sagemaker-core 1.0.15__py3-none-any.whl → 1.0.17__py3-none-any.whl

This diff represents the content of publicly available package versions that have been released to one of the supported registries. The information contained in this diff is provided for informational purposes only and reflects changes between package versions as they appear in their respective public registries.

Potentially problematic release.


This version of sagemaker-core might be problematic. Click here for more details.

@@ -967,6 +967,7 @@ class ResourceConfig(Base):
967
967
  volume_kms_key_id: The Amazon Web Services KMS key that SageMaker uses to encrypt data on the storage volume attached to the ML compute instance(s) that run the training job. Certain Nitro-based instances include local storage, dependent on the instance type. Local storage volumes are encrypted using a hardware module on the instance. You can't request a VolumeKmsKeyId when using an instance type with local storage. For a list of instance types that support local instance storage, see Instance Store Volumes. For more information about local instance storage encryption, see SSD Instance Store Volumes. The VolumeKmsKeyId can be in any of the following formats: // KMS Key ID "1234abcd-12ab-34cd-56ef-1234567890ab" // Amazon Resource Name (ARN) of a KMS Key "arn:aws:kms:us-west-2:111122223333:key/1234abcd-12ab-34cd-56ef-1234567890ab"
968
968
  keep_alive_period_in_seconds: The duration of time in seconds to retain configured resources in a warm pool for subsequent training jobs.
969
969
  instance_groups: The configuration of a heterogeneous cluster in JSON format.
970
+ training_plan_arn: The Amazon Resource Name (ARN); of the training plan to use for this resource configuration.
970
971
  """
971
972
 
972
973
  volume_size_in_gb: int
@@ -975,6 +976,7 @@ class ResourceConfig(Base):
975
976
  volume_kms_key_id: Optional[str] = Unassigned()
976
977
  keep_alive_period_in_seconds: Optional[int] = Unassigned()
977
978
  instance_groups: Optional[List[InstanceGroup]] = Unassigned()
979
+ training_plan_arn: Optional[str] = Unassigned()
978
980
 
979
981
 
980
982
  class StoppingCondition(Base):
@@ -3140,6 +3142,10 @@ class ClusterInstanceGroupDetails(Base):
3140
3142
  threads_per_core: The number you specified to TreadsPerCore in CreateCluster for enabling or disabling multithreading. For instance types that support multithreading, you can specify 1 for disabling multithreading and 2 for enabling multithreading. For more information, see the reference table of CPU cores and threads per CPU core per instance type in the Amazon Elastic Compute Cloud User Guide.
3141
3143
  instance_storage_configs: The additional storage configurations for the instances in the SageMaker HyperPod cluster instance group.
3142
3144
  on_start_deep_health_checks: A flag indicating whether deep health checks should be performed when the cluster instance group is created or updated.
3145
+ status: The current status of the cluster instance group. InService: The instance group is active and healthy. Creating: The instance group is being provisioned. Updating: The instance group is being updated. Failed: The instance group has failed to provision or is no longer healthy. Degraded: The instance group is degraded, meaning that some instances have failed to provision or are no longer healthy. Deleting: The instance group is being deleted.
3146
+ training_plan_arn: The Amazon Resource Name (ARN); of the training plan associated with this cluster instance group. For more information about how to reserve GPU capacity for your SageMaker HyperPod clusters using Amazon SageMaker Training Plan, see CreateTrainingPlan .
3147
+ training_plan_status: The current status of the training plan associated with this cluster instance group.
3148
+ override_vpc_config
3143
3149
  """
3144
3150
 
3145
3151
  current_count: Optional[int] = Unassigned()
@@ -3151,6 +3157,10 @@ class ClusterInstanceGroupDetails(Base):
3151
3157
  threads_per_core: Optional[int] = Unassigned()
3152
3158
  instance_storage_configs: Optional[List[ClusterInstanceStorageConfig]] = Unassigned()
3153
3159
  on_start_deep_health_checks: Optional[List[str]] = Unassigned()
3160
+ status: Optional[str] = Unassigned()
3161
+ training_plan_arn: Optional[str] = Unassigned()
3162
+ training_plan_status: Optional[str] = Unassigned()
3163
+ override_vpc_config: Optional[VpcConfig] = Unassigned()
3154
3164
 
3155
3165
 
3156
3166
  class ClusterInstanceGroupSpecification(Base):
@@ -3168,6 +3178,8 @@ class ClusterInstanceGroupSpecification(Base):
3168
3178
  threads_per_core: Specifies the value for Threads per core. For instance types that support multithreading, you can specify 1 for disabling multithreading and 2 for enabling multithreading. For instance types that doesn't support multithreading, specify 1. For more information, see the reference table of CPU cores and threads per CPU core per instance type in the Amazon Elastic Compute Cloud User Guide.
3169
3179
  instance_storage_configs: Specifies the additional storage configurations for the instances in the SageMaker HyperPod cluster instance group.
3170
3180
  on_start_deep_health_checks: A flag indicating whether deep health checks should be performed when the cluster instance group is created or updated.
3181
+ training_plan_arn: The Amazon Resource Name (ARN); of the training plan to use for this cluster instance group. For more information about how to reserve GPU capacity for your SageMaker HyperPod clusters using Amazon SageMaker Training Plan, see CreateTrainingPlan .
3182
+ override_vpc_config
3171
3183
  """
3172
3184
 
