sae-lens 6.28.2__py3-none-any.whl → 6.32.1__py3-none-any.whl
This diff represents the content of publicly available package versions that have been released to one of the supported registries. The information contained in this diff is provided for informational purposes only and reflects changes between package versions as they appear in their respective public registries.
- sae_lens/__init__.py +14 -1
- sae_lens/analysis/__init__.py +15 -0
- sae_lens/analysis/compat.py +16 -0
- sae_lens/analysis/hooked_sae_transformer.py +1 -1
- sae_lens/analysis/sae_transformer_bridge.py +348 -0
- sae_lens/config.py +9 -1
- sae_lens/evals.py +2 -2
- sae_lens/loading/pretrained_sae_loaders.py +11 -4
- sae_lens/pretrained_saes.yaml +36 -0
- sae_lens/saes/temporal_sae.py +1 -1
- sae_lens/synthetic/__init__.py +6 -0
- sae_lens/synthetic/activation_generator.py +197 -25
- sae_lens/synthetic/correlation.py +217 -36
- sae_lens/synthetic/feature_dictionary.py +11 -2
- sae_lens/synthetic/hierarchy.py +314 -2
- sae_lens/synthetic/training.py +16 -3
- sae_lens/training/activation_scaler.py +3 -1
- {sae_lens-6.28.2.dist-info → sae_lens-6.32.1.dist-info}/METADATA +2 -2
- {sae_lens-6.28.2.dist-info → sae_lens-6.32.1.dist-info}/RECORD +21 -19
- {sae_lens-6.28.2.dist-info → sae_lens-6.32.1.dist-info}/WHEEL +1 -1
- {sae_lens-6.28.2.dist-info → sae_lens-6.32.1.dist-info}/licenses/LICENSE +0 -0
sae_lens/synthetic/hierarchy.py
CHANGED
|
@@ -147,6 +147,14 @@ class _SparseHierarchyData:
|
|
|
147
147
|
# Total number of ME groups
|
|
148
148
|
num_groups: int
|
|
149
149
|
|
|
150
|
+
# Sparse COO support: Feature-to-parent mapping
|
|
151
|
+
# feat_to_parent[f] = parent feature index, or -1 if root/no parent
|
|
152
|
+
feat_to_parent: torch.Tensor | None = None # [num_features]
|
|
153
|
+
|
|
154
|
+
# Sparse COO support: Feature-to-ME-group mapping
|
|
155
|
+
# feat_to_me_group[f] = group index, or -1 if not in any ME group
|
|
156
|
+
feat_to_me_group: torch.Tensor | None = None # [num_features]
|
|
157
|
+
|
|
150
158
|
|
|
151
159
|
def _build_sparse_hierarchy(
|
|
152
160
|
roots: Sequence[HierarchyNode],
|
|
@@ -232,7 +240,11 @@ def _build_sparse_hierarchy(
|
|
|
232
240
|
me_indices = torch.empty(0, dtype=torch.long)
|
|
233
241
|
|
|
234
242
|
level_data.append(
|
|
235
|
-
_LevelData(
|
|
243
|
+
_LevelData(
|
|
244
|
+
features=feats,
|
|
245
|
+
parents=parents,
|
|
246
|
+
me_group_indices=me_indices,
|
|
247
|
+
)
|
|
236
248
|
)
|
|
237
249
|
|
|
238
250
|
# Build group siblings and parents tensors
|
|
@@ -254,12 +266,30 @@ def _build_sparse_hierarchy(
|
|
|
254
266
|
me_group_parents = torch.empty(0, dtype=torch.long)
|
|
255
267
|
num_groups = 0
|
|
256
268
|
|
|
269
|
+
# Build sparse COO support: feat_to_parent and feat_to_me_group mappings
|
|
270
|
+
# First determine num_features (max feature index + 1)
|
|
271
|
+
all_features = [f for f, _, _ in feature_info]
|
|
272
|
+
num_features = max(all_features) + 1 if all_features else 0
|
|
273
|
+
|
|
274
|
+
# Build feature-to-parent mapping
|
|
275
|
+
feat_to_parent = torch.full((num_features,), -1, dtype=torch.long)
|
|
276
|
+
for feat, parent, _ in feature_info:
|
|
277
|
+
feat_to_parent[feat] = parent
|
|
278
|
+
|
|
279
|
+
# Build feature-to-ME-group mapping
|
|
280
|
+
feat_to_me_group = torch.full((num_features,), -1, dtype=torch.long)
|
|
281
|
+
for g_idx, (_, _, siblings) in enumerate(me_groups):
|
|
282
|
+
for sib in siblings:
|
|
283
|
+
feat_to_me_group[sib] = g_idx
|
|
284
|
+
|
|
257
285
|
return _SparseHierarchyData(
|
|
258
286
|
level_data=level_data,
|
|
259
287
|
me_group_siblings=me_group_siblings,
|
|
260
288
|
me_group_sizes=me_group_sizes,
|
|
261
289
|
me_group_parents=me_group_parents,
|
|
262
290
|
num_groups=num_groups,
|
|
291
|
+
feat_to_parent=feat_to_parent,
|
|
292
|
+
feat_to_me_group=feat_to_me_group,
|
|
263
293
|
)
