
|
|
@@ -1300,7 +1310,7 @@ class ContainerConfig(Base):
|
|
|
1300
1310
|
class JupyterLabAppImageConfig(Base):
|
|
1301
1311
|
"""
|
|
1302
1312
|
JupyterLabAppImageConfig
|
|
1303
|
-
The configuration for the file system and kernels in a SageMaker image running as a JupyterLab app. The FileSystemConfig object is not supported.
|
|
1313
|
+
The configuration for the file system and kernels in a SageMaker AI image running as a JupyterLab app. The FileSystemConfig object is not supported.
|
|
1304
1314
|
|
|
1305
1315
|
Attributes
|
|
1306
1316
|
----------------------
|
|
@@ -1330,7 +1340,7 @@ class CodeEditorAppImageConfig(Base):
|
|
|
1330
1340
|
class AppImageConfigDetails(Base):
|
|
1331
1341
|
"""
|
|
1332
1342
|
AppImageConfigDetails
|
|
1333
|
-
The configuration for running a SageMaker image as a KernelGateway app.
|
|
1343
|
+
The configuration for running a SageMaker AI image as a KernelGateway app.
|
|
1334
1344
|
|
|
1335
1345
|
Attributes
|
|
1336
1346
|
----------------------
|
|
@@ -1338,7 +1348,7 @@ class AppImageConfigDetails(Base):
|
|
|
1338
1348
|
app_image_config_name: The name of the AppImageConfig. Must be unique to your account.
|
|
1339
1349
|
creation_time: When the AppImageConfig was created.
|
|
1340
1350
|
last_modified_time: When the AppImageConfig was last modified.
|
|
1341
|
-
kernel_gateway_image_config: The configuration for the file system and kernels in the SageMaker image.
|
|
1351
|
+
kernel_gateway_image_config: The configuration for the file system and kernels in the SageMaker AI image.
|
|
1342
1352
|
jupyter_lab_app_image_config: The configuration for the file system and the runtime, such as the environment variables and entry point.
|
|
1343
1353
|
code_editor_app_image_config: The configuration for the file system and the runtime, such as the environment variables and entry point.
|
|
1344
1354
|
"""
|
|
@@ -1786,7 +1796,7 @@ class AutoMLS3DataSource(Base):
|
|
|
1786
1796
|
|
|
1787
1797
|
Attributes
|
|
1788
1798
|
----------------------
|
|
1789
|
-
s3_data_type: The data type. If you choose S3Prefix, S3Uri identifies a key name prefix. SageMaker uses all objects that match the specified key name prefix for model training. The S3Prefix should have the following format: s3://DOC-EXAMPLE-BUCKET/DOC-EXAMPLE-FOLDER-OR-FILE If you choose ManifestFile, S3Uri identifies an object that is a manifest file containing a list of object keys that you want SageMaker to use for model training. A ManifestFile should have the format shown below: [ {"prefix": "s3://DOC-EXAMPLE-BUCKET/DOC-EXAMPLE-FOLDER/DOC-EXAMPLE-PREFIX/"}, "DOC-EXAMPLE-RELATIVE-PATH/DOC-EXAMPLE-FOLDER/DATA-1", "DOC-EXAMPLE-RELATIVE-PATH/DOC-EXAMPLE-FOLDER/DATA-2", ... "DOC-EXAMPLE-RELATIVE-PATH/DOC-EXAMPLE-FOLDER/DATA-N" ] If you choose AugmentedManifestFile, S3Uri identifies an object that is an augmented manifest file in JSON lines format. This file contains the data you want to use for model training. AugmentedManifestFile is available for V2 API jobs only (for example, for jobs created by calling CreateAutoMLJobV2). Here is a minimal, single-record example of an AugmentedManifestFile: {"source-ref": "s3://DOC-EXAMPLE-BUCKET/DOC-EXAMPLE-FOLDER/cats/cat.jpg", "label-metadata": {"class-name": "cat" } For more information on AugmentedManifestFile, see Provide Dataset Metadata to Training Jobs with an Augmented Manifest File.
|
|
1799
|
+
s3_data_type: The data type. If you choose S3Prefix, S3Uri identifies a key name prefix. SageMaker AI uses all objects that match the specified key name prefix for model training. The S3Prefix should have the following format: s3://DOC-EXAMPLE-BUCKET/DOC-EXAMPLE-FOLDER-OR-FILE If you choose ManifestFile, S3Uri identifies an object that is a manifest file containing a list of object keys that you want SageMaker AI to use for model training. A ManifestFile should have the format shown below: [ {"prefix": "s3://DOC-EXAMPLE-BUCKET/DOC-EXAMPLE-FOLDER/DOC-EXAMPLE-PREFIX/"}, "DOC-EXAMPLE-RELATIVE-PATH/DOC-EXAMPLE-FOLDER/DATA-1", "DOC-EXAMPLE-RELATIVE-PATH/DOC-EXAMPLE-FOLDER/DATA-2", ... "DOC-EXAMPLE-RELATIVE-PATH/DOC-EXAMPLE-FOLDER/DATA-N" ] If you choose AugmentedManifestFile, S3Uri identifies an object that is an augmented manifest file in JSON lines format. This file contains the data you want to use for model training. AugmentedManifestFile is available for V2 API jobs only (for example, for jobs created by calling CreateAutoMLJobV2). Here is a minimal, single-record example of an AugmentedManifestFile: {"source-ref": "s3://DOC-EXAMPLE-BUCKET/DOC-EXAMPLE-FOLDER/cats/cat.jpg", "label-metadata": {"class-name": "cat" } For more information on AugmentedManifestFile, see Provide Dataset Metadata to Training Jobs with an Augmented Manifest File.
|
|
1790
1800
|
s3_uri: The URL to the Amazon S3 data source. The Uri refers to the Amazon S3 prefix or ManifestFile depending on the data type.
|
|
1791
1801
|
"""
|
|
1792
1802
|
|
|
@@ -2847,12 +2857,12 @@ class CanvasAppSettings(Base):
|
|
|
2847
2857
|
class CaptureContentTypeHeader(Base):
|
|
2848
2858
|
"""
|
|
2849
2859
|
CaptureContentTypeHeader
|
|
2850
|
-
Configuration specifying how to treat different headers. If no headers are specified Amazon SageMaker will by default base64 encode when capturing the data.
|
|
2860
|
+
Configuration specifying how to treat different headers. If no headers are specified Amazon SageMaker AI will by default base64 encode when capturing the data.
|
|
2851
2861
|
|
|
2852
2862
|
Attributes
|
|
2853
2863
|
----------------------
|
|
2854
|
-
csv_content_types: The list of all content type headers that Amazon SageMaker will treat as CSV and capture accordingly.
|
|
2855
|
-
json_content_types: The list of all content type headers that SageMaker will treat as JSON and capture accordingly.
|
|
2864
|
+
csv_content_types: The list of all content type headers that Amazon SageMaker AI will treat as CSV and capture accordingly.
|
|
2865
|
+
json_content_types: The list of all content type headers that SageMaker AI will treat as JSON and capture accordingly.
|
|
2856
2866
|
"""
|
|
2857
2867
|
|
|
2858
2868
|
csv_content_types: Optional[List[str]] = Unassigned()
|
|
@@ -3140,6 +3150,9 @@ class ClusterInstanceGroupDetails(Base):
|
|
|
3140
3150
|
threads_per_core: The number you specified to TreadsPerCore in CreateCluster for enabling or disabling multithreading. For instance types that support multithreading, you can specify 1 for disabling multithreading and 2 for enabling multithreading. For more information, see the reference table of CPU cores and threads per CPU core per instance type in the Amazon Elastic Compute Cloud User Guide.
|
|
3141
3151
|
instance_storage_configs: The additional storage configurations for the instances in the SageMaker HyperPod cluster instance group.
|
|
3142
3152
|
on_start_deep_health_checks: A flag indicating whether deep health checks should be performed when the cluster instance group is created or updated.
|
|
3153
|
+
status: The current status of the cluster instance group. InService: The instance group is active and healthy. Creating: The instance group is being provisioned. Updating: The instance group is being updated. Failed: The instance group has failed to provision or is no longer healthy. Degraded: The instance group is degraded, meaning that some instances have failed to provision or are no longer healthy. Deleting: The instance group is being deleted.
|
|
3154
|
+
training_plan_arn: The Amazon Resource Name (ARN); of the training plan associated with this cluster instance group. For more information about how to reserve GPU capacity for your SageMaker HyperPod clusters using Amazon SageMaker Training Plan, see CreateTrainingPlan .
|
|
3155
|
+
training_plan_status: The current status of the training plan associated with this cluster instance group.
|
|
3143
3156
|
override_vpc_config
|
|
3144
3157
|
"""
|
|
3145
3158
|
|
|
@@ -3152,6 +3165,9 @@ class ClusterInstanceGroupDetails(Base):
|
|
|
3152
3165
|
threads_per_core: Optional[int] = Unassigned()
|
|
3153
3166
|
instance_storage_configs: Optional[List[ClusterInstanceStorageConfig]] = Unassigned()
|
|
3154
3167
|
on_start_deep_health_checks: Optional[List[str]] = Unassigned()
|
|
3168
|
+
status: Optional[str] = Unassigned()
|
|
3169
|
+
training_plan_arn: Optional[str] = Unassigned()
|
|
3170
|
+
training_plan_status: Optional[str] = Unassigned()
|
|
3155
3171
|
override_vpc_config: Optional[VpcConfig] = Unassigned()
|
|
3156
3172
|
|
|
3157
3173
|
|
|
@@ -3170,6 +3186,7 @@ class ClusterInstanceGroupSpecification(Base):
|
|
|
3170
3186
|
threads_per_core: Specifies the value for Threads per core. For instance types that support multithreading, you can specify 1 for disabling multithreading and 2 for enabling multithreading. For instance types that doesn't support multithreading, specify 1. For more information, see the reference table of CPU cores and threads per CPU core per instance type in the Amazon Elastic Compute Cloud User Guide.
|
|
3171
3187
|
instance_storage_configs: Specifies the additional storage configurations for the instances in the SageMaker HyperPod cluster instance group.
|
|
3172
3188
|
on_start_deep_health_checks: A flag indicating whether deep health checks should be performed when the cluster instance group is created or updated.
|
|
3189
|
+
training_plan_arn: The Amazon Resource Name (ARN); of the training plan to use for this cluster instance group. For more information about how to reserve GPU capacity for your SageMaker HyperPod clusters using Amazon SageMaker Training Plan, see CreateTrainingPlan .
|
|
3173
3190
|
override_vpc_config
|
|
3174
3191
|
"""
|
|
3175
3192
|
|
|
@@ -3181,6 +3198,7 @@ class ClusterInstanceGroupSpecification(Base):
|
|
|
3181
3198
|
threads_per_core: Optional[int] = Unassigned()
|
|
3182
3199
|
instance_storage_configs: Optional[List[ClusterInstanceStorageConfig]] = Unassigned()
|
|
3183
3200
|
on_start_deep_health_checks: Optional[List[str]] = Unassigned()
|
|
3201
|
+
training_plan_arn: Optional[str] = Unassigned()
|
|
3184
3202
|
override_vpc_config: Optional[VpcConfig] = Unassigned()
|
|
3185
3203
|
|
|
3186
3204
|
|
|
@@ -3231,6 +3249,7 @@ class ClusterNodeDetails(Base):
|
|
|
3231
3249
|
threads_per_core: The number of threads per CPU core you specified under CreateCluster.
