sae-lens 6.6.4__py3-none-any.whl → 6.6.5__py3-none-any.whl
This diff represents the content of publicly available package versions that have been released to one of the supported registries. The information contained in this diff is provided for informational purposes only and reflects changes between package versions as they appear in their respective public registries.
- sae_lens/__init__.py +1 -1
- sae_lens/evals.py +14 -10
- sae_lens/loading/pretrained_sae_loaders.py +5 -1
- {sae_lens-6.6.4.dist-info → sae_lens-6.6.5.dist-info}/METADATA +1 -1
- {sae_lens-6.6.4.dist-info → sae_lens-6.6.5.dist-info}/RECORD +7 -7
- {sae_lens-6.6.4.dist-info → sae_lens-6.6.5.dist-info}/LICENSE +0 -0
- {sae_lens-6.6.4.dist-info → sae_lens-6.6.5.dist-info}/WHEEL +0 -0
sae_lens/__init__.py
CHANGED
sae_lens/evals.py
CHANGED
|
@@ -718,17 +718,9 @@ def get_recons_loss(
|
|
|
718
718
|
**model_kwargs,
|
|
719
719
|
)
|
|
720
720
|
|
|
721
|
-
def kl(original_logits: torch.Tensor, new_logits: torch.Tensor):
|
|
722
|
-
original_probs = torch.nn.functional.softmax(original_logits, dim=-1)
|
|
723
|
-
log_original_probs = torch.log(original_probs)
|
|
724
|
-
new_probs = torch.nn.functional.softmax(new_logits, dim=-1)
|
|
725
|
-
log_new_probs = torch.log(new_probs)
|
|
726
|
-
kl_div = original_probs * (log_original_probs - log_new_probs)
|
|
727
|
-
return kl_div.sum(dim=-1)
|
|
728
|
-
|
|
729
721
|
if compute_kl:
|
|
730
|
-
recons_kl_div =
|
|
731
|
-
zero_abl_kl_div =
|
|
722
|
+
recons_kl_div = _kl(original_logits, recons_logits)
|
|
723
|
+
zero_abl_kl_div = _kl(original_logits, zero_abl_logits)
|
|
732
724
|
metrics["kl_div_with_sae"] = recons_kl_div
|
|
733
725
|
metrics["kl_div_with_ablation"] = zero_abl_kl_div
|
|
734
726
|
|
|
@@ -740,6 +732,18 @@ def get_recons_loss(
|
|
|
740
732
|
return metrics
|
|
741
733
|
|
|
742
734
|
|
|
735
|
+
def _kl(original_logits: torch.Tensor, new_logits: torch.Tensor):
|
|
736
|
+
# Computes the log-probabilities of the new logits (approximation).
|
|
737
|
+
log_probs_new = torch.nn.functional.log_softmax(new_logits, dim=-1)
|
|
738
|
+
# Computes the probabilities of the original logits (true distribution).
|
|
739
|
+
probs_orig = torch.nn.functional.softmax(original_logits, dim=-1)
|
|
740
|
+
# Compute the KL divergence. torch.nn.functional.kl_div expects the first argument to be the log
|
|
741
|
+
# probabilities of the approximation (new), and the second argument to be the true distribution
|
|
742
|
+
# (original) as probabilities. This computes KL(original || new).
|
|
743
|
+
kl = torch.nn.functional.kl_div(log_probs_new, probs_orig, reduction="none")
|
|
744
|
+
return kl.sum(dim=-1)
|
|
745
|
+
|
|
746
|
+
|
|
743
747
|
def all_loadable_saes() -> list[tuple[str, str, float, float]]:
|
|
744
748
|
all_loadable_saes = []
|
|
745
749
|
saes_directory = get_pretrained_saes_directory()
|
|
@@ -1001,10 +1001,14 @@ def get_sparsify_config_from_disk(
|
|
|
1001
1001
|
layer = int(match.group(1))
|
|
1002
1002
|
hook_name = f"blocks.{layer}.hook_resid_post"
|
|
1003
1003
