sae-lens 6.28.1__py3-none-any.whl → 6.29.1__py3-none-any.whl
This diff represents the content of publicly available package versions that have been released to one of the supported registries. The information contained in this diff is provided for informational purposes only and reflects changes between package versions as they appear in their respective public registries.
- sae_lens/__init__.py +1 -1
- sae_lens/pretrained_saes.yaml +1 -1
- sae_lens/synthetic/__init__.py +6 -0
- sae_lens/synthetic/activation_generator.py +198 -25
- sae_lens/synthetic/correlation.py +217 -36
- sae_lens/synthetic/feature_dictionary.py +64 -17
- sae_lens/synthetic/hierarchy.py +657 -84
- sae_lens/synthetic/training.py +16 -3
- {sae_lens-6.28.1.dist-info → sae_lens-6.29.1.dist-info}/METADATA +11 -1
- {sae_lens-6.28.1.dist-info → sae_lens-6.29.1.dist-info}/RECORD +12 -12
- {sae_lens-6.28.1.dist-info → sae_lens-6.29.1.dist-info}/WHEEL +0 -0
- {sae_lens-6.28.1.dist-info → sae_lens-6.29.1.dist-info}/licenses/LICENSE +0 -0
sae_lens/synthetic/hierarchy.py
CHANGED
|
@@ -11,7 +11,9 @@ https://github.com/noanabeshima/matryoshka-saes/blob/main/toy_model.py
|
|
|
11
11
|
|
|
12
12
|
from __future__ import annotations
|
|
13
13
|
|
|
14
|
+
from collections import deque
|
|
14
15
|
from collections.abc import Callable, Sequence
|
|
16
|
+
from dataclasses import dataclass
|
|
15
17
|
from typing import Any
|
|
16
18
|
|
|
17
19
|
import torch
|
|
@@ -19,6 +21,7 @@ import torch
|
|
|
19
21
|
ActivationsModifier = Callable[[torch.Tensor], torch.Tensor]
|
|
20
22
|
|
|
21
23
|
|
|
24
|
+
@torch.no_grad()
|
|
22
25
|
def _validate_hierarchy(roots: Sequence[HierarchyNode]) -> None:
|
|
23
26
|
"""
|
|
24
27
|
Validate a forest of hierarchy trees.
|
|
@@ -104,6 +107,620 @@ def _node_description(node: HierarchyNode) -> str:
|
|
|
104
107
|
return "unnamed node"
|
|
105
108
|
|
|
106
109
|
|
|
110
|
+
# ---------------------------------------------------------------------------
|
|
111
|
+
# Vectorized hierarchy implementation
|
|
112
|
+
# ---------------------------------------------------------------------------
|
|
113
|
+
|
|
114
|
+
|
|
115
|
+
@dataclass
|
|
116
|
+
class _LevelData:
|
|
117
|
+
"""Data for a single level in the hierarchy."""
|
|
118
|
+
|
|
119
|
+
# Features at this level and their parents (for parent deactivation)
|
|
120
|
+
features: torch.Tensor # [num_features_at_level]
|
|
121
|
+
parents: torch.Tensor # [num_features_at_level]
|
|
122
|
+
|
|
123
|
+
# ME group indices to process AFTER this level's parent deactivation
|
|
124
|
+
# These are groups whose parent node is at this level
|
|
125
|
+
# ME must be applied here before processing next level's parent deactivation
|
|
126
|
+
me_group_indices: torch.Tensor # [num_groups_at_level], may be empty
|
|
127
|
+
|
|
128
|
+
|
|
129
|
+
@dataclass
|
|
130
|
+
class _SparseHierarchyData:
|
|
131
|
+
"""Precomputed data for sparse hierarchy processing.
|
|
132
|
+
|
|
133
|
+
This structure enables O(active_features) processing instead of O(all_groups).
|
|
134
|
+
ME is applied at each level after parent deactivation to ensure cascading works.
|
|
135
|
+
"""
|
|
136
|
+
|
|
137
|
+
# Per-level data for parent deactivation and ME (processed in order)
|
|
138
|
+
level_data: list[_LevelData]
|
|
139
|
+
|
|
140
|
+
# ME group data (shared across levels, indexed by me_group_indices)
|
|
141
|
+
me_group_siblings: torch.Tensor # [num_groups, max_siblings]
|
|
142
|
+
me_group_sizes: torch.Tensor # [num_groups]
|
|
143
|
+
me_group_parents: (
|
|
144
|
+
torch.Tensor
|
|
145
|
+
) # [num_groups] - parent feature index (-1 if no parent)
|
|
146
|
+
|
|
147
|
+
# Total number of ME groups
|
|
148
|
+
num_groups: int
|
|
149
|
+
|
|
150
|
+
# Sparse COO support: Feature-to-parent mapping
|
|
151
|
+
# feat_to_parent[f] = parent feature index, or -1 if root/no parent
|
|
152
|
+
feat_to_parent: torch.Tensor | None = None # [num_features]
|
|
153
|
+
|
|
154
|
+
# Sparse COO support: Feature-to-ME-group mapping
|
|
155
|
+
# feat_to_me_group[f] = group index, or -1 if not in any ME group
|
|
156
|
+
feat_to_me_group: torch.Tensor | None = None # [num_features]
|
|
157
|
+
|
|
158
|
+
|
|
159
|
+
def _build_sparse_hierarchy(
|
|
160
|
+
roots: Sequence[HierarchyNode],
|
|
161
|
+
) -> _SparseHierarchyData:
|
|
162
|
+
"""
|
|
163
|
+
Build sparse hierarchy data structure for O(active_features) processing.
|
|
164
|
+
|
|
165
|
+
The key insight is that ME groups must be applied at the level of their parent node,
|
|
166
|
+
AFTER parent deactivation at that level, but BEFORE processing the next level.