3173
3185
  instance_count: int
@@ -3178,6 +3190,8 @@ class ClusterInstanceGroupSpecification(Base):
3178
3190
  threads_per_core: Optional[int] = Unassigned()
3179
3191
  instance_storage_configs: Optional[List[ClusterInstanceStorageConfig]] = Unassigned()
3180
3192
  on_start_deep_health_checks: Optional[List[str]] = Unassigned()
3193
+ training_plan_arn: Optional[str] = Unassigned()
3194
+ override_vpc_config: Optional[VpcConfig] = Unassigned()
3181
3195
 
3182
3196
 
3183
3197
  class ClusterInstancePlacement(Base):
@@ -3223,6 +3237,7 @@ class ClusterNodeDetails(Base):
3223
3237
  instance_type: The type of the instance.
3224
3238
  launch_time: The time when the instance is launched.
3225
3239
  life_cycle_config: The LifeCycle configuration applied to the instance.
3240
+ override_vpc_config
3226
3241
  threads_per_core: The number of threads per CPU core you specified under CreateCluster.
3227
3242
  instance_storage_configs: The configurations of additional storage specified to the instance group where the instance (node) is launched.
3228
3243
  private_primary_ip: The private primary IP address of the SageMaker HyperPod cluster node.
@@ -3236,6 +3251,7 @@ class ClusterNodeDetails(Base):
3236
3251
  instance_type: Optional[str] = Unassigned()
3237
3252
  launch_time: Optional[datetime.datetime] = Unassigned()
3238
3253
  life_cycle_config: Optional[ClusterLifeCycleConfig] = Unassigned()
3254
+ override_vpc_config: Optional[VpcConfig] = Unassigned()
3239
3255
  threads_per_core: Optional[int] = Unassigned()
3240
3256
  instance_storage_configs: Optional[List[ClusterInstanceStorageConfig]] = Unassigned()
3241
3257
  private_primary_ip: Optional[str] = Unassigned()
@@ -3290,6 +3306,33 @@ class ClusterOrchestrator(Base):
3290
3306
  eks: ClusterOrchestratorEksConfig
3291
3307
 
3292
3308
 
3309
+ class ClusterSchedulerConfigSummary(Base):
3310
+ """
3311
+ ClusterSchedulerConfigSummary
3312
+ Summary of the cluster policy.
3313
+
3314
+ Attributes
3315
+ ----------------------
3316
+ cluster_scheduler_config_arn: ARN of the cluster policy.
3317
+ cluster_scheduler_config_id: ID of the cluster policy.
3318
+ cluster_scheduler_config_version: Version of the cluster policy.
3319
+ name: Name of the cluster policy.
3320
+ creation_time: Creation time of the cluster policy.
3321
+ last_modified_time: Last modified time of the cluster policy.
3322
+ status: Status of the cluster policy.
3323
+ cluster_arn: ARN of the cluster.
3324
+ """
3325
+
3326
+ cluster_scheduler_config_arn: str
3327
+ cluster_scheduler_config_id: str
3328
+ name: str
3329
+ creation_time: datetime.datetime
3330
+ status: str
3331
+ cluster_scheduler_config_version: Optional[int] = Unassigned()
3332
+ last_modified_time: Optional[datetime.datetime] = Unassigned()
3333
+ cluster_arn: Optional[str] = Unassigned()
3334
+
3335
+
3293
3336
  class ClusterSummary(Base):
3294
3337
  """
3295
3338
  ClusterSummary
@@ -3301,12 +3344,14 @@ class ClusterSummary(Base):
3301
3344
  cluster_name: The name of the SageMaker HyperPod cluster.
3302
3345
  creation_time: The time when the SageMaker HyperPod cluster is created.
3303
3346
  cluster_status: The status of the SageMaker HyperPod cluster.
3347
+ training_plan_arns: A list of Amazon Resource Names (ARNs) of the training plans associated with this cluster. For more information about how to reserve GPU capacity for your SageMaker HyperPod clusters using Amazon SageMaker Training Plan, see CreateTrainingPlan .
3304
3348
  """
3305
3349
 
3306
3350
  cluster_arn: str
3307
3351
  cluster_name: Union[str, object]
3308
3352
  creation_time: datetime.datetime
3309
3353
  cluster_status: str
3354
+ training_plan_arns: Optional[List[str]] = Unassigned()
3310
3355
 
3311
3356
 
3312
3357
  class CustomImage(Base):
@@ -3504,6 +3549,101 @@ class CompilationJobSummary(Base):
3504
3549
  last_modified_time: Optional[datetime.datetime] = Unassigned()
3505
3550
 
