sae-lens 6.26.1__py3-none-any.whl → 6.28.2__py3-none-any.whl

This diff represents the content of publicly available package versions that have been released to one of the supported registries. The information contained in this diff is provided for informational purposes only and reflects changes between package versions as they appear in their respective public registries.
@@ -0,0 +1,596 @@
1
+ """
2
+ Hierarchical feature modifier for activation generators.
3
+
4
+ This module provides HierarchyNode, which enforces hierarchical dependencies
5
+ on feature activations. Child features are deactivated when their parent is inactive,
6
+ and children can optionally be mutually exclusive.
7
+
8
+ Based on Noa Nabeshima's Matryoshka SAEs:
9
+ https://github.com/noanabeshima/matryoshka-saes/blob/main/toy_model.py
10
+ """
11
+
12
+ from __future__ import annotations
13
+
14
+ from collections import deque
15
+ from collections.abc import Callable, Sequence
16
+ from dataclasses import dataclass
17
+ from typing import Any
18
+
19
+ import torch
20
+
21
+ ActivationsModifier = Callable[[torch.Tensor], torch.Tensor]
22
+
23
+
24
+ @torch.no_grad()
25
+ def _validate_hierarchy(roots: Sequence[HierarchyNode]) -> None:
26
+ """
27
+ Validate a forest of hierarchy trees.
28
+
29
+ Treats the input as children of a virtual root node and validates the
30
+ entire structure.
31
+
32
+ Checks that:
33
+ 1. There are no loops (no node is its own ancestor)
34
+ 2. Each node has at most one parent (no node appears in multiple children lists)
35
+ 3. No feature index appears in multiple trees
36
+
37
+ Args:
38
+ roots: Root nodes of the hierarchy trees to validate
39
+
40
+ Raises:
41
+ ValueError: If the hierarchy is invalid
42
+ """
43
+ if not roots:
44
+ return
45
+
46
+ # Collect all nodes and check for loops, treating roots as children of virtual root
47
+ all_nodes: list[HierarchyNode] = []
48
+ virtual_root_id = id(roots) # Use the list itself as virtual root identity
49
+
50
+ for root in roots:
51
+ all_nodes.append(root)
52
+ _collect_nodes_and_check_loops(root, all_nodes, ancestors={virtual_root_id})
53
+
54
+ # Check for multiple parents (same node appearing multiple times)
55
+ seen_ids: set[int] = set()
56
+ for node in all_nodes:
57
+ node_id = id(node)
58
+ if node_id in seen_ids:
59
+ node_desc = _node_description(node)
60
+ raise ValueError(
61
+ f"Node ({node_desc}) has multiple parents. "
62
+ "Each node must have at most one parent."
63
+ )
64
+ seen_ids.add(node_id)
65
+
66
+ # Check for overlapping feature indices across trees
67
+ if len(roots) > 1:
68
+ all_indices: set[int] = set()
69
+ for root in roots:
70
+ tree_indices = root.get_all_feature_indices()
71
+ overlap = all_indices & set(tree_indices)
72
+ if overlap:
73
+ raise ValueError(
74
+ f"Feature indices {overlap} appear in multiple hierarchy trees. "
75
+ "Each feature should belong to at most one hierarchy."
76
+ )
77
+ all_indices.update(tree_indices)
78
+
79
+
80
+ def _collect_nodes_and_check_loops(
81
+ node: HierarchyNode,
82
+ all_nodes: list[HierarchyNode],
83
+ ancestors: set[int],
84
+ ) -> None:
85
+ """Recursively collect nodes and check for loops."""
86
+ node_id = id(node)
87
+
88
+ if node_id in ancestors:
89
+ node_desc = _node_description(node)
90
+ raise ValueError(f"Loop detected: node ({node_desc}) is its own ancestor.")
91
+
92
+ # Add to ancestors for children traversal
93
+ new_ancestors = ancestors | {node_id}
94
+
95
+ for child in node.children:
96
+ # Collect child (before recursing, so we can detect multiple parents)
97
+ all_nodes.append(child)
98
+ _collect_nodes_and_check_loops(child, all_nodes, new_ancestors)
99
+
100
+
101
+ def _node_description(node: HierarchyNode) -> str:
102
+ """Get a human-readable description of a node for error messages."""