|
|
167
|
+
This ensures that when a child is deactivated by ME, its grandchildren are also
|
|
168
|
+
deactivated during the next level's parent deactivation.
|
|
169
|
+
"""
|
|
170
|
+
# Collect feature info by level using BFS
|
|
171
|
+
# Each entry: (feature_index, effective_parent, level)
|
|
172
|
+
feature_info: list[tuple[int, int, int]] = []
|
|
173
|
+
|
|
174
|
+
# ME groups: list of (parent_level, parent_feature, child_feature_indices)
|
|
175
|
+
me_groups: list[tuple[int, int, list[int]]] = []
|
|
176
|
+
|
|
177
|
+
# BFS queue: (node, effective_parent, level)
|
|
178
|
+
queue: deque[tuple[HierarchyNode, int, int]] = deque()
|
|
179
|
+
for root in roots:
|
|
180
|
+
queue.append((root, -1, 0))
|
|
181
|
+
|
|
182
|
+
while queue:
|
|
183
|
+
node, effective_parent, level = queue.popleft()
|
|
184
|
+
|
|
185
|
+
if node.feature_index is not None:
|
|
186
|
+
feature_info.append((node.feature_index, effective_parent, level))
|
|
187
|
+
new_effective_parent = node.feature_index
|
|
188
|
+
else:
|
|
189
|
+
new_effective_parent = effective_parent
|
|
190
|
+
|
|
191
|
+
# Handle mutual exclusion children - record the parent's level and feature
|
|
192
|
+
if node.mutually_exclusive_children and len(node.children) >= 2:
|
|
193
|
+
child_feats = [
|
|
194
|
+
c.feature_index for c in node.children if c.feature_index is not None
|
|
195
|
+
]
|
|
196
|
+
if len(child_feats) >= 2:
|
|
197
|
+
# ME group belongs to the parent's level (current level)
|
|
198
|
+
# Parent feature is the node's feature_index (-1 if organizational node)
|
|
199
|
+
parent_feat = (
|
|
200
|
+
node.feature_index if node.feature_index is not None else -1
|
|
201
|
+
)
|
|
202
|
+
me_groups.append((level, parent_feat, child_feats))
|
|
203
|
+
|
|
204
|
+
for child in node.children:
|
|
205
|
+
queue.append((child, new_effective_parent, level + 1))
|
|
206
|
+
|
|
207
|
+
# Determine max level for both features and ME groups
|
|
208
|
+
max_feature_level = max((info[2] for info in feature_info), default=-1)
|
|
209
|
+
max_me_level = max((lvl for lvl, _, _ in me_groups), default=-1)
|
|
210
|
+
max_level = max(max_feature_level, max_me_level)
|
|
211
|
+
|
|
212
|
+
# Build level data with ME group indices per level
|
|
213
|
+
level_data: list[_LevelData] = []
|
|
214
|
+
|
|
215
|
+
# Group ME groups by their parent level
|
|
216
|
+
me_groups_by_level: dict[int, list[int]] = {}
|
|
217
|
+
for g_idx, (parent_level, _, _) in enumerate(me_groups):
|
|
218
|
+
if parent_level not in me_groups_by_level:
|
|
219
|
+
me_groups_by_level[parent_level] = []
|
|
220
|
+
me_groups_by_level[parent_level].append(g_idx)
|
|
221
|
+
|
|
222
|
+
for level in range(max_level + 1):
|
|
223
|
+
# Get features at this level that have parents
|
|
224
|
+
features_at_level = [
|
|
225
|
+
(feat, parent) for feat, parent, lv in feature_info if lv == level
|
|
226
|
+
]
|
|
227
|
+
with_parents = [(f, p) for f, p in features_at_level if p >= 0]
|
|
228
|
+
|
|
229
|
+
if with_parents:
|
|
230
|
+
feats = torch.tensor([f for f, _ in with_parents], dtype=torch.long)
|
|
231
|
+
parents = torch.tensor([p for _, p in with_parents], dtype=torch.long)
|
|
232
|
+
else:
|
|
233
|
+
feats = torch.empty(0, dtype=torch.long)
|
|
234
|
+
parents = torch.empty(0, dtype=torch.long)
|
|
235
|
+
|
|
236
|
+
# Get ME group indices for this level
|
|
237
|
+
if level in me_groups_by_level:
|
|
238
|
+
me_indices = torch.tensor(me_groups_by_level[level], dtype=torch.long)
|
|
239
|
+
else:
|
|
240
|
+
me_indices = torch.empty(0, dtype=torch.long)
|
|
241
|
+
|
|
242
|
+
level_data.append(
|
|
243
|
+
_LevelData(
|
|
244
|
+
features=feats,
|
|
245
|
+
parents=parents,
|
|
246
|
+
me_group_indices=me_indices,
|
|
247
|
+
)
|
|
248
|
+
)
|
|
249
|
+
|
|
250
|
+
# Build group siblings and parents tensors
|
|
251
|
+
if me_groups:
|
|
252
|
+
max_siblings = max(len(children) for _, _, children in me_groups)
|
|
253
|
+
num_groups = len(me_groups)
|
|
254
|
+
me_group_siblings = torch.full((num_groups, max_siblings), -1, dtype=torch.long)
|
|