3506
3551
 
3552
+ class ComputeQuotaResourceConfig(Base):
3553
+ """
3554
+ ComputeQuotaResourceConfig
3555
+ Configuration of the resources used for the compute allocation definition.
3556
+
3557
+ Attributes
3558
+ ----------------------
3559
+ instance_type: The instance type of the instance group for the cluster.
3560
+ count: The number of instances to add to the instance group of a SageMaker HyperPod cluster.
3561
+ """
3562
+
3563
+ instance_type: str
3564
+ count: int
3565
+
3566
+
3567
+ class ResourceSharingConfig(Base):
3568
+ """
3569
+ ResourceSharingConfig
3570
+ Resource sharing configuration.
3571
+
3572
+ Attributes
3573
+ ----------------------
3574
+ strategy: The strategy of how idle compute is shared within the cluster. The following are the options of strategies. DontLend: entities do not lend idle compute. Lend: entities can lend idle compute to entities that can borrow. LendandBorrow: entities can lend idle compute and borrow idle compute from other entities. Default is LendandBorrow.
3575
+ borrow_limit: The limit on how much idle compute can be borrowed.The values can be 1 - 500 percent of idle compute that the team is allowed to borrow. Default is 50.
3576
+ """
3577
+
3578
+ strategy: str
3579
+ borrow_limit: Optional[int] = Unassigned()
3580
+
3581
+
3582
+ class ComputeQuotaConfig(Base):
3583
+ """
3584
+ ComputeQuotaConfig
3585
+ Configuration of the compute allocation definition for an entity. This includes the resource sharing option and the setting to preempt low priority tasks.
3586
+
3587
+ Attributes
3588
+ ----------------------
3589
+ compute_quota_resources: Allocate compute resources by instance types.
3590
+ resource_sharing_config: Resource sharing configuration. This defines how an entity can lend and borrow idle compute with other entities within the cluster.
3591
+ preempt_team_tasks: Allows workloads from within an entity to preempt same-team workloads. When set to LowerPriority, the entity's lower priority tasks are preempted by their own higher priority tasks. Default is LowerPriority.
3592
+ """
3593
+
3594
+ compute_quota_resources: Optional[List[ComputeQuotaResourceConfig]] = Unassigned()
3595
+ resource_sharing_config: Optional[ResourceSharingConfig] = Unassigned()
3596
+ preempt_team_tasks: Optional[str] = Unassigned()
3597
+
3598
+
3599
+ class ComputeQuotaTarget(Base):
3600
+ """
3601
+ ComputeQuotaTarget
3602
+ The target entity to allocate compute resources to.
3603
+
3604
+ Attributes
3605
+ ----------------------
3606
+ team_name: Name of the team to allocate compute resources to.
3607
+ fair_share_weight: Assigned entity fair-share weight. Idle compute will be shared across entities based on these assigned weights. This weight is only used when FairShare is enabled. A weight of 0 is the lowest priority and 100 is the highest. Weight 0 is the default.
3608
+ """
3609
+
3610
+ team_name: str
3611
+ fair_share_weight: Optional[int] = Unassigned()
3612
+
3613
+
3614
+ class ComputeQuotaSummary(Base):
3615
+ """
3616
+ ComputeQuotaSummary
3617
+ Summary of the compute allocation definition.
3618
+
3619
+ Attributes
3620
+ ----------------------
3621
+ compute_quota_arn: ARN of the compute allocation definition.
3622
+ compute_quota_id: ID of the compute allocation definition.
3623
+ name: Name of the compute allocation definition.
3624
+ compute_quota_version: Version of the compute allocation definition.
3625
+ status: Status of the compute allocation definition.
3626
+ cluster_arn: ARN of the cluster.
3627
+ compute_quota_config: Configuration of the compute allocation definition. This includes the resource sharing option, and the setting to preempt low priority tasks.
3628
+ compute_quota_target: The target entity to allocate compute resources to.
3629
+ activation_state: The state of the compute allocation being described. Use to enable or disable compute allocation. Default is Enabled.
3630
+ creation_time: Creation time of the compute allocation definition.
3631
+ last_modified_time: Last modified time of the compute allocation definition.
3632
+ """
3633
+
3634
+ compute_quota_arn: str
3635
+ compute_quota_id: str
3636
+ name: str
3637
+ status: str
3638
+ compute_quota_target: ComputeQuotaTarget
3639
+ creation_time: datetime.datetime
3640
+ compute_quota_version: Optional[int] = Unassigned()
3641
+ cluster_arn: Optional[str] = Unassigned()
3642
+ compute_quota_config: Optional[ComputeQuotaConfig] = Unassigned()
3643
+ activation_state: Optional[str] = Unassigned()
3644
+ last_modified_time: Optional[datetime.datetime] = Unassigned()
3645
+
3646
+
3507
3647
  class ConditionStepMetadata(Base):
3508
3648
  """
3509
3649
  ConditionStepMetadata
@@ -3834,6 +3974,36 @@ class ModelDeployConfig(Base):
3834
3974
  endpoint_name: Optional[Union[str, object]] = Unassigned()
3835
3975
 