103
+ if node.feature_index is not None:
104
+ return f"feature_index={node.feature_index}"
105
+ if node.feature_id:
106
+ return f"id={node.feature_id}"
107
+ return "unnamed node"
108
+
109
+
110
+ # ---------------------------------------------------------------------------
111
+ # Vectorized hierarchy implementation
112
+ # ---------------------------------------------------------------------------
113
+
114
+
115
+ @dataclass
116
+ class _LevelData:
117
+ """Data for a single level in the hierarchy."""
118
+
119
+ # Features at this level and their parents (for parent deactivation)
120
+ features: torch.Tensor # [num_features_at_level]
121
+ parents: torch.Tensor # [num_features_at_level]
122
+
123
+ # ME group indices to process AFTER this level's parent deactivation
124
+ # These are groups whose parent node is at this level
125
+ # ME must be applied here before processing next level's parent deactivation
126
+ me_group_indices: torch.Tensor # [num_groups_at_level], may be empty
127
+
128
+
129
+ @dataclass
130
+ class _SparseHierarchyData:
131
+ """Precomputed data for sparse hierarchy processing.
132
+
133
+ This structure enables O(active_features) processing instead of O(all_groups).
134
+ ME is applied at each level after parent deactivation to ensure cascading works.
135
+ """
136
+
137
+ # Per-level data for parent deactivation and ME (processed in order)
138
+ level_data: list[_LevelData]
139
+
140
+ # ME group data (shared across levels, indexed by me_group_indices)
141
+ me_group_siblings: torch.Tensor # [num_groups, max_siblings]
142
+ me_group_sizes: torch.Tensor # [num_groups]
143
+ me_group_parents: (
144
+ torch.Tensor
145
+ ) # [num_groups] - parent feature index (-1 if no parent)
146
+
147
+ # Total number of ME groups
148
+ num_groups: int
149
+
150
+
151
+ def _build_sparse_hierarchy(
152
+ roots: Sequence[HierarchyNode],
153
+ ) -> _SparseHierarchyData:
154
+ """
155
+ Build sparse hierarchy data structure for O(active_features) processing.
156
+
157
+ The key insight is that ME groups must be applied at the level of their parent node,
158
+ AFTER parent deactivation at that level, but BEFORE processing the next level.
159
+ This ensures that when a child is deactivated by ME, its grandchildren are also
160
+ deactivated during the next level's parent deactivation.
161
+ """
162
+ # Collect feature info by level using BFS
163
+ # Each entry: (feature_index, effective_parent, level)
164
+ feature_info: list[tuple[int, int, int]] = []
165
+
166
+ # ME groups: list of (parent_level, parent_feature, child_feature_indices)
167
+ me_groups: list[tuple[int, int, list[int]]] = []
168
+
169
+ # BFS queue: (node, effective_parent, level)
170
+ queue: deque[tuple[HierarchyNode, int, int]] = deque()
171
+ for root in roots:
172
+ queue.append((root, -1, 0))
173
+
174
+ while queue:
175
+ node, effective_parent, level = queue.popleft()
176
+
177
+ if node.feature_index is not None:
178
+ feature_info.append((node.feature_index, effective_parent, level))
179
+ new_effective_parent = node.feature_index
180
+ else:
181
+ new_effective_parent = effective_parent
182
+
183
+ # Handle mutual exclusion children - record the parent's level and feature
184
+ if node.mutually_exclusive_children and len(node.children) >= 2:
185
+ child_feats = [
186
+ c.feature_index for c in node.children if c.feature_index is not None
187
+ ]
188
+ if len(child_feats) >= 2:
189
+ # ME group belongs to the parent's level (current level)
190
+ # Parent feature is the node's feature_index (-1 if organizational node)
191
+ parent_feat = (
192
+ node.feature_index if node.feature_index is not None else -1
193
+ )
194
+ me_groups.append((level, parent_feat, child_feats))
195
+
196
+ for child in node.children:
197
+ queue.append((child, new_effective_parent, level + 1))
198
+
199
+ # Determine max level for both features and ME groups
200
+ max_feature_level = max((info[2] for info in feature_info), default=-1)
201
+ max_me_level = max((lvl for lvl, _, _ in me_groups), default=-1)
202
+ max_level = max(max_feature_level, max_me_level)
203
+
204