255
|
+
me_group_sizes = torch.zeros(num_groups, dtype=torch.long)
|
|
256
|
+
me_group_parents = torch.full((num_groups,), -1, dtype=torch.long)
|
|
257
|
+
for g_idx, (_, parent_feat, siblings) in enumerate(me_groups):
|
|
258
|
+
me_group_sizes[g_idx] = len(siblings)
|
|
259
|
+
me_group_parents[g_idx] = parent_feat
|
|
260
|
+
me_group_siblings[g_idx, : len(siblings)] = torch.tensor(
|
|
261
|
+
siblings, dtype=torch.long
|
|
262
|
+
)
|
|
263
|
+
else:
|
|
264
|
+
me_group_siblings = torch.empty((0, 0), dtype=torch.long)
|
|
265
|
+
me_group_sizes = torch.empty(0, dtype=torch.long)
|
|
266
|
+
me_group_parents = torch.empty(0, dtype=torch.long)
|
|
267
|
+
num_groups = 0
|
|
268
|
+
|
|
269
|
+
# Build sparse COO support: feat_to_parent and feat_to_me_group mappings
|
|
270
|
+
# First determine num_features (max feature index + 1)
|
|
271
|
+
all_features = [f for f, _, _ in feature_info]
|
|
272
|
+
num_features = max(all_features) + 1 if all_features else 0
|
|
273
|
+
|
|
274
|
+
# Build feature-to-parent mapping
|
|
275
|
+
feat_to_parent = torch.full((num_features,), -1, dtype=torch.long)
|
|
276
|
+
for feat, parent, _ in feature_info:
|
|
277
|
+
feat_to_parent[feat] = parent
|
|
278
|
+
|
|
279
|
+
# Build feature-to-ME-group mapping
|
|
280
|
+
feat_to_me_group = torch.full((num_features,), -1, dtype=torch.long)
|
|
281
|
+
for g_idx, (_, _, siblings) in enumerate(me_groups):
|
|
282
|
+
for sib in siblings:
|
|
283
|
+
feat_to_me_group[sib] = g_idx
|
|
284
|
+
|
|
285
|
+
return _SparseHierarchyData(
|
|
286
|
+
level_data=level_data,
|
|
287
|
+
me_group_siblings=me_group_siblings,
|
|
288
|
+
me_group_sizes=me_group_sizes,
|
|
289
|
+
me_group_parents=me_group_parents,
|
|
290
|
+
num_groups=num_groups,
|
|
291
|
+
feat_to_parent=feat_to_parent,
|
|
292
|
+
feat_to_me_group=feat_to_me_group,
|
|
293
|
+
)
|
|
294
|
+
|
|
295
|
+
|
|
296
|
+
def _apply_hierarchy_sparse(
|
|
297
|
+
activations: torch.Tensor,
|
|
298
|
+
sparse_data: _SparseHierarchyData,
|
|
299
|
+
) -> torch.Tensor:
|
|
300
|
+
"""
|
|
301
|
+
Apply hierarchy constraints using precomputed sparse indices.
|
|
302
|
+
|
|
303
|
+
Processes level by level:
|
|
304
|
+
1. Apply parent deactivation for features at this level
|
|
305
|
+
2. Apply mutual exclusion for groups whose parent is at this level
|
|
306
|
+
3. Move to next level
|
|
307
|
+
|
|
308
|
+
This ensures that ME at level L affects parent deactivation at level L+1.
|
|
309
|
+
"""
|
|
310
|
+
result = activations.clone()
|
|
311
|
+
|
|
312
|
+
# Data is already on correct device from cache
|
|
313
|
+
me_group_siblings = sparse_data.me_group_siblings
|
|
314
|
+
me_group_sizes = sparse_data.me_group_sizes
|
|
315
|
+
me_group_parents = sparse_data.me_group_parents
|
|
316
|
+
|
|
317
|
+
for level_data in sparse_data.level_data:
|
|
318
|
+
# Step 1: Deactivate children where parent is inactive
|
|
319
|
+
if level_data.features.numel() > 0:
|
|
320
|
+
parent_vals = result[:, level_data.parents]
|
|
321
|
+
child_vals = result[:, level_data.features]
|
|
322
|
+
result[:, level_data.features] = child_vals * (parent_vals > 0)
|
|
323
|
+
|
|
324
|
+
# Step 2: Apply ME for groups whose parent is at this level
|
|
325
|
+
if level_data.me_group_indices.numel() > 0:
|
|
326
|
+
_apply_me_for_groups(
|
|
327
|
+
result,
|
|
328
|
+
level_data.me_group_indices,
|
|
329
|
+
me_group_siblings,
|
|
330
|
+
me_group_sizes,
|
|
331
|
+
me_group_parents,
|
|
332
|
+
)
|
|
333
|
+
|
|
334
|
+
return result
|
|
335
|
+
|
|
336
|
+
|
|
337
|
+
def _apply_me_for_groups(
|
|
338
|
+
activations: torch.Tensor,
|
|
339
|
+
group_indices: torch.Tensor,
|
|
340
|
+
me_group_siblings: torch.Tensor,
|
|
341
|
+
me_group_sizes: torch.Tensor,
|
|
342
|
+
me_group_parents: torch.Tensor,
|
|
343
|
+
) -> None:
|
|
344
|
+
"""
|
|
345
|
+
Apply mutual exclusion for the specified groups.
|
|
346
|
+
|
|
347
|
+
Only processes groups where the parent is active (or has no parent).
|
|
348
|
+
This is a key optimization since most groups are skipped when parent is inactive.