|
|
264
294
|
|
|
265
295
|
|
|
@@ -396,8 +426,9 @@ def _apply_me_for_groups(
|
|
|
396
426
|
# Random selection for winner
|
|
397
427
|
# Use -1e9 instead of -inf to avoid creating a tensor (torch.tensor(-float("inf")))
|
|
398
428
|
# on every call. Since random scores are in [0,1], -1e9 is effectively -inf for argmax.
|
|
429
|
+
_INACTIVE_SCORE = -1e9
|
|
399
430
|
random_scores = torch.rand(num_conflicts, max_siblings, device=device)
|
|
400
|
-
random_scores[~conflict_active] =
|
|
431
|
+
random_scores[~conflict_active] = _INACTIVE_SCORE
|
|
401
432
|
|
|
402
433
|
winner_idx = random_scores.argmax(dim=1)
|
|
403
434
|
|
|
@@ -420,6 +451,275 @@ def _apply_me_for_groups(
|
|
|
420
451
|
activations[deact_batch, deact_feat] = 0
|
|
421
452
|
|
|
422
453
|
|
|
454
|
+
# ---------------------------------------------------------------------------
|
|
455
|
+
# Sparse COO hierarchy implementation
|
|
456
|
+
# ---------------------------------------------------------------------------
|
|
457
|
+
|
|
458
|
+
|
|
459
|
+
def _apply_hierarchy_sparse_coo(
|
|
460
|
+
sparse_tensor: torch.Tensor,
|
|
461
|
+
sparse_data: _SparseHierarchyData,
|
|
462
|
+
) -> torch.Tensor:
|
|
463
|
+
"""
|
|
464
|
+
Apply hierarchy constraints to a sparse COO tensor.
|
|
465
|
+
|
|
466
|
+
This is the sparse analog of _apply_hierarchy_sparse. It processes
|
|
467
|
+
level-by-level, applying parent deactivation then mutual exclusion.
|
|
468
|
+
"""
|
|
469
|
+
if sparse_tensor._nnz() == 0:
|
|
470
|
+
return sparse_tensor
|
|
471
|
+
|
|
472
|
+
sparse_tensor = sparse_tensor.coalesce()
|
|
473
|
+
|
|
474
|
+
for level_data in sparse_data.level_data:
|
|
475
|
+
# Step 1: Apply parent deactivation for features at this level
|
|
476
|
+
if level_data.features.numel() > 0:
|
|
477
|
+
sparse_tensor = _apply_parent_deactivation_coo(
|
|
478
|
+
sparse_tensor, level_data, sparse_data
|
|
479
|
+
)
|
|
480
|
+
|
|
481
|
+
# Step 2: Apply ME for groups whose parent is at this level
|
|
482
|
+
if level_data.me_group_indices.numel() > 0:
|
|
483
|
+
sparse_tensor = _apply_me_coo(
|
|
484
|
+
sparse_tensor, level_data.me_group_indices, sparse_data
|
|
485
|
+
)
|
|
486
|
+
|
|
487
|
+
return sparse_tensor
|
|
488
|
+
|
|
489
|
+
|
|
490
|
+
def _apply_parent_deactivation_coo(
|
|
491
|
+
sparse_tensor: torch.Tensor,
|
|
492
|
+
level_data: _LevelData,
|
|
493
|
+
sparse_data: _SparseHierarchyData,
|
|
494
|
+
) -> torch.Tensor:
|
|
495
|
+
"""
|
|
496
|
+
Remove children from sparse COO tensor when their parent is inactive.
|
|
497
|
+
|
|
498
|
+
Uses searchsorted for efficient membership testing of parent activity.
