sagemaker-core 1.0.16__py3-none-any.whl → 1.0.18__py3-none-any.whl

This diff represents the content of publicly available package versions that have been released to one of the supported registries. The information contained in this diff is provided for informational purposes only and reflects changes between package versions as they appear in their respective public registries.

Potentially problematic release.


This version of sagemaker-core might be problematic. Click here for more details.

@@ -548,6 +548,8 @@ class S3ModelDataSource(Base):
548
548
  model_access_config: Specifies the access configuration file for the ML model. You can explicitly accept the model end-user license agreement (EULA) within the ModelAccessConfig. You are responsible for reviewing and complying with any applicable license terms and making sure they are acceptable for your use case before downloading or using a model.
549
549
  hub_access_config: Configuration information for hub access.
550
550
  manifest_s3_uri: The Amazon S3 URI of the manifest file. The manifest file is a CSV file that stores the artifact locations.
551
+ e_tag: The ETag associated with S3 URI.
552
+ manifest_etag: The ETag associated with Manifest S3 URI.
551
553
  """
552
554
 
553
555
  s3_uri: str
@@ -556,6 +558,8 @@ class S3ModelDataSource(Base):
556
558
  model_access_config: Optional[ModelAccessConfig] = Unassigned()
557
559
  hub_access_config: Optional[InferenceHubAccessConfig] = Unassigned()
558
560
  manifest_s3_uri: Optional[str] = Unassigned()
561
+ e_tag: Optional[str] = Unassigned()
562
+ manifest_etag: Optional[str] = Unassigned()
559
563
 
560
564
 
561
565
  class ModelDataSource(Base):
@@ -594,11 +598,13 @@ class AdditionalS3DataSource(Base):
594
598
  s3_data_type: The data type of the additional data source that you specify for use in inference or training.
595
599
  s3_uri: The uniform resource identifier (URI) used to identify an additional data source used in inference or training.
596
600
  compression_type: The type of compression used for an additional data source used in inference or training. Specify None if your additional data source is not compressed.
601
+ e_tag: The ETag associated with S3 URI.
597
602
  """
598
603
 
599
604
  s3_data_type: str
600
605
  s3_uri: str
601
606
  compression_type: Optional[str] = Unassigned()
607
+ e_tag: Optional[str] = Unassigned()
602
608
 
603
609
 
604
610
  class ModelPackageContainerDefinition(Base):
@@ -609,7 +615,7 @@ class ModelPackageContainerDefinition(Base):
609
615
  Attributes
610
616
  ----------------------
611
617
  container_hostname: The DNS host name for the Docker container.
612
- image: The Amazon EC2 Container Registry (Amazon ECR) path where inference code is stored. If you are using your own custom algorithm instead of an algorithm provided by SageMaker, the inference code must meet SageMaker requirements. SageMaker supports both registry/repository[:tag] and registry/repository[@digest] image path formats. For more information, see Using Your Own Algorithms with Amazon SageMaker.
618
+ image: The Amazon EC2 Container Registry path where inference code is stored. If you are using your own custom algorithm instead of an algorithm provided by SageMaker, the inference code must meet SageMaker requirements. SageMaker supports both registry/repository[:tag] and registry/repository[@digest] image path formats. For more information, see Using Your Own Algorithms with Amazon SageMaker.
613
619
  image_digest: An MD5 hash of the training algorithm that identifies the Docker image used for training.
614
620
  model_data_url: The Amazon S3 path where the model artifacts, which result from model training, are stored. This path must point to a single gzip compressed tar archive (.tar.gz suffix). The model artifacts must be in an S3 bucket that is in the same region as the model package.
615
621
  model_data_source: Specifies the location of ML model data to deploy during endpoint creation.
@@ -620,6 +626,7 @@ class ModelPackageContainerDefinition(Base):
620
626
  framework_version: The framework version of the Model Package Container Image.
621
627
  nearest_model_name: The name of a pre-trained machine learning benchmarked by Amazon SageMaker Inference Recommender model that matches your model. You can find a list of benchmarked models by calling ListModelMetadata.
622
628
  additional_s3_data_source: The additional data source that is used during inference in the Docker container for your model package.
629
+ model_data_e_tag: The ETag associated with Model Data URL.
623
630
  """
624
631
 
625
632
  image: str
@@ -634,6 +641,7 @@ class ModelPackageContainerDefinition(Base):
634
641
  framework_version: Optional[str] = Unassigned()
635
642
  nearest_model_name: Optional[str] = Unassigned()
636
643
  additional_s3_data_source: Optional[AdditionalS3DataSource] = Unassigned()
644
+ model_data_e_tag: Optional[str] = Unassigned()
637
645
 
638
646
 
639
647
  class AdditionalInferenceSpecificationDefinition(Base):
@@ -750,7 +758,7 @@ class TrainingImageConfig(Base):
750
758
  class AlgorithmSpecification(Base):
751
759
  """
752
760
  AlgorithmSpecification
753
- Specifies the training algorithm to use in a CreateTrainingJob request. For more information about algorithms provided by SageMaker, see Algorithms. For information about using your own algorithms, see Using Your Own Algorithms with Amazon SageMaker.
761
+ Specifies the training algorithm to use in a CreateTrainingJob request. SageMaker uses its own SageMaker account credentials to pull and access built-in algorithms so built-in algorithms are universally accessible across all Amazon Web Services accounts. As a result, built-in algorithms have standard, unrestricted access. You cannot restrict built-in algorithms using IAM roles. Use custom algorithms if you require specific access controls. For more information about algorithms provided by SageMaker, see Algorithms. For information about using your own algorithms, see Using Your Own Algorithms with Amazon SageMaker.
754
762
 
755
763
  Attributes
756
764
  ----------------------
@@ -967,6 +975,7 @@ class ResourceConfig(Base):
967
975
  volume_kms_key_id: The Amazon Web Services KMS key that SageMaker uses to encrypt data on the storage volume attached to the ML compute instance(s) that run the training job. Certain Nitro-based instances include local storage, dependent on the instance type. Local storage volumes are encrypted using a hardware module on the instance. You can't request a VolumeKmsKeyId when using an instance type with local storage. For a list of instance types that support local instance storage, see Instance Store Volumes. For more information about local instance storage encryption, see SSD Instance Store Volumes. The VolumeKmsKeyId can be in any of the following formats: // KMS Key ID "1234abcd-12ab-34cd-56ef-1234567890ab" // Amazon Resource Name (ARN) of a KMS Key "arn:aws:kms:us-west-2:111122223333:key/1234abcd-12ab-34cd-56ef-1234567890ab"
968
976
  keep_alive_period_in_seconds: The duration of time in seconds to retain configured resources in a warm pool for subsequent training jobs.
969
977
  instance_groups: The configuration of a heterogeneous cluster in JSON format.
978
+ training_plan_arn: The Amazon Resource Name (ARN); of the training plan to use for this resource configuration.
970
979
  """
971
980
 
972
981
  volume_size_in_gb: int
@@ -975,6 +984,7 @@ class ResourceConfig(Base):
975
984
  volume_kms_key_id: Optional[str] = Unassigned()
976
985
  keep_alive_period_in_seconds: Optional[int] = Unassigned()
977
986
  instance_groups: Optional[List[InstanceGroup]] = Unassigned()
987
+ training_plan_arn: Optional[str] = Unassigned()
978
988
 
979
989
 
980
990
  class StoppingCondition(Base):
@@ -1188,11 +1198,11 @@ class AnnotationConsolidationConfig(Base):
1188
1198
  class ResourceSpec(Base):
1189
1199
  """
1190
1200
  ResourceSpec
1191
- Specifies the ARN's of a SageMaker image and SageMaker image version, and the instance type that the version runs on.
1201
+ Specifies the ARN's of a SageMaker AI image and SageMaker AI image version, and the instance type that the version runs on.
1192
1202
 
1193
1203
  Attributes
1194
1204
  ----------------------
1195
- sage_maker_image_arn: The ARN of the SageMaker image that the image version belongs to.
1205
+ sage_maker_image_arn: The ARN of the SageMaker AI image that the image version belongs to.
1196
1206
  sage_maker_image_version_arn: The ARN of the image version created on the instance.
1197
1207
  sage_maker_image_version_alias: The SageMakerImageVersionAlias of the image to launch with. This value is in SemVer 2.0.0 versioning format.
1198
1208
  instance_type: The instance type that the image version runs on. JupyterServer apps only support the system value. For KernelGateway apps, the system value is translated to ml.t3.medium. KernelGateway apps also support all other values for available instance types.
@@ -1209,7 +1219,7 @@ class ResourceSpec(Base):
1209
1219
  class AppDetails(Base):
1210
1220
  """
1211
1221
  AppDetails
1212
- Details about an Amazon SageMaker app.
1222
+ Details about an Amazon SageMaker AI app.
1213
1223
 
1214
1224
  Attributes
1215
1225
  ----------------------
@@ -1251,7 +1261,7 @@ class KernelSpec(Base):
1251
1261
  class FileSystemConfig(Base):
1252
1262
  """
1253
1263
  FileSystemConfig
1254
- The Amazon Elastic File System storage configuration for a SageMaker image.
1264
+ The Amazon Elastic File System storage configuration for a SageMaker AI image.
1255
1265
 
1256
1266
  Attributes
1257
1267
  ----------------------
@@ -1268,12 +1278,12 @@ class FileSystemConfig(Base):
1268
1278
  class KernelGatewayImageConfig(Base):
1269
1279
  """
1270
1280
  KernelGatewayImageConfig
1271
- The configuration for the file system and kernels in a SageMaker image running as a KernelGateway app.
1281
+ The configuration for the file system and kernels in a SageMaker AI image running as a KernelGateway app.
1272
1282
 
1273
1283
  Attributes
1274
1284
  ----------------------
1275
1285
  kernel_specs: The specification of the Jupyter kernels in the image.
1276
- file_system_config: The Amazon Elastic File System storage configuration for a SageMaker image.
1286
+ file_system_config: The Amazon Elastic File System storage configuration for a SageMaker AI image.
1277
1287
  """
1278
1288
 
1279
1289
  kernel_specs: List[KernelSpec]
@@ -1300,7 +1310,7 @@ class ContainerConfig(Base):
1300
1310
  class JupyterLabAppImageConfig(Base):
1301
1311
  """
1302
1312
  JupyterLabAppImageConfig
1303
- The configuration for the file system and kernels in a SageMaker image running as a JupyterLab app. The FileSystemConfig object is not supported.
1313
+ The configuration for the file system and kernels in a SageMaker AI image running as a JupyterLab app. The FileSystemConfig object is not supported.
1304
1314
 