|
|
349
|
+
|
|
350
|
+
Args:
|
|
351
|
+
activations: [batch_size, num_features] - modified in place
|
|
352
|
+
group_indices: [num_groups_to_process] - which groups to apply ME for
|
|
353
|
+
me_group_siblings: [total_groups, max_siblings] - sibling indices per group
|
|
354
|
+
me_group_sizes: [total_groups] - number of valid siblings per group
|
|
355
|
+
me_group_parents: [total_groups] - parent feature index (-1 if no parent)
|
|
356
|
+
"""
|
|
357
|
+
batch_size = activations.shape[0]
|
|
358
|
+
device = activations.device
|
|
359
|
+
num_groups = group_indices.numel()
|
|
360
|
+
|
|
361
|
+
if num_groups == 0:
|
|
362
|
+
return
|
|
363
|
+
|
|
364
|
+
# Get parent indices for these groups
|
|
365
|
+
parents = me_group_parents[group_indices] # [num_groups]
|
|
366
|
+
|
|
367
|
+
# Check which parents are active: [batch_size, num_groups]
|
|
368
|
+
# Groups with parent=-1 are always active (root-level ME)
|
|
369
|
+
has_parent = parents >= 0
|
|
370
|
+
if has_parent.all():
|
|
371
|
+
# All groups have parents - check their activation directly
|
|
372
|
+
parent_active = activations[:, parents] > 0 # [batch, num_groups]
|
|
373
|
+
if not parent_active.any():
|
|
374
|
+
return
|
|
375
|
+
elif has_parent.any():
|
|
376
|
+
# Mixed case: some groups have parents, some don't
|
|
377
|
+
# Use clamp to avoid indexing with -1 (reads feature 0, but result is masked out)
|
|
378
|
+
safe_parents = parents.clamp(min=0)
|
|
379
|
+
parent_active = activations[:, safe_parents] > 0 # [batch, num_groups]
|
|
380
|
+
# Groups without parent are always "active"
|
|
381
|
+
parent_active = parent_active | ~has_parent
|
|
382
|
+
else:
|
|
383
|
+
# No groups have parents - all are always active, skip parent check
|
|
384
|
+
parent_active = None
|
|
385
|
+
|
|
386
|
+
# Get siblings for the groups we're processing
|
|
387
|
+
siblings = me_group_siblings[group_indices] # [num_groups, max_siblings]
|
|
388
|
+
sizes = me_group_sizes[group_indices] # [num_groups]
|
|
389
|
+
max_siblings = siblings.shape[1]
|
|
390
|
+
|
|
391
|
+
# Get activations for all siblings: [batch_size, num_groups, max_siblings]
|
|
392
|
+
safe_siblings = siblings.clamp(min=0)
|
|
393
|
+
sibling_activations = activations[:, safe_siblings.view(-1)].view(
|
|
394
|
+
batch_size, num_groups, max_siblings
|
|
395
|
+
)
|
|
396
|
+
|
|
397
|
+
# Create validity mask for padding: [num_groups, max_siblings]
|
|
398
|
+
sibling_range = torch.arange(max_siblings, device=device)
|
|
399
|
+
valid_mask = sibling_range < sizes.unsqueeze(1)
|
|
400
|
+
|
|
401
|
+
# Find active valid siblings, but only where parent is active: [batch, groups, siblings]
|
|
402
|
+
sibling_active = (sibling_activations > 0) & valid_mask
|
|
403
|
+
if parent_active is not None:
|
|
404
|
+
sibling_active = sibling_active & parent_active.unsqueeze(2)
|
|
405
|
+
|
|
406
|
+
# Count active per group and check for conflicts: [batch_size, num_groups]
|
|
407
|
+
active_counts = sibling_active.sum(dim=2)
|
|
408
|
+
needs_exclusion = active_counts > 1
|
|
409
|
+
|
|
410
|
+
if not needs_exclusion.any():
|
|
411
|
+
return
|
|
412
|
+
|
|
413
|
+
# Get (batch, group) pairs needing exclusion
|
|
414
|
+
batch_with_conflict, groups_with_conflict = torch.where(needs_exclusion)
|
|
415
|
+
num_conflicts = batch_with_conflict.numel()
|
|
416
|
+
|
|
417
|
+
if num_conflicts == 0:
|
|
418
|
+
return
|
|
419
|
+
|
|
420
|
+
# Get siblings and activations for conflicts
|
|
421
|
+
conflict_siblings = siblings[groups_with_conflict] # [num_conflicts, max_siblings]
|
|
422
|
+
conflict_active = sibling_active[
|
|
423
|
+
batch_with_conflict, groups_with_conflict
|
|
424
|
+
] # [num_conflicts, max_siblings]
|
|
425
|
+
|
|
426
|
+
# Random selection for winner
|
|
427
|
+
# Use -1e9 instead of -inf to avoid creating a tensor (torch.tensor(-float("inf")))
|
|
428
|
+
# on every call. Since random scores are in [0,1], -1e9 is effectively -inf for argmax.
|
|
429
|
+
_INACTIVE_SCORE = -1e9
|
|
430
|
+
random_scores = torch.rand(num_conflicts, max_siblings, device=device)
|
|
431
|
+
random_scores[~conflict_active] = _INACTIVE_SCORE
|
|
432
|
+
|
|
433
|
+
winner_idx = random_scores.argmax(dim=1)
|
|
434
|
+
|
|
435
|
+
# Determine losers using scatter for efficiency
|
|
436
|
+
is_winner = torch.zeros(
|
|
437
|
+
num_conflicts, max_siblings, dtype=torch.bool, device=device
|
|
438
|
+
)
|
|
439
|
+
is_winner.scatter_(1, winner_idx.unsqueeze(1), True)
|
|
440
|
+
should_deactivate = conflict_active & ~is_winner
|
|
441
|
+
|
|
442
|
+
# Get (conflict, sibling) pairs to deactivate
|
|
443
|
+
conflict_idx, sib_idx = torch.where(should_deactivate)
|
|
444
|
+
|
|
445
|
+
if conflict_idx.numel() == 0:
|
|
446
|
+
return
|
|
447
|
+
|
|
448
|
+
# Map back to (batch, feature) and deactivate
|
|
449
|
+
deact_batch = batch_with_conflict[conflict_idx]
|
|
450
|
+
deact_feat = conflict_siblings[conflict_idx, sib_idx]
|
|
451
|
+
activations[deact_batch, deact_feat] = 0
|
|
452
|
+
|
|
453
|
+
|
|
454
|
+
# ---------------------------------------------------------------------------
|
|
455
|
+
# Sparse COO hierarchy implementation
|
|
456
|
+
# ---------------------------------------------------------------------------
|
|
457
|
+
|
|
458
|
+
|
|
459
|
+
def _apply_hierarchy_sparse_coo(
|
|
460
|
+
sparse_tensor: torch.Tensor,
|
|
461
|
+
sparse_data: _SparseHierarchyData,
|
|
462
|
+
) -> torch.Tensor:
|
|
463
|
+
"""
|
|
464
|
+
Apply hierarchy constraints to a sparse COO tensor.