|
|
499
|
+
"""
|
|
500
|
+
if sparse_tensor._nnz() == 0 or level_data.features.numel() == 0:
|
|
501
|
+
return sparse_tensor
|
|
502
|
+
|
|
503
|
+
sparse_tensor = sparse_tensor.coalesce()
|
|
504
|
+
indices = sparse_tensor.indices() # [2, nnz]
|
|
505
|
+
values = sparse_tensor.values() # [nnz]
|
|
506
|
+
batch_indices = indices[0]
|
|
507
|
+
feat_indices = indices[1]
|
|
508
|
+
|
|
509
|
+
_, num_features = sparse_tensor.shape
|
|
510
|
+
device = sparse_tensor.device
|
|
511
|
+
nnz = indices.shape[1]
|
|
512
|
+
|
|
513
|
+
# Build set of active (batch, feature) pairs for efficient lookup
|
|
514
|
+
# Encode as: batch_idx * num_features + feat_idx
|
|
515
|
+
active_pairs = batch_indices * num_features + feat_indices
|
|
516
|
+
active_pairs_sorted, _ = active_pairs.sort()
|
|
517
|
+
|
|
518
|
+
# Use the precomputed feat_to_parent mapping
|
|
519
|
+
assert sparse_data.feat_to_parent is not None
|
|
520
|
+
hierarchy_num_features = sparse_data.feat_to_parent.numel()
|
|
521
|
+
|
|
522
|
+
# Handle features outside the hierarchy (they have no parent, pass through)
|
|
523
|
+
in_hierarchy = feat_indices < hierarchy_num_features
|
|
524
|
+
parent_of_feat = torch.full((nnz,), -1, dtype=torch.long, device=device)
|
|
525
|
+
parent_of_feat[in_hierarchy] = sparse_data.feat_to_parent[
|
|
526
|
+
feat_indices[in_hierarchy]
|
|
527
|
+
]
|
|
528
|
+
|
|
529
|
+
# Find entries that have a parent (parent >= 0 means this feature has a parent)
|
|
530
|
+
has_parent = parent_of_feat >= 0
|
|
531
|
+
|
|
532
|
+
if not has_parent.any():
|
|
533
|
+
return sparse_tensor
|
|
534
|
+
|
|
535
|
+
# For entries with parents, check if parent is active
|
|
536
|
+
child_entry_indices = torch.where(has_parent)[0]
|
|
537
|
+
child_batch = batch_indices[has_parent]
|
|
538
|
+
child_parents = parent_of_feat[has_parent]
|
|
539
|
+
|
|
540
|
+
# Look up parent activity using searchsorted
|
|
541
|
+
parent_pairs = child_batch * num_features + child_parents
|
|
542
|
+
search_pos = torch.searchsorted(active_pairs_sorted, parent_pairs)
|
|
543
|
+
search_pos = search_pos.clamp(max=active_pairs_sorted.numel() - 1)
|
|
544
|
+
parent_active = active_pairs_sorted[search_pos] == parent_pairs
|
|
545
|
+
|
|
546
|
+
# Handle empty case
|
|
547
|
+
if active_pairs_sorted.numel() == 0:
|
|
548
|
+
parent_active = torch.zeros_like(parent_pairs, dtype=torch.bool)
|
|
549
|
+
|
|
550
|
+
# Build keep mask: keep entry if it's a root OR its parent is active
|
|
551
|
+
keep_mask = torch.ones(nnz, dtype=torch.bool, device=device)
|
|
552
|
+
keep_mask[child_entry_indices[~parent_active]] = False
|
|
553
|
+
|
|
554
|
+
if keep_mask.all():
|
|
555
|
+
return sparse_tensor
|
|
556
|
+
|
|
557
|
+
return torch.sparse_coo_tensor(
|
|
558
|
+
indices[:, keep_mask],
|
|
559
|
+
values[keep_mask],
|
|
560
|
+
sparse_tensor.shape,
|
|
561
|
+
device=device,
|
|
562
|
+
dtype=sparse_tensor.dtype,
|
|
563
|
+
)
|
|
564
|
+
|
|
565
|
+
|
|
566
|
+
def _apply_me_coo(
|
|
567
|
+
sparse_tensor: torch.Tensor,
|
|
568
|
+
group_indices: torch.Tensor,
|
|
569
|
+
sparse_data: _SparseHierarchyData,
|
|
570
|
+
) -> torch.Tensor:
|
|
571
|
+
"""
|
|
572
|
+
Apply mutual exclusion to sparse COO tensor.
|
|
573
|
+
|
|
574
|
+
For each ME group with multiple active siblings in the same batch,
|
|
575
|
+
randomly selects one winner and removes the rest.
|
|
576
|
+
"""
|
|
577
|
+
if sparse_tensor._nnz() == 0 or group_indices.numel() == 0:
|
|
578
|
+
return sparse_tensor
|
|
579
|
+
|
|
580
|
+
sparse_tensor = sparse_tensor.coalesce()
|
|
581
|
+
indices = sparse_tensor.indices() # [2, nnz]
|
|
582
|
+
values = sparse_tensor.values() # [nnz]
|
|
583
|
+
batch_indices = indices[0]
|
|
584
|
+
feat_indices = indices[1]
|
|
585
|
+
|
|
586
|
+
_, num_features = sparse_tensor.shape
|
|
587
|
+
device = sparse_tensor.device
|
|
588
|
+
nnz = indices.shape[1]
|
|
589
|
+
|
|
590
|
+
# Use precomputed feat_to_me_group mapping
|
|
591
|
+
assert sparse_data.feat_to_me_group is not None