1305
1315
  Attributes
1306
1316
  ----------------------
@@ -1330,7 +1340,7 @@ class CodeEditorAppImageConfig(Base):
1330
1340
  class AppImageConfigDetails(Base):
1331
1341
  """
1332
1342
  AppImageConfigDetails
1333
- The configuration for running a SageMaker image as a KernelGateway app.
1343
+ The configuration for running a SageMaker AI image as a KernelGateway app.
1334
1344
 
1335
1345
  Attributes
1336
1346
  ----------------------
@@ -1338,7 +1348,7 @@ class AppImageConfigDetails(Base):
1338
1348
  app_image_config_name: The name of the AppImageConfig. Must be unique to your account.
1339
1349
  creation_time: When the AppImageConfig was created.
1340
1350
  last_modified_time: When the AppImageConfig was last modified.
1341
- kernel_gateway_image_config: The configuration for the file system and kernels in the SageMaker image.
1351
+ kernel_gateway_image_config: The configuration for the file system and kernels in the SageMaker AI image.
1342
1352
  jupyter_lab_app_image_config: The configuration for the file system and the runtime, such as the environment variables and entry point.
1343
1353
  code_editor_app_image_config: The configuration for the file system and the runtime, such as the environment variables and entry point.
1344
1354
  """
@@ -1786,7 +1796,7 @@ class AutoMLS3DataSource(Base):
1786
1796
 
1787
1797
  Attributes
1788
1798
  ----------------------
1789
- s3_data_type: The data type. If you choose S3Prefix, S3Uri identifies a key name prefix. SageMaker uses all objects that match the specified key name prefix for model training. The S3Prefix should have the following format: s3://DOC-EXAMPLE-BUCKET/DOC-EXAMPLE-FOLDER-OR-FILE If you choose ManifestFile, S3Uri identifies an object that is a manifest file containing a list of object keys that you want SageMaker to use for model training. A ManifestFile should have the format shown below: [ {"prefix": "s3://DOC-EXAMPLE-BUCKET/DOC-EXAMPLE-FOLDER/DOC-EXAMPLE-PREFIX/"}, "DOC-EXAMPLE-RELATIVE-PATH/DOC-EXAMPLE-FOLDER/DATA-1", "DOC-EXAMPLE-RELATIVE-PATH/DOC-EXAMPLE-FOLDER/DATA-2", ... "DOC-EXAMPLE-RELATIVE-PATH/DOC-EXAMPLE-FOLDER/DATA-N" ] If you choose AugmentedManifestFile, S3Uri identifies an object that is an augmented manifest file in JSON lines format. This file contains the data you want to use for model training. AugmentedManifestFile is available for V2 API jobs only (for example, for jobs created by calling CreateAutoMLJobV2). Here is a minimal, single-record example of an AugmentedManifestFile: {"source-ref": "s3://DOC-EXAMPLE-BUCKET/DOC-EXAMPLE-FOLDER/cats/cat.jpg", "label-metadata": {"class-name": "cat" } For more information on AugmentedManifestFile, see Provide Dataset Metadata to Training Jobs with an Augmented Manifest File.
1799
+ s3_data_type: The data type. If you choose S3Prefix, S3Uri identifies a key name prefix. SageMaker AI uses all objects that match the specified key name prefix for model training. The S3Prefix should have the following format: s3://DOC-EXAMPLE-BUCKET/DOC-EXAMPLE-FOLDER-OR-FILE If you choose ManifestFile, S3Uri identifies an object that is a manifest file containing a list of object keys that you want SageMaker AI to use for model training. A ManifestFile should have the format shown below: [ {"prefix": "s3://DOC-EXAMPLE-BUCKET/DOC-EXAMPLE-FOLDER/DOC-EXAMPLE-PREFIX/"}, "DOC-EXAMPLE-RELATIVE-PATH/DOC-EXAMPLE-FOLDER/DATA-1", "DOC-EXAMPLE-RELATIVE-PATH/DOC-EXAMPLE-FOLDER/DATA-2", ... "DOC-EXAMPLE-RELATIVE-PATH/DOC-EXAMPLE-FOLDER/DATA-N" ] If you choose AugmentedManifestFile, S3Uri identifies an object that is an augmented manifest file in JSON lines format. This file contains the data you want to use for model training. AugmentedManifestFile is available for V2 API jobs only (for example, for jobs created by calling CreateAutoMLJobV2). Here is a minimal, single-record example of an AugmentedManifestFile: {"source-ref": "s3://DOC-EXAMPLE-BUCKET/DOC-EXAMPLE-FOLDER/cats/cat.jpg", "label-metadata": {"class-name": "cat" } For more information on AugmentedManifestFile, see Provide Dataset Metadata to Training Jobs with an Augmented Manifest File.
1790
1800
  s3_uri: The URL to the Amazon S3 data source. The Uri refers to the Amazon S3 prefix or ManifestFile depending on the data type.
1791
1801
  """
1792
1802
 
@@ -2847,12 +2857,12 @@ class CanvasAppSettings(Base):
2847
2857
  class CaptureContentTypeHeader(Base):
2848
2858
  """
2849
2859
  CaptureContentTypeHeader
2850
- Configuration specifying how to treat different headers. If no headers are specified Amazon SageMaker will by default base64 encode when capturing the data.
2860
+ Configuration specifying how to treat different headers. If no headers are specified Amazon SageMaker AI will by default base64 encode when capturing the data.
2851
2861
 
2852
2862
  Attributes
2853
2863
  ----------------------
2854
- csv_content_types: The list of all content type headers that Amazon SageMaker will treat as CSV and capture accordingly.
2855
- json_content_types: The list of all content type headers that SageMaker will treat as JSON and capture accordingly.
2864
+ csv_content_types: The list of all content type headers that Amazon SageMaker AI will treat as CSV and capture accordingly.
2865
+ json_content_types: The list of all content type headers that SageMaker AI will treat as JSON and capture accordingly.
2856
2866
  """
2857
2867
 
2858
2868
  csv_content_types: Optional[List[str]] = Unassigned()
@@ -3140,6 +3150,9 @@ class ClusterInstanceGroupDetails(Base):
3140
3150
  threads_per_core: The number you specified to TreadsPerCore in CreateCluster for enabling or disabling multithreading. For instance types that support multithreading, you can specify 1 for disabling multithreading and 2 for enabling multithreading. For more information, see the reference table of CPU cores and threads per CPU core per instance type in the Amazon Elastic Compute Cloud User Guide.
3141
3151
  instance_storage_configs: The additional storage configurations for the instances in the SageMaker HyperPod cluster instance group.
3142
3152
  on_start_deep_health_checks: A flag indicating whether deep health checks should be performed when the cluster instance group is created or updated.
3153
+ status: The current status of the cluster instance group. InService: The instance group is active and healthy. Creating: The instance group is being provisioned. Updating: The instance group is being updated. Failed: The instance group has failed to provision or is no longer healthy. Degraded: The instance group is degraded, meaning that some instances have failed to provision or are no longer healthy. Deleting: The instance group is being deleted.
3154
+ training_plan_arn: The Amazon Resource Name (ARN); of the training plan associated with this cluster instance group. For more information about how to reserve GPU capacity for your SageMaker HyperPod clusters using Amazon SageMaker Training Plan, see CreateTrainingPlan .
3155
+ training_plan_status: The current status of the training plan associated with this cluster instance group.
3143
3156
  override_vpc_config
3144
3157
  """
3145
3158
 
@@ -3152,6 +3165,9 @@ class ClusterInstanceGroupDetails(Base):
3152
3165
  threads_per_core: Optional[int] = Unassigned()
3153
3166
  instance_storage_configs: Optional[List[ClusterInstanceStorageConfig]] = Unassigned()
3154
3167
  on_start_deep_health_checks: Optional[List[str]] = Unassigned()
3168
+ status: Optional[str] = Unassigned()
3169
+ training_plan_arn: Optional[str] = Unassigned()
3170
+ training_plan_status: Optional[str] = Unassigned()
3155
3171
  override_vpc_config: Optional[VpcConfig] = Unassigned()
3156
3172
 
3157
3173
 
@@ -3170,6 +3186,7 @@ class ClusterInstanceGroupSpecification(Base):
3170
3186
  threads_per_core: Specifies the value for Threads per core. For instance types that support multithreading, you can specify 1 for disabling multithreading and 2 for enabling multithreading. For instance types that doesn't support multithreading, specify 1. For more information, see the reference table of CPU cores and threads per CPU core per instance type in the Amazon Elastic Compute Cloud User Guide.
3171
3187
  instance_storage_configs: Specifies the additional storage configurations for the instances in the SageMaker HyperPod cluster instance group.
3172
3188
  on_start_deep_health_checks: A flag indicating whether deep health checks should be performed when the cluster instance group is created or updated.
3189
+ training_plan_arn: The Amazon Resource Name (ARN); of the training plan to use for this cluster instance group. For more information about how to reserve GPU capacity for your SageMaker HyperPod clusters using Amazon SageMaker Training Plan, see CreateTrainingPlan .
3173
3190
  override_vpc_config
3174
3191
  """
3175
3192
 
@@ -3181,6 +3198,7 @@ class ClusterInstanceGroupSpecification(Base):
3181
3198
  threads_per_core: Optional[int] = Unassigned()
3182
3199
  instance_storage_configs: Optional[List[ClusterInstanceStorageConfig]] = Unassigned()
3183
3200
  on_start_deep_health_checks: Optional[List[str]] = Unassigned()
3201
+ training_plan_arn: Optional[str] = Unassigned()
3184
3202
  override_vpc_config: Optional[VpcConfig] = Unassigned()
3185
3203
 
3186
3204
 
@@ -3231,6 +3249,7 @@ class ClusterNodeDetails(Base):
3231
3249
  threads_per_core: The number of threads per CPU core you specified under CreateCluster.
3232
3250
  instance_storage_configs: The configurations of additional storage specified to the instance group where the instance (node) is launched.
3233
3251
  private_primary_ip: The private primary IP address of the SageMaker HyperPod cluster node.
3252
+ private_primary_ipv6: The private primary IPv6 address of the SageMaker HyperPod cluster node.
3234
3253
  private_dns_hostname: The private DNS hostname of the SageMaker HyperPod cluster node.
3235
3254
  placement: The placement details of the SageMaker HyperPod cluster node.
3236
3255
  """
@@ -3245,6 +3264,7 @@ class ClusterNodeDetails(Base):
3245
3264
  threads_per_core: Optional[int] = Unassigned()
3246
3265
  instance_storage_configs: Optional[List[ClusterInstanceStorageConfig]] = Unassigned()
3247
3266
  private_primary_ip: Optional[str] = Unassigned()
3267
+ private_primary_ipv6: Optional[str] = Unassigned()
3248
3268
  private_dns_hostname: Optional[str] = Unassigned()
3249
3269
  placement: Optional[ClusterInstancePlacement] = Unassigned()
3250
3270
 