|
|
465
|
+
|
|
466
|
+
This is the sparse analog of _apply_hierarchy_sparse. It processes
|
|
467
|
+
level-by-level, applying parent deactivation then mutual exclusion.
|
|
468
|
+
"""
|
|
469
|
+
if sparse_tensor._nnz() == 0:
|
|
470
|
+
return sparse_tensor
|
|
471
|
+
|
|
472
|
+
sparse_tensor = sparse_tensor.coalesce()
|
|
473
|
+
|
|
474
|
+
for level_data in sparse_data.level_data:
|
|
475
|
+
# Step 1: Apply parent deactivation for features at this level
|
|
476
|
+
if level_data.features.numel() > 0:
|
|
477
|
+
sparse_tensor = _apply_parent_deactivation_coo(
|
|
478
|
+
sparse_tensor, level_data, sparse_data
|
|
479
|
+
)
|
|
480
|
+
|
|
481
|
+
# Step 2: Apply ME for groups whose parent is at this level
|
|
482
|
+
if level_data.me_group_indices.numel() > 0:
|
|
483
|
+
sparse_tensor = _apply_me_coo(
|
|
484
|
+
sparse_tensor, level_data.me_group_indices, sparse_data
|
|
485
|
+
)
|
|
486
|
+
|
|
487
|
+
return sparse_tensor
|
|
488
|
+
|
|
489
|
+
|
|
490
|
+
def _apply_parent_deactivation_coo(
|
|
491
|
+
sparse_tensor: torch.Tensor,
|
|
492
|
+
level_data: _LevelData,
|
|
493
|
+
sparse_data: _SparseHierarchyData,
|
|
494
|
+
) -> torch.Tensor:
|
|
495
|
+
"""
|
|
496
|
+
Remove children from sparse COO tensor when their parent is inactive.
|
|
497
|
+
|
|
498
|
+
Uses searchsorted for efficient membership testing of parent activity.
|
|
499
|
+
"""
|
|
500
|
+
if sparse_tensor._nnz() == 0 or level_data.features.numel() == 0:
|
|
501
|
+
return sparse_tensor
|
|
502
|
+
|
|
503
|
+
sparse_tensor = sparse_tensor.coalesce()
|
|
504
|
+
indices = sparse_tensor.indices() # [2, nnz]
|
|
505
|
+
values = sparse_tensor.values() # [nnz]
|
|
506
|
+
batch_indices = indices[0]
|
|
507
|
+
feat_indices = indices[1]
|
|
508
|
+
|
|
509
|
+
_, num_features = sparse_tensor.shape
|
|
510
|
+
device = sparse_tensor.device
|
|
511
|
+
nnz = indices.shape[1]
|
|
512
|
+
|
|
513
|
+
# Build set of active (batch, feature) pairs for efficient lookup
|
|
514
|
+
# Encode as: batch_idx * num_features + feat_idx
|
|
515
|
+
active_pairs = batch_indices * num_features + feat_indices
|
|
516
|
+
active_pairs_sorted, _ = active_pairs.sort()
|
|
517
|
+
|
|
518
|
+
# Use the precomputed feat_to_parent mapping
|
|
519
|
+
assert sparse_data.feat_to_parent is not None
|
|
520
|
+
hierarchy_num_features = sparse_data.feat_to_parent.numel()
|
|
521
|
+
|
|
522
|
+
# Handle features outside the hierarchy (they have no parent, pass through)
|
|
523
|
+
in_hierarchy = feat_indices < hierarchy_num_features
|
|
524
|
+
parent_of_feat = torch.full((nnz,), -1, dtype=torch.long, device=device)
|
|
525
|
+
parent_of_feat[in_hierarchy] = sparse_data.feat_to_parent[
|
|
526
|
+
feat_indices[in_hierarchy]
|
|
527
|
+
]
|
|
528
|
+
|
|
529
|
+
# Find entries that have a parent (parent >= 0 means this feature has a parent)
|
|
530
|
+
has_parent = parent_of_feat >= 0
|
|
531
|
+
|
|
532
|
+
if not has_parent.any():
|
|
533
|
+
return sparse_tensor
|
|
534
|
+
|
|
535
|
+
# For entries with parents, check if parent is active
|
|
536
|
+
child_entry_indices = torch.where(has_parent)[0]
|
|
537
|
+
child_batch = batch_indices[has_parent]
|
|
538
|
+
child_parents = parent_of_feat[has_parent]
|
|
539
|
+
|
|
540
|
+
# Look up parent activity using searchsorted
|
|
541
|
+
parent_pairs = child_batch * num_features + child_parents
|
|
542
|
+
search_pos = torch.searchsorted(active_pairs_sorted, parent_pairs)
|
|
543
|
+
search_pos = search_pos.clamp(max=active_pairs_sorted.numel() - 1)
|
|
544
|
+
parent_active = active_pairs_sorted[search_pos] == parent_pairs
|
|
545
|
+
|
|
546
|
+
# Handle empty case
|
|
547
|
+
if active_pairs_sorted.numel() == 0:
|
|
548
|
+
parent_active = torch.zeros_like(parent_pairs, dtype=torch.bool)
|
|
549
|
+
|
|
550
|
+
# Build keep mask: keep entry if it's a root OR its parent is active
|
|
551
|
+
keep_mask = torch.ones(nnz, dtype=torch.bool, device=device)
|
|
552
|
+
keep_mask[child_entry_indices[~parent_active]] = False
|
|
553
|
+
|
|
554
|
+
if keep_mask.all():
|
|
555
|
+
return sparse_tensor
|
|
556
|
+
|
|
557
|
+
return torch.sparse_coo_tensor(
|
|
558
|
+
indices[:, keep_mask],
|
|
559
|
+
values[keep_mask],
|
|
560
|
+
sparse_tensor.shape,
|
|
561
|
+
device=device,
|
|
562
|
+
dtype=sparse_tensor.dtype,
|
|
563
|
+
)
|
|
564
|
+
|
|
565
|
+
|
|
566
|
+
def _apply_me_coo(
|
|
567
|
+
sparse_tensor: torch.Tensor,
|
|
568
|
+
group_indices: torch.Tensor,
|
|
569
|
+
sparse_data: _SparseHierarchyData,
|
|
570
|
+
) -> torch.Tensor:
|
|
571
|
+
"""
|
|
572
|
+
Apply mutual exclusion to sparse COO tensor.