|
|
592
|
+
hierarchy_num_features = sparse_data.feat_to_me_group.numel()
|
|
593
|
+
|
|
594
|
+
# Handle features outside the hierarchy (they are not in any ME group)
|
|
595
|
+
in_hierarchy = feat_indices < hierarchy_num_features
|
|
596
|
+
me_group_of_feat = torch.full((nnz,), -1, dtype=torch.long, device=device)
|
|
597
|
+
me_group_of_feat[in_hierarchy] = sparse_data.feat_to_me_group[
|
|
598
|
+
feat_indices[in_hierarchy]
|
|
599
|
+
]
|
|
600
|
+
|
|
601
|
+
# Find entries that belong to ME groups we're processing (vectorized)
|
|
602
|
+
in_relevant_group = torch.isin(me_group_of_feat, group_indices)
|
|
603
|
+
|
|
604
|
+
if not in_relevant_group.any():
|
|
605
|
+
return sparse_tensor
|
|
606
|
+
|
|
607
|
+
# Get the ME entries
|
|
608
|
+
me_entry_indices = torch.where(in_relevant_group)[0]
|
|
609
|
+
me_batch = batch_indices[in_relevant_group]
|
|
610
|
+
me_group = me_group_of_feat[in_relevant_group]
|
|
611
|
+
|
|
612
|
+
# Check parent activity for ME groups (only apply ME if parent is active)
|
|
613
|
+
me_group_parents = sparse_data.me_group_parents[me_group]
|
|
614
|
+
has_parent = me_group_parents >= 0
|
|
615
|
+
|
|
616
|
+
if has_parent.any():
|
|
617
|
+
# Build active pairs for parent lookup
|
|
618
|
+
active_pairs = batch_indices * num_features + feat_indices
|
|
619
|
+
active_pairs_sorted, _ = active_pairs.sort()
|
|
620
|
+
|
|
621
|
+
parent_pairs = (
|
|
622
|
+
me_batch[has_parent] * num_features + me_group_parents[has_parent]
|
|
623
|
+
)
|
|
624
|
+
search_pos = torch.searchsorted(active_pairs_sorted, parent_pairs)
|
|
625
|
+
search_pos = search_pos.clamp(max=active_pairs_sorted.numel() - 1)
|
|
626
|
+
parent_active_for_has_parent = active_pairs_sorted[search_pos] == parent_pairs
|
|
627
|
+
|
|
628
|
+
# Build full parent_active mask
|
|
629
|
+
parent_active = torch.ones(
|
|
630
|
+
me_entry_indices.numel(), dtype=torch.bool, device=device
|
|
631
|
+
)
|
|
632
|
+
parent_active[has_parent] = parent_active_for_has_parent
|
|
633
|
+
|
|
634
|
+
# Filter to only ME entries where parent is active
|
|
635
|
+
valid_me = parent_active
|
|
636
|
+
me_entry_indices = me_entry_indices[valid_me]
|
|
637
|
+
me_batch = me_batch[valid_me]
|
|
638
|
+
me_group = me_group[valid_me]
|
|
639
|
+
|
|
640
|
+
if me_entry_indices.numel() == 0:
|
|
641
|
+
return sparse_tensor
|
|
642
|
+
|
|
643
|
+
# Encode (batch, group) pairs
|
|
644
|
+
num_groups = sparse_data.num_groups
|
|
645
|
+
batch_group_pairs = me_batch * num_groups + me_group
|
|
646
|
+
|
|
647
|
+
# Find unique (batch, group) pairs and count occurrences
|
|
648
|
+
unique_bg, inverse, counts = torch.unique(
|
|
649
|
+
batch_group_pairs, return_inverse=True, return_counts=True
|
|
650
|
+
)
|
|
651
|
+
|
|
652
|
+
# Only process pairs with count > 1 (conflicts)
|
|
653
|
+
has_conflict = counts > 1
|
|
654
|
+
|
|
655
|
+
if not has_conflict.any():
|
|
656
|
+
return sparse_tensor
|
|
657
|
+
|
|
658
|
+
# For efficiency, we process all conflicts together
|
|
659
|
+
# Assign random scores to each ME entry
|
|
660
|
+
random_scores = torch.rand(me_entry_indices.numel(), device=device)
|
|
661
|
+
|
|
662
|
+
# For each (batch, group) pair, we want the entry with highest score to be winner
|
|
663
|
+
# Use scatter_reduce to find max score per (batch, group)
|
|
664
|
+
bg_to_dense = torch.zeros(unique_bg.numel(), dtype=torch.long, device=device)
|
|
665
|
+
bg_to_dense[has_conflict.nonzero(as_tuple=True)[0]] = torch.arange(
|
|
666
|
+
has_conflict.sum(), device=device
|
|
667
|
+
)
|
|
668
|
+
|
|
669
|
+
# Map each ME entry to its dense conflict index
|
|
670
|
+
entry_has_conflict = has_conflict[inverse]
|
|
671
|
+
|
|
672
|
+
if not entry_has_conflict.any():
|
|
673
|
+
return sparse_tensor
|
|
674
|
+
|
|
675
|
+
conflict_entries_mask = entry_has_conflict
|
|
676
|
+
conflict_entry_indices = me_entry_indices[conflict_entries_mask]
|
|
677
|
+
conflict_random_scores = random_scores[conflict_entries_mask]
|
|
678
|
+