@@ -3296,6 +3316,33 @@ class ClusterOrchestrator(Base):
3296
3316
  eks: ClusterOrchestratorEksConfig
3297
3317
 
3298
3318
 
3319
+ class ClusterSchedulerConfigSummary(Base):
3320
+ """
3321
+ ClusterSchedulerConfigSummary
3322
+ Summary of the cluster policy.
3323
+
3324
+ Attributes
3325
+ ----------------------
3326
+ cluster_scheduler_config_arn: ARN of the cluster policy.
3327
+ cluster_scheduler_config_id: ID of the cluster policy.
3328
+ cluster_scheduler_config_version: Version of the cluster policy.
3329
+ name: Name of the cluster policy.
3330
+ creation_time: Creation time of the cluster policy.
3331
+ last_modified_time: Last modified time of the cluster policy.
3332
+ status: Status of the cluster policy.
3333
+ cluster_arn: ARN of the cluster.
3334
+ """
3335
+
3336
+ cluster_scheduler_config_arn: str
3337
+ cluster_scheduler_config_id: str
3338
+ name: str
3339
+ creation_time: datetime.datetime
3340
+ status: str
3341
+ cluster_scheduler_config_version: Optional[int] = Unassigned()
3342
+ last_modified_time: Optional[datetime.datetime] = Unassigned()
3343
+ cluster_arn: Optional[str] = Unassigned()
3344
+
3345
+
3299
3346
  class ClusterSummary(Base):
3300
3347
  """
3301
3348
  ClusterSummary
@@ -3307,18 +3354,20 @@ class ClusterSummary(Base):
3307
3354
  cluster_name: The name of the SageMaker HyperPod cluster.
3308
3355
  creation_time: The time when the SageMaker HyperPod cluster is created.
3309
3356
  cluster_status: The status of the SageMaker HyperPod cluster.
3357
+ training_plan_arns: A list of Amazon Resource Names (ARNs) of the training plans associated with this cluster. For more information about how to reserve GPU capacity for your SageMaker HyperPod clusters using Amazon SageMaker Training Plan, see CreateTrainingPlan .
3310
3358
  """
3311
3359
 
3312
3360
  cluster_arn: str
3313
3361
  cluster_name: Union[str, object]
3314
3362
  creation_time: datetime.datetime
3315
3363
  cluster_status: str
3364
+ training_plan_arns: Optional[List[str]] = Unassigned()
3316
3365
 
3317
3366
 
3318
3367
  class CustomImage(Base):
3319
3368
  """
3320
3369
  CustomImage
3321
- A custom SageMaker image. For more information, see Bring your own SageMaker image.
3370
+ A custom SageMaker AI image. For more information, see Bring your own SageMaker AI image.
3322
3371
 
3323
3372
  Attributes
3324
3373
  ----------------------
@@ -3356,7 +3405,7 @@ class CodeEditorAppSettings(Base):
3356
3405
  class CodeRepository(Base):
3357
3406
  """
3358
3407
  CodeRepository
3359
- A Git repository that SageMaker automatically displays to users for cloning in the JupyterServer application.
3408
+ A Git repository that SageMaker AI automatically displays to users for cloning in the JupyterServer application.
3360
3409
 
3361
3410
  Attributes
3362
3411
  ----------------------
@@ -3510,6 +3559,101 @@ class CompilationJobSummary(Base):
3510
3559
  last_modified_time: Optional[datetime.datetime] = Unassigned()
3511
3560
 
3512
3561
 
3562
+ class ComputeQuotaResourceConfig(Base):
3563
+ """
3564
+ ComputeQuotaResourceConfig
3565
+ Configuration of the resources used for the compute allocation definition.
3566
+
3567
+ Attributes
3568
+ ----------------------
3569
+ instance_type: The instance type of the instance group for the cluster.
3570
+ count: The number of instances to add to the instance group of a SageMaker HyperPod cluster.
3571
+ """
3572
+
3573
+ instance_type: str
3574
+ count: int
3575
+
3576
+
3577
+ class ResourceSharingConfig(Base):
3578
+ """
3579
+ ResourceSharingConfig
3580
+ Resource sharing configuration.
3581
+
3582
+ Attributes
3583
+ ----------------------
3584
+ strategy: The strategy of how idle compute is shared within the cluster. The following are the options of strategies. DontLend: entities do not lend idle compute. Lend: entities can lend idle compute to entities that can borrow. LendandBorrow: entities can lend idle compute and borrow idle compute from other entities. Default is LendandBorrow.
3585
+ borrow_limit: The limit on how much idle compute can be borrowed.The values can be 1 - 500 percent of idle compute that the team is allowed to borrow. Default is 50.
3586
+ """
3587
+
3588
+ strategy: str
3589
+ borrow_limit: Optional[int] = Unassigned()
3590
+
3591
+
3592
+ class ComputeQuotaConfig(Base):
3593
+ """
3594
+ ComputeQuotaConfig
3595
+ Configuration of the compute allocation definition for an entity. This includes the resource sharing option and the setting to preempt low priority tasks.
3596
+
3597
+ Attributes
3598
+ ----------------------
3599
+ compute_quota_resources: Allocate compute resources by instance types.
3600
+ resource_sharing_config: Resource sharing configuration. This defines how an entity can lend and borrow idle compute with other entities within the cluster.
3601
+ preempt_team_tasks: Allows workloads from within an entity to preempt same-team workloads. When set to LowerPriority, the entity's lower priority tasks are preempted by their own higher priority tasks. Default is LowerPriority.
3602
+ """
3603
+
3604
+ compute_quota_resources: Optional[List[ComputeQuotaResourceConfig]] = Unassigned()
3605
+ resource_sharing_config: Optional[ResourceSharingConfig] = Unassigned()
3606
+ preempt_team_tasks: Optional[str] = Unassigned()
3607
+
3608
+
3609
+ class ComputeQuotaTarget(Base):
3610
+ """
3611
+ ComputeQuotaTarget
3612
+ The target entity to allocate compute resources to.
3613
+
3614
+ Attributes
3615
+ ----------------------
3616
+ team_name: Name of the team to allocate compute resources to.
3617
+ fair_share_weight: Assigned entity fair-share weight. Idle compute will be shared across entities based on these assigned weights. This weight is only used when FairShare is enabled. A weight of 0 is the lowest priority and 100 is the highest. Weight 0 is the default.
3618
+ """
3619
+
3620
+ team_name: str
3621
+ fair_share_weight: Optional[int] = Unassigned()
3622
+
3623
+
3624
+ class ComputeQuotaSummary(Base):
3625
+ """
3626
+ ComputeQuotaSummary
3627
+ Summary of the compute allocation definition.
3628
+
3629
+ Attributes
3630
+ ----------------------
3631
+ compute_quota_arn: ARN of the compute allocation definition.
3632
+ compute_quota_id: ID of the compute allocation definition.
3633
+ name: Name of the compute allocation definition.
3634
+ compute_quota_version: Version of the compute allocation definition.
3635
+ status: Status of the compute allocation definition.
3636
+ cluster_arn: ARN of the cluster.
3637
+ compute_quota_config: Configuration of the compute allocation definition. This includes the resource sharing option, and the setting to preempt low priority tasks.
3638
+ compute_quota_target: The target entity to allocate compute resources to.
3639
+ activation_state: The state of the compute allocation being described. Use to enable or disable compute allocation. Default is Enabled.
3640
+ creation_time: Creation time of the compute allocation definition.
3641
+ last_modified_time: Last modified time of the compute allocation definition.
3642
+ """
3643
+
3644
+ compute_quota_arn: str
3645
+ compute_quota_id: str
3646
+ name: str
3647
+ status: str
3648
+ compute_quota_target: ComputeQuotaTarget
3649
+ creation_time: datetime.datetime
3650
+ compute_quota_version: Optional[int] = Unassigned()
3651
+ cluster_arn: Optional[str] = Unassigned()
3652
+ compute_quota_config: Optional[ComputeQuotaConfig] = Unassigned()
3653
+ activation_state: Optional[str] = Unassigned()
3654
+ last_modified_time: Optional[datetime.datetime] = Unassigned()
3655
+
3656
+
3513
3657
  class ConditionStepMetadata(Base):
3514
3658
  """
3515
3659
  ConditionStepMetadata
@@ -3840,6 +3984,36 @@ class ModelDeployConfig(Base):
3840
3984
  endpoint_name: Optional[Union[str, object]] = Unassigned()
3841
3985
 
3842
3986
 
3987
+ class PriorityClass(Base):
3988
+ """
3989
+ PriorityClass
3990
+ Priority class configuration. When included in PriorityClasses, these class configurations define how tasks are queued.
3991
+
3992
+ Attributes
3993
+ ----------------------
3994
+ name: Name of the priority class.
3995
+ weight: Weight of the priority class. The value is within a range from 0 to 100, where 0 is the default. A weight of 0 is the lowest priority and 100 is the highest. Weight 0 is the default.
3996
+ """
3997
+
3998
+ name: str
3999
+ weight: int
4000
+
4001
+
4002
+ class SchedulerConfig(Base):
4003
+ """
4004
+ SchedulerConfig
4005
+ Cluster policy configuration. This policy is used for task prioritization and fair-share allocation. This helps prioritize critical workloads and distributes idle compute across entities.
4006
+
4007
+ Attributes
4008
+ ----------------------
4009
+ priority_classes: List of the priority classes, PriorityClass, of the cluster policy. When specified, these class configurations define how tasks are queued.
4010
+ fair_share: When enabled, entities borrow idle compute based on their assigned FairShareWeight. When disabled, entities borrow idle compute based on a first-come first-serve basis. Default is Enabled.
4011
+ """
4012
+
4013
+ priority_classes: Optional[List[PriorityClass]] = Unassigned()
4014
+ fair_share: Optional[str] = Unassigned()
4015
+
4016
+
3843
4017
  class InputConfig(Base):
3844
4018
  """
3845
4019
  InputConfig
@@ -3883,11 +4057,11 @@ class OutputConfig(Base):
3883
4057
 