|
|
3232
3250
|
instance_storage_configs: The configurations of additional storage specified to the instance group where the instance (node) is launched.
|
|
3233
3251
|
private_primary_ip: The private primary IP address of the SageMaker HyperPod cluster node.
|
|
3252
|
+
private_primary_ipv6: The private primary IPv6 address of the SageMaker HyperPod cluster node.
|
|
3234
3253
|
private_dns_hostname: The private DNS hostname of the SageMaker HyperPod cluster node.
|
|
3235
3254
|
placement: The placement details of the SageMaker HyperPod cluster node.
|
|
3236
3255
|
"""
|
|
@@ -3245,6 +3264,7 @@ class ClusterNodeDetails(Base):
|
|
|
3245
3264
|
threads_per_core: Optional[int] = Unassigned()
|
|
3246
3265
|
instance_storage_configs: Optional[List[ClusterInstanceStorageConfig]] = Unassigned()
|
|
3247
3266
|
private_primary_ip: Optional[str] = Unassigned()
|
|
3267
|
+
private_primary_ipv6: Optional[str] = Unassigned()
|
|
3248
3268
|
private_dns_hostname: Optional[str] = Unassigned()
|
|
3249
3269
|
placement: Optional[ClusterInstancePlacement] = Unassigned()
|
|
3250
3270
|
|
|
@@ -3296,6 +3316,33 @@ class ClusterOrchestrator(Base):
|
|
|
3296
3316
|
eks: ClusterOrchestratorEksConfig
|
|
3297
3317
|
|
|
3298
3318
|
|
|
3319
|
+
class ClusterSchedulerConfigSummary(Base):
|
|
3320
|
+
"""
|
|
3321
|
+
ClusterSchedulerConfigSummary
|
|
3322
|
+
Summary of the cluster policy.
|
|
3323
|
+
|
|
3324
|
+
Attributes
|
|
3325
|
+
----------------------
|
|
3326
|
+
cluster_scheduler_config_arn: ARN of the cluster policy.
|
|
3327
|
+
cluster_scheduler_config_id: ID of the cluster policy.
|
|
3328
|
+
cluster_scheduler_config_version: Version of the cluster policy.
|
|
3329
|
+
name: Name of the cluster policy.
|
|
3330
|
+
creation_time: Creation time of the cluster policy.
|
|
3331
|
+
last_modified_time: Last modified time of the cluster policy.
|
|
3332
|
+
status: Status of the cluster policy.
|
|
3333
|
+
cluster_arn: ARN of the cluster.
|
|
3334
|
+
"""
|
|
3335
|
+
|
|
3336
|
+
cluster_scheduler_config_arn: str
|
|
3337
|
+
cluster_scheduler_config_id: str
|
|
3338
|
+
name: str
|
|
3339
|
+
creation_time: datetime.datetime
|
|
3340
|
+
status: str
|
|
3341
|
+
cluster_scheduler_config_version: Optional[int] = Unassigned()
|
|
3342
|
+
last_modified_time: Optional[datetime.datetime] = Unassigned()
|
|
3343
|
+
cluster_arn: Optional[str] = Unassigned()
|
|
3344
|
+
|
|
3345
|
+
|
|
3299
3346
|
class ClusterSummary(Base):
|
|
3300
3347
|
"""
|
|
3301
3348
|
ClusterSummary
|
|
@@ -3307,18 +3354,20 @@ class ClusterSummary(Base):
|
|
|
3307
3354
|
cluster_name: The name of the SageMaker HyperPod cluster.
|
|
3308
3355
|
creation_time: The time when the SageMaker HyperPod cluster is created.
|
|
3309
3356
|
cluster_status: The status of the SageMaker HyperPod cluster.
|
|
3357
|
+
training_plan_arns: A list of Amazon Resource Names (ARNs) of the training plans associated with this cluster. For more information about how to reserve GPU capacity for your SageMaker HyperPod clusters using Amazon SageMaker Training Plan, see CreateTrainingPlan .
|
|
3310
3358
|
"""
|
|
3311
3359
|
|
|
3312
3360
|
cluster_arn: str
|
|
3313
3361
|
cluster_name: Union[str, object]
|
|
3314
3362
|
creation_time: datetime.datetime
|
|
3315
3363
|
cluster_status: str
|
|
3364
|
+
training_plan_arns: Optional[List[str]] = Unassigned()
|
|
3316
3365
|
|
|
3317
3366
|
|
|
3318
3367
|
class CustomImage(Base):
|
|
3319
3368
|
"""
|
|
3320
3369
|
CustomImage
|
|
3321
|
-
A custom SageMaker image. For more information, see Bring your own SageMaker image.
|
|
3370
|
+
A custom SageMaker AI image. For more information, see Bring your own SageMaker AI image.
|
|
3322
3371
|
|
|
3323
3372
|
Attributes
|
|
3324
3373
|
----------------------
|
|
@@ -3356,7 +3405,7 @@ class CodeEditorAppSettings(Base):
|
|
|
3356
3405
|
class CodeRepository(Base):
|
|
3357
3406
|
"""
|
|
3358
3407
|
CodeRepository
|
|
3359
|
-
A Git repository that SageMaker automatically displays to users for cloning in the JupyterServer application.
|
|
3408
|
+
A Git repository that SageMaker AI automatically displays to users for cloning in the JupyterServer application.
|
|
3360
3409
|
|
|
3361
3410
|
Attributes
|
|
3362
3411
|
----------------------
|
|
@@ -3510,6 +3559,101 @@ class CompilationJobSummary(Base):
|
|
|
3510
3559
|
last_modified_time: Optional[datetime.datetime] = Unassigned()
|
|
3511
3560
|
|
|
3512
3561
|
|
|
3562
|
+
class ComputeQuotaResourceConfig(Base):
|
|
3563
|
+
"""
|
|
3564
|
+
ComputeQuotaResourceConfig
|
|
3565
|
+
Configuration of the resources used for the compute allocation definition.
|
|
3566
|
+
|
|
3567
|
+
Attributes
|
|
3568
|
+
----------------------
|
|
3569
|
+
instance_type: The instance type of the instance group for the cluster.
|
|
3570
|
+
count: The number of instances to add to the instance group of a SageMaker HyperPod cluster.
|
|
3571
|
+
"""
|
|
3572
|
+
|
|
3573
|
+
instance_type: str
|
|
3574
|
+
count: int
|
|
3575
|
+
|
|
3576
|
+
|
|
3577
|
+
class ResourceSharingConfig(Base):
|
|
3578
|
+
"""
|
|
3579
|
+
ResourceSharingConfig
|
|
3580
|
+
Resource sharing configuration.
|
|
3581
|
+
|
|
3582
|
+
Attributes
|
|
3583
|
+
----------------------
|
|
3584
|
+
strategy: The strategy of how idle compute is shared within the cluster. The following are the options of strategies. DontLend: entities do not lend idle compute. Lend: entities can lend idle compute to entities that can borrow. LendandBorrow: entities can lend idle compute and borrow idle compute from other entities. Default is LendandBorrow.
|
|
3585
|
+
borrow_limit: The limit on how much idle compute can be borrowed.The values can be 1 - 500 percent of idle compute that the team is allowed to borrow. Default is 50.
|
|
3586
|
+
"""
|
|
3587
|
+
|
|
3588
|
+
strategy: str
|
|
3589
|
+
borrow_limit: Optional[int] = Unassigned()
|
|
3590
|
+
|
|
3591
|
+
|
|
3592
|
+
class ComputeQuotaConfig(Base):
|
|
3593
|
+
"""
|
|
3594
|
+
ComputeQuotaConfig
|
|
3595
|
+
Configuration of the compute allocation definition for an entity. This includes the resource sharing option and the setting to preempt low priority tasks.
|
|
3596
|
+
|
|
3597
|
+
Attributes
|
|
3598
|
+
----------------------
|
|
3599
|
+
compute_quota_resources: Allocate compute resources by instance types.
|
|
3600
|
+
resource_sharing_config: Resource sharing configuration. This defines how an entity can lend and borrow idle compute with other entities within the cluster.
|
|
3601
|
+
preempt_team_tasks: Allows workloads from within an entity to preempt same-team workloads. When set to LowerPriority, the entity's lower priority tasks are preempted by their own higher priority tasks. Default is LowerPriority.
|
|
3602
|
+
"""
|
|
3603
|
+
|
|
3604
|
+
compute_quota_resources: Optional[List[ComputeQuotaResourceConfig]] = Unassigned()
|
|
3605
|
+
resource_sharing_config: Optional[ResourceSharingConfig] = Unassigned()
|
|
3606
|
+
preempt_team_tasks: Optional[str] = Unassigned()
|
|
3607
|
+
|
|
3608
|
+
|
|
3609
|
+
class ComputeQuotaTarget(Base):
|
|
3610
|
+
"""
|
|
3611
|
+
ComputeQuotaTarget
|
|
3612
|
+
The target entity to allocate compute resources to.
|
|
3613
|
+
|
|
3614
|
+
Attributes
|
|
3615
|
+
----------------------
|
|
3616
|
+
team_name: Name of the team to allocate compute resources to.
|
|
3617
|
+
fair_share_weight: Assigned entity fair-share weight. Idle compute will be shared across entities based on these assigned weights. This weight is only used when FairShare is enabled. A weight of 0 is the lowest priority and 100 is the highest. Weight 0 is the default.
|
|
3618
|
+
"""
|
|
3619
|
+
|
|
3620
|
+
team_name: str
|
|
3621
|
+
fair_share_weight: Optional[int] = Unassigned()
|
|
3622
|
+
|
|
3623
|
+
|
|
3624
|
+
class ComputeQuotaSummary(Base):
|
|
3625
|
+
"""
|
|
3626
|
+
ComputeQuotaSummary
|
|
3627
|
+
Summary of the compute allocation definition.
|
|
3628
|
+
|
|
3629
|
+
Attributes
|
|
3630
|
+
----------------------
|
|
3631
|
+
compute_quota_arn: ARN of the compute allocation definition.
|
|
3632
|
+
compute_quota_id: ID of the compute allocation definition.
|
|
3633
|
+
name: Name of the compute allocation definition.
|
|
3634
|
+
compute_quota_version: Version of the compute allocation definition.
|
|
3635
|
+
status: Status of the compute allocation definition.
|
|
3636
|
+
cluster_arn: ARN of the cluster.
|
|
3637
|
+
compute_quota_config: Configuration of the compute allocation definition. This includes the resource sharing option, and the setting to preempt low priority tasks.
|
|
3638
|
+
compute_quota_target: The target entity to allocate compute resources to.
|
|
3639
|
+
activation_state: The state of the compute allocation being described. Use to enable or disable compute allocation. Default is Enabled.
|
|
3640
|
+
creation_time: Creation time of the compute allocation definition.
|
|
3641
|
+
last_modified_time: Last modified time of the compute allocation definition.