+ # Build level data with ME group indices per level
205
+ level_data: list[_LevelData] = []
206
+
207
+ # Group ME groups by their parent level
208
+ me_groups_by_level: dict[int, list[int]] = {}
209
+ for g_idx, (parent_level, _, _) in enumerate(me_groups):
210
+ if parent_level not in me_groups_by_level:
211
+ me_groups_by_level[parent_level] = []
212
+ me_groups_by_level[parent_level].append(g_idx)
213
+
214
+ for level in range(max_level + 1):
215
+ # Get features at this level that have parents
216
+ features_at_level = [
217
+ (feat, parent) for feat, parent, lv in feature_info if lv == level
218
+ ]
219
+ with_parents = [(f, p) for f, p in features_at_level if p >= 0]
220
+
221
+ if with_parents:
222
+ feats = torch.tensor([f for f, _ in with_parents], dtype=torch.long)
223
+ parents = torch.tensor([p for _, p in with_parents], dtype=torch.long)
224
+ else:
225
+ feats = torch.empty(0, dtype=torch.long)
226
+ parents = torch.empty(0, dtype=torch.long)
227
+
228
+ # Get ME group indices for this level
229
+ if level in me_groups_by_level:
230
+ me_indices = torch.tensor(me_groups_by_level[level], dtype=torch.long)
231
+ else:
232
+ me_indices = torch.empty(0, dtype=torch.long)
233
+
234
+ level_data.append(
235
+ _LevelData(features=feats, parents=parents, me_group_indices=me_indices)
236
+ )
237
+
238
+ # Build group siblings and parents tensors
239
+ if me_groups:
240
+ max_siblings = max(len(children) for _, _, children in me_groups)
241
+ num_groups = len(me_groups)
242
+ me_group_siblings = torch.full((num_groups, max_siblings), -1, dtype=torch.long)
243
+ me_group_sizes = torch.zeros(num_groups, dtype=torch.long)
244
+ me_group_parents = torch.full((num_groups,), -1, dtype=torch.long)
245
+ for g_idx, (_, parent_feat, siblings) in enumerate(me_groups):
246
+ me_group_sizes[g_idx] = len(siblings)
247
+ me_group_parents[g_idx] = parent_feat
248
+ me_group_siblings[g_idx, : len(siblings)] = torch.tensor(
249
+ siblings, dtype=torch.long
250
+ )
251
+ else:
252
+ me_group_siblings = torch.empty((0, 0), dtype=torch.long)
253
+ me_group_sizes = torch.empty(0, dtype=torch.long)
254
+ me_group_parents = torch.empty(0, dtype=torch.long)
255
+ num_groups = 0
256
+
257
+ return _SparseHierarchyData(
258
+ level_data=level_data,
259
+ me_group_siblings=me_group_siblings,
260
+ me_group_sizes=me_group_sizes,
261
+ me_group_parents=me_group_parents,
262
+ num_groups=num_groups,
263
+ )
264
+
265
+
266
+ def _apply_hierarchy_sparse(
267
+ activations: torch.Tensor,
268
+ sparse_data: _SparseHierarchyData,
269
+ ) -> torch.Tensor:
270
+ """
271
+ Apply hierarchy constraints using precomputed sparse indices.
272
+
273
+ Processes level by level:
274
+ 1. Apply parent deactivation for features at this level
275
+ 2. Apply mutual exclusion for groups whose parent is at this level
276
+ 3. Move to next level
277
+
278
+ This ensures that ME at level L affects parent deactivation at level L+1.
279
+ """
280
+ result = activations.clone()
281
+
282
+ # Data is already on correct device from cache
283
+ me_group_siblings = sparse_data.me_group_siblings
284
+ me_group_sizes = sparse_data.me_group_sizes
285
+ me_group_parents = sparse_data.me_group_parents
286
+
287
+ for level_data in sparse_data.level_data:
288
+ # Step 1: Deactivate children where parent is inactive
289
+ if level_data.features.numel() > 0:
290
+ parent_vals = result[:, level_data.parents]
291
+ child_vals = result[:, level_data.features]
292
+ result[:, level_data.features] = child_vals * (parent_vals > 0)
293
+
294
+ # Step 2: Apply ME for groups whose parent is at this level
295
+ if level_data.me_group_indices.numel() > 0:
296
+ _apply_me_for_groups(
297
+ result,
298
+ level_data.me_group_indices,
299
+ me_group_siblings,
300
+ me_group_sizes,
301
+ me_group_parents,
302
+ )
303
+
304
+ return result
305
+
306
+
307
+ def _apply_me_for_groups(
308
+ activations: torch.Tensor,
309
+ group_indices: torch.Tensor,
310
+ me_group_siblings: torch.Tensor,
311
+ me_group_sizes: torch.Tensor,
312
+ me_group_parents: torch.Tensor,
313
+ ) -> None:
314
+ """
315
+ Apply mutual exclusion for the specified groups.