3884
4058
  Attributes
3885
4059
  ----------------------
3886
- s3_output_location: Identifies the S3 bucket where you want Amazon SageMaker to store the model artifacts. For example, s3://bucket-name/key-name-prefix.
4060
+ s3_output_location: Identifies the S3 bucket where you want Amazon SageMaker AI to store the model artifacts. For example, s3://bucket-name/key-name-prefix.
3887
4061
  target_device: Identifies the target device or the machine learning instance that you want to run your model on after the compilation has completed. Alternatively, you can specify OS, architecture, and accelerator using TargetPlatform fields. It can be used instead of TargetPlatform. Currently ml_trn1 is available only in US East (N. Virginia) Region, and ml_inf2 is available only in US East (Ohio) Region.
3888
4062
  target_platform: Contains information about a target platform that you want your model to run on, such as OS, architecture, and accelerators. It is an alternative of TargetDevice. The following examples show how to configure the TargetPlatform and CompilerOptions JSON strings for popular target platforms: Raspberry Pi 3 Model B+ "TargetPlatform": {"Os": "LINUX", "Arch": "ARM_EABIHF"}, "CompilerOptions": {'mattr': ['+neon']} Jetson TX2 "TargetPlatform": {"Os": "LINUX", "Arch": "ARM64", "Accelerator": "NVIDIA"}, "CompilerOptions": {'gpu-code': 'sm_62', 'trt-ver': '6.0.1', 'cuda-ver': '10.0'} EC2 m5.2xlarge instance OS "TargetPlatform": {"Os": "LINUX", "Arch": "X86_64", "Accelerator": "NVIDIA"}, "CompilerOptions": {'mcpu': 'skylake-avx512'} RK3399 "TargetPlatform": {"Os": "LINUX", "Arch": "ARM64", "Accelerator": "MALI"} ARMv7 phone (CPU) "TargetPlatform": {"Os": "ANDROID", "Arch": "ARM_EABI"}, "CompilerOptions": {'ANDROID_PLATFORM': 25, 'mattr': ['+neon']} ARMv8 phone (CPU) "TargetPlatform": {"Os": "ANDROID", "Arch": "ARM64"}, "CompilerOptions": {'ANDROID_PLATFORM': 29}
3889
4063
  compiler_options: Specifies additional parameters for compiler options in JSON format. The compiler options are TargetPlatform specific. It is required for NVIDIA accelerators and highly recommended for CPU compilations. For any other cases, it is optional to specify CompilerOptions. DTYPE: Specifies the data type for the input. When compiling for ml_* (except for ml_inf) instances using PyTorch framework, provide the data type (dtype) of the model's input. "float32" is used if "DTYPE" is not specified. Options for data type are: float32: Use either "float" or "float32". int64: Use either "int64" or "long". For example, {"dtype" : "float32"}. CPU: Compilation for CPU supports the following compiler options. mcpu: CPU micro-architecture. For example, {'mcpu': 'skylake-avx512'} mattr: CPU flags. For example, {'mattr': ['+neon', '+vfpv4']} ARM: Details of ARM CPU compilations. NEON: NEON is an implementation of the Advanced SIMD extension used in ARMv7 processors. For example, add {'mattr': ['+neon']} to the compiler options if compiling for ARM 32-bit platform with the NEON support. NVIDIA: Compilation for NVIDIA GPU supports the following compiler options. gpu_code: Specifies the targeted architecture. trt-ver: Specifies the TensorRT versions in x.y.z. format. cuda-ver: Specifies the CUDA version in x.y format. For example, {'gpu-code': 'sm_72', 'trt-ver': '6.0.1', 'cuda-ver': '10.1'} ANDROID: Compilation for the Android OS supports the following compiler options: ANDROID_PLATFORM: Specifies the Android API levels. Available levels range from 21 to 29. For example, {'ANDROID_PLATFORM': 28}. mattr: Add {'mattr': ['+neon']} to compiler options if compiling for ARM 32-bit platform with NEON support. INFERENTIA: Compilation for target ml_inf1 uses compiler options passed in as a JSON string. For example, "CompilerOptions": "\"--verbose 1 --num-neuroncores 2 -O2\"". For information about supported compiler options, see Neuron Compiler CLI Reference Guide. CoreML: Compilation for the CoreML OutputConfig TargetDevice supports the following compiler options: class_labels: Specifies the classification labels file name inside input tar.gz file. For example, {"class_labels": "imagenet_labels_1000.txt"}. Labels inside the txt file should be separated by newlines.
3890
- kms_key_id: The Amazon Web Services Key Management Service key (Amazon Web Services KMS) that Amazon SageMaker uses to encrypt your output models with Amazon S3 server-side encryption after compilation job. If you don't provide a KMS key ID, Amazon SageMaker uses the default KMS key for Amazon S3 for your role's account. For more information, see KMS-Managed Encryption Keys in the Amazon Simple Storage Service Developer Guide. The KmsKeyId can be any of the following formats: Key ID: 1234abcd-12ab-34cd-56ef-1234567890ab Key ARN: arn:aws:kms:us-west-2:111122223333:key/1234abcd-12ab-34cd-56ef-1234567890ab Alias name: alias/ExampleAlias Alias name ARN: arn:aws:kms:us-west-2:111122223333:alias/ExampleAlias
4064
+ kms_key_id: The Amazon Web Services Key Management Service key (Amazon Web Services KMS) that Amazon SageMaker AI uses to encrypt your output models with Amazon S3 server-side encryption after compilation job. If you don't provide a KMS key ID, Amazon SageMaker AI uses the default KMS key for Amazon S3 for your role's account. For more information, see KMS-Managed Encryption Keys in the Amazon Simple Storage Service Developer Guide. The KmsKeyId can be any of the following formats: Key ID: 1234abcd-12ab-34cd-56ef-1234567890ab Key ARN: arn:aws:kms:us-west-2:111122223333:key/1234abcd-12ab-34cd-56ef-1234567890ab Alias name: alias/ExampleAlias Alias name ARN: arn:aws:kms:us-west-2:111122223333:alias/ExampleAlias
3891
4065
  """
3892
4066
 
3893
4067
  s3_output_location: str
@@ -3900,7 +4074,7 @@ class OutputConfig(Base):
3900
4074
  class NeoVpcConfig(Base):
3901
4075
  """
3902
4076
  NeoVpcConfig
3903
- The VpcConfig configuration object that specifies the VPC that you want the compilation jobs to connect to. For more information on controlling access to your Amazon S3 buckets used for compilation job, see Give Amazon SageMaker Compilation Jobs Access to Resources in Your Amazon VPC.
4077
+ The VpcConfig configuration object that specifies the VPC that you want the compilation jobs to connect to. For more information on controlling access to your Amazon S3 buckets used for compilation job, see Give Amazon SageMaker AI Compilation Jobs Access to Resources in Your Amazon VPC.
3904
4078
 
3905
4079
  Attributes
3906
4080
  ----------------------
@@ -4033,8 +4207,8 @@ class MonitoringS3Output(Base):
4033
4207
 
4034
4208
  Attributes
4035
4209
  ----------------------
4036
- s3_uri: A URI that identifies the Amazon S3 storage location where Amazon SageMaker saves the results of a monitoring job.
4037
- local_path: The local path to the Amazon S3 storage location where Amazon SageMaker saves the results of a monitoring job. LocalPath is an absolute path for the output data.
4210
+ s3_uri: A URI that identifies the Amazon S3 storage location where Amazon SageMaker AI saves the results of a monitoring job.
4211
+ local_path: The local path to the Amazon S3 storage location where Amazon SageMaker AI saves the results of a monitoring job. LocalPath is an absolute path for the output data.
4038
4212
  s3_upload_mode: Whether to upload the results of the monitoring job continuously or after the job completes.
4039
4213
  """
4040
4214
 
@@ -4064,7 +4238,7 @@ class MonitoringOutputConfig(Base):
4064
4238
  Attributes
4065
4239
  ----------------------
4066
4240
  monitoring_outputs: Monitoring outputs for monitoring jobs. This is where the output of the periodic monitoring jobs is uploaded.
4067
- kms_key_id: The Key Management Service (KMS) key that Amazon SageMaker uses to encrypt the model artifacts at rest using Amazon S3 server-side encryption.
4241
+ kms_key_id: The Key Management Service (KMS) key that Amazon SageMaker AI uses to encrypt the model artifacts at rest using Amazon S3 server-side encryption.
4068
4242
  """
4069
4243
 
4070
4244
  monitoring_outputs: List[MonitoringOutput]
@@ -4081,7 +4255,7 @@ class MonitoringClusterConfig(Base):
4081
4255
  instance_count: The number of ML compute instances to use in the model monitoring job. For distributed processing jobs, specify a value greater than 1. The default value is 1.
4082
4256
  instance_type: The ML compute instance type for the processing job.
4083
4257
  volume_size_in_gb: The size of the ML storage volume, in gigabytes, that you want to provision. You must specify sufficient ML storage for your scenario.
4084
- volume_kms_key_id: The Key Management Service (KMS) key that Amazon SageMaker uses to encrypt data on the storage volume attached to the ML compute instance(s) that run the model monitoring job.
4258
+ volume_kms_key_id: The Key Management Service (KMS) key that Amazon SageMaker AI uses to encrypt data on the storage volume attached to the ML compute instance(s) that run the model monitoring job.
4085
4259
  """
4086
4260
 
4087
4261
  instance_count: int
@@ -4155,7 +4329,7 @@ class EdgeOutputConfig(Base):
4155
4329
  class SharingSettings(Base):
4156
4330
  """
4157
4331
  SharingSettings
4158
- Specifies options for sharing Amazon SageMaker Studio notebooks. These settings are specified as part of DefaultUserSettings when the CreateDomain API is called, and as part of UserSettings when the CreateUserProfile API is called. When SharingSettings is not specified, notebook sharing isn't allowed.
4332
+ Specifies options for sharing Amazon SageMaker AI Studio notebooks. These settings are specified as part of DefaultUserSettings when the CreateDomain API is called, and as part of UserSettings when the CreateUserProfile API is called. When SharingSettings is not specified, notebook sharing isn't allowed.
4159
4333
 
4160
4334
  Attributes
4161
4335
  ----------------------
@@ -4176,9 +4350,9 @@ class JupyterServerAppSettings(Base):
4176
4350
 
4177
4351
  Attributes
4178
4352
  ----------------------
4179
- default_resource_spec: The default instance type and the Amazon Resource Name (ARN) of the default SageMaker image used by the JupyterServer app. If you use the LifecycleConfigArns parameter, then this parameter is also required.
4353
+ default_resource_spec: The default instance type and the Amazon Resource Name (ARN) of the default SageMaker AI image used by the JupyterServer app. If you use the LifecycleConfigArns parameter, then this parameter is also required.
4180
4354
  lifecycle_config_arns: The Amazon Resource Name (ARN) of the Lifecycle Configurations attached to the JupyterServerApp. If you use this parameter, the DefaultResourceSpec parameter is also required. To remove a Lifecycle Config, you must set LifecycleConfigArns to an empty list.
4181
- code_repositories: A list of Git repositories that SageMaker automatically displays to users for cloning in the JupyterServer application.
4355
+ code_repositories: A list of Git repositories that SageMaker AI automatically displays to users for cloning in the JupyterServer application.
4182
4356
  """
4183
4357
 
4184
4358
  default_resource_spec: Optional[ResourceSpec] = Unassigned()
@@ -4193,8 +4367,8 @@ class KernelGatewayAppSettings(Base):
4193
4367
 