|
|
3642
|
+
"""
|
|
3643
|
+
|
|
3644
|
+
compute_quota_arn: str
|
|
3645
|
+
compute_quota_id: str
|
|
3646
|
+
name: str
|
|
3647
|
+
status: str
|
|
3648
|
+
compute_quota_target: ComputeQuotaTarget
|
|
3649
|
+
creation_time: datetime.datetime
|
|
3650
|
+
compute_quota_version: Optional[int] = Unassigned()
|
|
3651
|
+
cluster_arn: Optional[str] = Unassigned()
|
|
3652
|
+
compute_quota_config: Optional[ComputeQuotaConfig] = Unassigned()
|
|
3653
|
+
activation_state: Optional[str] = Unassigned()
|
|
3654
|
+
last_modified_time: Optional[datetime.datetime] = Unassigned()
|
|
3655
|
+
|
|
3656
|
+
|
|
3513
3657
|
class ConditionStepMetadata(Base):
|
|
3514
3658
|
"""
|
|
3515
3659
|
ConditionStepMetadata
|
|
@@ -3840,6 +3984,36 @@ class ModelDeployConfig(Base):
|
|
|
3840
3984
|
endpoint_name: Optional[Union[str, object]] = Unassigned()
|
|
3841
3985
|
|
|
3842
3986
|
|
|
3987
|
+
class PriorityClass(Base):
|
|
3988
|
+
"""
|
|
3989
|
+
PriorityClass
|
|
3990
|
+
Priority class configuration. When included in PriorityClasses, these class configurations define how tasks are queued.
|
|
3991
|
+
|
|
3992
|
+
Attributes
|
|
3993
|
+
----------------------
|
|
3994
|
+
name: Name of the priority class.
|
|
3995
|
+
weight: Weight of the priority class. The value is within a range from 0 to 100, where 0 is the default. A weight of 0 is the lowest priority and 100 is the highest. Weight 0 is the default.
|
|
3996
|
+
"""
|
|
3997
|
+
|
|
3998
|
+
name: str
|
|
3999
|
+
weight: int
|
|
4000
|
+
|
|
4001
|
+
|
|
4002
|
+
class SchedulerConfig(Base):
|
|
4003
|
+
"""
|
|
4004
|
+
SchedulerConfig
|
|
4005
|
+
Cluster policy configuration. This policy is used for task prioritization and fair-share allocation. This helps prioritize critical workloads and distributes idle compute across entities.
|
|
4006
|
+
|
|
4007
|
+
Attributes
|
|
4008
|
+
----------------------
|
|
4009
|
+
priority_classes: List of the priority classes, PriorityClass, of the cluster policy. When specified, these class configurations define how tasks are queued.
|
|
4010
|
+
fair_share: When enabled, entities borrow idle compute based on their assigned FairShareWeight. When disabled, entities borrow idle compute based on a first-come first-serve basis. Default is Enabled.
|
|
4011
|
+
"""
|
|
4012
|
+
|
|
4013
|
+
priority_classes: Optional[List[PriorityClass]] = Unassigned()
|
|
4014
|
+
fair_share: Optional[str] = Unassigned()
|
|
4015
|
+
|
|
4016
|
+
|
|
3843
4017
|
class InputConfig(Base):
|
|
3844
4018
|
"""
|
|
3845
4019
|
InputConfig
|
|
@@ -3883,11 +4057,11 @@ class OutputConfig(Base):
|
|
|
3883
4057
|
|
|
3884
4058
|
Attributes
|
|
3885
4059
|
----------------------
|
|
3886
|
-
s3_output_location: Identifies the S3 bucket where you want Amazon SageMaker to store the model artifacts. For example, s3://bucket-name/key-name-prefix.
|
|
4060
|
+
s3_output_location: Identifies the S3 bucket where you want Amazon SageMaker AI to store the model artifacts. For example, s3://bucket-name/key-name-prefix.
|
|
3887
4061
|
target_device: Identifies the target device or the machine learning instance that you want to run your model on after the compilation has completed. Alternatively, you can specify OS, architecture, and accelerator using TargetPlatform fields. It can be used instead of TargetPlatform. Currently ml_trn1 is available only in US East (N. Virginia) Region, and ml_inf2 is available only in US East (Ohio) Region.
|
|
3888
4062
|
target_platform: Contains information about a target platform that you want your model to run on, such as OS, architecture, and accelerators. It is an alternative of TargetDevice. The following examples show how to configure the TargetPlatform and CompilerOptions JSON strings for popular target platforms: Raspberry Pi 3 Model B+ "TargetPlatform": {"Os": "LINUX", "Arch": "ARM_EABIHF"}, "CompilerOptions": {'mattr': ['+neon']} Jetson TX2 "TargetPlatform": {"Os": "LINUX", "Arch": "ARM64", "Accelerator": "NVIDIA"}, "CompilerOptions": {'gpu-code': 'sm_62', 'trt-ver': '6.0.1', 'cuda-ver': '10.0'} EC2 m5.2xlarge instance OS "TargetPlatform": {"Os": "LINUX", "Arch": "X86_64", "Accelerator": "NVIDIA"}, "CompilerOptions": {'mcpu': 'skylake-avx512'} RK3399 "TargetPlatform": {"Os": "LINUX", "Arch": "ARM64", "Accelerator": "MALI"} ARMv7 phone (CPU) "TargetPlatform": {"Os": "ANDROID", "Arch": "ARM_EABI"}, "CompilerOptions": {'ANDROID_PLATFORM': 25, 'mattr': ['+neon']} ARMv8 phone (CPU) "TargetPlatform": {"Os": "ANDROID", "Arch": "ARM64"}, "CompilerOptions": {'ANDROID_PLATFORM': 29}
|
|
3889
4063
|
compiler_options: Specifies additional parameters for compiler options in JSON format. The compiler options are TargetPlatform specific. It is required for NVIDIA accelerators and highly recommended for CPU compilations. For any other cases, it is optional to specify CompilerOptions. DTYPE: Specifies the data type for the input. When compiling for ml_* (except for ml_inf) instances using PyTorch framework, provide the data type (dtype) of the model's input. "float32" is used if "DTYPE" is not specified. Options for data type are: float32: Use either "float" or "float32". int64: Use either "int64" or "long". For example, {"dtype" : "float32"}. CPU: Compilation for CPU supports the following compiler options. mcpu: CPU micro-architecture. For example, {'mcpu': 'skylake-avx512'} mattr: CPU flags. For example, {'mattr': ['+neon', '+vfpv4']} ARM: Details of ARM CPU compilations. NEON: NEON is an implementation of the Advanced SIMD extension used in ARMv7 processors. For example, add {'mattr': ['+neon']} to the compiler options if compiling for ARM 32-bit platform with the NEON support. NVIDIA: Compilation for NVIDIA GPU supports the following compiler options. gpu_code: Specifies the targeted architecture. trt-ver: Specifies the TensorRT versions in x.y.z. format. cuda-ver: Specifies the CUDA version in x.y format. For example, {'gpu-code': 'sm_72', 'trt-ver': '6.0.1', 'cuda-ver': '10.1'} ANDROID: Compilation for the Android OS supports the following compiler options: ANDROID_PLATFORM: Specifies the Android API levels. Available levels range from 21 to 29. For example, {'ANDROID_PLATFORM': 28}. mattr: Add {'mattr': ['+neon']} to compiler options if compiling for ARM 32-bit platform with NEON support. INFERENTIA: Compilation for target ml_inf1 uses compiler options passed in as a JSON string. For example, "CompilerOptions": "\"--verbose 1 --num-neuroncores 2 -O2\"". For information about supported compiler options, see Neuron Compiler CLI Reference Guide. CoreML: Compilation for the CoreML OutputConfig TargetDevice supports the following compiler options: class_labels: Specifies the classification labels file name inside input tar.gz file. For example, {"class_labels": "imagenet_labels_1000.txt"}. Labels inside the txt file should be separated by newlines.
|
|
3890
|
-
kms_key_id: The Amazon Web Services Key Management Service key (Amazon Web Services KMS) that Amazon SageMaker uses to encrypt your output models with Amazon S3 server-side encryption after compilation job. If you don't provide a KMS key ID, Amazon SageMaker uses the default KMS key for Amazon S3 for your role's account. For more information, see KMS-Managed Encryption Keys in the Amazon Simple Storage Service Developer Guide. The KmsKeyId can be any of the following formats: Key ID: 1234abcd-12ab-34cd-56ef-1234567890ab Key ARN: arn:aws:kms:us-west-2:111122223333:key/1234abcd-12ab-34cd-56ef-1234567890ab Alias name: alias/ExampleAlias Alias name ARN: arn:aws:kms:us-west-2:111122223333:alias/ExampleAlias
|
|
4064
|
+
kms_key_id: The Amazon Web Services Key Management Service key (Amazon Web Services KMS) that Amazon SageMaker AI uses to encrypt your output models with Amazon S3 server-side encryption after compilation job. If you don't provide a KMS key ID, Amazon SageMaker AI uses the default KMS key for Amazon S3 for your role's account. For more information, see KMS-Managed Encryption Keys in the Amazon Simple Storage Service Developer Guide. The KmsKeyId can be any of the following formats: Key ID: 1234abcd-12ab-34cd-56ef-1234567890ab Key ARN: arn:aws:kms:us-west-2:111122223333:key/1234abcd-12ab-34cd-56ef-1234567890ab Alias name: alias/ExampleAlias Alias name ARN: arn:aws:kms:us-west-2:111122223333:alias/ExampleAlias
|
|
3891
4065
|
"""
|
|
3892
4066
|
|
|
3893
4067
|
s3_output_location: str
|
|
@@ -3900,7 +4074,7 @@ class OutputConfig(Base):
|
|
|
3900
4074
|
class NeoVpcConfig(Base):
|
|
3901
4075
|
"""
|
|
3902
4076
|
NeoVpcConfig
|
|
3903
|
-
The VpcConfig configuration object that specifies the VPC that you want the compilation jobs to connect to. For more information on controlling access to your Amazon S3 buckets used for compilation job, see Give Amazon SageMaker Compilation Jobs Access to Resources in Your Amazon VPC.
|
|
4077
|
+
The VpcConfig configuration object that specifies the VPC that you want the compilation jobs to connect to. For more information on controlling access to your Amazon S3 buckets used for compilation job, see Give Amazon SageMaker AI Compilation Jobs Access to Resources in Your Amazon VPC.
|
|
3904
4078
|
|
|
3905
4079
|
Attributes
|
|
3906
4080
|
----------------------
|
|
@@ -4033,8 +4207,8 @@ class MonitoringS3Output(Base):
|
|
|
4033
4207
|
|
|
4034
4208
|
Attributes
|
|
4035
4209
|
----------------------
|
|
4036
|
-
s3_uri: A URI that identifies the Amazon S3 storage location where Amazon SageMaker saves the results of a monitoring job.
|
|
4037
|
-
local_path: The local path to the Amazon S3 storage location where Amazon SageMaker saves the results of a monitoring job. LocalPath is an absolute path for the output data.
|
|
4210
|
+
s3_uri: A URI that identifies the Amazon S3 storage location where Amazon SageMaker AI saves the results of a monitoring job.