316
+
317
+ Only processes groups where the parent is active (or has no parent).
318
+ This is a key optimization since most groups are skipped when parent is inactive.
319
+
320
+ Args:
321
+ activations: [batch_size, num_features] - modified in place
322
+ group_indices: [num_groups_to_process] - which groups to apply ME for
323
+ me_group_siblings: [total_groups, max_siblings] - sibling indices per group
324
+ me_group_sizes: [total_groups] - number of valid siblings per group
325
+ me_group_parents: [total_groups] - parent feature index (-1 if no parent)
326
+ """
327
+ batch_size = activations.shape[0]
328
+ device = activations.device
329
+ num_groups = group_indices.numel()
330
+
331
+ if num_groups == 0:
332
+ return
333
+
334
+ # Get parent indices for these groups
335
+ parents = me_group_parents[group_indices] # [num_groups]
336
+
337
+ # Check which parents are active: [batch_size, num_groups]
338
+ # Groups with parent=-1 are always active (root-level ME)
339
+ has_parent = parents >= 0
340
+ if has_parent.all():
341
+ # All groups have parents - check their activation directly
342
+ parent_active = activations[:, parents] > 0 # [batch, num_groups]
343
+ if not parent_active.any():
344
+ return
345
+ elif has_parent.any():
346
+ # Mixed case: some groups have parents, some don't
347
+ # Use clamp to avoid indexing with -1 (reads feature 0, but result is masked out)
348
+ safe_parents = parents.clamp(min=0)
349
+ parent_active = activations[:, safe_parents] > 0 # [batch, num_groups]
350
+ # Groups without parent are always "active"
351
+ parent_active = parent_active | ~has_parent
352
+ else:
353
+ # No groups have parents - all are always active, skip parent check
354
+ parent_active = None
355
+
356
+ # Get siblings for the groups we're processing
357
+ siblings = me_group_siblings[group_indices] # [num_groups, max_siblings]
358
+ sizes = me_group_sizes[group_indices] # [num_groups]
359
+ max_siblings = siblings.shape[1]
360
+
361
+ # Get activations for all siblings: [batch_size, num_groups, max_siblings]
362
+ safe_siblings = siblings.clamp(min=0)
363
+ sibling_activations = activations[:, safe_siblings.view(-1)].view(
364
+ batch_size, num_groups, max_siblings
365
+ )
366
+
367
+ # Create validity mask for padding: [num_groups, max_siblings]
368
+ sibling_range = torch.arange(max_siblings, device=device)
369
+ valid_mask = sibling_range < sizes.unsqueeze(1)
370
+
371
+ # Find active valid siblings, but only where parent is active: [batch, groups, siblings]
372
+ sibling_active = (sibling_activations > 0) & valid_mask
373
+ if parent_active is not None:
374
+ sibling_active = sibling_active & parent_active.unsqueeze(2)
375
+
376
+ # Count active per group and check for conflicts: [batch_size, num_groups]
377
+ active_counts = sibling_active.sum(dim=2)
378
+ needs_exclusion = active_counts > 1
379
+
380
+ if not needs_exclusion.any():
381
+ return
382
+
383
+ # Get (batch, group) pairs needing exclusion
384
+ batch_with_conflict, groups_with_conflict = torch.where(needs_exclusion)
385
+ num_conflicts = batch_with_conflict.numel()
386
+
387
+ if num_conflicts == 0:
388
+ return
389
+
390
+ # Get siblings and activations for conflicts
391
+ conflict_siblings = siblings[groups_with_conflict] # [num_conflicts, max_siblings]
392
+ conflict_active = sibling_active[
393
+ batch_with_conflict, groups_with_conflict
394
+ ] # [num_conflicts, max_siblings]
395
+
396
+ # Random selection for winner
397
+ # Use -1e9 instead of -inf to avoid creating a tensor (torch.tensor(-float("inf")))
398
+ # on every call. Since random scores are in [0,1], -1e9 is effectively -inf for argmax.