conflict_inverse = inverse[conflict_entries_mask]
|
|
679
|
+
conflict_dense_idx = bg_to_dense[conflict_inverse]
|
|
680
|
+
|
|
681
|
+
# Vectorized winner selection using sorting
|
|
682
|
+
# Sort entries by (group_idx, -random_score) so highest score comes first per group
|
|
683
|
+
# Use group * 2 - score to sort by group ascending, then score descending
|
|
684
|
+
sort_keys = conflict_dense_idx.float() * 2.0 - conflict_random_scores
|
|
685
|
+
sorted_order = sort_keys.argsort()
|
|
686
|
+
sorted_dense_idx = conflict_dense_idx[sorted_order]
|
|
687
|
+
|
|
688
|
+
# Find first entry of each group in sorted order (these are winners)
|
|
689
|
+
group_starts = torch.cat(
|
|
690
|
+
[
|
|
691
|
+
torch.tensor([True], device=device),
|
|
692
|
+
sorted_dense_idx[1:] != sorted_dense_idx[:-1],
|
|
693
|
+
]
|
|
694
|
+
)
|
|
695
|
+
|
|
696
|
+
# Winners are entries at group starts in sorted order
|
|
697
|
+
winner_positions_in_sorted = torch.where(group_starts)[0]
|
|
698
|
+
winner_original_positions = sorted_order[winner_positions_in_sorted]
|
|
699
|
+
|
|
700
|
+
# Create winner mask (vectorized)
|
|
701
|
+
is_winner = torch.zeros(
|
|
702
|
+
conflict_entry_indices.numel(), dtype=torch.bool, device=device
|
|
703
|
+
)
|
|
704
|
+
is_winner[winner_original_positions] = True
|
|
705
|
+
|
|
706
|
+
# Build keep mask (vectorized)
|
|
707
|
+
keep_mask = torch.ones(nnz, dtype=torch.bool, device=device)
|
|
708
|
+
loser_entry_indices = conflict_entry_indices[~is_winner]
|
|
709
|
+
keep_mask[loser_entry_indices] = False
|
|
710
|
+
|
|
711
|
+
if keep_mask.all():
|
|
712
|
+
return sparse_tensor
|
|
713
|
+
|
|
714
|
+
return torch.sparse_coo_tensor(
|
|
715
|
+
indices[:, keep_mask],
|
|
716
|
+
values[keep_mask],
|
|
717
|
+
sparse_tensor.shape,
|
|
718
|
+
device=device,
|
|
719
|
+
dtype=sparse_tensor.dtype,
|
|
720
|
+
)
|
|
721
|
+
|
|
722
|
+
|
|
423
723
|
@torch.no_grad()
|
|
424
724
|
def hierarchy_modifier(
|
|
425
725
|
roots: Sequence[HierarchyNode] | HierarchyNode,
|
|
@@ -475,12 +775,24 @@ def hierarchy_modifier(
|
|
|
475
775
|
me_group_sizes=sparse_data.me_group_sizes.to(device),
|
|
476
776
|
me_group_parents=sparse_data.me_group_parents.to(device),
|
|
477
777
|
num_groups=sparse_data.num_groups,
|
|
778
|
+
feat_to_parent=(
|
|
779
|
+
sparse_data.feat_to_parent.to(device)
|
|
780
|
+
if sparse_data.feat_to_parent is not None
|
|
781
|
+
else None
|
|
782
|
+
),
|
|
783
|
+
feat_to_me_group=(
|
|
784
|
+
sparse_data.feat_to_me_group.to(device)
|
|
785
|
+
if sparse_data.feat_to_me_group is not None
|
|
786
|
+
else None
|
|
787
|
+
),
|
|
478
788
|
)
|
|
479
789
|
return device_cache[device]
|
|
480
790
|
|
|
481
791
|
def modifier(activations: torch.Tensor) -> torch.Tensor:
|
|
482
792
|
device = activations.device
|
|
483
793
|
cached = _get_sparse_for_device(device)
|
|
794
|
+
if activations.is_sparse:
|
|
795
|
+
return _apply_hierarchy_sparse_coo(activations, cached)
|
|
484
796
|
return _apply_hierarchy_sparse(activations, cached)
|
|
485
797
|
|
|
486
798
|
return modifier
|
sae_lens/synthetic/training.py
CHANGED
|
@@ -23,6 +23,8 @@ def train_toy_sae(
|
|
|
23
23
|
device: str | torch.device = "cpu",
|
|
24
24
|
n_snapshots: int = 0,
|
|
25
25
|
snapshot_fn: Callable[[SAETrainer[Any, Any]], None] | None = None,
|
|
26
|
+
autocast_sae: bool = False,
|
|
27
|
+
autocast_data: bool = False,
|
|
26
28
|
) -> None:
|
|
27
29
|
"""
|
|
28
30
|
Train an SAE on synthetic activations from a feature dictionary.
|
|
@@ -46,6 +48,8 @@ def train_toy_sae(
|
|
|
46
48
|
snapshot_fn: Callback function called at each snapshot point. Receives
|
|
47
49
|
the SAETrainer instance, allowing access to the SAE, training step,
|
|
48
50
|
and other training state. Required if n_snapshots > 0.
|
|
51
|
+
autocast_sae: Whether to autocast the SAE to bfloat16. Only recommend for large SAEs on CUDA
|
|
52
|
+
autocast_data: Whether to autocast the activations generator and feature dictionary to bfloat16. Only recommend for large data on CUDA.