3836
3976
 
3977
+ class PriorityClass(Base):
3978
+ """
3979
+ PriorityClass
3980
+ Priority class configuration. When included in PriorityClasses, these class configurations define how tasks are queued.
3981
+
3982
+ Attributes
3983
+ ----------------------
3984
+ name: Name of the priority class.
3985
+ weight: Weight of the priority class. The value is within a range from 0 to 100, where 0 is the default. A weight of 0 is the lowest priority and 100 is the highest. Weight 0 is the default.
3986
+ """
3987
+
3988
+ name: str
3989
+ weight: int
3990
+
3991
+
3992
+ class SchedulerConfig(Base):
3993
+ """
3994
+ SchedulerConfig
3995
+ Cluster policy configuration. This policy is used for task prioritization and fair-share allocation. This helps prioritize critical workloads and distributes idle compute across entities.
3996
+
3997
+ Attributes
3998
+ ----------------------
3999
+ priority_classes: List of the priority classes, PriorityClass, of the cluster policy. When specified, these class configurations define how tasks are queued.
4000
+ fair_share: When enabled, entities borrow idle compute based on their assigned FairShareWeight. When disabled, entities borrow idle compute based on a first-come first-serve basis. Default is Enabled.
4001
+ """
4002
+
4003
+ priority_classes: Optional[List[PriorityClass]] = Unassigned()
4004
+ fair_share: Optional[str] = Unassigned()
4005
+
4006
+
3837
4007
  class InputConfig(Base):
3838
4008
  """
3839
4009
  InputConfig
@@ -4338,6 +4508,21 @@ class EFSFileSystemConfig(Base):
4338
4508
  file_system_path: Optional[str] = Unassigned()
4339
4509
 
4340
4510
 
4511
+ class FSxLustreFileSystemConfig(Base):
4512
+ """
4513
+ FSxLustreFileSystemConfig
4514
+ The settings for assigning a custom Amazon FSx for Lustre file system to a user profile or space for an Amazon SageMaker Domain.
4515
+
4516
+ Attributes
4517
+ ----------------------
4518
+ file_system_id: The globally unique, 17-digit, ID of the file system, assigned by Amazon FSx for Lustre.
4519
+ file_system_path: The path to the file system directory that is accessible in Amazon SageMaker Studio. Permitted users can access only this directory and below.
4520
+ """
4521
+
4522
+ file_system_id: str
4523
+ file_system_path: Optional[str] = Unassigned()
4524
+
4525
+
4341
4526
  class CustomFileSystemConfig(Base):
4342
4527
  """
4343
4528
  CustomFileSystemConfig
@@ -4346,9 +4531,11 @@ class CustomFileSystemConfig(Base):
4346
4531
  Attributes
4347
4532
  ----------------------
4348
4533
  efs_file_system_config: The settings for a custom Amazon EFS file system.
4534
+ f_sx_lustre_file_system_config: The settings for a custom Amazon FSx for Lustre file system.
4349
4535
  """
4350
4536
 
4351
4537
  efs_file_system_config: Optional[EFSFileSystemConfig] = Unassigned()
4538
+ f_sx_lustre_file_system_config: Optional[FSxLustreFileSystemConfig] = Unassigned()
4352
4539
 
4353
4540
 
4354
4541
  class HiddenSageMakerImage(Base):
@@ -5324,7 +5511,7 @@ class InferenceComponentStartupParameters(Base):
5324
5511
  class InferenceComponentComputeResourceRequirements(Base):
5325
5512
  """
5326
5513
  InferenceComponentComputeResourceRequirements
5327
- Defines the compute resources to allocate to run a model that you assign to an inference component. These resources include CPU cores, accelerators, and memory.
5514
+ Defines the compute resources to allocate to run a model, plus any adapter models, that you assign to an inference component. These resources include CPU cores, accelerators, and memory.
5328
5515
 
5329
5516
  Attributes
5330
5517
  ----------------------
@@ -5350,13 +5537,17 @@ class InferenceComponentSpecification(Base):
5350
5537
  model_name: The name of an existing SageMaker model object in your account that you want to deploy with the inference component.
5351
5538
  container: Defines a container that provides the runtime environment for a model that you deploy with an inference component.
5352
5539
  startup_parameters: Settings that take effect while the model container starts up.
5353
- compute_resource_requirements: The compute resources allocated to run the model assigned to the inference component.
5540
+ compute_resource_requirements: The compute resources allocated to run the model, plus any adapter models, that you assign to the inference component. Omit this parameter if your request is meant to create an adapter inference component. An adapter inference component is loaded by a base inference component, and it uses the compute resources of the base inference component.
5541
+ base_inference_component_name: The name of an existing inference component that is to contain the inference component that you're creating with your request. Specify this parameter only if your request is meant to create an adapter inference component. An adapter inference component contains the path to an adapter model. The purpose of the adapter model is to tailor the inference output of a base foundation model, which is hosted by the base inference component. The adapter inference component uses the compute resources that you assigned to the base inference component. When you create an adapter inference component, use the Container parameter to specify the location of the adapter artifacts. In the parameter value, use the ArtifactUrl parameter of the InferenceComponentContainerSpecification data type. Before you can create an adapter inference component, you must have an existing inference component that contains the foundation model that you want to adapt.
5354
5542
  """
5355
5543
 