|
|
4211
|
+
local_path: The local path to the Amazon S3 storage location where Amazon SageMaker AI saves the results of a monitoring job. LocalPath is an absolute path for the output data.
|
|
4038
4212
|
s3_upload_mode: Whether to upload the results of the monitoring job continuously or after the job completes.
|
|
4039
4213
|
"""
|
|
4040
4214
|
|
|
@@ -4064,7 +4238,7 @@ class MonitoringOutputConfig(Base):
|
|
|
4064
4238
|
Attributes
|
|
4065
4239
|
----------------------
|
|
4066
4240
|
monitoring_outputs: Monitoring outputs for monitoring jobs. This is where the output of the periodic monitoring jobs is uploaded.
|
|
4067
|
-
kms_key_id: The Key Management Service (KMS) key that Amazon SageMaker uses to encrypt the model artifacts at rest using Amazon S3 server-side encryption.
|
|
4241
|
+
kms_key_id: The Key Management Service (KMS) key that Amazon SageMaker AI uses to encrypt the model artifacts at rest using Amazon S3 server-side encryption.
|
|
4068
4242
|
"""
|
|
4069
4243
|
|
|
4070
4244
|
monitoring_outputs: List[MonitoringOutput]
|
|
@@ -4081,7 +4255,7 @@ class MonitoringClusterConfig(Base):
|
|
|
4081
4255
|
instance_count: The number of ML compute instances to use in the model monitoring job. For distributed processing jobs, specify a value greater than 1. The default value is 1.
|
|
4082
4256
|
instance_type: The ML compute instance type for the processing job.
|
|
4083
4257
|
volume_size_in_gb: The size of the ML storage volume, in gigabytes, that you want to provision. You must specify sufficient ML storage for your scenario.
|
|
4084
|
-
volume_kms_key_id: The Key Management Service (KMS) key that Amazon SageMaker uses to encrypt data on the storage volume attached to the ML compute instance(s) that run the model monitoring job.
|
|
4258
|
+
volume_kms_key_id: The Key Management Service (KMS) key that Amazon SageMaker AI uses to encrypt data on the storage volume attached to the ML compute instance(s) that run the model monitoring job.
|
|
4085
4259
|
"""
|
|
4086
4260
|
|
|
4087
4261
|
instance_count: int
|
|
@@ -4155,7 +4329,7 @@ class EdgeOutputConfig(Base):
|
|
|
4155
4329
|
class SharingSettings(Base):
|
|
4156
4330
|
"""
|
|
4157
4331
|
SharingSettings
|
|
4158
|
-
Specifies options for sharing Amazon SageMaker Studio notebooks. These settings are specified as part of DefaultUserSettings when the CreateDomain API is called, and as part of UserSettings when the CreateUserProfile API is called. When SharingSettings is not specified, notebook sharing isn't allowed.
|
|
4332
|
+
Specifies options for sharing Amazon SageMaker AI Studio notebooks. These settings are specified as part of DefaultUserSettings when the CreateDomain API is called, and as part of UserSettings when the CreateUserProfile API is called. When SharingSettings is not specified, notebook sharing isn't allowed.
|
|
4159
4333
|
|
|
4160
4334
|
Attributes
|
|
4161
4335
|
----------------------
|
|
@@ -4176,9 +4350,9 @@ class JupyterServerAppSettings(Base):
|
|
|
4176
4350
|
|
|
4177
4351
|
Attributes
|
|
4178
4352
|
----------------------
|
|
4179
|
-
default_resource_spec: The default instance type and the Amazon Resource Name (ARN) of the default SageMaker image used by the JupyterServer app. If you use the LifecycleConfigArns parameter, then this parameter is also required.
|
|
4353
|
+
default_resource_spec: The default instance type and the Amazon Resource Name (ARN) of the default SageMaker AI image used by the JupyterServer app. If you use the LifecycleConfigArns parameter, then this parameter is also required.
|
|
4180
4354
|
lifecycle_config_arns: The Amazon Resource Name (ARN) of the Lifecycle Configurations attached to the JupyterServerApp. If you use this parameter, the DefaultResourceSpec parameter is also required. To remove a Lifecycle Config, you must set LifecycleConfigArns to an empty list.
|
|
4181
|
-
code_repositories: A list of Git repositories that SageMaker automatically displays to users for cloning in the JupyterServer application.
|
|
4355
|
+
code_repositories: A list of Git repositories that SageMaker AI automatically displays to users for cloning in the JupyterServer application.
|
|
4182
4356
|
"""
|
|
4183
4357
|
|
|
4184
4358
|
default_resource_spec: Optional[ResourceSpec] = Unassigned()
|
|
@@ -4193,8 +4367,8 @@ class KernelGatewayAppSettings(Base):
|
|
|
4193
4367
|
|
|
4194
4368
|
Attributes
|
|
4195
4369
|
----------------------
|
|
4196
|
-
default_resource_spec: The default instance type and the Amazon Resource Name (ARN) of the default SageMaker image used by the KernelGateway app. The Amazon SageMaker Studio UI does not use the default instance type value set here. The default instance type set here is used when Apps are created using the CLI or CloudFormation and the instance type parameter value is not passed.
|
|
4197
|
-
custom_images: A list of custom SageMaker images that are configured to run as a KernelGateway app.
|
|
4370
|
+
default_resource_spec: The default instance type and the Amazon Resource Name (ARN) of the default SageMaker AI image used by the KernelGateway app. The Amazon SageMaker AI Studio UI does not use the default instance type value set here. The default instance type set here is used when Apps are created using the CLI or CloudFormation and the instance type parameter value is not passed.
|
|
4371
|
+
custom_images: A list of custom SageMaker AI images that are configured to run as a KernelGateway app.
|
|
4198
4372
|
lifecycle_config_arns: The Amazon Resource Name (ARN) of the Lifecycle Configurations attached to the the user profile or domain. To remove a Lifecycle Config, you must set LifecycleConfigArns to an empty list.
|
|
4199
4373
|
"""
|
|
4200
4374
|
|
|
@@ -4210,7 +4384,7 @@ class TensorBoardAppSettings(Base):
|
|
|
4210
4384
|
|
|
4211
4385
|
Attributes
|
|
4212
4386
|
----------------------
|
|
4213
|
-
default_resource_spec: The default instance type and the Amazon Resource Name (ARN) of the SageMaker image created on the instance.
|
|
4387
|
+
default_resource_spec: The default instance type and the Amazon Resource Name (ARN) of the SageMaker AI image created on the instance.
|
|
4214
4388
|
"""
|
|
4215
4389
|
|
|
4216
4390
|
default_resource_spec: Optional[ResourceSpec] = Unassigned()
|
|
@@ -4239,7 +4413,7 @@ class RSessionAppSettings(Base):
|
|
|
4239
4413
|
Attributes
|
|
4240
4414
|
----------------------
|
|
4241
4415
|
default_resource_spec
|
|
4242
|
-
custom_images: A list of custom SageMaker images that are configured to run as a RSession app.
|
|
4416
|
+
custom_images: A list of custom SageMaker AI images that are configured to run as a RSession app.
|
|
4243
4417
|
"""
|
|
4244
4418
|
|
|
4245
4419
|
default_resource_spec: Optional[ResourceSpec] = Unassigned()
|
|
@@ -4332,11 +4506,26 @@ class CustomPosixUserConfig(Base):
|
|
|
4332
4506
|
class EFSFileSystemConfig(Base):
|
|
4333
4507
|
"""
|
|
4334
4508
|
EFSFileSystemConfig
|
|
4335
|
-
The settings for assigning a custom Amazon EFS file system to a user profile or space for an Amazon SageMaker Domain.
|
|
4509
|
+
The settings for assigning a custom Amazon EFS file system to a user profile or space for an Amazon SageMaker AI Domain.
|
|
4336
4510
|
|
|
4337
4511
|
Attributes
|
|
4338
4512
|
----------------------
|
|
4339
4513
|
file_system_id: The ID of your Amazon EFS file system.
|
|
4514
|
+
file_system_path: The path to the file system directory that is accessible in Amazon SageMaker AI Studio. Permitted users can access only this directory and below.
|
|
4515
|
+
"""
|
|
4516
|
+
|
|
4517
|
+
file_system_id: str
|
|
4518
|
+
file_system_path: Optional[str] = Unassigned()
|
|
4519
|
+
|
|
4520
|
+
|
|
4521
|
+
class FSxLustreFileSystemConfig(Base):
|
|
4522
|
+
"""
|
|
4523
|
+
FSxLustreFileSystemConfig
|
|
4524
|
+
The settings for assigning a custom Amazon FSx for Lustre file system to a user profile or space for an Amazon SageMaker Domain.
|
|
4525
|
+
|
|
4526
|
+
Attributes
|
|
4527
|
+
----------------------
|
|
4528
|
+
file_system_id: The globally unique, 17-digit, ID of the file system, assigned by Amazon FSx for Lustre.
|
|
4340
4529
|
file_system_path: The path to the file system directory that is accessible in Amazon SageMaker Studio. Permitted users can access only this directory and below.
|
|
4341
4530
|
"""
|
|
4342
4531
|
|
|
@@ -4347,14 +4536,16 @@ class EFSFileSystemConfig(Base):
|
|
|
4347
4536
|
class CustomFileSystemConfig(Base):
|
|
4348
4537
|
"""
|
|
4349
4538
|
CustomFileSystemConfig
|
|
4350
|
-
The settings for assigning a custom file system to a user profile or space for an Amazon SageMaker Domain. Permitted users can access this file system in Amazon SageMaker Studio.
|
|
4539
|
+
The settings for assigning a custom file system to a user profile or space for an Amazon SageMaker AI Domain. Permitted users can access this file system in Amazon SageMaker AI Studio.
|
|
4351
4540
|
|
|
4352
4541
|
Attributes
|
|
4353
4542
|
----------------------
|
|
4354
4543
|
efs_file_system_config: The settings for a custom Amazon EFS file system.
|
|
4544
|
+
f_sx_lustre_file_system_config: The settings for a custom Amazon FSx for Lustre file system.
|
|
4355
4545
|
"""
|
|
4356
4546
|
|
|
4357
4547
|
efs_file_system_config: Optional[EFSFileSystemConfig] = Unassigned()
|
|
4548
|
+
f_sx_lustre_file_system_config: Optional[FSxLustreFileSystemConfig] = Unassigned()
|
|
4358
4549
|
|
|
4359
4550
|
|
|
4360
4551
|
class HiddenSageMakerImage(Base):
|
|
@@ -4399,8 +4590,8 @@ class UserSettings(Base):
|
|
|
4399
4590
|
Attributes
|
|
4400
4591
|
----------------------
|
|
4401
4592
|
execution_role: The execution role for the user. SageMaker applies this setting only to private spaces that the user creates in the domain. SageMaker doesn't apply this setting to shared spaces.