|
|
49
53
|
"""
|
|
50
54
|
|
|
51
55
|
device_str = str(device) if isinstance(device, torch.device) else device
|
|
@@ -55,6 +59,7 @@ def train_toy_sae(
|
|
|
55
59
|
feature_dict=feature_dict,
|
|
56
60
|
activations_generator=activations_generator,
|
|
57
61
|
batch_size=batch_size,
|
|
62
|
+
autocast=autocast_data,
|
|
58
63
|
)
|
|
59
64
|
|
|
60
65
|
# Create trainer config
|
|
@@ -64,7 +69,7 @@ def train_toy_sae(
|
|
|
64
69
|
save_final_checkpoint=False,
|
|
65
70
|
total_training_samples=training_samples,
|
|
66
71
|
device=device_str,
|
|
67
|
-
autocast=
|
|
72
|
+
autocast=autocast_sae,
|
|
68
73
|
lr=lr,
|
|
69
74
|
lr_end=lr,
|
|
70
75
|
lr_scheduler_name="constant",
|
|
@@ -119,6 +124,7 @@ class SyntheticActivationIterator(Iterator[torch.Tensor]):
|
|
|
119
124
|
feature_dict: FeatureDictionary,
|
|
120
125
|
activations_generator: ActivationGenerator,
|
|
121
126
|
batch_size: int,
|
|
127
|
+
autocast: bool = False,
|
|
122
128
|
):
|
|
123
129
|
"""
|
|
124
130
|
Create a new SyntheticActivationIterator.
|
|
@@ -127,16 +133,23 @@ class SyntheticActivationIterator(Iterator[torch.Tensor]):
|
|
|
127
133
|
feature_dict: The feature dictionary to use for generating hidden activations
|
|
128
134
|
activations_generator: Generator that produces feature activations
|
|
129
135
|
batch_size: Number of samples per batch
|
|
136
|
+
autocast: Whether to autocast the activations generator and feature dictionary to bfloat16.
|
|
130
137
|
"""
|
|
131
138
|
self.feature_dict = feature_dict
|
|
132
139
|
self.activations_generator = activations_generator
|
|
133
140
|
self.batch_size = batch_size
|
|
141
|
+
self.autocast = autocast
|
|
134
142
|
|
|
135
143
|
@torch.no_grad()
|
|
136
144
|
def next_batch(self) -> torch.Tensor:
|
|
137
145
|
"""Generate the next batch of hidden activations."""
|
|
138
|
-
|
|
139
|
-
|
|
146
|
+
with torch.autocast(
|
|
147
|
+
device_type=self.feature_dict.feature_vectors.device.type,
|
|
148
|
+
dtype=torch.bfloat16,
|
|
149
|
+
enabled=self.autocast,
|
|
150
|
+
):
|
|
151
|
+
features = self.activations_generator(self.batch_size)
|
|
152
|
+
return self.feature_dict(features)
|
|
140
153
|
|
|
141
154
|
def __iter__(self) -> "SyntheticActivationIterator":
|
|
142
155
|
return self
|
|
@@ -28,7 +28,9 @@ class ActivationScaler:
|
|
|
28
28
|
) -> float:
|
|
29
29
|
norms_per_batch: list[float] = []
|
|
30
30
|
for _ in tqdm(
|
|
31
|
-
range(n_batches_for_norm_estimate),
|
|
31
|
+
range(n_batches_for_norm_estimate),
|
|
32
|
+
desc="Estimating norm scaling factor",
|
|
33
|
+
leave=False,
|
|
32
34
|
):
|
|
33
35
|
acts = next(data_provider)
|
|
34
36
|
norms_per_batch.append(acts.norm(dim=-1).mean().item())
|
|
@@ -1,6 +1,6 @@
|
|
|
1
1
|
Metadata-Version: 2.4
|
|
2
2
|
Name: sae-lens
|
|
3
|
-
Version: 6.
|
|
3
|
+
Version: 6.32.1
|
|
4
4
|
Summary: Training and Analyzing Sparse Autoencoders (SAEs)
|
|
5
5
|
License: MIT
|
|
6
6
|
License-File: LICENSE
|
|
@@ -27,7 +27,7 @@ Requires-Dist: pyyaml (>=6.0.1,<7.0.0)
|
|
|
27
27
|
Requires-Dist: safetensors (>=0.4.2,<1.0.0)
|
|
28
28
|
Requires-Dist: simple-parsing (>=0.1.6,<0.2.0)
|
|
29
29