|
|
573
|
+
|
|
574
|
+
For each ME group with multiple active siblings in the same batch,
|
|
575
|
+
randomly selects one winner and removes the rest.
|
|
576
|
+
"""
|
|
577
|
+
if sparse_tensor._nnz() == 0 or group_indices.numel() == 0:
|
|
578
|
+
return sparse_tensor
|
|
579
|
+
|
|
580
|
+
sparse_tensor = sparse_tensor.coalesce()
|
|
581
|
+
indices = sparse_tensor.indices() # [2, nnz]
|
|
582
|
+
values = sparse_tensor.values() # [nnz]
|
|
583
|
+
batch_indices = indices[0]
|
|
584
|
+
feat_indices = indices[1]
|
|
585
|
+
|
|
586
|
+
_, num_features = sparse_tensor.shape
|
|
587
|
+
device = sparse_tensor.device
|
|
588
|
+
nnz = indices.shape[1]
|
|
589
|
+
|
|
590
|
+
# Use precomputed feat_to_me_group mapping
|
|
591
|
+
assert sparse_data.feat_to_me_group is not None
|
|
592
|
+
hierarchy_num_features = sparse_data.feat_to_me_group.numel()
|
|
593
|
+
|
|
594
|
+
# Handle features outside the hierarchy (they are not in any ME group)
|
|
595
|
+
in_hierarchy = feat_indices < hierarchy_num_features
|
|
596
|
+
me_group_of_feat = torch.full((nnz,), -1, dtype=torch.long, device=device)
|
|
597
|
+
me_group_of_feat[in_hierarchy] = sparse_data.feat_to_me_group[
|
|
598
|
+
feat_indices[in_hierarchy]
|
|
599
|
+
]
|
|
600
|
+
|
|
601
|
+
# Find entries that belong to ME groups we're processing (vectorized)
|
|
602
|
+
in_relevant_group = torch.isin(me_group_of_feat, group_indices)
|
|
603
|
+
|
|
604
|
+
if not in_relevant_group.any():
|
|
605
|
+
return sparse_tensor
|
|
606
|
+
|
|
607
|
+
# Get the ME entries
|
|
608
|
+
me_entry_indices = torch.where(in_relevant_group)[0]
|
|
609
|
+
me_batch = batch_indices[in_relevant_group]
|
|
610
|
+
me_group = me_group_of_feat[in_relevant_group]
|
|
611
|
+
|
|
612
|
+
# Check parent activity for ME groups (only apply ME if parent is active)
|
|
613
|
+
me_group_parents = sparse_data.me_group_parents[me_group]
|
|
614
|
+
has_parent = me_group_parents >= 0
|
|
615
|
+
|
|
616
|
+
if has_parent.any():
|
|
617
|
+
# Build active pairs for parent lookup
|
|
618
|
+
active_pairs = batch_indices * num_features + feat_indices
|
|
619
|
+
active_pairs_sorted, _ = active_pairs.sort()
|
|
620
|
+
|
|
621
|
+
parent_pairs = (
|
|
622
|
+
me_batch[has_parent] * num_features + me_group_parents[has_parent]
|
|
623
|
+
)
|
|
624
|
+
search_pos = torch.searchsorted(active_pairs_sorted, parent_pairs)
|
|
625
|
+
search_pos = search_pos.clamp(max=active_pairs_sorted.numel() - 1)
|
|
626
|
+
parent_active_for_has_parent = active_pairs_sorted[search_pos] == parent_pairs
|
|
627
|
+
|
|
628
|
+
# Build full parent_active mask
|
|
629
|
+
parent_active = torch.ones(
|
|
630
|
+
me_entry_indices.numel(), dtype=torch.bool, device=device
|
|
631
|
+
)
|
|
632
|
+
parent_active[has_parent] = parent_active_for_has_parent
|
|
633
|
+
|
|
634
|
+
# Filter to only ME entries where parent is active
|
|
635
|
+
valid_me = parent_active
|
|
636
|
+
me_entry_indices = me_entry_indices[valid_me]
|
|
637
|
+
me_batch = me_batch[valid_me]
|
|
638
|
+
me_group = me_group[valid_me]
|
|
639
|
+
|
|
640
|
+
if me_entry_indices.numel() == 0:
|
|
641
|
+
return sparse_tensor
|
|
642
|
+
|
|
643
|
+
# Encode (batch, group) pairs
|
|
644
|
+
num_groups = sparse_data.num_groups
|
|
645
|
+
batch_group_pairs = me_batch * num_groups + me_group
|
|
646
|
+
|
|
647
|
+
# Find unique (batch, group) pairs and count occurrences
|
|
648
|
+
unique_bg, inverse, counts = torch.unique(
|
|
649
|
+
batch_group_pairs, return_inverse=True, return_counts=True
|
|
650
|
+
)
|
|
651
|
+
|
|
652
|
+
# Only process pairs with count > 1 (conflicts)
|
|
653
|
+
has_conflict = counts > 1
|
|
654
|
+
|
|
655
|
+
if not has_conflict.any():
|
|
656