|
|
4402
|
-
security_groups: The security groups for the Amazon Virtual Private Cloud (VPC) that the domain uses for communication. Optional when the CreateDomain.AppNetworkAccessType parameter is set to PublicInternetOnly. Required when the CreateDomain.AppNetworkAccessType parameter is set to VpcOnly, unless specified as part of the DefaultUserSettings for the domain. Amazon SageMaker adds a security group to allow NFS traffic from Amazon SageMaker Studio. Therefore, the number of security groups that you can specify is one less than the maximum number shown. SageMaker applies these settings only to private spaces that the user creates in the domain. SageMaker doesn't apply these settings to shared spaces.
|
|
4403
|
-
sharing_settings: Specifies options for sharing Amazon SageMaker Studio notebooks.
|
|
4593
|
+
security_groups: The security groups for the Amazon Virtual Private Cloud (VPC) that the domain uses for communication. Optional when the CreateDomain.AppNetworkAccessType parameter is set to PublicInternetOnly. Required when the CreateDomain.AppNetworkAccessType parameter is set to VpcOnly, unless specified as part of the DefaultUserSettings for the domain. Amazon SageMaker AI adds a security group to allow NFS traffic from Amazon SageMaker AI Studio. Therefore, the number of security groups that you can specify is one less than the maximum number shown. SageMaker applies these settings only to private spaces that the user creates in the domain. SageMaker doesn't apply these settings to shared spaces.
|
|
4594
|
+
sharing_settings: Specifies options for sharing Amazon SageMaker AI Studio notebooks.
|
|
4404
4595
|
jupyter_server_app_settings: The Jupyter server's app settings.
|
|
4405
4596
|
kernel_gateway_app_settings: The kernel gateway app settings.
|
|
4406
4597
|
tensor_board_app_settings: The TensorBoard app settings.
|
|
@@ -4413,7 +4604,7 @@ class UserSettings(Base):
|
|
|
4413
4604
|
default_landing_uri: The default experience that the user is directed to when accessing the domain. The supported values are: studio::: Indicates that Studio is the default experience. This value can only be passed if StudioWebPortal is set to ENABLED. app:JupyterServer:: Indicates that Studio Classic is the default experience.
|
|
4414
4605
|
studio_web_portal: Whether the user can access Studio. If this value is set to DISABLED, the user cannot access Studio, even if that is the default experience for the domain.
|
|
4415
4606
|
custom_posix_user_config: Details about the POSIX identity that is used for file system operations. SageMaker applies these settings only to private spaces that the user creates in the domain. SageMaker doesn't apply these settings to shared spaces.
|
|
4416
|
-
custom_file_system_configs: The settings for assigning a custom file system to a user profile. Permitted users can access this file system in Amazon SageMaker Studio. SageMaker applies these settings only to private spaces that the user creates in the domain. SageMaker doesn't apply these settings to shared spaces.
|
|
4607
|
+
custom_file_system_configs: The settings for assigning a custom file system to a user profile. Permitted users can access this file system in Amazon SageMaker AI Studio. SageMaker applies these settings only to private spaces that the user creates in the domain. SageMaker doesn't apply these settings to shared spaces.
|
|
4417
4608
|
studio_web_portal_settings: Studio settings. If these settings are applied on a user level, they take priority over the settings applied on a domain level.
|
|
4418
4609
|
auto_mount_home_efs: Indicates whether auto-mounting of an EFS volume is supported for the user profile. The DefaultAsDomain value is only supported for user profiles. Do not use the DefaultAsDomain value when setting this parameter for a domain. SageMaker applies this setting only to private spaces that the user creates in the domain. SageMaker doesn't apply this setting to shared spaces.
|
|
4419
4610
|
"""
|
|
@@ -4481,7 +4672,7 @@ class DomainSettings(Base):
|
|
|
4481
4672
|
----------------------
|
|
4482
4673
|
security_group_ids: The security groups for the Amazon Virtual Private Cloud that the Domain uses for communication between Domain-level apps and user apps.
|
|
4483
4674
|
r_studio_server_pro_domain_settings: A collection of settings that configure the RStudioServerPro Domain-level app.
|
|
4484
|
-
execution_role_identity_config: The configuration for attaching a SageMaker user profile name to the execution role as a sts:SourceIdentity key.
|
|
4675
|
+
execution_role_identity_config: The configuration for attaching a SageMaker AI user profile name to the execution role as a sts:SourceIdentity key.
|
|
4485
4676
|
docker_settings: A collection of settings that configure the domain's Docker interaction.
|
|
4486
4677
|
amazon_q_settings: A collection of settings that configure the Amazon Q experience within the domain. The AuthMode that you use to create the domain must be SSO.
|
|
4487
4678
|
"""
|
|
@@ -4507,7 +4698,7 @@ class DefaultSpaceSettings(Base):
|
|
|
4507
4698
|
jupyter_lab_app_settings
|
|
4508
4699
|
space_storage_settings
|
|
4509
4700
|
custom_posix_user_config
|
|
4510
|
-
custom_file_system_configs: The settings for assigning a custom file system to a domain. Permitted users can access this file system in Amazon SageMaker Studio.
|
|
4701
|
+
custom_file_system_configs: The settings for assigning a custom file system to a domain. Permitted users can access this file system in Amazon SageMaker AI Studio.
|
|
4511
4702
|
"""
|
|
4512
4703
|
|
|
4513
4704
|
execution_role: Optional[str] = Unassigned()
|
|
@@ -4690,16 +4881,16 @@ class ProductionVariant(Base):
|
|
|
4690
4881
|
class DataCaptureConfig(Base):
|
|
4691
4882
|
"""
|
|
4692
4883
|
DataCaptureConfig
|
|
4693
|
-
Configuration to control how SageMaker captures inference data.
|
|
4884
|
+
Configuration to control how SageMaker AI captures inference data.
|
|
4694
4885
|
|
|
4695
4886
|
Attributes
|
|
4696
4887
|
----------------------
|
|
4697
4888
|
enable_capture: Whether data capture should be enabled or disabled (defaults to enabled).
|
|
4698
|
-
initial_sampling_percentage: The percentage of requests SageMaker will capture. A lower value is recommended for Endpoints with high traffic.
|
|
4889
|
+
initial_sampling_percentage: The percentage of requests SageMaker AI will capture. A lower value is recommended for Endpoints with high traffic.
|
|
4699
4890
|
destination_s3_uri: The Amazon S3 location used to capture the data.
|
|
4700
|
-
kms_key_id: The Amazon Resource Name (ARN) of an Key Management Service key that SageMaker uses to encrypt the captured data at rest using Amazon S3 server-side encryption. The KmsKeyId can be any of the following formats: Key ID: 1234abcd-12ab-34cd-56ef-1234567890ab Key ARN: arn:aws:kms:us-west-2:111122223333:key/1234abcd-12ab-34cd-56ef-1234567890ab Alias name: alias/ExampleAlias Alias name ARN: arn:aws:kms:us-west-2:111122223333:alias/ExampleAlias
|
|
4891
|
+
kms_key_id: The Amazon Resource Name (ARN) of an Key Management Service key that SageMaker AI uses to encrypt the captured data at rest using Amazon S3 server-side encryption. The KmsKeyId can be any of the following formats: Key ID: 1234abcd-12ab-34cd-56ef-1234567890ab Key ARN: arn:aws:kms:us-west-2:111122223333:key/1234abcd-12ab-34cd-56ef-1234567890ab Alias name: alias/ExampleAlias Alias name ARN: arn:aws:kms:us-west-2:111122223333:alias/ExampleAlias
|
|
4701
4892
|
capture_options: Specifies data Model Monitor will capture. You can configure whether to collect only input, only output, or both
|
|
4702
|
-
capture_content_type_header: Configuration specifying how to treat different headers. If no headers are specified SageMaker will by default base64 encode when capturing the data.
|
|
4893
|
+
capture_content_type_header: Configuration specifying how to treat different headers. If no headers are specified SageMaker AI will by default base64 encode when capturing the data.
|
|
4703
4894
|
"""
|
|
4704
4895
|
|
|
4705
4896
|
initial_sampling_percentage: int
|
|
@@ -5353,7 +5544,7 @@ class InferenceComponentSpecification(Base):
|
|
|
5353
5544
|
|
|
5354
5545
|
Attributes
|
|
5355
5546
|
----------------------
|
|
5356
|
-
model_name: The name of an existing SageMaker model object in your account that you want to deploy with the inference component.
|
|
5547
|
+
model_name: The name of an existing SageMaker AI model object in your account that you want to deploy with the inference component.
|
|
5357
5548
|
container: Defines a container that provides the runtime environment for a model that you deploy with an inference component.
|
|
5358
5549
|
startup_parameters: Settings that take effect while the model container starts up.
|
|
5359
5550
|
compute_resource_requirements: The compute resources allocated to run the model, plus any adapter models, that you assign to the inference component. Omit this parameter if your request is meant to create an adapter inference component. An adapter inference component is loaded by a base inference component, and it uses the compute resources of the base inference component.
|
|
@@ -6124,12 +6315,14 @@ class SourceAlgorithm(Base):
|
|
|
6124
6315
|
----------------------
|
|
6125
6316
|
model_data_url: The Amazon S3 path where the model artifacts, which result from model training, are stored. This path must point to a single gzip compressed tar archive (.tar.gz suffix). The model artifacts must be in an S3 bucket that is in the same Amazon Web Services region as the algorithm.
|
|
6126
6317
|
model_data_source: Specifies the location of ML model data to deploy during endpoint creation.
|
|
6318
|
+
model_data_e_tag: The ETag associated with Model Data URL.
|
|
6127
6319
|
algorithm_name: The name of an algorithm that was used to create the model package. The algorithm must be either an algorithm resource in your SageMaker account or an algorithm in Amazon Web Services Marketplace that you are subscribed to.
|
|
6128
6320
|
"""
|
|
6129
6321
|
|
|
6130
6322
|
algorithm_name: Union[str, object]
|
|
6131
6323
|
model_data_url: Optional[str] = Unassigned()
|
|
6132
6324
|
model_data_source: Optional[ModelDataSource] = Unassigned()
|
|
6325
|
+
model_data_e_tag: Optional[str] = Unassigned()
|
|
6133
6326
|
|
|
6134
6327
|
|
|
6135
6328
|
class SourceAlgorithmSpecification(Base):
|
|
@@ -6414,7 +6607,7 @@ class ScheduleConfig(Base):
|
|
|
6414
6607
|
|
|
6415
6608
|
Attributes
|
|
6416
6609
|
----------------------
|
|
6417
|
-
schedule_expression: A cron expression that describes details about the monitoring schedule. The supported cron expressions are: If you want to set the job to start every hour, use the following: Hourly: cron(0 \* ? \* \* \*) If you want to start the job daily: cron(0 [00-23] ? \* \* \*) If you want to run the job one time, immediately, use the following keyword: NOW For example, the following are valid cron expressions: Daily at noon UTC: cron(0 12 ? \* \* \*) Daily at midnight UTC: cron(0 0 ? \* \* \*) To support running every 6, 12 hours, the following are also supported: cron(0 [00-23]/[01-24] ? \* \* \*) For example, the following are valid cron expressions: Every 12 hours, starting at 5pm UTC: cron(0 17/12 ? \* \* \*) Every two hours starting at midnight: cron(0 0/2 ? \* \* \*) Even though the cron expression is set to start at 5PM UTC, note that there could be a delay of 0-20 minutes from the actual requested time to run the execution. We recommend that if you would like a daily schedule, you do not provide this parameter. Amazon SageMaker will pick a time for running every day. You can also specify the keyword NOW to run the monitoring job immediately, one time, without recurring.