5356
- compute_resource_requirements: InferenceComponentComputeResourceRequirements
5357
5544
  model_name: Optional[Union[str, object]] = Unassigned()
5358
5545
  container: Optional[InferenceComponentContainerSpecification] = Unassigned()
5359
5546
  startup_parameters: Optional[InferenceComponentStartupParameters] = Unassigned()
5547
+ compute_resource_requirements: Optional[InferenceComponentComputeResourceRequirements] = (
5548
+ Unassigned()
5549
+ )
5550
+ base_inference_component_name: Optional[str] = Unassigned()
5360
5551
 
5361
5552
 
5362
5553
  class InferenceComponentRuntimeConfig(Base):
@@ -6629,6 +6820,21 @@ class ModelCompilationConfig(Base):
6629
6820
  override_environment: Optional[Dict[str, str]] = Unassigned()
6630
6821
 
6631
6822
 
6823
+ class ModelShardingConfig(Base):
6824
+ """
6825
+ ModelShardingConfig
6826
+ Settings for the model sharding technique that's applied by a model optimization job.
6827
+
6828
+ Attributes
6829
+ ----------------------
6830
+ image: The URI of an LMI DLC in Amazon ECR. SageMaker uses this image to run the optimization.
6831
+ override_environment: Environment variables that override the default ones in the model container.
6832
+ """
6833
+
6834
+ image: Optional[str] = Unassigned()
6835
+ override_environment: Optional[Dict[str, str]] = Unassigned()
6836
+
6837
+
6632
6838
  class OptimizationConfig(Base):
6633
6839
  """
6634
6840
  OptimizationConfig
@@ -6638,10 +6844,12 @@ class OptimizationConfig(Base):
6638
6844
  ----------------------
6639
6845
  model_quantization_config: Settings for the model quantization technique that's applied by a model optimization job.
6640
6846
  model_compilation_config: Settings for the model compilation technique that's applied by a model optimization job.
6847
+ model_sharding_config: Settings for the model sharding technique that's applied by a model optimization job.
6641
6848
  """
6642
6849
 
6643
6850
  model_quantization_config: Optional[ModelQuantizationConfig] = Unassigned()
6644
6851
  model_compilation_config: Optional[ModelCompilationConfig] = Unassigned()
6852
+ model_sharding_config: Optional[ModelShardingConfig] = Unassigned()
6645
6853
 
6646
6854
 
6647
6855
  class OptimizationJobOutputConfig(Base):
@@ -6674,6 +6882,34 @@ class OptimizationVpcConfig(Base):
6674
6882
  subnets: List[str]
6675
6883
 
6676
6884
 
6885
+ class PartnerAppMaintenanceConfig(Base):
6886
+ """
6887
+ PartnerAppMaintenanceConfig
6888
+ Maintenance configuration settings for the SageMaker Partner AI App.
6889
+
6890
+ Attributes
6891
+ ----------------------
6892
+ maintenance_window_start: The day and time of the week in Coordinated Universal Time (UTC) 24-hour standard time that weekly maintenance updates are scheduled. This value must take the following format: 3-letter-day:24-h-hour:minute. For example: TUE:03:30.
6893
+ """
6894
+
6895
+ maintenance_window_start: Optional[str] = Unassigned()
6896
+
6897
+
6898
+ class PartnerAppConfig(Base):
6899
+ """
6900
+ PartnerAppConfig
6901
+ Configuration settings for the SageMaker Partner AI App.
6902
+
6903
+ Attributes
6904
+ ----------------------
6905
+ admin_users: The list of users that are given admin access to the SageMaker Partner AI App.
6906
+ arguments: This is a map of required inputs for a SageMaker Partner AI App. Based on the application type, the map is populated with a key and value pair that is specific to the user and application.
6907
+ """
6908
+
6909
+ admin_users: Optional[List[str]] = Unassigned()
6910
+ arguments: Optional[Dict[str, str]] = Unassigned()
6911
+
6912
+
6677
6913
  class PipelineDefinitionS3Location(Base):
6678
6914
  """
6679
6915
  PipelineDefinitionS3Location
@@ -7055,6 +7291,19 @@ class EFSFileSystem(Base):
7055
7291
  file_system_id: str
7056
7292
 
7057
7293
 
7294
+ class FSxLustreFileSystem(Base):
7295
+ """
7296
+ FSxLustreFileSystem
7297
+ A custom file system in Amazon FSx for Lustre.
7298
+
7299
+ Attributes
7300
+ ----------------------
7301
+ file_system_id: Amazon FSx for Lustre file system ID.
7302
+ """
7303
+
7304
+ file_system_id: str
7305
+
7306
+
7058
7307
  class CustomFileSystem(Base):
7059
7308
  """
7060
7309
  CustomFileSystem
@@ -7063,9 +7312,11 @@ class CustomFileSystem(Base):
7063
7312
  Attributes
7064
7313
  ----------------------
7065
7314
  efs_file_system: A custom file system in Amazon EFS.
7315
+ f_sx_lustre_file_system: A custom file system in Amazon FSx for Lustre.
7066
7316
  """
7067
7317
 