4194
4368
  Attributes
4195
4369
  ----------------------
4196
- default_resource_spec: The default instance type and the Amazon Resource Name (ARN) of the default SageMaker image used by the KernelGateway app. The Amazon SageMaker Studio UI does not use the default instance type value set here. The default instance type set here is used when Apps are created using the CLI or CloudFormation and the instance type parameter value is not passed.
4197
- custom_images: A list of custom SageMaker images that are configured to run as a KernelGateway app.
4370
+ default_resource_spec: The default instance type and the Amazon Resource Name (ARN) of the default SageMaker AI image used by the KernelGateway app. The Amazon SageMaker AI Studio UI does not use the default instance type value set here. The default instance type set here is used when Apps are created using the CLI or CloudFormation and the instance type parameter value is not passed.
4371
+ custom_images: A list of custom SageMaker AI images that are configured to run as a KernelGateway app.
4198
4372
  lifecycle_config_arns: The Amazon Resource Name (ARN) of the Lifecycle Configurations attached to the the user profile or domain. To remove a Lifecycle Config, you must set LifecycleConfigArns to an empty list.
4199
4373
  """
4200
4374
 
@@ -4210,7 +4384,7 @@ class TensorBoardAppSettings(Base):
4210
4384
 
4211
4385
  Attributes
4212
4386
  ----------------------
4213
- default_resource_spec: The default instance type and the Amazon Resource Name (ARN) of the SageMaker image created on the instance.
4387
+ default_resource_spec: The default instance type and the Amazon Resource Name (ARN) of the SageMaker AI image created on the instance.
4214
4388
  """
4215
4389
 
4216
4390
  default_resource_spec: Optional[ResourceSpec] = Unassigned()
@@ -4239,7 +4413,7 @@ class RSessionAppSettings(Base):
4239
4413
  Attributes
4240
4414
  ----------------------
4241
4415
  default_resource_spec
4242
- custom_images: A list of custom SageMaker images that are configured to run as a RSession app.
4416
+ custom_images: A list of custom SageMaker AI images that are configured to run as a RSession app.
4243
4417
  """
4244
4418
 
4245
4419
  default_resource_spec: Optional[ResourceSpec] = Unassigned()
@@ -4332,11 +4506,26 @@ class CustomPosixUserConfig(Base):
4332
4506
  class EFSFileSystemConfig(Base):
4333
4507
  """
4334
4508
  EFSFileSystemConfig
4335
- The settings for assigning a custom Amazon EFS file system to a user profile or space for an Amazon SageMaker Domain.
4509
+ The settings for assigning a custom Amazon EFS file system to a user profile or space for an Amazon SageMaker AI Domain.
4336
4510
 
4337
4511
  Attributes
4338
4512
  ----------------------
4339
4513
  file_system_id: The ID of your Amazon EFS file system.
4514
+ file_system_path: The path to the file system directory that is accessible in Amazon SageMaker AI Studio. Permitted users can access only this directory and below.
4515
+ """
4516
+
4517
+ file_system_id: str
4518
+ file_system_path: Optional[str] = Unassigned()
4519
+
4520
+
4521
+ class FSxLustreFileSystemConfig(Base):
4522
+ """
4523
+ FSxLustreFileSystemConfig
4524
+ The settings for assigning a custom Amazon FSx for Lustre file system to a user profile or space for an Amazon SageMaker Domain.
4525
+
4526
+ Attributes
4527
+ ----------------------
4528
+ file_system_id: The globally unique, 17-digit, ID of the file system, assigned by Amazon FSx for Lustre.
4340
4529
  file_system_path: The path to the file system directory that is accessible in Amazon SageMaker Studio. Permitted users can access only this directory and below.
4341
4530
  """
4342
4531
 
@@ -4347,14 +4536,16 @@ class EFSFileSystemConfig(Base):
4347
4536
  class CustomFileSystemConfig(Base):
4348
4537
  """
4349
4538
  CustomFileSystemConfig
4350
- The settings for assigning a custom file system to a user profile or space for an Amazon SageMaker Domain. Permitted users can access this file system in Amazon SageMaker Studio.
4539
+ The settings for assigning a custom file system to a user profile or space for an Amazon SageMaker AI Domain. Permitted users can access this file system in Amazon SageMaker AI Studio.
4351
4540
 
4352
4541
  Attributes
4353
4542
  ----------------------
4354
4543
  efs_file_system_config: The settings for a custom Amazon EFS file system.
4544
+ f_sx_lustre_file_system_config: The settings for a custom Amazon FSx for Lustre file system.
4355
4545
  """
4356
4546
 
4357
4547
  efs_file_system_config: Optional[EFSFileSystemConfig] = Unassigned()
4548
+ f_sx_lustre_file_system_config: Optional[FSxLustreFileSystemConfig] = Unassigned()
4358
4549
 
4359
4550
 
4360
4551
  class HiddenSageMakerImage(Base):
@@ -4399,8 +4590,8 @@ class UserSettings(Base):
4399
4590
  Attributes
4400
4591
  ----------------------
4401
4592
  execution_role: The execution role for the user. SageMaker applies this setting only to private spaces that the user creates in the domain. SageMaker doesn't apply this setting to shared spaces.
4402
- security_groups: The security groups for the Amazon Virtual Private Cloud (VPC) that the domain uses for communication. Optional when the CreateDomain.AppNetworkAccessType parameter is set to PublicInternetOnly. Required when the CreateDomain.AppNetworkAccessType parameter is set to VpcOnly, unless specified as part of the DefaultUserSettings for the domain. Amazon SageMaker adds a security group to allow NFS traffic from Amazon SageMaker Studio. Therefore, the number of security groups that you can specify is one less than the maximum number shown. SageMaker applies these settings only to private spaces that the user creates in the domain. SageMaker doesn't apply these settings to shared spaces.
4403
- sharing_settings: Specifies options for sharing Amazon SageMaker Studio notebooks.
4593
+ security_groups: The security groups for the Amazon Virtual Private Cloud (VPC) that the domain uses for communication. Optional when the CreateDomain.AppNetworkAccessType parameter is set to PublicInternetOnly. Required when the CreateDomain.AppNetworkAccessType parameter is set to VpcOnly, unless specified as part of the DefaultUserSettings for the domain. Amazon SageMaker AI adds a security group to allow NFS traffic from Amazon SageMaker AI Studio. Therefore, the number of security groups that you can specify is one less than the maximum number shown. SageMaker applies these settings only to private spaces that the user creates in the domain. SageMaker doesn't apply these settings to shared spaces.
4594
+ sharing_settings: Specifies options for sharing Amazon SageMaker AI Studio notebooks.
4404
4595
  jupyter_server_app_settings: The Jupyter server's app settings.
4405
4596
  kernel_gateway_app_settings: The kernel gateway app settings.
4406
4597
  tensor_board_app_settings: The TensorBoard app settings.
@@ -4413,7 +4604,7 @@ class UserSettings(Base):
4413
4604
  default_landing_uri: The default experience that the user is directed to when accessing the domain. The supported values are: studio::: Indicates that Studio is the default experience. This value can only be passed if StudioWebPortal is set to ENABLED. app:JupyterServer:: Indicates that Studio Classic is the default experience.
4414
4605
  studio_web_portal: Whether the user can access Studio. If this value is set to DISABLED, the user cannot access Studio, even if that is the default experience for the domain.
4415
4606
  custom_posix_user_config: Details about the POSIX identity that is used for file system operations. SageMaker applies these settings only to private spaces that the user creates in the domain. SageMaker doesn't apply these settings to shared spaces.
4416
- custom_file_system_configs: The settings for assigning a custom file system to a user profile. Permitted users can access this file system in Amazon SageMaker Studio. SageMaker applies these settings only to private spaces that the user creates in the domain. SageMaker doesn't apply these settings to shared spaces.
4607
+ custom_file_system_configs: The settings for assigning a custom file system to a user profile. Permitted users can access this file system in Amazon SageMaker AI Studio. SageMaker applies these settings only to private spaces that the user creates in the domain. SageMaker doesn't apply these settings to shared spaces.
4417
4608
  studio_web_portal_settings: Studio settings. If these settings are applied on a user level, they take priority over the settings applied on a domain level.
4418
4609
  auto_mount_home_efs: Indicates whether auto-mounting of an EFS volume is supported for the user profile. The DefaultAsDomain value is only supported for user profiles. Do not use the DefaultAsDomain value when setting this parameter for a domain. SageMaker applies this setting only to private spaces that the user creates in the domain. SageMaker doesn't apply this setting to shared spaces.
4419
4610
  """
@@ -4481,7 +4672,7 @@ class DomainSettings(Base):
4481
4672
  ----------------------
4482
4673
  security_group_ids: The security groups for the Amazon Virtual Private Cloud that the Domain uses for communication between Domain-level apps and user apps.
4483
4674
  r_studio_server_pro_domain_settings: A collection of settings that configure the RStudioServerPro Domain-level app.
4484
- execution_role_identity_config: The configuration for attaching a SageMaker user profile name to the execution role as a sts:SourceIdentity key.
4675
+ execution_role_identity_config: The configuration for attaching a SageMaker AI user profile name to the execution role as a sts:SourceIdentity key.
4485
4676
  docker_settings: A collection of settings that configure the domain's Docker interaction.
4486
4677
  amazon_q_settings: A collection of settings that configure the Amazon Q experience within the domain. The AuthMode that you use to create the domain must be SSO.
4487
4678
  """
@@ -4507,7 +4698,7 @@ class DefaultSpaceSettings(Base):
4507
4698
  jupyter_lab_app_settings
4508
4699
  space_storage_settings
4509
4700
  custom_posix_user_config
4510
- custom_file_system_configs: The settings for assigning a custom file system to a domain. Permitted users can access this file system in Amazon SageMaker Studio.
4701
+ custom_file_system_configs: The settings for assigning a custom file system to a domain. Permitted users can access this file system in Amazon SageMaker AI Studio.
4511
4702
  """
4512
4703
 
4513
4704
  execution_role: Optional[str] = Unassigned()
@@ -4690,16 +4881,16 @@ class ProductionVariant(Base):
4690
4881
  class DataCaptureConfig(Base):
4691
4882
  """
4692
4883
  DataCaptureConfig
4693
- Configuration to control how SageMaker captures inference data.
4884
+ Configuration to control how SageMaker AI captures inference data.
4694
4885
 