|
|
6610
|
+
schedule_expression: A cron expression that describes details about the monitoring schedule. The supported cron expressions are: If you want to set the job to start every hour, use the following: Hourly: cron(0 \* ? \* \* \*) If you want to start the job daily: cron(0 [00-23] ? \* \* \*) If you want to run the job one time, immediately, use the following keyword: NOW For example, the following are valid cron expressions: Daily at noon UTC: cron(0 12 ? \* \* \*) Daily at midnight UTC: cron(0 0 ? \* \* \*) To support running every 6, 12 hours, the following are also supported: cron(0 [00-23]/[01-24] ? \* \* \*) For example, the following are valid cron expressions: Every 12 hours, starting at 5pm UTC: cron(0 17/12 ? \* \* \*) Every two hours starting at midnight: cron(0 0/2 ? \* \* \*) Even though the cron expression is set to start at 5PM UTC, note that there could be a delay of 0-20 minutes from the actual requested time to run the execution. We recommend that if you would like a daily schedule, you do not provide this parameter. Amazon SageMaker AI will pick a time for running every day. You can also specify the keyword NOW to run the monitoring job immediately, one time, without recurring.
|
|
6418
6611
|
data_analysis_start_time: Sets the start time for a monitoring job window. Express this time as an offset to the times that you schedule your monitoring jobs to run. You schedule monitoring jobs with the ScheduleExpression parameter. Specify this offset in ISO 8601 duration format. For example, if you want to monitor the five hours of data in your dataset that precede the start of each monitoring job, you would specify: "-PT5H". The start time that you specify must not precede the end time that you specify by more than 24 hours. You specify the end time with the DataAnalysisEndTime parameter. If you set ScheduleExpression to NOW, this parameter is required.
|
|
6419
6612
|
data_analysis_end_time: Sets the end time for a monitoring job window. Express this time as an offset to the times that you schedule your monitoring jobs to run. You schedule monitoring jobs with the ScheduleExpression parameter. Specify this offset in ISO 8601 duration format. For example, if you want to end the window one hour before the start of each monitoring job, you would specify: "-PT1H". The end time that you specify must not follow the start time that you specify by more than 24 hours. You specify the start time with the DataAnalysisStartTime parameter. If you set ScheduleExpression to NOW, this parameter is required.
|
|
6420
6613
|
"""
|
|
@@ -6502,14 +6695,14 @@ class MonitoringJobDefinition(Base):
|
|
|
6502
6695
|
Attributes
|
|
6503
6696
|
----------------------
|
|
6504
6697
|
baseline_config: Baseline configuration used to validate that the data conforms to the specified constraints and statistics
|
|
6505
|
-
monitoring_inputs: The array of inputs for the monitoring job. Currently we support monitoring an Amazon SageMaker Endpoint.
|
|
6698
|
+
monitoring_inputs: The array of inputs for the monitoring job. Currently we support monitoring an Amazon SageMaker AI Endpoint.
|
|
6506
6699
|
monitoring_output_config: The array of outputs from the monitoring job to be uploaded to Amazon S3.
|
|
6507
6700
|
monitoring_resources: Identifies the resources, ML compute instances, and ML storage volumes to deploy for a monitoring job. In distributed processing, you specify more than one instance.
|
|
6508
6701
|
monitoring_app_specification: Configures the monitoring job to run a specified Docker container image.
|
|
6509
6702
|
stopping_condition: Specifies a time limit for how long the monitoring job is allowed to run.
|
|
6510
6703
|
environment: Sets the environment variables in the Docker container.
|
|
6511
6704
|
network_config: Specifies networking options for an monitoring job.
|
|
6512
|
-
role_arn: The Amazon Resource Name (ARN) of an IAM role that Amazon SageMaker can assume to perform tasks on your behalf.
|
|
6705
|
+
role_arn: The Amazon Resource Name (ARN) of an IAM role that Amazon SageMaker AI can assume to perform tasks on your behalf.
|
|
6513
6706
|
"""
|
|
6514
6707
|
|
|
6515
6708
|
monitoring_inputs: List[MonitoringInput]
|
|
@@ -6701,6 +6894,34 @@ class OptimizationVpcConfig(Base):
|
|
|
6701
6894
|
subnets: List[str]
|
|
6702
6895
|
|
|
6703
6896
|
|
|
6897
|
+
class PartnerAppMaintenanceConfig(Base):
|
|
6898
|
+
"""
|
|
6899
|
+
PartnerAppMaintenanceConfig
|
|
6900
|
+
Maintenance configuration settings for the SageMaker Partner AI App.
|
|
6901
|
+
|
|
6902
|
+
Attributes
|
|
6903
|
+
----------------------
|
|
6904
|
+
maintenance_window_start: The day and time of the week in Coordinated Universal Time (UTC) 24-hour standard time that weekly maintenance updates are scheduled. This value must take the following format: 3-letter-day:24-h-hour:minute. For example: TUE:03:30.
|
|
6905
|
+
"""
|
|
6906
|
+
|
|
6907
|
+
maintenance_window_start: Optional[str] = Unassigned()
|
|
6908
|
+
|
|
6909
|
+
|
|
6910
|
+
class PartnerAppConfig(Base):
|
|
6911
|
+
"""
|
|
6912
|
+
PartnerAppConfig
|
|
6913
|
+
Configuration settings for the SageMaker Partner AI App.
|
|
6914
|
+
|
|
6915
|
+
Attributes
|
|
6916
|
+
----------------------
|
|
6917
|
+
admin_users: The list of users that are given admin access to the SageMaker Partner AI App.
|
|
6918
|
+
arguments: This is a map of required inputs for a SageMaker Partner AI App. Based on the application type, the map is populated with a key and value pair that is specific to the user and application.
|
|
6919
|
+
"""
|
|
6920
|
+
|
|
6921
|
+
admin_users: Optional[List[str]] = Unassigned()
|
|
6922
|
+
arguments: Optional[Dict[str, str]] = Unassigned()
|
|
6923
|
+
|
|
6924
|
+
|
|
6704
6925
|
class PipelineDefinitionS3Location(Base):
|
|
6705
6926
|
"""
|
|
6706
6927
|
PipelineDefinitionS3Location
|
|
@@ -7072,7 +7293,7 @@ class SpaceStorageSettings(Base):
|
|
|
7072
7293
|
class EFSFileSystem(Base):
|
|
7073
7294
|
"""
|
|
7074
7295
|
EFSFileSystem
|
|
7075
|
-
A file system, created by you in Amazon EFS, that you assign to a user profile or space for an Amazon SageMaker Domain. Permitted users can access this file system in Amazon SageMaker Studio.
|
|
7296
|
+
A file system, created by you in Amazon EFS, that you assign to a user profile or space for an Amazon SageMaker AI Domain. Permitted users can access this file system in Amazon SageMaker AI Studio.
|
|
7076
7297
|
|
|
7077
7298
|
Attributes
|
|
7078
7299
|
----------------------
|
|
@@ -7082,17 +7303,32 @@ class EFSFileSystem(Base):
|
|
|
7082
7303
|
file_system_id: str
|
|
7083
7304
|
|
|
7084
7305
|
|
|
7306
|
+
class FSxLustreFileSystem(Base):
|
|
7307
|
+
"""
|
|
7308
|
+
FSxLustreFileSystem
|
|
7309
|
+
A custom file system in Amazon FSx for Lustre.
|
|
7310
|
+
|
|
7311
|
+
Attributes
|
|
7312
|
+
----------------------
|
|
7313
|
+
file_system_id: Amazon FSx for Lustre file system ID.
|
|
7314
|
+
"""
|
|
7315
|
+
|
|
7316
|
+
file_system_id: str
|
|
7317
|
+
|
|
7318
|
+
|
|
7085
7319
|
class CustomFileSystem(Base):
|
|
7086
7320
|
"""
|
|
7087
7321
|
CustomFileSystem
|
|
7088
|
-
A file system, created by you, that you assign to a user profile or space for an Amazon SageMaker Domain. Permitted users can access this file system in Amazon SageMaker Studio.
|
|
7322
|
+
A file system, created by you, that you assign to a user profile or space for an Amazon SageMaker AI Domain. Permitted users can access this file system in Amazon SageMaker AI Studio.
|
|
7089
7323
|
|
|
7090
7324
|
Attributes
|
|
7091
7325
|
----------------------
|
|
7092
7326
|
efs_file_system: A custom file system in Amazon EFS.
|
|
7327
|
+
f_sx_lustre_file_system: A custom file system in Amazon FSx for Lustre.
|
|
7093
7328
|
"""
|
|
7094
7329
|
|
|
7095
7330
|
efs_file_system: Optional[EFSFileSystem] = Unassigned()
|
|
7331
|
+
f_sx_lustre_file_system: Optional[FSxLustreFileSystem] = Unassigned()
|
|
7096
7332
|
|
|
7097
7333
|
|
|
7098
7334
|
class SpaceSettings(Base):
|
|
@@ -7106,9 +7342,9 @@ class SpaceSettings(Base):
|
|
|
7106
7342
|
kernel_gateway_app_settings
|
|
7107
7343
|
code_editor_app_settings: The Code Editor application settings.
|
|
7108
7344
|
jupyter_lab_app_settings: The settings for the JupyterLab application.
|
|
7109
|
-
app_type: The type of app created within the space.
|
|
7345
|
+
app_type: The type of app created within the space. If using the UpdateSpace API, you can't change the app type of your space by specifying a different value for this field.
|
|
7110
7346
|
space_storage_settings: The storage settings for a space.
|
|
7111
|
-
custom_file_systems: A file system, created by you, that you assign to a space for an Amazon SageMaker Domain. Permitted users can access this file system in Amazon SageMaker Studio.
|
|
7347
|
+
custom_file_systems: A file system, created by you, that you assign to a space for an Amazon SageMaker AI Domain. Permitted users can access this file system in Amazon SageMaker AI Studio.
|
|
7112
7348
|
"""
|
|
7113
7349
|
|
|
7114
7350
|
jupyter_server_app_settings: Optional[JupyterServerAppSettings] = Unassigned()
|
|
@@ -8137,7 +8373,7 @@ class InferenceComponentSpecificationSummary(Base):
|
|
|
8137
8373
|
|
|
8138
8374
|
Attributes
|
|
8139
8375
|
----------------------
|
|
8140
|
-
model_name: The name of the SageMaker model object that is deployed with the inference component.
|
|
8376
|
+
model_name: The name of the SageMaker AI model object that is deployed with the inference component.
|
|
8141
8377
|
container: Details about the container that provides the runtime environment for the model that is deployed with the inference component.
|
|
8142
8378
|
startup_parameters: Settings that take effect while the model container starts up.
|
|
8143
8379
|
compute_resource_requirements: The compute resources allocated to run the model, plus any adapter models, that you assign to the inference component.