|
+
return sparse_tensor
|
|
657
|
+
|
|
658
|
+
# For efficiency, we process all conflicts together
|
|
659
|
+
# Assign random scores to each ME entry
|
|
660
|
+
random_scores = torch.rand(me_entry_indices.numel(), device=device)
|
|
661
|
+
|
|
662
|
+
# For each (batch, group) pair, we want the entry with highest score to be winner
|
|
663
|
+
# Use scatter_reduce to find max score per (batch, group)
|
|
664
|
+
bg_to_dense = torch.zeros(unique_bg.numel(), dtype=torch.long, device=device)
|
|
665
|
+
bg_to_dense[has_conflict.nonzero(as_tuple=True)[0]] = torch.arange(
|
|
666
|
+
has_conflict.sum(), device=device
|
|
667
|
+
)
|
|
668
|
+
|
|
669
|
+
# Map each ME entry to its dense conflict index
|
|
670
|
+
entry_has_conflict = has_conflict[inverse]
|
|
671
|
+
|
|
672
|
+
if not entry_has_conflict.any():
|
|
673
|
+
return sparse_tensor
|
|
674
|
+
|
|
675
|
+
conflict_entries_mask = entry_has_conflict
|
|
676
|
+
conflict_entry_indices = me_entry_indices[conflict_entries_mask]
|
|
677
|
+
conflict_random_scores = random_scores[conflict_entries_mask]
|
|
678
|
+
conflict_inverse = inverse[conflict_entries_mask]
|
|
679
|
+
conflict_dense_idx = bg_to_dense[conflict_inverse]
|
|
680
|
+
|
|
681
|
+
# Vectorized winner selection using sorting
|
|
682
|
+
# Sort entries by (group_idx, -random_score) so highest score comes first per group
|
|
683
|
+
# Use group * 2 - score to sort by group ascending, then score descending
|
|
684
|
+
sort_keys = conflict_dense_idx.float() * 2.0 - conflict_random_scores
|
|
685
|
+
sorted_order = sort_keys.argsort()
|
|
686
|
+
sorted_dense_idx = conflict_dense_idx[sorted_order]
|
|
687
|
+
|
|
688
|
+
# Find first entry of each group in sorted order (these are winners)
|
|
689
|
+
group_starts = torch.cat(
|
|
690
|
+
[
|
|
691
|
+
torch.tensor([True], device=device),
|
|
692
|
+
sorted_dense_idx[1:] != sorted_dense_idx[:-1],
|
|
693
|
+
]
|
|
694
|
+
)
|
|
695
|
+
|
|
696
|
+
# Winners are entries at group starts in sorted order
|
|
697
|
+
winner_positions_in_sorted = torch.where(group_starts)[0]
|
|
698
|
+
winner_original_positions = sorted_order[winner_positions_in_sorted]
|
|
699
|
+
|
|
700
|
+
# Create winner mask (vectorized)
|
|
701
|
+
is_winner = torch.zeros(
|
|
702
|
+
conflict_entry_indices.numel(), dtype=torch.bool, device=device
|
|
703
|
+
)
|
|
704
|
+
is_winner[winner_original_positions] = True
|
|
705
|
+
|
|
706
|
+
# Build keep mask (vectorized)
|
|
707
|
+
keep_mask = torch.ones(nnz, dtype=torch.bool, device=device)
|
|
708
|
+
loser_entry_indices = conflict_entry_indices[~is_winner]
|
|
709
|
+
keep_mask[loser_entry_indices] = False
|
|
710
|
+
|
|
711
|
+
if keep_mask.all():
|
|
712
|
+
return sparse_tensor
|
|
713
|
+
|
|
714
|
+
return torch.sparse_coo_tensor(
|
|
715
|
+
indices[:, keep_mask],
|
|
716
|
+
values[keep_mask],
|
|
717
|
+
sparse_tensor.shape,
|
|
718
|
+
device=device,
|
|
719
|
+
dtype=sparse_tensor.dtype,
|
|
720
|
+
)
|
|
721
|
+
|
|
722
|
+
|
|
723
|
+
@torch.no_grad()
|
|
107
724
|
def hierarchy_modifier(
|
|
108
725
|
roots: Sequence[HierarchyNode] | HierarchyNode,
|
|
109
726
|
) -> ActivationsModifier:
|
|
@@ -136,12 +753,47 @@ def hierarchy_modifier(
|
|
|
136
753
|
roots = [roots]
|
|
137
754
|
_validate_hierarchy(roots)
|
|
138
755
|
|
|
139
|
-
#
|
|
756
|
+
# Build sparse hierarchy data
|
|
757
|
+
sparse_data = _build_sparse_hierarchy(roots)
|
|
758
|
+
|
|
759
|
+
# Cache for device-specific tensors
|
|
760
|
+
device_cache: dict[torch.device, _SparseHierarchyData] = {}
|
|
761
|
+
|
|
762
|
+
def _get_sparse_for_device(device: torch.device) -> _SparseHierarchyData:
|
|
763
|
+
"""Get or create device-specific sparse hierarchy data."""