|
Requires-Dist: tenacity (>=9.0.0)
|
|
30
|
-
Requires-Dist: transformer-lens (>=2.16.1
|
|
30
|
+
Requires-Dist: transformer-lens (>=2.16.1)
|
|
31
31
|
Requires-Dist: transformers (>=4.38.1,<5.0.0)
|
|
32
32
|
Requires-Dist: typing-extensions (>=4.10.0,<5.0.0)
|
|
33
33
|
Project-URL: Homepage, https://decoderesearch.github.io/SAELens
|
|
@@ -1,18 +1,20 @@
|
|
|
1
|
-
sae_lens/__init__.py,sha256=
|
|
2
|
-
sae_lens/analysis/__init__.py,sha256=
|
|
3
|
-
sae_lens/analysis/
|
|
1
|
+
sae_lens/__init__.py,sha256=Y_TVKGehpnTvQw8tvIn0fjo8uAw-XAYi7carZS_cRjQ,5168
|
|
2
|
+
sae_lens/analysis/__init__.py,sha256=FZExlMviNwWR7OGUSGRbd0l-yUDGSp80gglI_ivILrY,412
|
|
3
|
+
sae_lens/analysis/compat.py,sha256=cgE3nhFcJTcuhppxbL71VanJS7YqVEOefuneB5eOaPw,538
|
|
4
|
+
sae_lens/analysis/hooked_sae_transformer.py,sha256=LpnjxSAcItqqXA4SJyZuxY4Ki0UOuWV683wg9laYAsY,14050
|
|
4
5
|
sae_lens/analysis/neuronpedia_integration.py,sha256=Gx1W7hUBEuMoasNcnOnZ1wmqbXDd1pSZ1nqKEya1HQc,4962
|
|
6
|
+
sae_lens/analysis/sae_transformer_bridge.py,sha256=xpJRRcB0g47EOQcmNCwMyrJJsbqMsGxVViDrV6C3upU,14916
|
|
5
7
|
sae_lens/cache_activations_runner.py,sha256=TjqNWIc46Nw09jHWFjzQzgzG5wdu_87Ahe-iFjI5_0Q,13117
|
|
6
|
-
sae_lens/config.py,sha256=
|
|
8
|
+
sae_lens/config.py,sha256=V0BXV8rvpbm5YuVukow9FURPpdyE4HSflbdymAo0Ycg,31205
|
|
7
9
|
sae_lens/constants.py,sha256=CM-h9AjZNAl2aP7hVpKk7YsFHpu-_Lfhhmq2d5qPEVc,887
|
|
8
|
-
sae_lens/evals.py,sha256=
|
|
10
|
+
sae_lens/evals.py,sha256=nEZpUfEUN-plw6Mj9GEqm-cU_tb1qrIF9km9ktQ0vVU,39624
|
|
9
11
|
sae_lens/llm_sae_training_runner.py,sha256=M7BK55gSFYu2qFQKABHX3c8i46P1LfODCeyHFzGGuqU,15196
|
|
10
12
|
sae_lens/load_model.py,sha256=C8AMykctj6H7tz_xRwB06-EXj6TfW64PtSJZR5Jxn1Y,8649
|
|
11
13
|
sae_lens/loading/__init__.py,sha256=47DEQpj8HBSa-_TImW-5JCeuQeRkm5NMpJWZG3hSuFU,0
|
|
12
|
-
sae_lens/loading/pretrained_sae_loaders.py,sha256=
|
|
14
|
+
sae_lens/loading/pretrained_sae_loaders.py,sha256=kshvA0NivOc7B3sL19lHr_zrC_DDfW2T6YWb5j0hgAk,63930
|
|
13
15
|
sae_lens/loading/pretrained_saes_directory.py,sha256=1at_aQbD8WFywchQCKuwfP-yvCq_Z2aUYrpKDnSN5Nc,4283
|
|
14
16
|
sae_lens/pretokenize_runner.py,sha256=amJwIz3CKi2s2wNQn-10E7eAV7VFhNqtFDNTeTkwEI8,7133
|
|
15
|
-
sae_lens/pretrained_saes.yaml,sha256=
|
|
17
|
+
sae_lens/pretrained_saes.yaml,sha256=IVBLLR8_XNllJ1O-kVv9ED4u0u44Yn8UOL9R-f8Idp4,1511936
|
|
16
18
|
sae_lens/registry.py,sha256=nhy7BPSudSATqW4lo9H_k3Na7sfGHmAf9v-3wpnLL_o,1490
|
|
17
19
|
sae_lens/saes/__init__.py,sha256=SBqPaP6Gl5uPFwHlumAZATC4Wd26xKIYLAAAo4MSa5Q,2200
|
|
18
20
|
sae_lens/saes/batchtopk_sae.py,sha256=x4EbgZl0GUickRPcCmtKNGS2Ra3Uy1Z1OtF2FnrSabQ,5422
|
|
@@ -22,22 +24,22 @@ sae_lens/saes/matching_pursuit_sae.py,sha256=08_G9p1YMLnE5qZVCPp6gll-iG6nHRbMMAS
|
|
|
22
24
|
sae_lens/saes/matryoshka_batchtopk_sae.py,sha256=Qr6htt1HHOuO9FXI9hyaPSnGFIiJG-v7y1t1CEmkFzM,5995
|
|
23
25
|
sae_lens/saes/sae.py,sha256=xRmgiLuaFlDCv8SyLbL-5TwdrWHpNLqSGe8mC1L6WcI,40942
|
|
24
26
|
sae_lens/saes/standard_sae.py,sha256=_hldNZkFPAf9VGrxouR1-tN8T2OEk8IkWBcXoatrC1o,5749
|
|
25
|
-
sae_lens/saes/temporal_sae.py,sha256=
|
|
27
|
+