399
+ random_scores = torch.rand(num_conflicts, max_siblings, device=device)
400
+ random_scores[~conflict_active] = -1e9
401
+
402
+ winner_idx = random_scores.argmax(dim=1)
403
+
404
+ # Determine losers using scatter for efficiency
405
+ is_winner = torch.zeros(
406
+ num_conflicts, max_siblings, dtype=torch.bool, device=device
407
+ )
408
+ is_winner.scatter_(1, winner_idx.unsqueeze(1), True)
409
+ should_deactivate = conflict_active & ~is_winner
410
+
411
+ # Get (conflict, sibling) pairs to deactivate
412
+ conflict_idx, sib_idx = torch.where(should_deactivate)
413
+
414
+ if conflict_idx.numel() == 0:
415
+ return
416
+
417
+ # Map back to (batch, feature) and deactivate
418
+ deact_batch = batch_with_conflict[conflict_idx]
419
+ deact_feat = conflict_siblings[conflict_idx, sib_idx]
420
+ activations[deact_batch, deact_feat] = 0
421
+
422
+
423
+ @torch.no_grad()
424
+ def hierarchy_modifier(
425
+ roots: Sequence[HierarchyNode] | HierarchyNode,
426
+ ) -> ActivationsModifier:
427
+ """
428
+ Create an activations modifier from one or more hierarchy trees.
429
+
430
+ This is the recommended way to use hierarchies with ActivationGenerator.
431
+ It validates the hierarchy structure and returns a modifier function that
432
+ applies all hierarchy constraints.
433
+
434
+ Args:
435
+ roots: One or more root HierarchyNode objects. Each root defines an
436
+ independent hierarchy tree. All trees are validated and applied.
437
+
438
+ Returns:
439
+ An ActivationsModifier function that can be passed to ActivationGenerator.
440
+
441
+ Raises:
442
+ ValueError: If validate=True and any hierarchy contains loops or
443
+ nodes with multiple parents.
444
+ """
445
+ if not roots:
446
+ # No hierarchies - return identity function
447
+ def identity(activations: torch.Tensor) -> torch.Tensor:
448
+ return activations
449
+
450
+ return identity
451
+
452
+ if isinstance(roots, HierarchyNode):
453
+ roots = [roots]
454
+ _validate_hierarchy(roots)
455
+
456
+ # Build sparse hierarchy data
457
+ sparse_data = _build_sparse_hierarchy(roots)
458
+
459
+ # Cache for device-specific tensors
460
+ device_cache: dict[torch.device, _SparseHierarchyData] = {}
461
+
462
+ def _get_sparse_for_device(device: torch.device) -> _SparseHierarchyData:
463
+ """Get or create device-specific sparse hierarchy data."""
464
+ if device not in device_cache:
465
+ device_cache[device] = _SparseHierarchyData(
466
+ level_data=[
467
+ _LevelData(
468
+ features=ld.features.to(device),
469
+ parents=ld.parents.to(device),
470
+ me_group_indices=ld.me_group_indices.to(device),
471
+ )
472
+ for ld in sparse_data.level_data
473
+ ],
474
+ me_group_siblings=sparse_data.me_group_siblings.to(device),
475
+ me_group_sizes=sparse_data.me_group_sizes.to(device),
476
+ me_group_parents=sparse_data.me_group_parents.to(device),
477
+ num_groups=sparse_data.num_groups,
478
+ )
479
+ return device_cache[device]
480
+
481
+ def modifier(activations: torch.Tensor) -> torch.Tensor:
482
+ device = activations.device
483
+ cached = _get_sparse_for_device(device)
484
+ return _apply_hierarchy_sparse(activations, cached)
485
+
486
+ return modifier
487
+
488
+
489
+ class HierarchyNode:
490
+ """
491
+ Represents a node in a feature hierarchy tree.
492
+
493
+ Used to define hierarchical dependencies between features. Children are
494
+ deactivated when their parent is inactive, and children can optionally
495
+ be mutually exclusive.
496
+
497
+ Use `hierarchy_modifier()` to create an ActivationsModifier from one or
498
+ more HierarchyNode trees.
499
+
500
+
501
+ Attributes:
502
+ feature_index: Index of this feature in the activation tensor
503
+ children: Child HierarchyNode nodes
504
+ mutually_exclusive_children: If True, at most one child is active per sample
505
+ feature_id: Optional identifier for debugging
506
+ """
507
+
508
+ children: Sequence[HierarchyNode]
509
+ feature_index: int | None
510
+
511
+ @classmethod
512
+ def from_dict(cls, tree_dict: dict[str, Any]) -> HierarchyNode:
513
+ """
514
+ Create a HierarchyNode from a dictionary specification.