|
|
@@ -8464,6 +8700,21 @@ class OptimizationOutput(Base):
|
|
|
8464
8700
|
recommended_inference_image: Optional[str] = Unassigned()
|
|
8465
8701
|
|
|
8466
8702
|
|
|
8703
|
+
class ErrorInfo(Base):
|
|
8704
|
+
"""
|
|
8705
|
+
ErrorInfo
|
|
8706
|
+
This is an error field object that contains the error code and the reason for an operation failure.
|
|
8707
|
+
|
|
8708
|
+
Attributes
|
|
8709
|
+
----------------------
|
|
8710
|
+
code: The error code for an invalid or failed operation.
|
|
8711
|
+
reason: The failure reason for the operation.
|
|
8712
|
+
"""
|
|
8713
|
+
|
|
8714
|
+
code: Optional[str] = Unassigned()
|
|
8715
|
+
reason: Optional[str] = Unassigned()
|
|
8716
|
+
|
|
8717
|
+
|
|
8467
8718
|
class DescribePipelineDefinitionForExecutionResponse(Base):
|
|
8468
8719
|
"""
|
|
8469
8720
|
DescribePipelineDefinitionForExecutionResponse
|
|
@@ -8631,6 +8882,35 @@ class ProfilerRuleEvaluationStatus(Base):
|
|
|
8631
8882
|
last_modified_time: Optional[datetime.datetime] = Unassigned()
|
|
8632
8883
|
|
|
8633
8884
|
|
|
8885
|
+
class ReservedCapacitySummary(Base):
|
|
8886
|
+
"""
|
|
8887
|
+
ReservedCapacitySummary
|
|
8888
|
+
Details of a reserved capacity for the training plan. For more information about how to reserve GPU capacity for your SageMaker HyperPod clusters using Amazon SageMaker Training Plan, see CreateTrainingPlan .
|
|
8889
|
+
|
|
8890
|
+
Attributes
|
|
8891
|
+
----------------------
|
|
8892
|
+
reserved_capacity_arn: The Amazon Resource Name (ARN); of the reserved capacity.
|
|
8893
|
+
instance_type: The instance type for the reserved capacity.
|
|
8894
|
+
total_instance_count: The total number of instances in the reserved capacity.
|
|
8895
|
+
status: The current status of the reserved capacity.
|
|
8896
|
+
availability_zone: The availability zone for the reserved capacity.
|
|
8897
|
+
duration_hours: The number of whole hours in the total duration for this reserved capacity.
|
|
8898
|
+
duration_minutes: The additional minutes beyond whole hours in the total duration for this reserved capacity.
|
|
8899
|
+
start_time: The start time of the reserved capacity.
|
|
8900
|
+
end_time: The end time of the reserved capacity.
|
|
8901
|
+
"""
|
|
8902
|
+
|
|
8903
|
+
reserved_capacity_arn: str
|
|
8904
|
+
instance_type: str
|
|
8905
|
+
total_instance_count: int
|
|
8906
|
+
status: str
|
|
8907
|
+
availability_zone: Optional[str] = Unassigned()
|
|
8908
|
+
duration_hours: Optional[int] = Unassigned()
|
|
8909
|
+
duration_minutes: Optional[int] = Unassigned()
|
|
8910
|
+
start_time: Optional[datetime.datetime] = Unassigned()
|
|
8911
|
+
end_time: Optional[datetime.datetime] = Unassigned()
|
|
8912
|
+
|
|
8913
|
+
|
|
8634
8914
|
class TrialComponentSource(Base):
|
|
8635
8915
|
"""
|
|
8636
8916
|
TrialComponentSource
|
|
@@ -9018,7 +9298,7 @@ class DomainSettingsForUpdate(Base):
|
|
|
9018
9298
|
Attributes
|
|
9019
9299
|
----------------------
|
|
9020
9300
|
r_studio_server_pro_domain_settings_for_update: A collection of RStudioServerPro Domain-level app settings to update. A single RStudioServerPro application is created for a domain.
|
|
9021
|
-
execution_role_identity_config: The configuration for attaching a SageMaker user profile name to the execution role as a sts:SourceIdentity key. This configuration can only be modified if there are no apps in the InService or Pending state.
|
|
9301
|
+
execution_role_identity_config: The configuration for attaching a SageMaker AI user profile name to the execution role as a sts:SourceIdentity key. This configuration can only be modified if there are no apps in the InService or Pending state.
|
|
9022
9302
|
security_group_ids: The security groups for the Amazon Virtual Private Cloud that the Domain uses for communication between Domain-level apps and user apps.
|
|
9023
9303
|
docker_settings: A collection of settings that configure the domain's Docker interaction.
|
|
9024
9304
|
amazon_q_settings: A collection of settings that configure the Amazon Q experience within the domain.
|
|
@@ -9835,7 +10115,7 @@ class HyperParameterTuningJobSummary(Base):
|
|
|
9835
10115
|
class Image(Base):
|
|
9836
10116
|
"""
|
|
9837
10117
|
Image
|
|
9838
|
-
A SageMaker image. A SageMaker image represents a set of container images that are derived from a common base container image. Each of these container images is represented by a SageMaker ImageVersion.
|
|
10118
|
+
A SageMaker AI image. A SageMaker AI image represents a set of container images that are derived from a common base container image. Each of these container images is represented by a SageMaker AI ImageVersion.
|
|
9839
10119
|
|
|
9840
10120
|
Attributes
|
|
9841
10121
|
----------------------
|
|
@@ -9862,7 +10142,7 @@ class Image(Base):
|
|
|
9862
10142
|
class ImageVersion(Base):
|
|
9863
10143
|
"""
|
|
9864
10144
|
ImageVersion
|
|
9865
|
-
A version of a SageMaker Image. A version represents an existing container image.
|
|
10145
|
+
A version of a SageMaker AI Image. A version represents an existing container image.
|
|
9866
10146
|
|
|
9867
10147
|
Attributes
|
|
9868
10148
|
----------------------
|
|
@@ -10480,7 +10760,7 @@ class NotebookInstanceLifecycleConfigSummary(Base):
|
|
|
10480
10760
|
class NotebookInstanceSummary(Base):
|
|
10481
10761
|
"""
|
|
10482
10762
|
NotebookInstanceSummary
|
|
10483
|
-
Provides summary information for an SageMaker notebook instance.
|
|
10763
|
+
Provides summary information for an SageMaker AI notebook instance.
|
|
10484
10764
|
|
|
10485
10765
|
Attributes
|
|
10486
10766
|
----------------------
|
|
@@ -10492,8 +10772,8 @@ class NotebookInstanceSummary(Base):
|
|
|
10492
10772
|
creation_time: A timestamp that shows when the notebook instance was created.
|
|
10493
10773
|
last_modified_time: A timestamp that shows when the notebook instance was last modified.
|
|
10494
10774
|
notebook_instance_lifecycle_config_name: The name of a notebook instance lifecycle configuration associated with this notebook instance. For information about notebook instance lifestyle configurations, see Step 2.1: (Optional) Customize a Notebook Instance.
|
|
10495
|
-
default_code_repository: The Git repository associated with the notebook instance as its default code repository. This can be either the name of a Git repository stored as a resource in your account, or the URL of a Git repository in Amazon Web Services CodeCommit or in any other Git repository. When you open a notebook instance, it opens in the directory that contains this repository. For more information, see Associating Git Repositories with SageMaker Notebook Instances.
|
|
10496
|
-
additional_code_repositories: An array of up to three Git repositories associated with the notebook instance. These can be either the names of Git repositories stored as resources in your account, or the URL of Git repositories in Amazon Web Services CodeCommit or in any other Git repository. These repositories are cloned at the same level as the default repository of your notebook instance. For more information, see Associating Git Repositories with SageMaker Notebook Instances.
|
|
10775
|
+
default_code_repository: The Git repository associated with the notebook instance as its default code repository. This can be either the name of a Git repository stored as a resource in your account, or the URL of a Git repository in Amazon Web Services CodeCommit or in any other Git repository. When you open a notebook instance, it opens in the directory that contains this repository. For more information, see Associating Git Repositories with SageMaker AI Notebook Instances.
|
|
10776
|
+
additional_code_repositories: An array of up to three Git repositories associated with the notebook instance. These can be either the names of Git repositories stored as resources in your account, or the URL of Git repositories in Amazon Web Services CodeCommit or in any other Git repository. These repositories are cloned at the same level as the default repository of your notebook instance. For more information, see Associating Git Repositories with SageMaker AI Notebook Instances.
|
|
10497
10777
|
"""
|
|
10498
10778
|
|
|
10499
10779
|
notebook_instance_name: Union[str, object]
|
|
@@ -10537,6 +10817,27 @@ class OptimizationJobSummary(Base):
|
|
|
10537
10817
|
last_modified_time: Optional[datetime.datetime] = Unassigned()
|
|
10538
10818
|
|
|
10539
10819
|
|
|
10820
|
+
class PartnerAppSummary(Base):
|
|
10821
|
+
"""
|
|
10822
|
+
PartnerAppSummary
|
|
10823
|
+
A subset of information related to a SageMaker Partner AI App. This information is used as part of the ListPartnerApps API response.
|
|
10824
|
+
|
|
10825
|
+
Attributes
|
|
10826
|
+
----------------------
|
|
10827
|
+
arn: The ARN of the SageMaker Partner AI App.
|
|
10828
|
+
name: The name of the SageMaker Partner AI App.
|
|
10829
|
+
type: The type of SageMaker Partner AI App to create. Must be one of the following: lakera-guard, comet, deepchecks-llm-evaluation, or fiddler.
|
|
10830
|
+
status: The status of the SageMaker Partner AI App.
|
|
10831
|
+
creation_time: The creation time of the SageMaker Partner AI App.
|
|
10832
|
+
"""
|
|
10833
|
+
|
|
10834
|
+
arn: Optional[str] = Unassigned()
|
|
10835
|
+
name: Optional[str] = Unassigned()
|
|
10836
|
+
type: Optional[str] = Unassigned()
|
|
10837
|
+
status: Optional[str] = Unassigned()
|
|
10838
|
+
creation_time: Optional[datetime.datetime] = Unassigned()
|
|
10839
|
+
|
|
10840
|
+
|
|
10540
10841
|
class TrainingJobStepMetadata(Base):
|
|
10541
10842
|
"""
|
|
10542
10843
|
TrainingJobStepMetadata
|
|
@@ -10942,14 +11243,14 @@ class SpaceDetails(Base):
|
|
|
10942
11243
|
class StudioLifecycleConfigDetails(Base):
|
|
10943
11244
|
"""
|
|
10944
11245
|
StudioLifecycleConfigDetails
|
|
10945
|
-
Details of the Amazon SageMaker Studio Lifecycle Configuration.
|
|
11246
|
+
Details of the Amazon SageMaker AI Studio Lifecycle Configuration.
|
|
10946
11247
|
|
|
10947
11248
|
Attributes
|
|
10948
11249
|
----------------------
|
|
10949
11250
|
studio_lifecycle_config_arn: The Amazon Resource Name (ARN) of the Lifecycle Configuration.
|
|
10950
|
-
studio_lifecycle_config_name: The name of the Amazon SageMaker Studio Lifecycle Configuration.
|
|
10951
|
-
creation_time: The creation time of the Amazon SageMaker Studio Lifecycle Configuration.