|
|
|
1004
|
+
d_sae = old_cfg_dict.get("num_latents")
|
|
1005
|
+
if d_sae is None:
|
|
1006
|
+
d_sae = old_cfg_dict["d_in"] * old_cfg_dict["expansion_factor"]
|
|
1007
|
+
|
|
1004
1008
|
cfg_dict: dict[str, Any] = {
|
|
1005
1009
|
"architecture": "standard",
|
|
1006
1010
|
"d_in": old_cfg_dict["d_in"],
|
|
1007
|
-
"d_sae":
|
|
1011
|
+
"d_sae": d_sae,
|
|
1008
1012
|
"dtype": "bfloat16",
|
|
1009
1013
|
"device": device or "cpu",
|
|
1010
1014
|
"model_name": config_dict.get("model", path.parts[-2]),
|
|
@@ -1,15 +1,15 @@
|
|
|
1
|
-
sae_lens/__init__.py,sha256=
|
|
1
|
+
sae_lens/__init__.py,sha256=gvg9photJRtatuXa9YF-uDv1tYiHwHTMh29X1GNQd6Y,3588
|
|
2
2
|
sae_lens/analysis/__init__.py,sha256=47DEQpj8HBSa-_TImW-5JCeuQeRkm5NMpJWZG3hSuFU,0
|
|
3
3
|
sae_lens/analysis/hooked_sae_transformer.py,sha256=vRu6JseH1lZaEeILD5bEkQEQ1wYHHDcxD-f2olKmE9Y,14275
|
|
4
4
|
sae_lens/analysis/neuronpedia_integration.py,sha256=Fj4gVyaXMGBUxoK0vPeTwGVFr4n40fmfPrRENo4WzPs,19324
|
|
5
5
|
sae_lens/cache_activations_runner.py,sha256=cNeAtp2JQ_vKbeddZVM-tcPLYyyfTWL8NDna5KQpkLI,12583
|
|
6
6
|
sae_lens/config.py,sha256=IrjbsKBbaZoFXYrsPJ5xBwIqi9uZJIIFXjV_uoErJaE,28176
|
|
7
7
|
sae_lens/constants.py,sha256=CSjmiZ-bhjQeVLyRvWxAjBokCgkfM8mnvd7-vxLIWTY,639
|
|
8
|
-
sae_lens/evals.py,sha256=
|
|
8
|
+
sae_lens/evals.py,sha256=4hanbyG8qZLItWqft94F4ZjUoytPVB7fw5s0P4Oi0VE,39504
|
|
9
9
|
sae_lens/llm_sae_training_runner.py,sha256=exxNX_OEhdiUrlgmBP9bjX9DOf0HUcNQGO4unKeDjKM,13713
|
|
10
10
|
sae_lens/load_model.py,sha256=C8AMykctj6H7tz_xRwB06-EXj6TfW64PtSJZR5Jxn1Y,8649
|
|
11
11
|
sae_lens/loading/__init__.py,sha256=47DEQpj8HBSa-_TImW-5JCeuQeRkm5NMpJWZG3hSuFU,0
|
|
12
|
-
sae_lens/loading/pretrained_sae_loaders.py,sha256=
|
|
12
|
+
sae_lens/loading/pretrained_sae_loaders.py,sha256=tLeHArWFpu8CI6vXH1ZxFkhmsrhO2UsZyi7DzVzqAUs,44477
|
|
13
13
|
sae_lens/loading/pretrained_saes_directory.py,sha256=4Vn-Jex6SveD7EbxcSOBv8cx1gkPfUMLU1QOP-ww1ZE,3752
|
|
14
14
|
sae_lens/pretokenize_runner.py,sha256=w0f6SfZLAxbp5eAAKnet8RqUB_DKofZ9RGsoJwFnYbA,7058
|
|
15
15
|
sae_lens/pretrained_saes.yaml,sha256=O_FwoOe7fU9_WLEOnMk1IWXRxD4nwzf1tCfbof1r0D0,598578
|
|
@@ -33,7 +33,7 @@ sae_lens/training/types.py,sha256=qSjmGzXf3MLalygG0psnVjmhX_mpLmL47MQtZfe7qxg,81
|
|
|
33
33
|
sae_lens/training/upload_saes_to_huggingface.py,sha256=r_WzI1zLtGZ5TzAxuG3xa_8T09j3zXJrWd_vzPsPGkQ,4469
|
|
34
34
|
sae_lens/tutorial/tsea.py,sha256=fd1am_XXsf2KMbByDapJo-2qlxduKaa62Z2qcQZ3QKU,18145
|
|
35
35
|
sae_lens/util.py,sha256=mCwLAilGMVo8Scm7CIsCafU7GsfmBvCcjwmloI4Ly7Y,1718
|
|
36
|
-
sae_lens-6.6.
|
|
37
|
-
sae_lens-6.6.
|
|
38
|
-
sae_lens-6.6.
|
|
39
|
-
sae_lens-6.6.
|
|
36
|
+
sae_lens-6.6.5.dist-info/LICENSE,sha256=DW6e-hDosiu4CfW0-imI57sV1I5f9UEslpviNQcOAKs,1069
|
|
37
|
+
sae_lens-6.6.5.dist-info/METADATA,sha256=U5oP3RYgIE2EnHA2mwRImUcoyVBhYYwiRU199LM_R7c,5356
|
|
38
|
+
sae_lens-6.6.5.dist-info/WHEEL,sha256=b4K_helf-jlQoXBBETfwnf4B04YC67LOev0jo4fX5m8,88
|
|
39
|
+
sae_lens-6.6.5.dist-info/RECORD,,
|
|
File without changes
|
|
File without changes
|