515
+
516
+ Args:
517
+ tree_dict: Dictionary with keys:
518
+
519
+ - feature_index (optional): Index in the activation tensor
520
+ - children (optional): List of child tree dictionaries
521
+ - mutually_exclusive_children (optional): Whether children are exclusive
522
+ - id (optional): Identifier for this node
523
+
524
+ Returns:
525
+ HierarchyNode instance
526
+ """
527
+ children = [
528
+ HierarchyNode.from_dict(child_dict)
529
+ for child_dict in tree_dict.get("children", [])
530
+ ]
531
+ return cls(
532
+ feature_index=tree_dict.get("feature_index"),
533
+ children=children,
534
+ mutually_exclusive_children=tree_dict.get(
535
+ "mutually_exclusive_children", False
536
+ ),
537
+ feature_id=tree_dict.get("id"),
538
+ )
539
+
540
+ def __init__(
541
+ self,
542
+ feature_index: int | None = None,
543
+ children: Sequence[HierarchyNode] | None = None,
544
+ mutually_exclusive_children: bool = False,
545
+ feature_id: str | None = None,
546
+ ):
547
+ """
548
+ Create a new HierarchyNode.
549
+
550
+ Args:
551
+ feature_index: Index of this feature in the activation tensor.
552
+ Use None for organizational nodes that don't correspond to a feature.
553
+ children: Child nodes that depend on this feature
554
+ mutually_exclusive_children: If True, only one child can be active per sample
555
+ feature_id: Optional identifier for debugging
556
+ """
557
+ self.feature_index = feature_index
558
+ self.children = children or []
559
+ self.mutually_exclusive_children = mutually_exclusive_children
560
+ self.feature_id = feature_id
561
+
562
+ if self.mutually_exclusive_children and len(self.children) < 2:
563
+ raise ValueError("Need at least 2 children for mutual exclusion")
564
+
565
+ def get_all_feature_indices(self) -> list[int]:
566
+ """Get all feature indices in this subtree."""
567
+ indices = []
568
+ if self.feature_index is not None:
569
+ indices.append(self.feature_index)
570
+ for child in self.children:
571
+ indices.extend(child.get_all_feature_indices())
572
+ return indices
573
+
574
+ def validate(self) -> None:
575
+ """
576
+ Validate the hierarchy structure.
577
+
578
+ Checks that:
579
+ 1. There are no loops (no node is its own ancestor)
580
+ 2. Each node has at most one parent (no node appears in multiple children lists)
581
+
582
+ Raises:
583
+ ValueError: If the hierarchy is invalid
584
+ """
585
+ _validate_hierarchy([self])
586
+
587
+ def __repr__(self, indent: int = 0) -> str:
588
+ s = " " * (indent * 2)
589
+ s += str(self.feature_index) if self.feature_index is not None else "-"
590
+ s += "x" if self.mutually_exclusive_children else " "
591
+ if self.feature_id:
592
+ s += f" ({self.feature_id})"
593
+
594
+ for child in self.children:
595
+ s += "\n" + child.__repr__(indent + 2)
596
+ return s
@@ -0,0 +1,40 @@
1
+ import torch
2
+
3
+ from sae_lens.synthetic import FeatureDictionary
4
+
5
+
6
+ @torch.no_grad()
7
+ def init_sae_to_match_feature_dict(
8
+ sae: torch.nn.Module,
9
+ feature_dict: FeatureDictionary,
10
+ noise_level: float = 0.0,
11
+ feature_ordering: torch.Tensor | None = None,
12
+ ) -> None:
13
+ """
14
+ Initialize an SAE's weights to match a feature dictionary.
15
+
16
+ This can be useful for:
17
+
18
+ - Starting training from a known good initialization
19
+ - Testing SAE evaluation code with ground truth
20
+ - Ablation studies on initialization
21
+
22
+ Args:
23
+ sae: The SAE to initialize. Must have W_enc and W_dec attributes.
24
+ feature_dict: The feature dictionary to match
25
+ noise_level: Standard deviation of Gaussian noise to add (0 = exact match)
26
+ feature_ordering: Optional permutation of feature indices
27
+ """
28
+ features = feature_dict.feature_vectors # [num_features, hidden_dim]
29
+ min_dim = min(sae.W_enc.shape[1], features.shape[0]) # type: ignore[attr-defined]
30
+
31
+ if feature_ordering is not None:
32
+ features = features[feature_ordering]
33
+
34
+ features = features[:min_dim]
35
+
36
+ # W_enc is [hidden_dim, d_sae], feature vectors are [num_features, hidden_dim]
37
+ sae.W_enc.data[:, :min_dim] = ( # type: ignore[index]
38
+ features.T + torch.randn_like(features.T) * noise_level
39
+ )
40
+ sae.W_dec.data = sae.W_enc.data.T.clone() # type: ignore[union-attr]