7068
7318
  efs_file_system: Optional[EFSFileSystem] = Unassigned()
7319
+ f_sx_lustre_file_system: Optional[FSxLustreFileSystem] = Unassigned()
7069
7320
 
7070
7321
 
7071
7322
  class SpaceSettings(Base):
@@ -8113,7 +8364,8 @@ class InferenceComponentSpecificationSummary(Base):
8113
8364
  model_name: The name of the SageMaker model object that is deployed with the inference component.
8114
8365
  container: Details about the container that provides the runtime environment for the model that is deployed with the inference component.
8115
8366
  startup_parameters: Settings that take effect while the model container starts up.
8116
- compute_resource_requirements: The compute resources allocated to run the model assigned to the inference component.
8367
+ compute_resource_requirements: The compute resources allocated to run the model, plus any adapter models, that you assign to the inference component.
8368
+ base_inference_component_name: The name of the base inference component that contains this inference component.
8117
8369
  """
8118
8370
 
8119
8371
  model_name: Optional[Union[str, object]] = Unassigned()
@@ -8122,6 +8374,7 @@ class InferenceComponentSpecificationSummary(Base):
8122
8374
  compute_resource_requirements: Optional[InferenceComponentComputeResourceRequirements] = (
8123
8375
  Unassigned()
8124
8376
  )
8377
+ base_inference_component_name: Optional[str] = Unassigned()
8125
8378
 
8126
8379
 
8127
8380
  class InferenceComponentRuntimeConfigSummary(Base):
@@ -8435,6 +8688,21 @@ class OptimizationOutput(Base):
8435
8688
  recommended_inference_image: Optional[str] = Unassigned()
8436
8689
 
8437
8690
 
8691
+ class ErrorInfo(Base):
8692
+ """
8693
+ ErrorInfo
8694
+ This is an error field object that contains the error code and the reason for an operation failure.
8695
+
8696
+ Attributes
8697
+ ----------------------
8698
+ code: The error code for an invalid or failed operation.
8699
+ reason: The failure reason for the operation.
8700
+ """
8701
+
8702
+ code: Optional[str] = Unassigned()
8703
+ reason: Optional[str] = Unassigned()
8704
+
8705
+
8438
8706
  class DescribePipelineDefinitionForExecutionResponse(Base):
8439
8707
  """
8440
8708
  DescribePipelineDefinitionForExecutionResponse
@@ -8602,6 +8870,35 @@ class ProfilerRuleEvaluationStatus(Base):
8602
8870
  last_modified_time: Optional[datetime.datetime] = Unassigned()
8603
8871
 
8604
8872
 
8873
+ class ReservedCapacitySummary(Base):
8874
+ """
8875
+ ReservedCapacitySummary
8876
+ Details of a reserved capacity for the training plan. For more information about how to reserve GPU capacity for your SageMaker HyperPod clusters using Amazon SageMaker Training Plan, see CreateTrainingPlan .
8877
+
8878
+ Attributes
8879
+ ----------------------
8880
+ reserved_capacity_arn: The Amazon Resource Name (ARN); of the reserved capacity.
8881
+ instance_type: The instance type for the reserved capacity.
8882
+ total_instance_count: The total number of instances in the reserved capacity.
8883
+ status: The current status of the reserved capacity.
8884
+ availability_zone: The availability zone for the reserved capacity.
8885
+ duration_hours: The number of whole hours in the total duration for this reserved capacity.
8886
+ duration_minutes: The additional minutes beyond whole hours in the total duration for this reserved capacity.
8887
+ start_time: The start time of the reserved capacity.
8888
+ end_time: The end time of the reserved capacity.
8889
+ """
8890
+
8891
+ reserved_capacity_arn: str
8892
+ instance_type: str
8893
+ total_instance_count: int
8894
+ status: str
8895
+ availability_zone: Optional[str] = Unassigned()
8896
+ duration_hours: Optional[int] = Unassigned()
8897
+ duration_minutes: Optional[int] = Unassigned()
8898
+ start_time: Optional[datetime.datetime] = Unassigned()
8899
+ end_time: Optional[datetime.datetime] = Unassigned()
8900
+
8901
+
8605
8902
  class TrialComponentSource(Base):
8606
8903
  """
8607
8904
  TrialComponentSource
@@ -10508,6 +10805,27 @@ class OptimizationJobSummary(Base):
10508
10805
  last_modified_time: Optional[datetime.datetime] = Unassigned()
10509
10806
 