4695
4886
  Attributes
4696
4887
  ----------------------
4697
4888
  enable_capture: Whether data capture should be enabled or disabled (defaults to enabled).
4698
- initial_sampling_percentage: The percentage of requests SageMaker will capture. A lower value is recommended for Endpoints with high traffic.
4889
+ initial_sampling_percentage: The percentage of requests SageMaker AI will capture. A lower value is recommended for Endpoints with high traffic.
4699
4890
  destination_s3_uri: The Amazon S3 location used to capture the data.
4700
- kms_key_id: The Amazon Resource Name (ARN) of an Key Management Service key that SageMaker uses to encrypt the captured data at rest using Amazon S3 server-side encryption. The KmsKeyId can be any of the following formats: Key ID: 1234abcd-12ab-34cd-56ef-1234567890ab Key ARN: arn:aws:kms:us-west-2:111122223333:key/1234abcd-12ab-34cd-56ef-1234567890ab Alias name: alias/ExampleAlias Alias name ARN: arn:aws:kms:us-west-2:111122223333:alias/ExampleAlias
4891
+ kms_key_id: The Amazon Resource Name (ARN) of an Key Management Service key that SageMaker AI uses to encrypt the captured data at rest using Amazon S3 server-side encryption. The KmsKeyId can be any of the following formats: Key ID: 1234abcd-12ab-34cd-56ef-1234567890ab Key ARN: arn:aws:kms:us-west-2:111122223333:key/1234abcd-12ab-34cd-56ef-1234567890ab Alias name: alias/ExampleAlias Alias name ARN: arn:aws:kms:us-west-2:111122223333:alias/ExampleAlias
4701
4892
  capture_options: Specifies data Model Monitor will capture. You can configure whether to collect only input, only output, or both
4702
- capture_content_type_header: Configuration specifying how to treat different headers. If no headers are specified SageMaker will by default base64 encode when capturing the data.
4893
+ capture_content_type_header: Configuration specifying how to treat different headers. If no headers are specified SageMaker AI will by default base64 encode when capturing the data.
4703
4894
  """
4704
4895
 
4705
4896
  initial_sampling_percentage: int
@@ -5353,7 +5544,7 @@ class InferenceComponentSpecification(Base):
5353
5544
 
5354
5545
  Attributes
5355
5546
  ----------------------
5356
- model_name: The name of an existing SageMaker model object in your account that you want to deploy with the inference component.
5547
+ model_name: The name of an existing SageMaker AI model object in your account that you want to deploy with the inference component.
5357
5548
  container: Defines a container that provides the runtime environment for a model that you deploy with an inference component.
5358
5549
  startup_parameters: Settings that take effect while the model container starts up.
5359
5550
  compute_resource_requirements: The compute resources allocated to run the model, plus any adapter models, that you assign to the inference component. Omit this parameter if your request is meant to create an adapter inference component. An adapter inference component is loaded by a base inference component, and it uses the compute resources of the base inference component.
@@ -6124,12 +6315,14 @@ class SourceAlgorithm(Base):
6124
6315
  ----------------------
6125
6316
  model_data_url: The Amazon S3 path where the model artifacts, which result from model training, are stored. This path must point to a single gzip compressed tar archive (.tar.gz suffix). The model artifacts must be in an S3 bucket that is in the same Amazon Web Services region as the algorithm.
6126
6317
  model_data_source: Specifies the location of ML model data to deploy during endpoint creation.
6318
+ model_data_e_tag: The ETag associated with Model Data URL.
6127
6319
  algorithm_name: The name of an algorithm that was used to create the model package. The algorithm must be either an algorithm resource in your SageMaker account or an algorithm in Amazon Web Services Marketplace that you are subscribed to.
6128
6320
  """
6129
6321
 
6130
6322
  algorithm_name: Union[str, object]
6131
6323
  model_data_url: Optional[str] = Unassigned()
6132
6324
  model_data_source: Optional[ModelDataSource] = Unassigned()
6325
+ model_data_e_tag: Optional[str] = Unassigned()
6133
6326
 
6134
6327
 
6135
6328
  class SourceAlgorithmSpecification(Base):
@@ -6414,7 +6607,7 @@ class ScheduleConfig(Base):
6414
6607
 
6415
6608
  Attributes
6416
6609
  ----------------------
6417
- schedule_expression: A cron expression that describes details about the monitoring schedule. The supported cron expressions are: If you want to set the job to start every hour, use the following: Hourly: cron(0 \* ? \* \* \*) If you want to start the job daily: cron(0 [00-23] ? \* \* \*) If you want to run the job one time, immediately, use the following keyword: NOW For example, the following are valid cron expressions: Daily at noon UTC: cron(0 12 ? \* \* \*) Daily at midnight UTC: cron(0 0 ? \* \* \*) To support running every 6, 12 hours, the following are also supported: cron(0 [00-23]/[01-24] ? \* \* \*) For example, the following are valid cron expressions: Every 12 hours, starting at 5pm UTC: cron(0 17/12 ? \* \* \*) Every two hours starting at midnight: cron(0 0/2 ? \* \* \*) Even though the cron expression is set to start at 5PM UTC, note that there could be a delay of 0-20 minutes from the actual requested time to run the execution. We recommend that if you would like a daily schedule, you do not provide this parameter. Amazon SageMaker will pick a time for running every day. You can also specify the keyword NOW to run the monitoring job immediately, one time, without recurring.
6610
+ schedule_expression: A cron expression that describes details about the monitoring schedule. The supported cron expressions are: If you want to set the job to start every hour, use the following: Hourly: cron(0 \* ? \* \* \*) If you want to start the job daily: cron(0 [00-23] ? \* \* \*) If you want to run the job one time, immediately, use the following keyword: NOW For example, the following are valid cron expressions: Daily at noon UTC: cron(0 12 ? \* \* \*) Daily at midnight UTC: cron(0 0 ? \* \* \*) To support running every 6, 12 hours, the following are also supported: cron(0 [00-23]/[01-24] ? \* \* \*) For example, the following are valid cron expressions: Every 12 hours, starting at 5pm UTC: cron(0 17/12 ? \* \* \*) Every two hours starting at midnight: cron(0 0/2 ? \* \* \*) Even though the cron expression is set to start at 5PM UTC, note that there could be a delay of 0-20 minutes from the actual requested time to run the execution. We recommend that if you would like a daily schedule, you do not provide this parameter. Amazon SageMaker AI will pick a time for running every day. You can also specify the keyword NOW to run the monitoring job immediately, one time, without recurring.
6418
6611
  data_analysis_start_time: Sets the start time for a monitoring job window. Express this time as an offset to the times that you schedule your monitoring jobs to run. You schedule monitoring jobs with the ScheduleExpression parameter. Specify this offset in ISO 8601 duration format. For example, if you want to monitor the five hours of data in your dataset that precede the start of each monitoring job, you would specify: "-PT5H". The start time that you specify must not precede the end time that you specify by more than 24 hours. You specify the end time with the DataAnalysisEndTime parameter. If you set ScheduleExpression to NOW, this parameter is required.
6419
6612
  data_analysis_end_time: Sets the end time for a monitoring job window. Express this time as an offset to the times that you schedule your monitoring jobs to run. You schedule monitoring jobs with the ScheduleExpression parameter. Specify this offset in ISO 8601 duration format. For example, if you want to end the window one hour before the start of each monitoring job, you would specify: "-PT1H". The end time that you specify must not follow the start time that you specify by more than 24 hours. You specify the start time with the DataAnalysisStartTime parameter. If you set ScheduleExpression to NOW, this parameter is required.
6420
6613
  """
@@ -6502,14 +6695,14 @@ class MonitoringJobDefinition(Base):
6502
6695
  Attributes
6503
6696
  ----------------------
6504
6697
  baseline_config: Baseline configuration used to validate that the data conforms to the specified constraints and statistics
6505
- monitoring_inputs: The array of inputs for the monitoring job. Currently we support monitoring an Amazon SageMaker Endpoint.
6698
+ monitoring_inputs: The array of inputs for the monitoring job. Currently we support monitoring an Amazon SageMaker AI Endpoint.
6506
6699
  monitoring_output_config: The array of outputs from the monitoring job to be uploaded to Amazon S3.
6507
6700
  monitoring_resources: Identifies the resources, ML compute instances, and ML storage volumes to deploy for a monitoring job. In distributed processing, you specify more than one instance.
6508
6701
  monitoring_app_specification: Configures the monitoring job to run a specified Docker container image.
6509
6702
  stopping_condition: Specifies a time limit for how long the monitoring job is allowed to run.
6510
6703
  environment: Sets the environment variables in the Docker container.
6511
6704
  network_config: Specifies networking options for an monitoring job.
6512
- role_arn: The Amazon Resource Name (ARN) of an IAM role that Amazon SageMaker can assume to perform tasks on your behalf.
6705
+ role_arn: The Amazon Resource Name (ARN) of an IAM role that Amazon SageMaker AI can assume to perform tasks on your behalf.
6513
6706
  """
6514
6707
 
6515
6708
  monitoring_inputs: List[MonitoringInput]
@@ -6701,6 +6894,34 @@ class OptimizationVpcConfig(Base):
6701
6894
  subnets: List[str]
6702
6895
 
6703
6896
 
6897
+ class PartnerAppMaintenanceConfig(Base):
6898
+ """
6899
+ PartnerAppMaintenanceConfig
6900
+ Maintenance configuration settings for the SageMaker Partner AI App.
6901
+
6902
+ Attributes
6903
+ ----------------------
6904
+ maintenance_window_start: The day and time of the week in Coordinated Universal Time (UTC) 24-hour standard time that weekly maintenance updates are scheduled. This value must take the following format: 3-letter-day:24-h-hour:minute. For example: TUE:03:30.
6905
+ """
6906
+
6907
+ maintenance_window_start: Optional[str] = Unassigned()
6908
+
6909
+
6910
+ class PartnerAppConfig(Base):
6911
+ """
6912
+ PartnerAppConfig
6913
+ Configuration settings for the SageMaker Partner AI App.
6914
+
6915
+ Attributes
6916
+ ----------------------
6917
+ admin_users: The list of users that are given admin access to the SageMaker Partner AI App.
6918
+ arguments: This is a map of required inputs for a SageMaker Partner AI App. Based on the application type, the map is populated with a key and value pair that is specific to the user and application.
6919
+ """
6920
+
6921
+ admin_users: Optional[List[str]] = Unassigned()
6922
+ arguments: Optional[Dict[str, str]] = Unassigned()
6923
+
6924
+
6704
6925
  class PipelineDefinitionS3Location(Base):
6705
6926
  """
6706
6927
  PipelineDefinitionS3Location
@@ -7072,7 +7293,7 @@ class SpaceStorageSettings(Base):
7072
7293
  class EFSFileSystem(Base):
7073
7294
  """
7074
7295
  EFSFileSystem
7075
- A file system, created by you in Amazon EFS, that you assign to a user profile or space for an Amazon SageMaker Domain. Permitted users can access this file system in Amazon SageMaker Studio.
7296
+ A file system, created by you in Amazon EFS, that you assign to a user profile or space for an Amazon SageMaker AI Domain. Permitted users can access this file system in Amazon SageMaker AI Studio.
7076
7297
 