|
|
764
|
+
if device not in device_cache:
|
|
765
|
+
device_cache[device] = _SparseHierarchyData(
|
|
766
|
+
level_data=[
|
|
767
|
+
_LevelData(
|
|
768
|
+
features=ld.features.to(device),
|
|
769
|
+
parents=ld.parents.to(device),
|
|
770
|
+
me_group_indices=ld.me_group_indices.to(device),
|
|
771
|
+
)
|
|
772
|
+
for ld in sparse_data.level_data
|
|
773
|
+
],
|
|
774
|
+
me_group_siblings=sparse_data.me_group_siblings.to(device),
|
|
775
|
+
me_group_sizes=sparse_data.me_group_sizes.to(device),
|
|
776
|
+
me_group_parents=sparse_data.me_group_parents.to(device),
|
|
777
|
+
num_groups=sparse_data.num_groups,
|
|
778
|
+
feat_to_parent=(
|
|
779
|
+
sparse_data.feat_to_parent.to(device)
|
|
780
|
+
if sparse_data.feat_to_parent is not None
|
|
781
|
+
else None
|
|
782
|
+
),
|
|
783
|
+
feat_to_me_group=(
|
|
784
|
+
sparse_data.feat_to_me_group.to(device)
|
|
785
|
+
if sparse_data.feat_to_me_group is not None
|
|
786
|
+
else None
|
|
787
|
+
),
|
|
788
|
+
)
|
|
789
|
+
return device_cache[device]
|
|
790
|
+
|
|
140
791
|
def modifier(activations: torch.Tensor) -> torch.Tensor:
|
|
141
|
-
|
|
142
|
-
|
|
143
|
-
|
|
144
|
-
|
|
792
|
+
device = activations.device
|
|
793
|
+
cached = _get_sparse_for_device(device)
|
|
794
|
+
if activations.is_sparse:
|
|
795
|
+
return _apply_hierarchy_sparse_coo(activations, cached)
|
|
796
|
+
return _apply_hierarchy_sparse(activations, cached)
|
|
145
797
|
|
|
146
798
|
return modifier
|
|
147
799
|
|
|
@@ -222,85 +874,6 @@ class HierarchyNode:
|
|
|
222
874
|
if self.mutually_exclusive_children and len(self.children) < 2:
|
|
223
875
|
raise ValueError("Need at least 2 children for mutual exclusion")
|
|
224
876
|
|
|
225
|
-
def _apply_hierarchy(
|
|
226
|
-
self,
|
|
227
|
-
activations: torch.Tensor,
|
|
228
|
-
parent_active_mask: torch.Tensor | None,
|
|
229
|
-
) -> None:
|
|
230
|
-
"""Recursively apply hierarchical constraints."""
|
|
231
|
-
batch_size = activations.shape[0]
|
|
232
|
-
|
|
233
|
-
# Determine which samples have this node active
|
|
234
|
-
if self.feature_index is not None:
|
|
235
|
-
is_active = activations[:, self.feature_index] > 0
|
|
236
|
-
else:
|
|
237
|
-
# Non-readout node: active if parent is active (or always if root)
|
|
238
|
-
is_active = (
|
|
239
|
-
parent_active_mask
|
|
240
|
-
if parent_active_mask is not None
|
|
241
|
-
else torch.ones(batch_size, dtype=torch.bool, device=activations.device)
|
|
242
|
-
)
|
|
243
|
-
|
|
244
|
-
# Deactivate this node if parent is inactive
|
|
245
|
-
if parent_active_mask is not None and self.feature_index is not None:
|
|
246
|
-
activations[~parent_active_mask, self.feature_index] = 0
|
|
247
|
-
# Update is_active after deactivation
|
|
248
|
-
is_active = activations[:, self.feature_index] > 0
|
|
249
|
-
|
|
250
|
-
# Handle mutually exclusive children
|
|
251
|
-
if self.mutually_exclusive_children and len(self.children) >= 2:
|
|
252
|
-
self._enforce_mutual_exclusion(activations, is_active)
|
|
253
|
-
|
|
254
|
-
# Recursively process children
|
|
255
|
-
for child in self.children:
|
|
256
|
-
child._apply_hierarchy(activations, parent_active_mask=is_active)
|
|
257
|
-
|
|
258
|
-
def _enforce_mutual_exclusion(
|
|
259
|
-
self,
|
|
260
|
-
activations: torch.Tensor,
|
|
261
|
-
parent_active_mask: torch.Tensor,
|
|
262
|
-
) -> None:
|
|
263
|
-
"""Ensure at most one child is active per sample."""
|
|
264
|
-
batch_size = activations.shape[0]
|
|
265
|
-
|
|
266
|
-
# Get indices of children that have feature indices
|
|
267
|
-
child_indices = [
|
|
268
|
-
child.feature_index
|
|
269
|
-
for child in self.children
|
|
270
|
-
if child.feature_index is not None
|
|
271
|
-
]
|
|
272
|
-
|
|
273
|
-
if len(child_indices) < 2:
|
|
274
|
-
return
|
|
275
|
-
|
|
276
|
-
# For each sample where parent is active, enforce mutual exclusion.
|
|
277
|
-
# Note: This loop is not vectorized because we need to randomly select
|
|
278
|
-
# which child to keep active per sample. Vectorizing would require either
|
|
279
|
-
# a deterministic selection (losing randomness) or complex gather/scatter
|
|
280
|
-
# operations that aren't more efficient for typical batch sizes.
|
|
281
|
-
for batch_idx in range(batch_size):
|
|
282
|
-
if not parent_active_mask[batch_idx]:
|
|
283
|
-
continue
|
|
284
|
-
|
|
285
|
-
# Find which children are active
|
|
286
|
-
active_children = [
|
|
287
|
-
i
|
|
288
|
-
for i, feat_idx in enumerate(child_indices)
|
|
289
|
-
if activations[batch_idx, feat_idx] > 0
|
|
290
|
-
]
|
|
291
|
-
|
|
292
|
-
if len(active_children) <= 1:
|
|
293
|
-
continue
|
|
294
|
-
|
|
295
|
-
# Randomly select one to keep active
|
|
296
|
-
random_idx = int(torch.randint(len(active_children), (1,)).item())
|
|
297
|
-
keep_idx = active_children[random_idx]
|
|
298
|
-
|
|
299
|
-
# Deactivate all others
|
|
300
|
-
for i, feat_idx in enumerate(child_indices):
|
|
301
|
-
if i != keep_idx and i in active_children:
|
|
302
|
-
activations[batch_idx, feat_idx] = 0
|
|
303
|
-
|
|
304
877
|
def get_all_feature_indices(self) -> list[int]:
|
|
305
878
|
"""Get all feature indices in this subtree."""
|
|
306
879
|
indices = []
|