|
|
10952
|
-
last_modified_time: This value is equivalent to CreationTime because Amazon SageMaker Studio Lifecycle Configurations are immutable.
|
|
11251
|
+
studio_lifecycle_config_name: The name of the Amazon SageMaker AI Studio Lifecycle Configuration.
|
|
11252
|
+
creation_time: The creation time of the Amazon SageMaker AI Studio Lifecycle Configuration.
|
|
11253
|
+
last_modified_time: This value is equivalent to CreationTime because Amazon SageMaker AI Studio Lifecycle Configurations are immutable.
|
|
10953
11254
|
studio_lifecycle_config_app_type: The App type to which the Lifecycle Configuration is attached.
|
|
10954
11255
|
"""
|
|
10955
11256
|
|
|
@@ -10975,6 +11276,7 @@ class TrainingJobSummary(Base):
|
|
|
10975
11276
|
training_job_status: The status of the training job.
|
|
10976
11277
|
secondary_status: The secondary status of the training job.
|
|
10977
11278
|
warm_pool_status: The status of the warm pool associated with the training job.
|
|
11279
|
+
training_plan_arn: The Amazon Resource Name (ARN); of the training plan associated with this training job. For more information about how to reserve GPU capacity for your SageMaker HyperPod clusters using Amazon SageMaker Training Plan, see CreateTrainingPlan .
|
|
10978
11280
|
"""
|
|
10979
11281
|
|
|
10980
11282
|
training_job_name: Union[str, object]
|
|
@@ -10985,6 +11287,63 @@ class TrainingJobSummary(Base):
|
|
|
10985
11287
|
last_modified_time: Optional[datetime.datetime] = Unassigned()
|
|
10986
11288
|
secondary_status: Optional[str] = Unassigned()
|
|
10987
11289
|
warm_pool_status: Optional[WarmPoolStatus] = Unassigned()
|
|
11290
|
+
training_plan_arn: Optional[str] = Unassigned()
|
|
11291
|
+
|
|
11292
|
+
|
|
11293
|
+
class TrainingPlanFilter(Base):
|
|
11294
|
+
"""
|
|
11295
|
+
TrainingPlanFilter
|
|
11296
|
+
A filter to apply when listing or searching for training plans. For more information about how to reserve GPU capacity for your SageMaker HyperPod clusters using Amazon SageMaker Training Plan, see CreateTrainingPlan .
|
|
11297
|
+
|
|
11298
|
+
Attributes
|
|
11299
|
+
----------------------
|
|
11300
|
+
name: The name of the filter field (e.g., Status, InstanceType).
|
|
11301
|
+
value: The value to filter by for the specified field.
|
|
11302
|
+
"""
|
|
11303
|
+
|
|
11304
|
+
name: str
|
|
11305
|
+
value: str
|
|
11306
|
+
|
|
11307
|
+
|
|
11308
|
+
class TrainingPlanSummary(Base):
|
|
11309
|
+
"""
|
|
11310
|
+
TrainingPlanSummary
|
|
11311
|
+
Details of the training plan. For more information about how to reserve GPU capacity for your SageMaker HyperPod clusters using Amazon SageMaker Training Plan, see CreateTrainingPlan .
|
|
11312
|
+
|
|
11313
|
+
Attributes
|
|
11314
|
+
----------------------
|
|
11315
|
+
training_plan_arn: The Amazon Resource Name (ARN); of the training plan.
|
|
11316
|
+
training_plan_name: The name of the training plan.
|
|
11317
|
+
status: The current status of the training plan (e.g., Pending, Active, Expired). To see the complete list of status values available for a training plan, refer to the Status attribute within the TrainingPlanSummary object.
|
|
11318
|
+
status_message: A message providing additional information about the current status of the training plan.
|
|
11319
|
+
duration_hours: The number of whole hours in the total duration for this training plan.
|
|
11320
|
+
duration_minutes: The additional minutes beyond whole hours in the total duration for this training plan.
|
|
11321
|
+
start_time: The start time of the training plan.
|
|
11322
|
+
end_time: The end time of the training plan.
|
|
11323
|
+
upfront_fee: The upfront fee for the training plan.
|
|
11324
|
+
currency_code: The currency code for the upfront fee (e.g., USD).
|
|
11325
|
+
total_instance_count: The total number of instances reserved in this training plan.
|
|
11326
|
+
available_instance_count: The number of instances currently available for use in this training plan.
|
|
11327
|
+
in_use_instance_count: The number of instances currently in use from this training plan.
|
|
11328
|
+
target_resources: The target resources (e.g., training jobs, HyperPod clusters) that can use this training plan. Training plans are specific to their target resource. A training plan designed for SageMaker training jobs can only be used to schedule and run training jobs. A training plan for HyperPod clusters can be used exclusively to provide compute resources to a cluster's instance group.
|
|
11329
|
+
reserved_capacity_summaries: A list of reserved capacities associated with this training plan, including details such as instance types, counts, and availability zones.
|
|
11330
|
+
"""
|
|
11331
|
+
|
|
11332
|
+
training_plan_arn: str
|
|
11333
|
+
training_plan_name: Union[str, object]
|
|
11334
|
+
status: str
|
|
11335
|
+
status_message: Optional[str] = Unassigned()
|
|
11336
|
+
duration_hours: Optional[int] = Unassigned()
|
|
11337
|
+
duration_minutes: Optional[int] = Unassigned()
|
|
11338
|
+
start_time: Optional[datetime.datetime] = Unassigned()
|
|
11339
|
+
end_time: Optional[datetime.datetime] = Unassigned()
|
|
11340
|
+
upfront_fee: Optional[str] = Unassigned()
|
|
11341
|
+
currency_code: Optional[str] = Unassigned()
|
|
11342
|
+
total_instance_count: Optional[int] = Unassigned()
|
|
11343
|
+
available_instance_count: Optional[int] = Unassigned()
|
|
11344
|
+
in_use_instance_count: Optional[int] = Unassigned()
|
|
11345
|
+
target_resources: Optional[List[str]] = Unassigned()
|
|
11346
|
+
reserved_capacity_summaries: Optional[List[ReservedCapacitySummary]] = Unassigned()
|
|
10988
11347
|
|
|
10989
11348
|
|
|
10990
11349
|
class TransformJobSummary(Base):
|
|
@@ -11741,6 +12100,31 @@ class RenderingError(Base):
|
|
|
11741
12100
|
message: str
|
|
11742
12101
|
|
|
11743
12102
|
|
|
12103
|
+
class ReservedCapacityOffering(Base):
|
|
12104
|
+
"""
|
|
12105
|
+
ReservedCapacityOffering
|
|
12106
|
+
Details about a reserved capacity offering for a training plan offering. For more information about how to reserve GPU capacity for your SageMaker HyperPod clusters using Amazon SageMaker Training Plan, see CreateTrainingPlan .
|
|
12107
|
+
|
|
12108
|
+
Attributes
|
|
12109
|
+
----------------------
|
|
12110
|
+
instance_type: The instance type for the reserved capacity offering.
|
|
12111
|
+
instance_count: The number of instances in the reserved capacity offering.
|
|
12112
|
+
availability_zone: The availability zone for the reserved capacity offering.
|
|
12113
|
+
duration_hours: The number of whole hours in the total duration for this reserved capacity offering.
|
|
12114
|
+
duration_minutes: The additional minutes beyond whole hours in the total duration for this reserved capacity offering.
|
|
12115
|
+
start_time: The start time of the reserved capacity offering.
|
|
12116
|
+
end_time: The end time of the reserved capacity offering.
|
|
12117
|
+
"""
|
|
12118
|
+
|
|
12119
|
+
instance_type: str
|
|
12120
|
+
instance_count: int
|
|
12121
|
+
availability_zone: Optional[str] = Unassigned()
|
|
12122
|
+
duration_hours: Optional[int] = Unassigned()
|
|
12123
|
+
duration_minutes: Optional[int] = Unassigned()
|
|
12124
|
+
start_time: Optional[datetime.datetime] = Unassigned()
|
|
12125
|
+
end_time: Optional[datetime.datetime] = Unassigned()
|
|
12126
|
+
|
|
12127
|
+
|
|
11744
12128
|
class ResourceConfigForUpdate(Base):
|
|
11745
12129
|
"""
|
|
11746
12130
|
ResourceConfigForUpdate
|
|
@@ -12070,6 +12454,35 @@ class VisibilityConditions(Base):
|
|
|
12070
12454
|
value: Optional[str] = Unassigned()
|
|
12071
12455
|
|
|
12072
12456
|
|
|
12457
|
+
class TrainingPlanOffering(Base):
|
|
12458
|
+
"""
|
|
12459
|
+
TrainingPlanOffering
|
|
12460
|
+
Details about a training plan offering. For more information about how to reserve GPU capacity for your SageMaker HyperPod clusters using Amazon SageMaker Training Plan, see CreateTrainingPlan .
|
|
12461
|
+
|
|
12462
|
+
Attributes
|
|
12463
|
+
----------------------
|
|
12464
|
+
training_plan_offering_id: The unique identifier for this training plan offering.
|
|
12465
|
+
target_resources: The target resources (e.g., SageMaker Training Jobs, SageMaker HyperPod) for this training plan offering. Training plans are specific to their target resource. A training plan designed for SageMaker training jobs can only be used to schedule and run training jobs. A training plan for HyperPod clusters can be used exclusively to provide compute resources to a cluster's instance group.
|
|
12466
|
+
requested_start_time_after: The requested start time that the user specified when searching for the training plan offering.
|
|
12467
|
+
requested_end_time_before: The requested end time that the user specified when searching for the training plan offering.
|
|
12468
|
+
duration_hours: The number of whole hours in the total duration for this training plan offering.
|
|
12469
|
+
duration_minutes: The additional minutes beyond whole hours in the total duration for this training plan offering.
|
|
12470
|
+
upfront_fee: The upfront fee for this training plan offering.
|
|
12471
|
+
currency_code: The currency code for the upfront fee (e.g., USD).
|
|
12472
|
+
reserved_capacity_offerings: A list of reserved capacity offerings associated with this training plan offering.
|
|
12473
|
+
"""
|
|
12474
|
+
|
|
12475
|
+
training_plan_offering_id: str
|
|
12476
|
+
target_resources: List[str]
|
|
12477
|
+
requested_start_time_after: Optional[datetime.datetime] = Unassigned()
|
|
12478
|
+
requested_end_time_before: Optional[datetime.datetime] = Unassigned()
|
|
12479
|
+
duration_hours: Optional[int] = Unassigned()
|
|
12480
|
+
duration_minutes: Optional[int] = Unassigned()
|
|
12481
|
+
upfront_fee: Optional[str] = Unassigned()
|
|
12482
|
+
currency_code: Optional[str] = Unassigned()
|
|
12483
|
+
reserved_capacity_offerings: Optional[List[ReservedCapacityOffering]] = Unassigned()
|
|
12484
|
+
|
|
12485
|
+
|
|
12073
12486
|
class ServiceCatalogProvisioningUpdateDetails(Base):
|
|
12074
12487
|
"""
|
|
12075
12488
|
ServiceCatalogProvisioningUpdateDetails
|