7077
7298
  Attributes
7078
7299
  ----------------------
@@ -7082,17 +7303,32 @@ class EFSFileSystem(Base):
7082
7303
  file_system_id: str
7083
7304
 
7084
7305
 
7306
+ class FSxLustreFileSystem(Base):
7307
+ """
7308
+ FSxLustreFileSystem
7309
+ A custom file system in Amazon FSx for Lustre.
7310
+
7311
+ Attributes
7312
+ ----------------------
7313
+ file_system_id: Amazon FSx for Lustre file system ID.
7314
+ """
7315
+
7316
+ file_system_id: str
7317
+
7318
+
7085
7319
  class CustomFileSystem(Base):
7086
7320
  """
7087
7321
  CustomFileSystem
7088
- A file system, created by you, that you assign to a user profile or space for an Amazon SageMaker Domain. Permitted users can access this file system in Amazon SageMaker Studio.
7322
+ A file system, created by you, that you assign to a user profile or space for an Amazon SageMaker AI Domain. Permitted users can access this file system in Amazon SageMaker AI Studio.
7089
7323
 
7090
7324
  Attributes
7091
7325
  ----------------------
7092
7326
  efs_file_system: A custom file system in Amazon EFS.
7327
+ f_sx_lustre_file_system: A custom file system in Amazon FSx for Lustre.
7093
7328
  """
7094
7329
 
7095
7330
  efs_file_system: Optional[EFSFileSystem] = Unassigned()
7331
+ f_sx_lustre_file_system: Optional[FSxLustreFileSystem] = Unassigned()
7096
7332
 
7097
7333
 
7098
7334
  class SpaceSettings(Base):
@@ -7106,9 +7342,9 @@ class SpaceSettings(Base):
7106
7342
  kernel_gateway_app_settings
7107
7343
  code_editor_app_settings: The Code Editor application settings.
7108
7344
  jupyter_lab_app_settings: The settings for the JupyterLab application.
7109
- app_type: The type of app created within the space.
7345
+ app_type: The type of app created within the space. If using the UpdateSpace API, you can't change the app type of your space by specifying a different value for this field.
7110
7346
  space_storage_settings: The storage settings for a space.
7111
- custom_file_systems: A file system, created by you, that you assign to a space for an Amazon SageMaker Domain. Permitted users can access this file system in Amazon SageMaker Studio.
7347
+ custom_file_systems: A file system, created by you, that you assign to a space for an Amazon SageMaker AI Domain. Permitted users can access this file system in Amazon SageMaker AI Studio.
7112
7348
  """
7113
7349
 
7114
7350
  jupyter_server_app_settings: Optional[JupyterServerAppSettings] = Unassigned()
@@ -8137,7 +8373,7 @@ class InferenceComponentSpecificationSummary(Base):
8137
8373
 
8138
8374
  Attributes
8139
8375
  ----------------------
8140
- model_name: The name of the SageMaker model object that is deployed with the inference component.
8376
+ model_name: The name of the SageMaker AI model object that is deployed with the inference component.
8141
8377
  container: Details about the container that provides the runtime environment for the model that is deployed with the inference component.
8142
8378
  startup_parameters: Settings that take effect while the model container starts up.
8143
8379
  compute_resource_requirements: The compute resources allocated to run the model, plus any adapter models, that you assign to the inference component.
@@ -8464,6 +8700,21 @@ class OptimizationOutput(Base):
8464
8700
  recommended_inference_image: Optional[str] = Unassigned()
8465
8701
 
8466
8702
 
8703
+ class ErrorInfo(Base):
8704
+ """
8705
+ ErrorInfo
8706
+ This is an error field object that contains the error code and the reason for an operation failure.
8707
+
8708
+ Attributes
8709
+ ----------------------
8710
+ code: The error code for an invalid or failed operation.
8711
+ reason: The failure reason for the operation.
8712
+ """
8713
+
8714
+ code: Optional[str] = Unassigned()
8715
+ reason: Optional[str] = Unassigned()
8716
+
8717
+
8467
8718
  class DescribePipelineDefinitionForExecutionResponse(Base):
8468
8719
  """
8469
8720
  DescribePipelineDefinitionForExecutionResponse
@@ -8631,6 +8882,35 @@ class ProfilerRuleEvaluationStatus(Base):
8631
8882
  last_modified_time: Optional[datetime.datetime] = Unassigned()
8632
8883
 
8633
8884
 
8885
+ class ReservedCapacitySummary(Base):
8886
+ """
8887
+ ReservedCapacitySummary
8888
+ Details of a reserved capacity for the training plan. For more information about how to reserve GPU capacity for your SageMaker HyperPod clusters using Amazon SageMaker Training Plan, see CreateTrainingPlan .
8889
+
8890
+ Attributes
8891
+ ----------------------
8892
+ reserved_capacity_arn: The Amazon Resource Name (ARN); of the reserved capacity.
8893
+ instance_type: The instance type for the reserved capacity.
8894
+ total_instance_count: The total number of instances in the reserved capacity.
8895
+ status: The current status of the reserved capacity.
8896
+ availability_zone: The availability zone for the reserved capacity.
8897
+ duration_hours: The number of whole hours in the total duration for this reserved capacity.
8898
+ duration_minutes: The additional minutes beyond whole hours in the total duration for this reserved capacity.
8899
+ start_time: The start time of the reserved capacity.
8900
+ end_time: The end time of the reserved capacity.
8901
+ """
8902
+
8903
+ reserved_capacity_arn: str
8904
+ instance_type: str
8905
+ total_instance_count: int
8906
+ status: str
8907
+ availability_zone: Optional[str] = Unassigned()
8908
+ duration_hours: Optional[int] = Unassigned()
8909
+ duration_minutes: Optional[int] = Unassigned()
8910
+ start_time: Optional[datetime.datetime] = Unassigned()
8911
+ end_time: Optional[datetime.datetime] = Unassigned()
8912
+
8913
+
8634
8914
  class TrialComponentSource(Base):
8635
8915
  """
8636
8916
  TrialComponentSource
@@ -9018,7 +9298,7 @@ class DomainSettingsForUpdate(Base):
9018
9298
  Attributes
9019
9299
  ----------------------
9020
9300
  r_studio_server_pro_domain_settings_for_update: A collection of RStudioServerPro Domain-level app settings to update. A single RStudioServerPro application is created for a domain.
9021
- execution_role_identity_config: The configuration for attaching a SageMaker user profile name to the execution role as a sts:SourceIdentity key. This configuration can only be modified if there are no apps in the InService or Pending state.
9301
+ execution_role_identity_config: The configuration for attaching a SageMaker AI user profile name to the execution role as a sts:SourceIdentity key. This configuration can only be modified if there are no apps in the InService or Pending state.
9022
9302
  security_group_ids: The security groups for the Amazon Virtual Private Cloud that the Domain uses for communication between Domain-level apps and user apps.
9023
9303
  docker_settings: A collection of settings that configure the domain's Docker interaction.
9024
9304
  amazon_q_settings: A collection of settings that configure the Amazon Q experience within the domain.
@@ -9835,7 +10115,7 @@ class HyperParameterTuningJobSummary(Base):
9835
10115
  class Image(Base):
9836
10116
  """
9837
10117
  Image
9838
- A SageMaker image. A SageMaker image represents a set of container images that are derived from a common base container image. Each of these container images is represented by a SageMaker ImageVersion.
10118
+ A SageMaker AI image. A SageMaker AI image represents a set of container images that are derived from a common base container image. Each of these container images is represented by a SageMaker AI ImageVersion.
9839
10119
 
9840
10120
  Attributes
9841
10121
  ----------------------
@@ -9862,7 +10142,7 @@ class Image(Base):
9862
10142
  class ImageVersion(Base):
9863
10143
  """
9864
10144
  ImageVersion
9865
- A version of a SageMaker Image. A version represents an existing container image.
10145
+ A version of a SageMaker AI Image. A version represents an existing container image.
9866
10146
 
9867
10147
  Attributes
9868
10148
  ----------------------
@@ -10480,7 +10760,7 @@ class NotebookInstanceLifecycleConfigSummary(Base):
10480
10760
  class NotebookInstanceSummary(Base):
10481
10761
  """
10482
10762
  NotebookInstanceSummary
10483
- Provides summary information for an SageMaker notebook instance.
10763
+ Provides summary information for an SageMaker AI notebook instance.
10484
10764
 
10485
10765
  Attributes
10486
10766
  ----------------------
@@ -10492,8 +10772,8 @@ class NotebookInstanceSummary(Base):
10492
10772
  creation_time: A timestamp that shows when the notebook instance was created.
10493
10773
  last_modified_time: A timestamp that shows when the notebook instance was last modified.
10494
10774
  notebook_instance_lifecycle_config_name: The name of a notebook instance lifecycle configuration associated with this notebook instance. For information about notebook instance lifestyle configurations, see Step 2.1: (Optional) Customize a Notebook Instance.
10495
- default_code_repository: The Git repository associated with the notebook instance as its default code repository. This can be either the name of a Git repository stored as a resource in your account, or the URL of a Git repository in Amazon Web Services CodeCommit or in any other Git repository. When you open a notebook instance, it opens in the directory that contains this repository. For more information, see Associating Git Repositories with SageMaker Notebook Instances.
10496
- additional_code_repositories: An array of up to three Git repositories associated with the notebook instance. These can be either the names of Git repositories stored as resources in your account, or the URL of Git repositories in Amazon Web Services CodeCommit or in any other Git repository. These repositories are cloned at the same level as the default repository of your notebook instance. For more information, see Associating Git Repositories with SageMaker Notebook Instances.
10775
+ default_code_repository: The Git repository associated with the notebook instance as its default code repository. This can be either the name of a Git repository stored as a resource in your account, or the URL of a Git repository in Amazon Web Services CodeCommit or in any other Git repository. When you open a notebook instance, it opens in the directory that contains this repository. For more information, see Associating Git Repositories with SageMaker AI Notebook Instances.
10776
+ additional_code_repositories: An array of up to three Git repositories associated with the notebook instance. These can be either the names of Git repositories stored as resources in your account, or the URL of Git repositories in Amazon Web Services CodeCommit or in any other Git repository. These repositories are cloned at the same level as the default repository of your notebook instance. For more information, see Associating Git Repositories with SageMaker AI Notebook Instances.
10497
10777
  """
10498
10778
 
10499
10779
  notebook_instance_name: Union[str, object]
@@ -10537,6 +10817,27 @@ class OptimizationJobSummary(Base):
10537
10817
  last_modified_time: Optional[datetime.datetime] = Unassigned()
10538
10818
 