sae_lens/saes/temporal_sae.py,sha256=S44sPddVj2xujA02CC8gT1tG0in7c_CSAhspu9FHbaA,13273
|
|
26
28
|
sae_lens/saes/topk_sae.py,sha256=vrMRPrCQR1o8G_kXqY_EAoGZARupkQNFB2dNZVLsusE,21073
|
|
27
29
|
sae_lens/saes/transcoder.py,sha256=CTpJs8ASOK06npih7gZHygZuxqTR7HICWlOYfTiKjI4,13501
|
|
28
|
-
sae_lens/synthetic/__init__.py,sha256=
|
|
29
|
-
sae_lens/synthetic/activation_generator.py,sha256=
|
|
30
|
-
sae_lens/synthetic/correlation.py,sha256=
|
|
30
|
+
sae_lens/synthetic/__init__.py,sha256=MtTnGkTfHV2WjkIgs7zZyx10EK9U5fjOHXy69Aq3uKw,3095
|
|
31
|
+
sae_lens/synthetic/activation_generator.py,sha256=8L9nwC4jFRv_wg3QN-n1sFwX8w1NqwJMysWaJ41lLlY,15197
|
|
32
|
+
sae_lens/synthetic/correlation.py,sha256=tMTLo9fBfDpeXwqhyUgFqnTipj9x2W0t4oEtNxB7AG0,13256
|
|
31
33
|
sae_lens/synthetic/evals.py,sha256=Nhi314ZnRgLfhBj-3tm_zzI-pGyFTcwllDXbIpPFXeU,4584
|
|
32
|
-
sae_lens/synthetic/feature_dictionary.py,sha256=
|
|
34
|
+
sae_lens/synthetic/feature_dictionary.py,sha256=Nd4xjSTxKMnKilZ3uYi8Gv5SS5D4bv4wHiSL1uGB69E,6933
|
|
33
35
|
sae_lens/synthetic/firing_probabilities.py,sha256=yclz1pWl5gE1r8LAxFvzQS88Lxwk5-3r8BCX9HLVejA,3370
|
|
34
|
-
sae_lens/synthetic/hierarchy.py,sha256=
|
|
36
|
+
sae_lens/synthetic/hierarchy.py,sha256=nm7nwnTswktVJeKUsRZ0hLOdXcFWGbxnA1b6lefHm-4,33592
|
|
35
37
|
sae_lens/synthetic/initialization.py,sha256=orMGW-786wRDHIS2W7bEH0HmlVFQ4g2z4bnnwdv5w4s,1386
|
|
36
38
|
sae_lens/synthetic/plotting.py,sha256=5lFrej1QOkGAcImFNo5-o-8mI_rUVqvEI57KzUQPPtQ,8208
|
|
37
|
-
sae_lens/synthetic/training.py,sha256=
|
|
39
|
+
sae_lens/synthetic/training.py,sha256=fHcX2cZ6nDupr71GX0Gk17f1NvQ0SKIVXIA6IuAb2dw,5692
|
|
38
40
|
sae_lens/tokenization_and_batching.py,sha256=uoHtAs9z3XqG0Fh-iQVYVlrbyB_E3kFFhrKU30BosCo,5438
|
|
39
41
|
sae_lens/training/__init__.py,sha256=47DEQpj8HBSa-_TImW-5JCeuQeRkm5NMpJWZG3hSuFU,0
|
|
40
|
-
sae_lens/training/activation_scaler.py,sha256=
|
|
42
|
+
sae_lens/training/activation_scaler.py,sha256=SJZzIMX1TGdeN_wT_wqgx2ij6f4p5Dm5lWH6DGNSt5g,2011
|
|
41
43
|
sae_lens/training/activations_store.py,sha256=kp4-6R4rTJUSt-g-Ifg5B1h7iIe7jZj-XQSKDvDpQMI,32187
|
|
42
44
|
sae_lens/training/mixing_buffer.py,sha256=1Z-S2CcQXMWGxRZJFnXeZFxbZcALkO_fP6VO37XdJQQ,2519
|
|
43
45
|
sae_lens/training/optim.py,sha256=bJpqqcK4enkcPvQAJkeH4Ci1LUOlfjIMTv6-IlaAbRA,5588
|
|
@@ -46,7 +48,7 @@ sae_lens/training/types.py,sha256=1FpLx_Doda9vZpmfm-x1e8wGBYpyhe9Kpb_JuM5nIFM,90
|
|
|
46
48
|
sae_lens/training/upload_saes_to_huggingface.py,sha256=r_WzI1zLtGZ5TzAxuG3xa_8T09j3zXJrWd_vzPsPGkQ,4469
|
|
47
49
|
sae_lens/tutorial/tsea.py,sha256=fd1am_XXsf2KMbByDapJo-2qlxduKaa62Z2qcQZ3QKU,18145
|
|
48
50
|
sae_lens/util.py,sha256=oIMoeyEP2IzcPFmRbKUzOAycgEyMcOasGeO_BGVZbc4,4846
|
|
49
|
-
sae_lens-6.
|
|
50
|
-
sae_lens-6.
|
|
51
|
-
sae_lens-6.
|
|
52
|
-
sae_lens-6.
|
|
51
|
+
sae_lens-6.32.1.dist-info/METADATA,sha256=TcO6hFEXKdbLp32UTiVluHcMXFetfYJDqTHNCsx9PRw,6566
|
|
52
|
+
sae_lens-6.32.1.dist-info/WHEEL,sha256=3ny-bZhpXrU6vSQ1UPG34FoxZBp3lVcvK0LkgUz6VLk,88
|
|
53
|
+
sae_lens-6.32.1.dist-info/licenses/LICENSE,sha256=DW6e-hDosiu4CfW0-imI57sV1I5f9UEslpviNQcOAKs,1069
|
|
54
|
+
sae_lens-6.32.1.dist-info/RECORD,,
|
|
File without changes
|