10510
10807
 
10808
+ class PartnerAppSummary(Base):
10809
+ """
10810
+ PartnerAppSummary
10811
+ A subset of information related to a SageMaker Partner AI App. This information is used as part of the ListPartnerApps API response.
10812
+
10813
+ Attributes
10814
+ ----------------------
10815
+ arn: The ARN of the SageMaker Partner AI App.
10816
+ name: The name of the SageMaker Partner AI App.
10817
+ type: The type of SageMaker Partner AI App to create. Must be one of the following: lakera-guard, comet, deepchecks-llm-evaluation, or fiddler.
10818
+ status: The status of the SageMaker Partner AI App.
10819
+ creation_time: The creation time of the SageMaker Partner AI App.
10820
+ """
10821
+
10822
+ arn: Optional[str] = Unassigned()
10823
+ name: Optional[str] = Unassigned()
10824
+ type: Optional[str] = Unassigned()
10825
+ status: Optional[str] = Unassigned()
10826
+ creation_time: Optional[datetime.datetime] = Unassigned()
10827
+
10828
+
10511
10829
  class TrainingJobStepMetadata(Base):
10512
10830
  """
10513
10831
  TrainingJobStepMetadata
@@ -10946,6 +11264,7 @@ class TrainingJobSummary(Base):
10946
11264
  training_job_status: The status of the training job.
10947
11265
  secondary_status: The secondary status of the training job.
10948
11266
  warm_pool_status: The status of the warm pool associated with the training job.
11267
+ training_plan_arn: The Amazon Resource Name (ARN); of the training plan associated with this training job. For more information about how to reserve GPU capacity for your SageMaker HyperPod clusters using Amazon SageMaker Training Plan, see CreateTrainingPlan .
10949
11268
  """
10950
11269
 
10951
11270
  training_job_name: Union[str, object]
@@ -10956,6 +11275,63 @@ class TrainingJobSummary(Base):
10956
11275
  last_modified_time: Optional[datetime.datetime] = Unassigned()
10957
11276
  secondary_status: Optional[str] = Unassigned()
10958
11277
  warm_pool_status: Optional[WarmPoolStatus] = Unassigned()
11278
+ training_plan_arn: Optional[str] = Unassigned()
11279
+
11280
+
11281
+ class TrainingPlanFilter(Base):
11282
+ """
11283
+ TrainingPlanFilter
11284
+ A filter to apply when listing or searching for training plans. For more information about how to reserve GPU capacity for your SageMaker HyperPod clusters using Amazon SageMaker Training Plan, see CreateTrainingPlan .
11285
+
11286
+ Attributes
11287
+ ----------------------
11288
+ name: The name of the filter field (e.g., Status, InstanceType).
11289
+ value: The value to filter by for the specified field.
11290
+ """
11291
+
11292
+ name: str
11293
+ value: str
11294
+
11295
+
11296
+ class TrainingPlanSummary(Base):
11297
+ """
11298
+ TrainingPlanSummary
11299
+ Details of the training plan. For more information about how to reserve GPU capacity for your SageMaker HyperPod clusters using Amazon SageMaker Training Plan, see CreateTrainingPlan .
11300
+
11301
+ Attributes
11302
+ ----------------------
11303
+ training_plan_arn: The Amazon Resource Name (ARN); of the training plan.
11304
+ training_plan_name: The name of the training plan.
11305
+ status: The current status of the training plan (e.g., Pending, Active, Expired). To see the complete list of status values available for a training plan, refer to the Status attribute within the TrainingPlanSummary object.
11306
+ status_message: A message providing additional information about the current status of the training plan.
11307
+ duration_hours: The number of whole hours in the total duration for this training plan.
11308
+ duration_minutes: The additional minutes beyond whole hours in the total duration for this training plan.
11309
+ start_time: The start time of the training plan.
11310
+ end_time: The end time of the training plan.
11311
+ upfront_fee: The upfront fee for the training plan.
11312
+ currency_code: The currency code for the upfront fee (e.g., USD).
11313
+ total_instance_count: The total number of instances reserved in this training plan.
11314
+ available_instance_count: The number of instances currently available for use in this training plan.
11315
+ in_use_instance_count: The number of instances currently in use from this training plan.
11316
+ target_resources: The target resources (e.g., training jobs, HyperPod clusters) that can use this training plan. Training plans are specific to their target resource. A training plan designed for SageMaker training jobs can only be used to schedule and run training jobs. A training plan for HyperPod clusters can be used exclusively to provide compute resources to a cluster's instance group.
11317
+ reserved_capacity_summaries: A list of reserved capacities associated with this training plan, including details such as instance types, counts, and availability zones.
11318
+ """
11319
+
11320
+ training_plan_arn: str
11321
+ training_plan_name: Union[str, object]
11322
+ status: str
11323
+ status_message: Optional[str] = Unassigned()
11324
+ duration_hours: Optional[int] = Unassigned()
11325
+ duration_minutes: Optional[int] = Unassigned()
11326
+ start_time: Optional[datetime.datetime] = Unassigned()
11327
+ end_time: Optional[datetime.datetime] = Unassigned()
11328
+ upfront_fee: Optional[str] = Unassigned()
11329
+ currency_code: Optional[str] = Unassigned()
11330
+ total_instance_count: Optional[int] = Unassigned()
11331
+ available_instance_count: Optional[int] = Unassigned()
11332
+ in_use_instance_count: Optional[int] = Unassigned()
11333
+ target_resources: Optional[List[str]] = Unassigned()
11334
+ reserved_capacity_summaries: Optional[List[ReservedCapacitySummary]] = Unassigned()
10959
11335
 