10539
10819
 
10820
+ class PartnerAppSummary(Base):
10821
+ """
10822
+ PartnerAppSummary
10823
+ A subset of information related to a SageMaker Partner AI App. This information is used as part of the ListPartnerApps API response.
10824
+
10825
+ Attributes
10826
+ ----------------------
10827
+ arn: The ARN of the SageMaker Partner AI App.
10828
+ name: The name of the SageMaker Partner AI App.
10829
+ type: The type of SageMaker Partner AI App to create. Must be one of the following: lakera-guard, comet, deepchecks-llm-evaluation, or fiddler.
10830
+ status: The status of the SageMaker Partner AI App.
10831
+ creation_time: The creation time of the SageMaker Partner AI App.
10832
+ """
10833
+
10834
+ arn: Optional[str] = Unassigned()
10835
+ name: Optional[str] = Unassigned()
10836
+ type: Optional[str] = Unassigned()
10837
+ status: Optional[str] = Unassigned()
10838
+ creation_time: Optional[datetime.datetime] = Unassigned()
10839
+
10840
+
10540
10841
  class TrainingJobStepMetadata(Base):
10541
10842
  """
10542
10843
  TrainingJobStepMetadata
@@ -10942,14 +11243,14 @@ class SpaceDetails(Base):
10942
11243
  class StudioLifecycleConfigDetails(Base):
10943
11244
  """
10944
11245
  StudioLifecycleConfigDetails
10945
- Details of the Amazon SageMaker Studio Lifecycle Configuration.
11246
+ Details of the Amazon SageMaker AI Studio Lifecycle Configuration.
10946
11247
 
10947
11248
  Attributes
10948
11249
  ----------------------
10949
11250
  studio_lifecycle_config_arn: The Amazon Resource Name (ARN) of the Lifecycle Configuration.
10950
- studio_lifecycle_config_name: The name of the Amazon SageMaker Studio Lifecycle Configuration.
10951
- creation_time: The creation time of the Amazon SageMaker Studio Lifecycle Configuration.
10952
- last_modified_time: This value is equivalent to CreationTime because Amazon SageMaker Studio Lifecycle Configurations are immutable.
11251
+ studio_lifecycle_config_name: The name of the Amazon SageMaker AI Studio Lifecycle Configuration.
11252
+ creation_time: The creation time of the Amazon SageMaker AI Studio Lifecycle Configuration.
11253
+ last_modified_time: This value is equivalent to CreationTime because Amazon SageMaker AI Studio Lifecycle Configurations are immutable.
10953
11254
  studio_lifecycle_config_app_type: The App type to which the Lifecycle Configuration is attached.
10954
11255
  """
10955
11256
 
@@ -10975,6 +11276,7 @@ class TrainingJobSummary(Base):
10975
11276
  training_job_status: The status of the training job.
10976
11277
  secondary_status: The secondary status of the training job.
10977
11278
  warm_pool_status: The status of the warm pool associated with the training job.
11279
+ training_plan_arn: The Amazon Resource Name (ARN); of the training plan associated with this training job. For more information about how to reserve GPU capacity for your SageMaker HyperPod clusters using Amazon SageMaker Training Plan, see CreateTrainingPlan .
10978
11280
  """
10979
11281
 
10980
11282
  training_job_name: Union[str, object]
@@ -10985,6 +11287,63 @@ class TrainingJobSummary(Base):
10985
11287
  last_modified_time: Optional[datetime.datetime] = Unassigned()
10986
11288
  secondary_status: Optional[str] = Unassigned()
10987
11289
  warm_pool_status: Optional[WarmPoolStatus] = Unassigned()
11290
+ training_plan_arn: Optional[str] = Unassigned()
11291
+
11292
+
11293
+ class TrainingPlanFilter(Base):
11294
+ """
11295
+ TrainingPlanFilter
11296
+ A filter to apply when listing or searching for training plans. For more information about how to reserve GPU capacity for your SageMaker HyperPod clusters using Amazon SageMaker Training Plan, see CreateTrainingPlan .
11297
+
11298
+ Attributes
11299
+ ----------------------
11300
+ name: The name of the filter field (e.g., Status, InstanceType).
11301
+ value: The value to filter by for the specified field.
11302
+ """
11303
+
11304
+ name: str
11305
+ value: str
11306
+
11307
+
11308
+ class TrainingPlanSummary(Base):
11309
+ """
11310
+ TrainingPlanSummary
11311
+ Details of the training plan. For more information about how to reserve GPU capacity for your SageMaker HyperPod clusters using Amazon SageMaker Training Plan, see CreateTrainingPlan .
11312
+
11313
+ Attributes
11314
+ ----------------------
11315
+ training_plan_arn: The Amazon Resource Name (ARN); of the training plan.
11316
+ training_plan_name: The name of the training plan.
11317
+ status: The current status of the training plan (e.g., Pending, Active, Expired). To see the complete list of status values available for a training plan, refer to the Status attribute within the TrainingPlanSummary object.
11318
+ status_message: A message providing additional information about the current status of the training plan.
11319
+ duration_hours: The number of whole hours in the total duration for this training plan.
11320
+ duration_minutes: The additional minutes beyond whole hours in the total duration for this training plan.
11321
+ start_time: The start time of the training plan.
11322
+ end_time: The end time of the training plan.
11323
+ upfront_fee: The upfront fee for the training plan.
11324
+ currency_code: The currency code for the upfront fee (e.g., USD).
11325
+ total_instance_count: The total number of instances reserved in this training plan.
11326
+ available_instance_count: The number of instances currently available for use in this training plan.
11327
+ in_use_instance_count: The number of instances currently in use from this training plan.
11328
+ target_resources: The target resources (e.g., training jobs, HyperPod clusters) that can use this training plan. Training plans are specific to their target resource. A training plan designed for SageMaker training jobs can only be used to schedule and run training jobs. A training plan for HyperPod clusters can be used exclusively to provide compute resources to a cluster's instance group.
11329
+ reserved_capacity_summaries: A list of reserved capacities associated with this training plan, including details such as instance types, counts, and availability zones.
11330
+ """
11331
+
11332
+ training_plan_arn: str
11333
+ training_plan_name: Union[str, object]
11334
+ status: str
11335
+ status_message: Optional[str] = Unassigned()
11336
+ duration_hours: Optional[int] = Unassigned()
11337
+ duration_minutes: Optional[int] = Unassigned()
11338
+ start_time: Optional[datetime.datetime] = Unassigned()
11339
+ end_time: Optional[datetime.datetime] = Unassigned()
11340
+ upfront_fee: Optional[str] = Unassigned()
11341
+ currency_code: Optional[str] = Unassigned()
11342
+ total_instance_count: Optional[int] = Unassigned()
11343
+ available_instance_count: Optional[int] = Unassigned()
11344
+ in_use_instance_count: Optional[int] = Unassigned()
11345
+ target_resources: Optional[List[str]] = Unassigned()
11346
+ reserved_capacity_summaries: Optional[List[ReservedCapacitySummary]] = Unassigned()
10988
11347
 
10989
11348
 
10990
11349
  class TransformJobSummary(Base):
@@ -11741,6 +12100,31 @@ class RenderingError(Base):
11741
12100
  message: str
11742
12101
 
11743
12102
 
12103
+ class ReservedCapacityOffering(Base):
12104
+ """
12105
+ ReservedCapacityOffering
12106
+ Details about a reserved capacity offering for a training plan offering. For more information about how to reserve GPU capacity for your SageMaker HyperPod clusters using Amazon SageMaker Training Plan, see CreateTrainingPlan .
12107
+
12108
+ Attributes
12109
+ ----------------------
12110
+ instance_type: The instance type for the reserved capacity offering.
12111
+ instance_count: The number of instances in the reserved capacity offering.
12112
+ availability_zone: The availability zone for the reserved capacity offering.
12113
+ duration_hours: The number of whole hours in the total duration for this reserved capacity offering.
12114
+ duration_minutes: The additional minutes beyond whole hours in the total duration for this reserved capacity offering.
12115
+ start_time: The start time of the reserved capacity offering.
12116
+ end_time: The end time of the reserved capacity offering.
12117
+ """
12118
+
12119
+ instance_type: str
12120
+ instance_count: int
12121
+ availability_zone: Optional[str] = Unassigned()
12122
+ duration_hours: Optional[int] = Unassigned()
12123
+ duration_minutes: Optional[int] = Unassigned()
12124
+ start_time: Optional[datetime.datetime] = Unassigned()
12125
+ end_time: Optional[datetime.datetime] = Unassigned()
12126
+
12127
+
11744
12128
  class ResourceConfigForUpdate(Base):
11745
12129
  """
11746
12130
  ResourceConfigForUpdate
@@ -12070,6 +12454,35 @@ class VisibilityConditions(Base):
12070
12454
  value: Optional[str] = Unassigned()
12071
12455
 
12072
12456
 
12457
+ class TrainingPlanOffering(Base):
12458
+ """
12459
+ TrainingPlanOffering
12460
+ Details about a training plan offering. For more information about how to reserve GPU capacity for your SageMaker HyperPod clusters using Amazon SageMaker Training Plan, see CreateTrainingPlan .
12461
+
12462
+ Attributes
12463
+ ----------------------
12464
+ training_plan_offering_id: The unique identifier for this training plan offering.
12465
+ target_resources: The target resources (e.g., SageMaker Training Jobs, SageMaker HyperPod) for this training plan offering. Training plans are specific to their target resource. A training plan designed for SageMaker training jobs can only be used to schedule and run training jobs. A training plan for HyperPod clusters can be used exclusively to provide compute resources to a cluster's instance group.
12466
+ requested_start_time_after: The requested start time that the user specified when searching for the training plan offering.
12467
+ requested_end_time_before: The requested end time that the user specified when searching for the training plan offering.
12468
+ duration_hours: The number of whole hours in the total duration for this training plan offering.
12469
+ duration_minutes: The additional minutes beyond whole hours in the total duration for this training plan offering.
12470
+ upfront_fee: The upfront fee for this training plan offering.
12471
+ currency_code: The currency code for the upfront fee (e.g., USD).
12472
+ reserved_capacity_offerings: A list of reserved capacity offerings associated with this training plan offering.
12473
+ """
12474
+
12475
+ training_plan_offering_id: str
12476
+ target_resources: List[str]
12477
+ requested_start_time_after: Optional[datetime.datetime] = Unassigned()
12478
+ requested_end_time_before: Optional[datetime.datetime] = Unassigned()
12479
+ duration_hours: Optional[int] = Unassigned()
12480
+ duration_minutes: Optional[int] = Unassigned()
12481
+ upfront_fee: Optional[str] = Unassigned()
12482
+ currency_code: Optional[str] = Unassigned()
12483
+ reserved_capacity_offerings: Optional[List[ReservedCapacityOffering]] = Unassigned()
12484
+
12485
+
12073
12486
  class ServiceCatalogProvisioningUpdateDetails(Base):
12074
12487
  """
12075
12488
  ServiceCatalogProvisioningUpdateDetails