10960
11336
 
10961
11337
  class TransformJobSummary(Base):
@@ -11712,6 +12088,31 @@ class RenderingError(Base):
11712
12088
  message: str
11713
12089
 
11714
12090
 
12091
+ class ReservedCapacityOffering(Base):
12092
+ """
12093
+ ReservedCapacityOffering
12094
+ Details about a reserved capacity offering for a training plan offering. For more information about how to reserve GPU capacity for your SageMaker HyperPod clusters using Amazon SageMaker Training Plan, see CreateTrainingPlan .
12095
+
12096
+ Attributes
12097
+ ----------------------
12098
+ instance_type: The instance type for the reserved capacity offering.
12099
+ instance_count: The number of instances in the reserved capacity offering.
12100
+ availability_zone: The availability zone for the reserved capacity offering.
12101
+ duration_hours: The number of whole hours in the total duration for this reserved capacity offering.
12102
+ duration_minutes: The additional minutes beyond whole hours in the total duration for this reserved capacity offering.
12103
+ start_time: The start time of the reserved capacity offering.
12104
+ end_time: The end time of the reserved capacity offering.
12105
+ """
12106
+
12107
+ instance_type: str
12108
+ instance_count: int
12109
+ availability_zone: Optional[str] = Unassigned()
12110
+ duration_hours: Optional[int] = Unassigned()
12111
+ duration_minutes: Optional[int] = Unassigned()
12112
+ start_time: Optional[datetime.datetime] = Unassigned()
12113
+ end_time: Optional[datetime.datetime] = Unassigned()
12114
+
12115
+
11715
12116
  class ResourceConfigForUpdate(Base):
11716
12117
  """
11717
12118
  ResourceConfigForUpdate
@@ -12041,6 +12442,35 @@ class VisibilityConditions(Base):
12041
12442
  value: Optional[str] = Unassigned()
12042
12443
 
12043
12444
 
12445
+ class TrainingPlanOffering(Base):
12446
+ """
12447
+ TrainingPlanOffering
12448
+ Details about a training plan offering. For more information about how to reserve GPU capacity for your SageMaker HyperPod clusters using Amazon SageMaker Training Plan, see CreateTrainingPlan .
12449
+
12450
+ Attributes
12451
+ ----------------------
12452
+ training_plan_offering_id: The unique identifier for this training plan offering.
12453
+ target_resources: The target resources (e.g., SageMaker Training Jobs, SageMaker HyperPod) for this training plan offering. Training plans are specific to their target resource. A training plan designed for SageMaker training jobs can only be used to schedule and run training jobs. A training plan for HyperPod clusters can be used exclusively to provide compute resources to a cluster's instance group.
12454
+ requested_start_time_after: The requested start time that the user specified when searching for the training plan offering.
12455
+ requested_end_time_before: The requested end time that the user specified when searching for the training plan offering.
12456
+ duration_hours: The number of whole hours in the total duration for this training plan offering.
12457
+ duration_minutes: The additional minutes beyond whole hours in the total duration for this training plan offering.
12458
+ upfront_fee: The upfront fee for this training plan offering.
12459
+ currency_code: The currency code for the upfront fee (e.g., USD).
12460
+ reserved_capacity_offerings: A list of reserved capacity offerings associated with this training plan offering.
12461
+ """
12462
+
12463
+ training_plan_offering_id: str
12464
+ target_resources: List[str]
12465
+ requested_start_time_after: Optional[datetime.datetime] = Unassigned()
12466
+ requested_end_time_before: Optional[datetime.datetime] = Unassigned()
12467
+ duration_hours: Optional[int] = Unassigned()
12468
+ duration_minutes: Optional[int] = Unassigned()
12469
+ upfront_fee: Optional[str] = Unassigned()
12470
+ currency_code: Optional[str] = Unassigned()
12471
+ reserved_capacity_offerings: Optional[List[ReservedCapacityOffering]] = Unassigned()
12472
+
12473
+
12044
12474
  class ServiceCatalogProvisioningUpdateDetails(Base):
12045
12475
  """
12046
12476
  ServiceCatalogProvisioningUpdateDetails
@@ -26,7 +26,8 @@ class Method:
26
26
  self.__dict__.update(kwargs)
27
27
 
28
28
  def get_docstring_title(self, operation):
29
- title = remove_html_tags(operation["documentation"])
30
- self.docstring_title = title.split(".")[0] + "."
29
+ documentation = operation.get("documentation")
30
+ title = remove_html_tags(documentation) if documentation else None
31
+ self.docstring_title = title.split(".")[0] + "." if title else None
31
32
 
32
33
  # TODO: add some templates for common methods